1
|
Temesgen L, Tufa TB, Abunna F. Isolation, Identification and Antimicrobial Resistance Profile of Salmonella in Raw cow milk & its products in Bishoftu city, central Ethiopia: implication for public health. ONE HEALTH OUTLOOK 2025; 7:10. [PMID: 40087724 PMCID: PMC11909932 DOI: 10.1186/s42522-025-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Salmonella is a significant foodborne pathogen, with milk and milk products commonly implicated in its transmission. However, limited information is available regarding the direct link between antimicrobial use (AMU), dairy hygiene practices, and antimicrobial resistance (AMR) in Salmonella strains isolated from dairy products in Bishoftu town. METHODS Cross-sectional research was done from October 2023 to April 2024 to assess dairy farmers' antimicrobial usage (AMU) and hygiene practices and the occurrence of antimicrobial resistance (AMR) profiles of Salmonella isolated from raw cow milk and its products. A structured questionnaire was also used to assess the milk value chain's knowledge, attitude, and practices (KAP) regarding AMU, AMR, and hygiene practices. Salmonella isolation and identification was conducted using standard microbiological techniques and further confirmation was carried out using the OmniLog system. An antimicrobial susceptibility test was performed using the Kirby-Bauer disk diffusion technique..Data was analyzed using STATA version 14.2. RESULTS Among 41 dairy farmers interviewed, it was found that most of the respondents had sufficient knowledge (78%), desired attitudes (90%), and good practices (76%) regarding AMU and AMR. However, 36% of dairy farms had poor hygienic practices. Overall, 2% (n = 4) of the samples tested positive for S. enterica. Of the 4 isolates, 3 were identified in dairy farm samples, whereas 1 was isolated from milk vendors. However, no Salmonella was identified in cheese or yoghurt samples obtained from the restaurants. Regarding the AMR profile, S. enterica isolates were resistant to amoxicillin (75%), streptomycin (75%), and tetracycline (50%). Resistant to two or more antimicrobials were identified in 75% of the isolates. CONCLUSION This study indicated contamination of cow milk and its products with S. enterica. Therefore, appropriate control measures, including awareness creation among personnel and improving hygienic practices at the milk value chains is recommended to mitigate cross-contamination.
Collapse
Affiliation(s)
- Lema Temesgen
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| | - Takele Beyene Tufa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| | - Fufa Abunna
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia.
| |
Collapse
|
2
|
Chen L, Shi Y, Wang M, Li Y, Si Z. Comprehensive epidemiological profiling of poultry-derived Salmonella spp. in Shandong, China, 2019-2022: a longitudinal study of prevalence, antibiotic resistances, virulence factors and molecular characteristics. Front Microbiol 2025; 16:1541084. [PMID: 40109969 PMCID: PMC11920138 DOI: 10.3389/fmicb.2025.1541084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Salmonella spp., as a major foodborne pathogen, pose significant threats to public health globally and has been an important zoonotic contamination for poultry industry that should receive increasing attentions. This study aimed to comprehensively investigate the prevalence, antimicrobial resistances, virulence factors, and plasmid types of Salmonella isolates collected from chickens, ducks, and geese across eight cities in Shandong between 2019 and 2022. Out of 300 samples, 53 Salmonella strains (17.67%) were isolated, with varied prevalence from 8.33% to 25.00% in different cities of Shandong. A total of seven serotypes were identified among the 53 Salmonella isolates, wherein the S. Enteritidis (45.28%), S. Pullorum (22.64%) and S. Typhimurium (16.98%) were identified as the most prevalent. Whole-genome sequencing analysis revealed that ST11, ST92, and ST19 were the predominant sequence types for S. Enteritidis, S. Pullorum, and S. Typhimurium, respectively. Phylogenetic analysis indicated that potential clonal spread of S. Enteritidis, S. Pullorum, and S. Typhimurium occurred across different regions, particularly the evidences supported that the S. Typhimurium isolates were dispersed in a cross-species manner. Finally, the phenotypic and genotypic profiling of antibiotic resistance among the isolates revealed that these isolates were multidrug resistant with corresponding antibiotic resistance genes (ARGs) including bla TEM, aac, aph, tet(A), and tet(B) to confer them with resistances to commonly-used veterinary drugs such as β-lactams, quinolones, macrolides. To sum, this study provides valuable insights into the current epidemiology of Salmonella in poultry industry in one of the biggest provinces in China, and shedding the light on the urgent necessity for further approaches to prevent and decontaminate such MDR Salmonella in livestock under One Health concept.
Collapse
Affiliation(s)
- Lele Chen
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Yuxia Shi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Minge Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Zhenshu Si
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Woh PY, Chen Y, Kwok KWH, Quiroga J. Bayesian phylogeographic analysis infers cross-border transmission dynamics of drug-resistant Salmonella Enteritidis. Microbiol Spectr 2025; 13:e0229224. [PMID: 39918339 DOI: 10.1128/spectrum.02292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 03/05/2025] Open
Abstract
Salmonella Enteritidis (S. Enteritidis) stands as a leading cause of human salmonellosis worldwide with a tendency to spread through contaminated foodstuffs and animals. In Hong Kong, a significant proportion of food products are imported, and many cases are often caused by the consumption of contaminated food, hence making the geographical surveillance of drug-resistant S. Enteritidis important for strong public health and food safety measures. We analyzed the whole genomes of 207 S. Enteritidis from Hong Kong, Australia, Canada, mainland China, the United States of America, South Africa, Taiwan, and the United Kingdom to examine associated antimicrobial resistance and the transmission dynamics between continents. Phylogenetic cluster inferences and Bayesian phylogeographical analysis were performed. Overall, sequence type ST11 strains were dominant (92.8%, 192/207). Five phylogenomic clusters A to E were identified, where most isolates from mainland China and Hong Kong were in Cluster E. Among the 22 plasmid types identified, IncX1 was dominant in the Asian isolates. Most of the virulence genes were distributed in Salmonella pathogenicity islands -1 and -2, with two universal virulence operons responsible for the effector delivery system and bacterial cell adhesion. The phylogeographic inference analysis showed a statistically significant link between mainland China and Hong Kong with the highest relative migration rate (relativeGeoRates mean ± standard error = 2.93 ± .07, Bayes Factor [BF] = 1285.5], with some traceable to Canada (0.61 ± 0.03, BF = 6.9) and Australia (1.02 ± 0.04, BF = 4.2). Our analysis suggests hypothetical transmission of S. Enteritidis and its associated antimicrobial resistance across borders. IMPORTANCE Antimicrobial resistance and disease severity in nontyphoidal Salmonella have constituted a serious public health challenge worldwide. Drug-resistant Salmonella Enteritidis is a leading pathogen that causes human infections primarily through the consumption of contaminated food products. Previous research focuses on the whole-genome analysis of antimicrobial resistance and virulence factors in S. Enteritidis; however, details on how this bacterium localized, expanded, and diversified from location to location remain unknown. Our study for the first time addresses this gap by investigating the phylogeographic transmission to estimate the frequency and location of cross-border spread. By evidence-based inferred transmission, we aim to uncover novel insights into the dynamic spread of S. Enteritidis, revealing the route of emergence and migration. This research is crucial for enhancing our understanding of the control strategies to safeguard human health.
Collapse
Affiliation(s)
- Pei Yee Woh
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yehao Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kevin Wing Hin Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jose Quiroga
- Office of Global Outreach and Extended Education, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, USA
| |
Collapse
|
4
|
Jibril AH, Dalsgaard A, Okeke IN, Ibrahim AM, Olsen JE. Occurrence of Salmonella enterica in faecal sludge from Nigeria and genetic relatedness with strains associated with human infections in Africa. J Appl Microbiol 2024; 135:lxae293. [PMID: 39577843 DOI: 10.1093/jambio/lxae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
AIMS This study investigated occurrence of Salmonella in faecal sludge from public toilets in Nigeria and genetic relatedness of strains that have been reported to cause human infection across Africa. METHODS AND RESULTS The study collected 150 human sludge from public toilets and identified Salmonella through culture and PCR. Isolates were tested for antimicrobial susceptibility and sequenced using Illumina MiSeq. Draft sequences were compared with sequence data from Enterobase and GenBank. Twenty-four (16.0%) of sewage samples were positive for Salmonella [CI95 (10.2-21.8)]. Salmonella serotype Give [sequence type (ST) 516], Salmonella serotype Seftenberg (ST-14), and Salmonella serotype Chester (ST-411) were the most prevalent serovars found in 45.8%, 16.7%, and 16.7% of samples, respectively. Most of the isolates were sensitive to the antimicrobials tested, only one isolate of Salmonella serotype Derby showed resistance to ampicillin and cefazolin. Notably, 91.7% of the strains had the aac (6)-Iaa gene and point mutations in parC, gyrA, and acrB. Salmonella serotype Chester showed genetic relatedness with strains from Benin Republic and South Africa. CONCLUSIONS There is genetic relatedness of present strains and those associated with human infections in Africa.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigboejlen 4, Frederiskberg C., 1870, Copenhagen, Denmark
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University Sokoto, Sultan Abubakar Road 234840212, Sokoto, Nigeria
- Center for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, No 1, Garba Nadama Road 234840323, Sokoto, Nigeria
- One Health Institute, Usmanu Danfodiyo University Sokoto, No 1, Garba Nadama Road, 234840323, Sokoto
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigboejlen 4, Frederiskberg C., 1870, Copenhagen, Denmark
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Agbowo 200005, Ibadan, Nigeria
| | - Aliyu Musawa Ibrahim
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University Sokoto, Sultan Abubakar Road 234840212, Sokoto, Nigeria
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigboejlen 4, Frederiskberg C., 1870, Copenhagen, Denmark
| |
Collapse
|
5
|
Donkor ES, Odoom A, Osman AH, Darkwah S, Kotey FCN. A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective. Antibiotics (Basel) 2024; 13:662. [PMID: 39061344 PMCID: PMC11274323 DOI: 10.3390/antibiotics13070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a global health threat, with lower-middle-income countries bearing a disproportionate burden. Surveillance of AMR under a One Health framework is needed to elucidate the associations among clinical, animal, and environmental AMR. This review aimed to describe the state of AMR in Ghana, focusing on One Health. METHOD This review utilized the PRISMA guidelines and major databases to systematically search and analyze AMR in Ghana published from 1 January 2014 to 1 May 2023. RESULTS Out of the 48 articles that met the inclusion criteria, 28 studies were conducted on humans, 14 studies involved animals, and 6 studies focused on the environment. A total of 48 different pathogens were identified across the human, animal, and environmental sectors, with the most common being Escherichia coli (67%, n = 32), Klebsiella spp. (52%, n = 25), Pseudomonas spp. (40%, n = 19), and Salmonella spp. (38%, n = 18). Generally, a high prevalence of antibiotic resistance was observed among various bacterial species across the sectors. These bacteria exhibited resistance to commonly used antibiotics, with resistance to ampicillin and tetracycline exceeding 80%, and multidrug resistance (MDR) ranging from 17.6% in Shigella spp. to 100% in Acinetobacter spp. CONCLUSION This review reaffirms the significant challenge of AMR in Ghana, with a high prevalence observed in the human, animal, and environmental sectors. Key pathogens (e.g., Staphylococcus aureus and Escherichia coli) found across the sectors emphasize the urgent need for a One Health approach to tackle AMR in Ghana.
Collapse
Affiliation(s)
- Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (A.O.); (A.-H.O.); (S.D.); (F.C.N.K.)
| | | | | | | | | |
Collapse
|
6
|
Ayuti SR, Khairullah AR, Al-Arif MA, Lamid M, Warsito SH, Moses IB, Hermawan IP, Silaen OSM, Lokapirnasari WP, Aryaloka S, Ferasyi TR, Hasib A, Delima M. Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open Vet J 2024; 14:1313-1329. [PMID: 39055762 PMCID: PMC11268913 DOI: 10.5455/ovj.2024.v14.i6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Salmonellosis, caused by Salmonella species, is one of the most common foodborne illnesses worldwide with an estimated 93.8 million cases and about 155,00 fatalities. In both industrialized and developing nations, Salmonellosis has been reported to be one of the most prevalent foodborne zoonoses and is linked with arrays of illness syndromes such as acute and chronic enteritis, and septicaemia. The two major and most common Salmonella species implicated in both warm-blooded and cold-blooded animals are Salmonella bongori and Salmonella enterica. To date, more than 2400 S. enterica serovars which affect both humans and animals have been identified. Salmonella is further classified into serotypes based on three primary antigenic determinants: somatic (O), flagella (H), and capsular (K). The capacity of nearly all Salmonella species to infect, multiply, and survive in human host cells with the aid of their pathogenic and virulence arsenals makes them deadly and important public health pathogens. Primarily, food-producing animals such as poultry, swine, cattle, and their products have been identified as important sources of salmonellosis. Additionally, raw fruits and vegetables are among other food types that have been linked to the spread of Salmonella spp. Based on the clinical manifestation of human salmonellosis, Salmonella strains can be categorized as either non-typhoidal Salmonella (NTS) and typhoidal Salmonella. The detection of aseptically collected Salmonella in necropsies, environmental samples, feedstuffs, rectal swabs, and food products serves as the basis for diagnosis. In developing nations, typhoid fever due to Salmonella Typhi typically results in the death of 5%-30% of those affected. The World Health Organization (WHO) calculated that there are between 16 and 17 million typhoid cases worldwide each year, with scaring 600,000 deaths as a result. The contagiousness of a Salmonella outbreak depends on the bacterial strain, serovar, growth environment, and host susceptibility. Risk factors for Salmonella infection include a variety of foods; for example, contaminated chicken, beef, and pork. Globally, there is a growing incidence and emergence of life-threatening clinical cases, especially due to multidrug-resistant (MDR) Salmonella spp, including strains exhibiting resistance to important antimicrobials such as beta-lactams, fluoroquinolones, and third-generation cephalosporins. In extreme cases, especially in situations involving very difficult-to-treat strains, death usually results. The severity of the infections resulting from Salmonella pathogens is dependent on the serovar type, host susceptibility, the type of bacterial strains, and growth environment. This review therefore aims to detail the nomenclature, etiology, history, pathogenesis, reservoir, clinical manifestations, diagnosis, epidemiology, transmission, risk factors, antimicrobial resistance, public health importance, economic impact, treatment, and control of salmonellosis.
Collapse
Affiliation(s)
- Siti Rani Ayuti
- Doctoral Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Research Center of Aceh Cattle and Local Livestock, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mohammad Anam Al-Arif
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mirni Lamid
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sunaryo Hadi Warsito
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Center for Tropical Veterinary Studies-One Health Collaboration Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Mira Delima
- Department of Animal Husbandry, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
7
|
Kgoale DM, Duvenage S, Du Plessis EM, Gokul JK, Korsten L. Serotype Distribution, Antimicrobial Resistance, Virulence Genes, and Genetic Diversity of Salmonella spp. Isolated from small-scale Leafy Green Vegetable Supply Chains in South Africa. J Food Prot 2024; 87:100195. [PMID: 37977503 DOI: 10.1016/j.jfp.2023.100195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Salmonella have been implicated in foodborne disease outbreaks globally and is a pressing concern in the South African small-scale sector due to inadequate hygiene standards and limited regulatory oversight, leading to a higher risk of foodborne diseases. By investigating irrigation water and leafy green vegetables produced by small-scale growers and sold through unregulated supply chains, this study was able to determine the presence, serotype distribution, virulence gene profiles, antibiotic resistance, and genetic diversity of Salmonella isolated from these sources. From 426 samples, 21 Salmonella-positive samples were identified, providing 53 Salmonella isolates. Of these, six different Salmonella serotypes and sequence types (STs) were identified, including Salmonella II 42:r: ST1208 (33.96%; n = 18), Salmonella Enteritidis: ST11 (22.64%; n = 12), Salmonella II 42:z29: ST4395 (16.98%; n = 9), Salmonella Havana: ST1524 (15.09%; n = 8), Salmonella Typhimurium: ST19 (9.43%; n = 5), and Salmonella IIIb 47:i:z: ST7890 (1.89%; n = 1). A total of 92.45% of the isolates were found to be multidrug-resistant, showing high rates of resistance to aztreonam (88.68%; n = 47), ceftazidime (86.79%; n = 46), nalidixic acid (77.36%; n = 41), cefotaxime (75.47%; n = 40), cefepime (71.70%; n = 38), and streptomycin (69.81%; n = 37). All isolates possessed the aac(6')-Iaa antimicrobial resistance gene, with a range of between 9 and 256 virulence genes. Eleven cluster patterns were observed from Enterobacterial Repetitive Intergenic Consensus sequence analyses, demonstrating high diversity among the Salmonella spp., with water and fresh produce isolates clustering, suggesting water as a potential contamination source. Plasmid replicon types were identified in 41.51% (n = 22) of the isolates, including Col(pHAD28) in Salmonella Havana (5.66%; n = 3), Col156 in Salmonella II 42:z29:- (1.89%; n = 1) and both IncFIB(S) and IncFII(S) in Salmonella Enteritidis (22.64; n = 12), Salmonella Typhimurium (9.43%; n = 5), and Salmonella Havana (1.89%; n = 1). This study highlights the presence of multidrug-resistant and multivirulent Salmonella spp. in the small-scale leafy green vegetable supply chains, underscoring the need for the development of a "fit-for-purpose" food safety management system within this system.
Collapse
Affiliation(s)
- Degracious M Kgoale
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa; Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| | - Stacey Duvenage
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa; Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| | - Erika M Du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa; Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| | - Jarishma K Gokul
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa; Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa.
| |
Collapse
|
8
|
Ofori LA, Fosu D, Ofori S, Akenten CW, Flieger A, Simon S, Jaeger A, Lamshöft M, May J, Obiri-Danso K, Phillips R, Chercos DH, Paintsil EK, Dekker D. Salmonella enterica in farm environments in the Ashanti Region of Ghana. BMC Microbiol 2023; 23:370. [PMID: 38030982 PMCID: PMC10685596 DOI: 10.1186/s12866-023-03121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Salmonella enterica are important foodborne pathogens and the third leading cause of death among diarrheal infections worldwide. This cross-sectional study investigated the frequency of antibiotic-resistant Salmonella enterica in commercial and smallholder farm environments in the Ashanti Region of Ghana. A total of 1490 environmental samples, comprising 800 (53.7%) soil (from poultry, pigs, sheep, goats and cattle farms), 409 (27.4%) pooled poultry fecal and 281 (18.9%) dust (from poultry farms) samples, were collected from 30 commercial and 64 smallholder farms. All samples were processed using standard culture methods. Isolates were identified by biochemical methods and confirmed using the VITEK 2 System. Antibiotic susceptibility testing was carried out by disk diffusion following the EUCAST guidelines. Serotyping was performed using the Kauffman White Le Minor Scheme. RESULTS The overall Salmonella frequency was 6.0% (n/N = 90/1490); the frequency varied according to the type of sample collected and included: 8.9% for dust (n/N = 25/281), 6.5% for soil (n/N = 52/800) and 3.2% for pooled poultry fecal samples (n/N = 13/409). Salmonella was also recovered from commercial farm environments (8.6%, n/N = 68/793) than from smallholder farms (3.2%, n/N = 22/697) (PR = 2.7, CI: 1.7 - 4.4). Thirty-four different Salmonella serovars were identified, the two most common being Rubislaw (27.8%, n/N = 25/90) and Tamale (12.2%, n/N = 11/90). Serovar diversity was highest in strains from soil samples (70.6%, n/N = 24/34) compared to those found in the dust (35.2%, n/N = 12/34) and in fecal samples (29.4%, n/N = 10/34). Salmonella frequency was much higher in the rainy season (8.4%, n/N = 85/1007) than in the dry season (1.0%, n/N = 5/483) (PR = 8.4, 95% CI: 3.3 - 20.0). Approximately 14.4% (n/N = 13/90) of the isolates were resistant to at least one of the tested antimicrobials, with 84.6% (n/N = 11/13) being resistant to multiple antibiotics. All Salmonella Kentucky (n = 5) were resistant to ciprofloxacin. CONCLUSION This study showed that farm environments represent an important reservoir for antibiotic-resistant Salmonella, which warrants monitoring and good husbandry practices, especially in commercial farms during the rainy season, to control the spread of this pathogen.
Collapse
Affiliation(s)
- Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), 039-5028, Kumasi, Ghana.
| | - Dennis Fosu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi, Ghana
| | - Seth Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), 039-5028, Kumasi, Ghana
| | - Charity Wiafe Akenten
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi, Ghana
| | - Antje Flieger
- Unit Enteropathogenic Bacteria and Legionella, National Reference Center for Salmonella and Other Bacterial Enteric Pathogens, Robert-Koch-Institute (RKI), Burgstr. 37, 38855, Wernigerode, Germany
| | - Sandra Simon
- Unit Enteropathogenic Bacteria and Legionella, National Reference Center for Salmonella and Other Bacterial Enteric Pathogens, Robert-Koch-Institute (RKI), Burgstr. 37, 38855, Wernigerode, Germany
| | - Anna Jaeger
- Department Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Maike Lamshöft
- Department Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Juergen May
- Department Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, 38124, Braunschweig, Germany
- Tropical Medicine II, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), 039-5028, Kumasi, Ghana
| | - Richard Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi, Ghana
| | - Daniel Haile Chercos
- Department Implementation Research, One Health Bacteriology Research Group, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Ellis Kobina Paintsil
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi, Ghana
| | - Denise Dekker
- Department Implementation Research, One Health Bacteriology Research Group, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| |
Collapse
|
9
|
Archer EW, Chisnall T, Tano-Debrah K, Card RM, Duodu S, Kunadu APH. Prevalence and genomic characterization of Salmonella isolates from commercial chicken eggs retailed in traditional markets in Ghana. Front Microbiol 2023; 14:1283835. [PMID: 38029182 PMCID: PMC10646427 DOI: 10.3389/fmicb.2023.1283835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Salmonella enterica are important foodborne bacterial pathogens globally associated with poultry. Exposure to Salmonella-contaminated eggs and egg-related products is a major risk for human salmonellosis. Presently, there is a huge data gap regarding the prevalence and circulating serovars of Salmonella in chicken eggs sold in Ghana. In this study, 2,304 eggs (pools of six per sample unit) collected from informal markets in Accra, Kumasi and Tamale, representing the three ecological belts across Ghana, were tested for Salmonella. Antimicrobial susceptibility testing and Whole Genome Sequencing (WGS) of the isolates were performed using standard microdilution protocols and the Illumina NextSeq platform, respectively. The total prevalence of Salmonella was 5.5% with a higher rate of contamination in eggshell (4.9%) over egg content (1.8%). The serovars identified were S. Ajiobo (n = 1), S. Chester (n = 6), S. Hader (n = 7), S. enteritidis (n = 2); and S. I 4:b:- (n = 8). WGS analysis revealed varied sequence types (STs) that were serovar specific. The S. I 4:b:- isolates had a novel ST (ST8938), suggesting a local origin. The two S. enteritidis isolates belonged to ST11 and were identified with an invasive lineage of a global epidemic clade. All isolates were susceptible to ampicillin, azithromycin, cefotaxime, ceftazidime, gentamicin, meropenem, and tigecycline. The phenotypic resistance profiles to seven antimicrobials: chloramphenicol (13%), ciprofloxacin (94%), and nalidixic acid (94%), colistin (13%), trimethoprim (50%) sulfamethoxazole (50%) and tetracycline (50%) corresponded with the presence of antimicrobial resistance (AMR) determinants including quinolones (gyrA (D87N), qnrB81), aminoglycosides (aadA1), (aph(3")-Ib aph(6)-Id), tetracyclines (tet(A)), phenicols (catA1), trimethoprim (dfrA14 and dfrA1). The S. enteritidis and S. Chester isolates were multidrug resistant (MDR). Several virulence factors were identified, notably cytolethal distending toxin (cdtB gene), rck, pef and spv that may promote host invasion and disease progression in humans. The findings from this study indicate the presence of multidrug resistant and virulent strains of Salmonella serovars in Ghanaian chicken eggs, with the potential to cause human infections. This is a critical baseline information that could be used for Salmonella risk assessment in the egg food chain to mitigate potential future outbreaks.
Collapse
Affiliation(s)
- Edward W. Archer
- Nutrition and Food Science Department, University of Ghana, Accra, Ghana
- Food and Drug Authority, Food Safety Management Department, Accra, Ghana
| | - Tom Chisnall
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Kwaku Tano-Debrah
- Nutrition and Food Science Department, University of Ghana, Accra, Ghana
| | | | - Samuel Duodu
- Biochemistry Cell and Molecular Biology Department, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | | |
Collapse
|
10
|
Tagoe JNA, Yeboah C, Behene E, Kumordjie S, Nimo-Paintsil S, Attram N, Nyarko EO, Carroll JA, Fox AT, Watters C, Koram K, Anang AK, Sanders T, Letizia AG. Coinfection of Malaria and Bacterial Pathogens among Acute Febrile Patients in Selected Clinics in Ghana. Am J Trop Med Hyg 2023; 109:1036-1046. [PMID: 37748764 PMCID: PMC10622490 DOI: 10.4269/ajtmh.23-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/05/2023] [Indexed: 09/27/2023] Open
Abstract
Malaria remains the leading cause of acute febrile illness (AFI) in Africa despite successful control measures and programs. Acute febrile illnesses can be misdiagnosed as malaria as a result of the overlapping spectrum of nonspecific symptoms or may not be pursued because of limited diagnostic capabilities. This study investigated potential etiologies of AFIs in Ghana and determined the relationship between coinfection between malaria and Q fever, leptospirosis, and culturable bacteria in febrile patients. Participants were enrolled between July 2015 and December 2019 from four Ghanaian military treatment facilities. Of the 399 febrile participants, 222 (55.6%) males and 177 (44.6%) females were enrolled. Malaria was diagnosed in 275 (68.9%) participants. Malaria coinfection occurred with leptospirosis, Q fever, and blood-cultured bacteria in 11/206 (5.3%), 24/206 (11.7%), and 6/164 (3.7%) participants, respectively. Among the 124 malaria-negative samples, the positivity rates were 4.1% (3/74), 8.1% (6/74), and 3.6% (2/56) for leptospirosis, Q fever, and bacterial pathogens isolated from blood culture, respectively. The majority of documented clinical signs and symptoms were not significantly associated with specific diseases. Approximately 10% of malaria-positive participants also had evidence suggesting the presence of a bacterial coinfection. Therefore, even in the case of a positive malaria test, other pathogens contributing to febrile illness should be considered. Understanding the frequency of malaria coinfection and other etiological agents responsible for AFIs will improve diagnosis and treatment and better inform public health knowledge gaps in Ghana.
Collapse
Affiliation(s)
- Janice N. A. Tagoe
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | - Clara Yeboah
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | - Eric Behene
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | - Selassie Kumordjie
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | | | - Naiki Attram
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | | | | | - Anne T. Fox
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | - Chaselynn Watters
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | | | - Terrel Sanders
- U.S. Naval Medical Research Unit-No.3, Ghana Detachment, Accra, Ghana
| | | |
Collapse
|
11
|
Ntakiyisumba E, Lee S, Won G. Identification of risk profiles for Salmonella prevalence in pig supply chains in South Korea using meta-analysis and a quantitative microbial risk assessment model. Food Res Int 2023; 170:112999. [PMID: 37316069 DOI: 10.1016/j.foodres.2023.112999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
International travel and the globalization of food supplies have increased the risk of epidemic foodborne infections. Salmonella strains, particularly non-typhoidal Salmonella (NTS), are major zoonotic pathogens responsible for gastrointestinal diseases worldwide. In this study, the prevalence and Salmonella contamination in pigs/carcasses throughout the South Korean pig supply chain and the associated risk factors were evaluated using Systematic reviews and meta-analyses (SRMA), and quantitative microbial risk assessment (QMRA). The prevalence of Salmonella in finishing pigs, which is one of the major starting inputs of the QMRA model was calculated through SRMA of studies conducted in south Korea in order to complement and enhance the robustness of the model. Our findings revealed that the pooled Salmonella prevalence in pigs was 4.15% with a 95% confidence interval (CI) of 2.56 to 6.66%. Considering the pig supply chain, the highest prevalence was detected in slaughterhouses (6.27% [95% CI: 3.36; 11.37]), followed by farms (4.16% [95% CI: 2.32; 7.35]) and meat stores (1.21% [95% CI: 0.42; 3.46]). The QMRA model predicted a 3.9% likelihood of Salmonella-free carcasses and a 96.1% probability of Salmonella-positive carcasses at the end of slaughter, with an average Salmonella concentration of 6.38 log CFU/carcass (95% CI: 5.17; 7.28). This corresponds to an average contamination of 1.23 log CFU/g (95% CI: 0.37; 2.48) of pork meat. Across the pig supply chain, the highest Salmonella contamination was predicted after transport and lairage, with an average concentration of 8 log CFU/pig (95% CI: 7.15; 8.42). Sensitivity analysis indicated that Salmonella fecal shedding (r = 0.68) and Salmonella prevalence in finishing pigs (r = 0.39) at pre-harvest were the most significant factors associated with Salmonella contamination in pork carcasses. Although disinfection and sanitation interventions along the slaughter line can reduce contamination levels to some extent, effective measures should be taken to reduce Salmonella prevalence at the farm level to improve the safety of pork consumption.
Collapse
Affiliation(s)
- Eurade Ntakiyisumba
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea
| | - Simin Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea
| | - Gayeon Won
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea.
| |
Collapse
|
12
|
Diab MS, Thabet AS, Elsalam MA, Ewida RM, Sotohy SA. Detection of Virulence and β-lactamase resistance genes of non-typhoidal Salmonella isolates from human and animal origin in Egypt "one health concern". Gut Pathog 2023; 15:16. [PMID: 36998086 PMCID: PMC10061834 DOI: 10.1186/s13099-023-00542-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) is a major foodborne zoonotic pathogen worldwide. In the current study, Various NTS strains were isolated from (cows, milk and dairy products in addition to humans) in New Valley and Assiut Governorate, Egypt. NTS were firstly serotyped and tested by antibiotic sensitivity test. Secondly, some virulence genes and Antibiotic resistance genes have been identified by using PCR. Finally, Phylogenesis was performed depending on the invA gene, for two S. typhimurium isolates (one of animal origin and the other of human origin for evaluating zoonotic potential). RESULTS Out of 800 examined samples, the total number of isolates was 87 (10.88%), which were classified into 13 serotypes, with the most prevalent being S. Typhimurium and S. enteritidis. Both bovine and human isolates showed the highest resistance to clindamycin and streptomycin, with 90.80% of the tested isolates exhibiting MDR. The occurrence of the invA gene was 100%, while 72.22%, 30.56%, and 94.44% of the examined strains were positive for stn, spvC, and hilA genes, respectively. Additionally, blaOXA-2 was detected in 16.67% (6/ 36) of the tested isolates, while blaCMY-1 was detected in 30.56% (11of 36) of the tested isolates. Phylogenesis revealed a high degree of similarity between the two isolates. CONCLUSIONS The high occurrence of MDR strains of NTS in both human and animal samples with high degree of genetic similarity, shows that cows, milk and milk product may be a valuable source of human infection with NTS and interfere with treatment procedures.
Collapse
Affiliation(s)
- Mohamed S. Diab
- grid.252487.e0000 0000 8632 679XDepartment of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Asmaa S. Thabet
- Assiut Lab., Animal Health Research Institute, ARC, Asyut, Egypt
| | | | - Rania M. Ewida
- grid.252487.e0000 0000 8632 679XDepartment of Food Hygiene (Milk Hygiene), Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Sotohy A. Sotohy
- grid.252487.e0000 0000 8632 679XDepartment of Animal, Poultry and Environmental Hygiene, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|
13
|
Ok Baik Y, Lee Y, Lee C, Kyung Kim S, Park J, Sun M, Jung D, Young Jang J, Jun Yong T, Woo Park J, Jeong S, Lim S, Hyun Han S, Keun Choi S. A Phase II/III, Multicenter, Observer-blinded, Randomized, Non-inferiority and Safety, study of typhoid conjugate vaccine (EuTCV) compared to Typbar-TCV® in healthy 6 Months-45 years aged participants. Vaccine 2023; 41:1753-1759. [PMID: 36774331 DOI: 10.1016/j.vaccine.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 02/11/2023]
Abstract
The typhoid conjugate vaccine (TCV) ensures a long-lasting protective immune response, requires fewer doses and is fit for children under 2 years of age. From Phase I study, EuTCV displayed considerable immunogenicity and reliable safety, thus endorsing further examination in Phase II/III trials. Therefore, a clinical Phase II/III study (NCT04830371) was conducted to evaluate its efficacy in healthy Filipino participants aged 6 months to 45 years through administration of the test vaccine (Arm A, B, and C) or comparator vaccine Typbar-TCV® (Arm D). Sera samples were collected pre-vaccination (Visit 1) and post-vaccination (Visit 4, Day 28) to assess the immunogenicity of EuTCV and Typbar-TCV®. During the study, participants were regularly monitored through scheduled visits to the clinic to report any adverse events associated with the vaccine. For vaccine safety, the proportion of solicited and unsolicited Treatment-Emergent Adverse Events was all comparable between EuTCV and Typbar-TCV® groups. A single dose of EuTCV produced seroconversion in 99.4% of treated participants, with seroconversion rates non-inferior to that of Typbar-TCV®. Batch-to-batch consistency was concluded based on the 90% Confidence Interval of the geometric mean ratio (EuTCV Arm A, B, and C) at Week 4, lying within the equivalence margin of 0.5 to 2.0 for all batches. Results from this Phase II/III clinical trial of EuTCV in healthy volunteers show comparable safety and considerable immunogenicity, compared to Typbar-TCV®, meeting the objectives of this pivotal study. ClinicalTrials.gov registration number: NCT04830371.
Collapse
Affiliation(s)
| | | | - Chankyu Lee
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Soo Kyung Kim
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | | | - Meixiang Sun
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - DaYe Jung
- EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Jin Young Jang
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Tae Jun Yong
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Jeong Woo Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Suwon Lim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
14
|
Bissong MEA, Lyombe JCN, Asongalem E, Ngamsha RB, Tendongfor N. Zoonotic diseases risk perception and infection prevention and control practices among poultry farmers in the Buea Health District, Cameroon: A one health perspective. Vet World 2022; 15:2744-2753. [PMID: 36590116 PMCID: PMC9798056 DOI: 10.14202/vetworld.2022.2744-2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Aim Livestock are associated with pathogenic microbes and farm workers play a significant role in the transmission of zoonotic diseases (ZDs). Lack of awareness of exposure risk among farmers may influence their farm practices, thereby enhancing the spread of diseases on farms and to the community. This study was aimed at evaluating the knowledge, risk perception, and prevention and control practices of ZDs among poultry farmers to provide baseline data for establishing a "One Health" practical approach to reducing ZD transmission in poultry farms. Materials and Methods Using the exponential discriminative snowball technique, a community-based cross-sectional study involving poultry farmers was carried out in the Buea Health District from April to July 2021. Six feed-producing mills were used as focal points to identify and recruit farmers who were also referred to other farmers. Questionnaires were used to collect data related to participants' knowledge, risk perception, and prevention and control practices of ZDs. Descriptive analyses were performed for all variables while the chi-square test and logistic regression analysis were used to determine associations at 95% confidence level. Results In all, 183 poultry farms and 207 workers were enrolled in the study. Despite being aware that animal diseases can be transmitted to humans, most participants showed poor knowledge (54.6%), low-risk perception (51.7%), and poor prevention/control practices (54.1%) on ZDs. The majority did not consider coming in contact with birds' body fluid (blood) or apparently healthy birds to be a risk of infection. More participants with small farms (<500 birds) had low-risk perception of ZDs than those with larger farms (>1000 birds) (p = 0.03). Furthermore, most participants reported practicing hand washing but they neither used protective devices such as gloves and face masks, and >50% would not invite veterinary professionals to their farms. There was a significant association between risk perception and knowledge (p = 0.007; CI = 1.257-4.200) as well as between risk perception and prevention/control practice (p = 0.002; CI = 1.451-4.867). Conclusion Poultry farm workers in Buea had poor knowledge and perception of ZD risk and this might have contributed to their poor prevention/control practices on the farms. Enhanced informal education of poultry farmers through training workshops and seminars will improve their knowledge and skills on ZD transmission risk and prevention.
Collapse
Affiliation(s)
- Marie Ebob Agbortabot Bissong
- Department of Biomedical Sciences, University of Bamenda, Bambili, Cameroon,Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon,Corresponding author: Marie Ebob Agbortabot Bissong, e-mail: Co-authors: JCNL: , EA: , RBN: , NT:
| | | | | | | | | |
Collapse
|
15
|
Orabi A, Armanious W, Radwan IA, Girh ZMSA, Hammad E, Diab MS, Elbestawy AR. Genetic Correlation of Virulent Salmonella Serovars (Extended Spectrum β-Lactamases) Isolated from Broiler Chickens and Human: A Public Health Concern. Pathogens 2022; 11:1196. [PMID: 36297253 PMCID: PMC9610193 DOI: 10.3390/pathogens11101196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 10/29/2023] Open
Abstract
This study aimed to detect the virulent Salmonella serovars (including ESBLs producing) isolated from broiler chickens and humans. Three hundred broilers and sixty human fecal samples were bacteriologically examined. Thirty (10%) and fourteen (23.4%) Salmonella isolates were recovered from broiler and human samples, respectively. The most predominant serovar was S. enteritidis and S. typhimurium. All Salmonella isolates were confirmed by conventional PCR-based invA and ompA genes. Multidrug resistant (MDR) isolates were screened for the detection of adrA and csgD biofilm-associated genes, which were found in all isolated serovars except one S. typhimurium and 2 S. infantis of chicken isolates that were devoid of the adrA gene. Moreover, MDR isolates were screened for detection of seven resistance genes including ESBLs and other classes of resistance genes. Chicken isolates harbored blaTEM, int1, blaCTX and qnrS genes as 100, 27.8, 11.1 and 11.1%, respectively, while all human isolates harbored blaTEM, int1 and int3 genes. The genetic correlations between virulent Salmonella serovars (including antimicrobial resistance) avian and human origins were compared. In conclusion, the high prevalence of virulent ESBL producing Salmonella serovars in broilers and humans with genetic correlations between them might be zoonotic and public health hazards.
Collapse
Affiliation(s)
- Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wagih Armanious
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ismail A. Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Enas Hammad
- Agricultural Research Center (ARC), Animal Health Research Institute-Mansoura Provincial Lab (AHRI-Mansoura), Giza 12618, Egypt
| | - Mohamed S. Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El Kharga 72511, Egypt
| | - Ahmed R. Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
16
|
Dakorah MP, Agyare E, Acolatse JEE, Akafity G, Stelling J, Chalker VJ, Spiller OB, Aidoo NB, Kumi-Ansah F, Azumah D, Laryea S, Incoom R, Ngyedu EK. Utilising cumulative antibiogram data to enhance antibiotic stewardship capacity in the Cape Coast Teaching Hospital, Ghana. Antimicrob Resist Infect Control 2022; 11:122. [PMID: 36192790 PMCID: PMC9528876 DOI: 10.1186/s13756-022-01160-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health challenge with its impact felt disproportionately in Western Sub-Saharan Africa. Routine microbiology investigations serve as a rich source of AMR monitoring and surveillance data. Geographical variations in susceptibility patterns necessitate regional and institutional tracking of resistance patterns to aid in tailored Antimicrobial Stewardship (AMS) interventions to improve antibiotic use in such settings. This study focused on developing a cumulative antibiogram of bacterial isolates from clinical samples at the Cape Coast Teaching Hospital (CCTH). This was ultimately to improve AMS by guiding empiric therapy. METHODS A hospital-based longitudinal study involving standard microbiological procedures was conducted from 1st January to 31st December 2020. Isolates from routine diagnostic aerobic cultures were identified by colony morphology, Gram staining, and conventional biochemical tests. Isolates were subjected to antibiotic susceptibility testing using Kirby-Bauer disc diffusion. Inhibitory zone diameters were interpreted per the Clinical and Laboratory Standards Institute guidelines and were entered and analysed on the WHONET software using the "first isolate only" principle. RESULTS Overall, low to moderate susceptibility was observed in most pathogen-antibiotic combinations analysed in the study. Amikacin showed the highest susceptibility (86%, n = 537/626) against all Gram-negatives with ampicillin exhibiting the lowest (6%, n = 27/480). Among the Gram-positives, the highest susceptibilities were exhibited by gentamicin (78%, n = 124/159), with clindamycin having the lowest susceptibility (27%, n = 41/154). Among the Gram-negatives, 66% (n = 426/648) of the isolates were identified phenotypically as potential extended-spectrum beta-lactamase producers. Multiple multidrug-resistant isolates were also identified among both Gram-positive and Gram-negative isolates. Low to moderate susceptibility was found against first- and second-line antibiotics recommended in the National standard treatment guidelines (NSTG). Laboratory quality management deficiencies and a turnaround time of 3.4 days were the major AMS barriers identified. CONCLUSIONS Low to moderate susceptibilities coupled with high rates of phenotypic resistance warrant tailoring NSTGs to fit local contexts within CCTH even after considering the biases in these results. The cumulative antibiogram proved a key AMS programme component after its communication to clinicians and subsequent monitoring of its influence on prescribing indicators. This should be adopted to enhance such programmes across the country.
Collapse
Affiliation(s)
| | | | | | | | - John Stelling
- Microbiology Laboratory, Brigham and Women's Hospital, Boston, USA
| | | | - Owen B Spiller
- Division of Infection and Immunity, Department of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Gong B, Li H, Feng Y, Zeng S, Zhuo Z, Luo J, Chen X, Li X. Prevalence, Serotype Distribution and Antimicrobial Resistance of Non-Typhoidal Salmonella in Hospitalized Patients in Conghua District of Guangzhou, China. Front Cell Infect Microbiol 2022; 12:805384. [PMID: 35186792 PMCID: PMC8847451 DOI: 10.3389/fcimb.2022.805384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella infection is a major public health concern worldwide, has contributed to an increased economic burden on the health systems. Non-typhoidal Salmonella (NTS) is a common cause of bacterial enteritis in humans, causing 93.8 million cases of gastroenteritis globally each year, with 155,000 deaths. Guangzhou city is situated in the south of China and has a sub-tropical climate, the heat and heavy rainfall helps the spread of NTS. However, no information of NTS infection is available in humans in Conghua District, the largest administrative district of Guangzhou. To understand the prevalence, serotype distribution, risk factors and drug resistance of NTS infection in humans in the survey area, an epidemiological investigation was conducted in hospitalized patients in Conghua District in Guangzhou, China. A total of 255 fecal specimens were collected from hospitalized patients (one each), with a questionnaire for each participant, and NTS infection was identified by culture, as well as serotypes confirmed by slide agglutination tests. An average prevalence of 20.39% (52/255) was observed and three serogroups were identified—serogroup B (n = 46), serogroup C1 (n = 4) and serogroup D1 (n = 2). Among them, Salmonella Typhimurium (n = 39) was the most common serotype. Children aged <3 years were observed to have a statistically higher prevalence of NTS infection than adults (25.15% versus 4.65%, P = 0.006); children with artificial feeding had a statistically higher prevalence than those with breastfeeding (30.77% versus 8.33%, P = 0.044). Antimicrobial resistance testing revealed that the majority of strains were resistant to ampicillin (92.16%), as well as 47.06% of all strains were multi-drug resistant. Therefore, it is necessary to continuous monitoring and rational use of antibiotics, which will be helpful to reduce the prevalence of resistant strains. These data will aid in making efficient control strategies to intervene with and prevent occurrence of salmonellosis.
Collapse
Affiliation(s)
- Baiyan Gong
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Hong Li
- Obstetrics Department, Second People’s Hospital of Yibin, Yibin, China
| | - Yulian Feng
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Shihan Zeng
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
- KingMed School of Laboratory Medicine of Guangzhou Medical University, Guangzhou, China
| | - Zhenxu Zhuo
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Jiajun Luo
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Xiankai Chen
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Xiaoyan Li
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
- *Correspondence: Xiaoyan Li,
| |
Collapse
|
18
|
Sah AK, Feglo PK. Plasmid-mediated quinolone resistance determinants in clinical bacterial pathogens isolated from the Western Region of Ghana: a cross-sectional study. Pan Afr Med J 2022; 43:207. [PMID: 36942137 PMCID: PMC10024564 DOI: 10.11604/pamj.2022.43.207.33734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction quinolones are critically important antibiotics that are reserved for treating very severe infections caused by multidrug-resistant bacterial pathogens. However, their indiscriminate uses have resulted in an increased number of resistant strains in many parts of the world including Ghana. We determined the quinolone resistance profile of Gram-negative bacterial pathogens and characterized the underlying molecular determinants of resistance. Methods Gram-negative pathogens obtained from clinical specimens at three hospital laboratories were tested for resistance to quinolones and other commonly used antibiotics. ESBL production among the Enterobacterial isolates was confirmed using the combined disc diffusion method. We then used PCR to determine seven types of plasmid-mediated quinolone resistance genes present in the isolates resistant to nalidixic acid and ciprofloxacin. Results in this study, 29.5% of the isolates were resistant to ciprofloxacin, with the highest of 50% among E. coli resistance to the other quinolones was levofloxacin (24.4%), norfloxacin (24.9%), and nalidixic acid (38.9%). Significant proportions of the quinolone-resistant isolates were ESBL producers (P-values < 0.001). The aac(6´)-Ib-cr, qnrS, oqxA, and qepA genes were present in 43 (89.6%), 27 (56.3%), 23 (47.9%), and one (2.1%) of the isolates, respectively. None of the isolates tested positive to qnrA, qnrB, and oqxB genes. The presence of the aac(6´)-Ib-cr gene positively correlated with resistance to ceftriaxone, cefotaxime, and gentamicin (P-values < 0.05). Conclusion high proportions of Gram-negative bacterial isolates were resistant to quinolones and most of these isolates possessed multiple PMQR genes. There is a need to implement measures to limit the spread of these organisms.
Collapse
Affiliation(s)
- Andrews Kwabena Sah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Laboratory Unit, Prestea Government Hospital, Prestea, Ghana
| | - Patrick Kwame Feglo
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Corresponding author: Patrick Kwame Feglo, Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
19
|
Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Cephalosporin and Fluoroquinolone-Resistant Salmonella enterica. Animals (Basel) 2021; 11:ani11123435. [PMID: 34944212 PMCID: PMC8697943 DOI: 10.3390/ani11123435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) can cause infection in poultry, livestock, and humans. Although the use of antimicrobials as feed additives is prohibited, the previous indiscriminate use and poor regulatory oversight in some parts of the world have resulted in increased bacterial resistance to antimicrobials, including cephalosporins and fluoroquinolones, which are among the limited treatment options available against NTS. This study aimed to isolate potential probiotic lactic acid bacteria (LAB) strains from the poultry gut to inhibit fluoroquinolone and cephalosporin resistant MDR Salmonella Typhimurium and S. Enteritidis. The safety profile of the LAB isolates was evaluated for the hemolytic activity, DNase activity, and antibiotic resistance. Based on the safety results, three possible probiotic LAB candidates for in vitro Salmonella control were chosen. Candidate LAB isolates were identified by 16S rDNA sequencing as Lactobacillus reuteri PFS4, Enterococcus faecium PFS13, and Enterococcus faecium PFS14. These strains demonstrated a good tolerance to gastrointestinal-related stresses, including gastric acid, bile, lysozyme, and phenol. In addition, the isolates that were able to auto aggregate had the ability to co-aggregate with MDR S. Typhimurium and S. Enteritidis. Furthermore, LAB strains competitively reduced the adhesion of pathogens to porcine mucin Type III in co-culture studies. The probiotic combination of the selected LAB isolates inhibited the biofilm formation of S. Typhimurium FML15 and S. Enteritidis FML18 by 90% and 92%, respectively. In addition, the cell-free supernatant (CFS) of the LAB culture significantly reduced the growth of Salmonella in vitro. Thus, L. reuteri PFS4, E. faecium PFS13, and E. faecium PFS 14 are potential probiotics that could be used to control MDR S. Typhimurium and S. Enteritidis in poultry. Future investigations are required to elucidate the in vivo potential of these probiotic candidates as Salmonella control agents in poultry and animal feed.
Collapse
|
20
|
Kim KG, Jung J, Shin JH, Park HJ, Kim MJ, Seo JJ, Kim YO, Lee SY, Cho CY, Kim TS. Trends in ESBLs and PABLs among enteric Salmonella isolates from children in Gwangju, Korea: 2014-2018. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:199-206. [PMID: 34580042 DOI: 10.1016/j.jmii.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Non-typhoid Salmonella infection is a major agent of food-borne outbreaks as well as individual cases worldwide. However, few studies on drug-resistant Salmonella strains, especially those recovered from young children, are available. Therefore, we determined the prevalence and characteristics of cephalosporin-resistant Salmonella isolates in the south-west region of Korea over a five-year period. METHODS Non-duplicate Salmonella clinical isolates were recovered from diarrhoeagenic patient specimens at 12 hospitals in Gwangju, Korea between January 2014 and December 2018. Antimicrobial susceptibility testing and molecular features of cephalosporin-resistant isolates were determined. RESULTS A total of 652 Salmonella isolates were collected and 48 cefotaxime-resistant Salmonella isolates (7.4%), that belonged to nine Salmonella serovars, were identified. These were S. Enteritidis, S. Typhimurium, S. I 4,[5],12:i:-, S. Virchow, S. Agona, S. Bareilly, S. Infantis, S. Newport, and S. Schleissheim. The prevalence rate increased from 5.3% in 2014 to 10.3% in 2018. S. Virchow (44.4%) showed significantly high resistant rate compared to the other serovars. PGFE genotyping revealed high genetic homogeneities among each Salmonella serovars, suggesting clonal dissemination of cephalosporin-resistant strains. CONCLUSIONS Progressive increases in carriage rates and the possibility of community outbreaks by cephalosporin-resistant Salmonella in young children may pose tangible public health threats.
Collapse
Affiliation(s)
- Kwang Gon Kim
- Health and Environment Research Institute of Gwangju, Gwangju, South Korea.
| | - Jin Jung
- Health and Environment Research Institute of Gwangju, Gwangju, South Korea
| | - Ji Hyun Shin
- Health and Environment Research Institute of Gwangju, Gwangju, South Korea
| | - Hye Jung Park
- Health and Environment Research Institute of Gwangju, Gwangju, South Korea
| | - Min Ji Kim
- Health and Environment Research Institute of Gwangju, Gwangju, South Korea
| | - Jin Jong Seo
- Health and Environment Research Institute of Gwangju, Gwangju, South Korea
| | - Young Ok Kim
- Department of Pediatrics, Chonnam National University Hospital, Gwangju, South Korea
| | - Su-Ya Lee
- Yesarang Children's Hospital, Gwangju, South Korea
| | - Chang-Yee Cho
- NamguMirae Children's Hospital, Gwangju, South Korea
| | - Tae Sun Kim
- Health and Environment Research Institute of Gwangju, Gwangju, South Korea
| |
Collapse
|
21
|
Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. BIOSENSORS-BASEL 2021; 11:bios11090346. [PMID: 34562936 PMCID: PMC8468554 DOI: 10.3390/bios11090346] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
Collapse
|
22
|
Ohene Larbi R, Ofori LA, Sylverken AA, Ayim-Akonor M, Obiri-Danso K. Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana. Int J Microbiol 2021; 2021:5158185. [PMID: 34194507 PMCID: PMC8203396 DOI: 10.1155/2021/5158185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Globally, resistance to antimicrobial drugs in food animals is on the rise. Escherichia coli of livestock, though commensal in nature, serves as reservoir for antimicrobial resistance genes with the potential of disseminating them. This study sought to examine the antimicrobial resistance profiles of Escherichia coli in broilers, pigs, and cattle in the Kumasi Metropolis and undertake molecular characterisation of the resistances. Faecal E. coli isolates (n = 48) were obtained from 10 broiler farms, (n = 43) from 15 pig farms, and (n = 42) from cattle from the Kumasi Abattoir using standard bacteriological techniques. The Kirby-Bauer disc diffusion method was employed in testing the sensitivities of 133 E. coli isolates to 15 antimicrobials. All 48 isolates from broilers presented no resistance to amoxicillin/clavulanic acid and ceftiofur. A 100% resistance to meropenem was observed in pig and cattle isolates. Multidrug resistance (MDR) across animal groups was 95.8% (n = 46), 95.3% (n = 41), and 64.3% (n = 27) for broilers, pigs, and cattle, respectively. Twenty-eight isolates presenting phenotypic resistance to aminopenicillins and cephalosporins were screened for the presence of extended-spectrum beta-lactamase (ESBL) genes by PCR. One isolate from poultry and another from cattle tested positive for the blaCTX-M ESBL gene. There were no positives for the blaTEM and blaSHV ESBL genes. Commensal E. coli of food animal origin represents an important reservoir of antimicrobial resistance that transfers resistance to pathogenic and nonpathogenic microbes affecting humans and animals. There is an urgent need to institute routine surveillance for the establishment of the mechanisms and molecular orientation of resistance in these organisms.
Collapse
Affiliation(s)
- Rita Ohene Larbi
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science Technology, Kumasi, Ghana
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science Technology, Kumasi, Ghana
| | - Augustina Angelina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi 00233, Ghana
| | - Matilda Ayim-Akonor
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science Technology, Kumasi, Ghana
| |
Collapse
|
23
|
Reduced Bacterial Counts from a Sewage Treatment Plant but Increased Counts and Antibiotic Resistance in the Recipient Stream in Accra, Ghana-A Cross-Sectional Study. Trop Med Infect Dis 2021; 6:tropicalmed6020079. [PMID: 34068850 PMCID: PMC8163181 DOI: 10.3390/tropicalmed6020079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Wastewater treatment plants receive sewage containing high concentrations of bacteria and antibiotics. We assessed bacterial counts and their antibiotic resistance patterns in water from (a) influents and effluents of the Legon sewage treatment plant (STP) in Accra, Ghana and (b) upstream, outfall, and downstream in the recipient Onyasia stream. We conducted a cross-sectional study of quality-controlled water testing (January–June 2018). In STP effluents, mean bacterial counts (colony-forming units/100 mL) had reduced E. coli (99.9% reduction; 102,266,667 to 710), A. hydrophila (98.8%; 376,333 to 9603), and P. aeruginosa (99.5%; 5,666,667 to 1550). Antibiotic resistance was significantly reduced for tetracycline, ciprofloxacin, cefuroxime, and ceftazidime and increased for gentamicin, amoxicillin/clavulanate, and imipenem. The highest levels were for amoxicillin/clavulanate (50–97%) and aztreonam (33%). Bacterial counts increased by 98.8% downstream compared to the sewage outfall and were predominated by E. coli, implying intense fecal contamination from other sources. There was a progressive increase in antibiotic resistance from upstream, to outfall, to downstream. The highest resistance was for amoxicillin/clavulanate (80–83%), cefuroxime (47–73%), aztreonam (53%), and ciprofloxacin (40%). The STP is efficient in reducing bacterial counts and thus reducing environmental contamination. The recipient stream is contaminated with antibiotic-resistant bacteria listed as critically important for human use, which needs addressing.
Collapse
|
24
|
Hazarika P, Chattopadhyay I, Umpo M, Choudhury Y, Sharma I. Phylogeny, Biofilm Production, and Antimicrobial Properties of Fecal Microbial Communities of Adi Tribes of Arunachal Pradesh, India. Appl Biochem Biotechnol 2021; 193:1675-1687. [PMID: 33660220 DOI: 10.1007/s12010-021-03535-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
The fecal flora consists of trillions of bacteria influencing human health and several host factors. Such population-based fecal flora studies are critical to uplift the health status of ethnic tribes from Arunachal Pradesh. This study aimed to analyze the ethnic tribe's biofilm producing antibiotic resistant bacteria and their phyllogenetic analysis in 15 stool samples collected from Adi tribes of Arunachal Pradesh. Of the analyzed samples, 42.85% were Escherichia, 20% lactic acid bacteria, 20% Salmonella, and 17.14% Enterococcus. Escherichia coli, lactic acid bacteria, and Enterococcus sp. emerged as strong biofilm producers; however, Salmonella declined to exhibit characters for a strong biofilm producer. Tetracycline resistance dominated in all the gut bacterial profiles. The 16SrRNA amplified PCR product was used for sequencing, and a phylogenetic tree was constructed exhibiting the relationship between the isolates. The test sequences were compared with the non-redundant Gene bank collection of the database with the Basic Local Alignment Search Tool.
Collapse
Affiliation(s)
- Parijat Hazarika
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 101, India
| | - Mika Umpo
- Department of Microbiology, Tomo Riba Institute of Health and Medical Sciences, Naharlagun, 791110, India
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Indu Sharma
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
25
|
Liu Q, Chen W, Elbediwi M, Pan H, Wang L, Zhou C, Zhao B, Xu X, Li D, Yan X, Han X, Li H, Li Y, Yue M. Characterization of Salmonella Resistome and Plasmidome in Pork Production System in Jiangsu, China. Front Vet Sci 2020; 7:617. [PMID: 33062654 PMCID: PMC7517575 DOI: 10.3389/fvets.2020.00617] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
The prevalence of antimicrobial resistance in zoonotic Salmonella is a significant ongoing concern over the world. Several reports have investigated the prevalence of Salmonella infections in the farm animals in China; however, there is only limited knowledge about the Salmonella cross-contamination in the slaughterhouses. Moreover, the application of genomic approaches for understanding the cross-contamination in the food-animal slaughterhouses is still in its infancy in China. In the present study, we have isolated 105 Salmonella strains from pig carcasses and environment samples collected from four independent slaughterhouses in Jiangsu, China. All the Salmonella isolates were subjected to whole genome sequencing, bioinformatics analysis for serovar predictions, multi-locus sequence types, antimicrobial resistance genes, and plasmid types by using the in-house Galaxy platform. The antimicrobial resistance of Salmonella isolates was determined using a minimal inhibitory concentration assay with 14 antimicrobials. We found that the predominant serovar and serogroup was S. Derby and O:4(B), with a prevalence of 41.9 and 55%, respectively. All the isolates were multidrug-resistant and the highest resistance was observed against antimicrobials tetracycline (95.4%) and trimethoprim and sulfamethoxazole (90.9%). Additionally, the colistin-resistant determinant mcr-1 gene was detected in five (4.8%) strains. Our study demonstrated the prevalence of antimicrobial resistance in Salmonella strains isolated from pig slaughterhouses in China and suggested that the genomic platform can serve as routine surveillance along with the food-chain investigation.
Collapse
Affiliation(s)
- Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Wenjing Chen
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hang Pan
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Liqun Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Chuang Zhou
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Xinguo Xu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Dingguo Li
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Xin Yan
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Xiao Han
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Hanyuan Li
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
26
|
Highly clonal relationship among Salmonella Enteritidis isolates in a commercial chicken production chain, Brazil. Braz J Microbiol 2020; 51:2049-2056. [PMID: 32895889 DOI: 10.1007/s42770-020-00372-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we described the comparison among pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD), ribotyping, and PCR-ribotyping methods for subtyping Salmonella Enteritidis isolated from an industrial chicken production chain. One hundred and eight S. Enteritidis were isolated at all stages of poultry meat processing plant. These isolates were pheno- and genotypically characterized by using antimicrobial susceptibility test, phage typing, RAPD, PFGE, ribotyping, and PCR-ribotyping. The highest antibiotic resistance rates were observed for enrofloxacin (18.5%) followed by furazolidone (15.7%), cefoxitin (1.8%), ciprofloxacin, and ampicillin with 0.9% each one, while seven isolates (6.4%) were pan-susceptible. Most strains belonged to the globally disseminated phage type PT4 (n = 74; 69.2%). Additionally, we identified strains belonging to phage types PT1 (n = 19; 17.8%) and PT7a (n = 14; 13.1%). Moreover, our results showed that these four molecular methods indicate similar results showing high similarity (≥ 90%) among S. Enteritidis strains, suggesting that these isolates appear to be from a common ancestor being spread at all stages of the poultry production chain. In summary, the combined molecular approaches of these methods remain a suitable alternative to efficiently subtyping S. Enteritidis in the absence of high-resolution genotyping methods and these results may serve as a baseline study for development of mitigation strategies.
Collapse
|
27
|
Karabasanavar N, Madhavaprasad C, Gopalakrishna S, Hiremath J, Patil G, Barbuddhe S. Prevalence of
Salmonella
serotypes
S
. Enteritidis and
S
. Typhimurium in poultry and poultry products. J Food Saf 2020. [DOI: 10.1111/jfs.12852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nagappa Karabasanavar
- Department of Veterinary Public Health & Epidemiology Veterinary College Shivamogga Karnataka India
| | | | - Shilpa Gopalakrishna
- Department of Veterinary Public Health & Epidemiology Veterinary College Shivamogga Karnataka India
| | - Jagadish Hiremath
- ICAR‐National Institute of Veterinary Epidemiology and Disease Informatics Bengaluru Karnataka India
| | - Girish Patil
- ICAR‐National Research Center on Meat Hyderabad Telangana Sate India
| | | |
Collapse
|
28
|
Sévellec Y, Granier SA, Le Hello S, Weill FX, Guillier L, Mistou MY, Cadel-Six S. Source Attribution Study of Sporadic Salmonella Derby Cases in France. Front Microbiol 2020; 11:889. [PMID: 32477304 PMCID: PMC7240076 DOI: 10.3389/fmicb.2020.00889] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Derby is one of the most frequent causes of gastroenteritis in humans. In Europe, this pathogen is one of the top five most commonly reported serovars in human cases. In France, S. Derby has been among the ten most frequently isolated serovars in humans since the year 2000. The main animal hosts of this serovar are pigs and poultry, and white meat is the main source of human contamination. We have previously shown that this serovar is polyphyletic and that three distinct genetic lineages of S. Derby cohabit in France. Two of them are associated with pork and one with poultry. In this study, we conducted a source attribution study based on single nucleotide polymorphism analysis of a large collection of 440 S. Derby human and non-human isolates collected in 2014-2015, to determine the contribution of each lineage to human contamination. In France, the two lineages associated with pork strains, and corresponding to the multilocus sequence typing (MLST) profiles ST39-ST40 and ST682 were responsible for 94% of human contaminations. Interestingly, the ST40 profile is responsible for the majority of human cases (71%). An analysis of epidemiologic data and the structure of the pork sector in France allowed us to explain the spread and the sporadic pattern of human cases that occurred in the studied period.
Collapse
Affiliation(s)
- Yann Sévellec
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| | - Sophie A. Granier
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
- Laboratoire de Fougères, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Fougères, France
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - Laurent Guillier
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| | - Michel-Yves Mistou
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| | - Sabrina Cadel-Six
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| |
Collapse
|
29
|
Ayim-Akonor M, Krumkamp R, May J, Mertens E. Understanding attitude, practices and knowledge of zoonotic infectious disease risks among poultry farmers in Ghana. Vet Med Sci 2020; 6:631-638. [PMID: 32243723 PMCID: PMC7397889 DOI: 10.1002/vms3.257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2019] [Accepted: 02/23/2020] [Indexed: 11/05/2022] Open
Abstract
Zoonotic infectious diseases (ZIDs) are increasing globally, and livestock farmers in low‐ and middle‐income countries are at particularly high risk. An evaluation of farmer's behaviour on farms can be used to identify the risk factors and to develop tailored control strategies. This study documents the knowledge of zoonotic poultry diseases (ZPD) among 152 poultry farm workers (respondents) from 76 farms in the Ashanti region of Ghana and assessed their on‐farm attitude and practices that increase their risk to exposure of ZPD. The median age of respondents was 29 years, 91.4% (n = 139) had a formal education, and 80.9% (n = 123) had worked on the farm for more than 1 year. The majority of farms (n = 69, 90.8%) had multiple flocks and 27.6% (n = 21) kept other animals, of which 57.1% (n = 12) were pigs. The majority of respondents had good knowledge about poultry diseases but not about ZPD. A higher level of education and longer work experience improved respondents’ knowledge of poultry and ZPD. Although respondents identified the wearing of personal protective equipment (PPE) as a major ZPD preventive measure, the majority did not put that knowledge into practice. Most farms (71.1%, n = 54) had no footbath and 55.3% (n = 42) deposited farm‐waste on the farm. While 97.4% (n = 148) of respondents washed their hands after working, only 48.7% (n = 74) wore protective footwear, 2.7% (n = 4) wore overalls, 2% (n = 3) wore nose masks and none (n = 0) wore gloves. The husbandry practices and attitude of farmers expose them to pathogens on the farm and increase their risk of becoming infected with ZPD in the sub‐region. The results from this study could be used to promote human health among farm workers in Ghana.
Collapse
Affiliation(s)
- Matilda Ayim-Akonor
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Animal Health and Food safety, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Ralf Krumkamp
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Eva Mertens
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
30
|
Benevides VP, Rubio MS, Alves LBR, Barbosa FO, Souza AIS, Almeida AM, Casas MRT, Guastalli EAL, Soares NM, Berchieri Jr A. Antimicrobial Resistance in Salmonella Serovars Isolated From an Egg-Producing Region in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2020-1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - MS Rubio
- University of the State of São Paulo, Brazil
| | - LBR Alves
- University of the State of São Paulo, Brazil
| | - FO Barbosa
- University of the State of São Paulo, Brazil
| | - AIS Souza
- University of the State of São Paulo, Brazil
| | - AM Almeida
- University of the State of São Paulo, Brazil
| | | | | | | | | |
Collapse
|
31
|
Breurec S, Reynaud Y, Frank T, Farra A, Costilhes G, Weill FX, Le Hello S. Serotype distribution and antimicrobial resistance of human Salmonella enterica in Bangui, Central African Republic, from 2004 to 2013. PLoS Negl Trop Dis 2019; 13:e0007917. [PMID: 31790418 PMCID: PMC6907862 DOI: 10.1371/journal.pntd.0007917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/12/2019] [Accepted: 11/11/2019] [Indexed: 01/30/2023] Open
Abstract
Background Limited epidemiological and antimicrobial resistance data are available on Salmonella enterica from sub-Saharan Africa. We determine the prevalence of resistance to antibiotics in isolates in the Central African Republic (CAR) between 2004 and 2013 and the genetic basis for resistance to third-generation cephalosporin (C3G). Methodology/Principal findings A total of 582 non-duplicate human clinical isolates were collected. The most common serotype was Typhimurium (n = 180, 31% of the isolates). A randomly selected subset of S. Typhimurium isolates were subtyped by clustered regularly interspaced short palindromic repeat polymorphism (CRISPOL) typing. All but one invasive isolate tested (66/68, 96%) were associated with sequence type 313. Overall, the rates of resistance were high to traditional first-line drugs (18–40%) but low to many other antimicrobials, including fluoroquinolones (one resistant isolate) and C3G (only one ESBL-producing isolate). The extended-spectrum beta-lactamase (ESBL)-producing isolate and three additional ESBL isolates from West Africa were studied by whole genome sequencing. The blaCTX-M-15 gene and the majority of antimicrobial resistance genes found in the ESBL isolate were present in a large conjugative IncHI2 plasmid highly similar (> 99% nucleotide identity) to ESBL-carrying plasmids found in Kenya (S. Typhimurium ST313) and also in West Africa (serotypes Grumpensis, Havana, Telelkebir and Typhimurium). Conclusions/Significance Although the prevalence of ESBL-producing Salmonella isolates was low in CAR, we found that a single IncHI2 plasmid-carrying blaCTX-M-15 was widespread among Salmonella serotypes from sub-Saharan Africa, which is of concern. Salmonella enterica infections are common causes of bloodstream infection in sub-Saharan Africa and associated with a high mortality rate. Levels of multidrug resistance have become alarmingly high. Then, third-generation cephalosporin (C3G) and fluoroquinolones have become standard for first-line empirical treatment. Recently, C3G-resistant Salmonella populations have emerged and spread over all continents. This resistance is mainly mediated by acquired extended-spectrum beta-lactamase (ESBL) genes carried by mobile genetic elements such as plasmids. We report here the prevalence of resistance to antibiotics in isolates in the Central African Republic (CAR) between 2004 and 2013 and the genetic basis for resistance to C3G. Overall, resistance rates to antimicrobials were low during the study period, for all classes other than conventional antimicrobials, confirming recommendations for first-line treatment based on C3G and fluoroquinolones. Only one ESBL-producing isolate was recovered. The ESBL gene and the majority of antimicrobial resistance genes found were present in a large plasmid highly similar to ESBL-carrying plasmids found in East and West Africa, highlighting its significant role in the spread of ESBL genes in Salmonella isolates in sub-Saharan Africa. These finding have implications for treatment of salmonellosis and support the growing necessity for increased microbiological surveillance based on networks of clinical laboratories in order to control dissemination of antibiotic resistance among Salmonella isolates.
Collapse
Affiliation(s)
- Sebastien Breurec
- Laboratoire de Bactériologie, Institut Pasteur, Bangui, Central African Republic
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, France
- Faculté de Médecine Hyacinthe Bastaraud, Université des Antilles, Pointe-à-Pitre, France
- Laboratoire de Microbiologie clinique et environnementale, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France
- * E-mail:
| | - Yann Reynaud
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Thierry Frank
- Laboratoire de Bactériologie, Institut Pasteur, Bangui, Central African Republic
| | - Alain Farra
- Laboratoire de Bactériologie, Institut Pasteur, Bangui, Central African Republic
| | - Geoffrey Costilhes
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, World Health Organization Collaborative Centre for typing and antibiotic resistance of Salmonella, Institut Pasteur, Paris, France
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, World Health Organization Collaborative Centre for typing and antibiotic resistance of Salmonella, Institut Pasteur, Paris, France
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, World Health Organization Collaborative Centre for typing and antibiotic resistance of Salmonella, Institut Pasteur, Paris, France
| |
Collapse
|
32
|
Guo L, Gong S, Wang Y, Sun Q, Duo K, Fei P. Antibacterial Activity of Olive Oil Polyphenol Extract Against Salmonella Typhimurium and Staphylococcus aureus: Possible Mechanisms. Foodborne Pathog Dis 2019; 17:396-403. [PMID: 31755743 DOI: 10.1089/fpd.2019.2713] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polyphenols are a group of active ingredients in olive oil, and have been reported to exhibit antioxidant activity. Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) and Staphylococcus aureus are common foodborne pathogens causing serious infections and food poisoning in humans. This study was conducted to analyze the antibacterial activity of olive oil polyphenol extract (OOPE) against Salmonella Typhimurium and S. aureus, and reveal the possible antibacterial mechanism. The antibacterial activity was estimated using minimum inhibitory concentration (MIC) values and bacterial survival rates when treated with OOPE. The antibacterial mechanism was revealed through determinations of changes in intracellular ATP concentration and cell membrane potential, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis. The results showed the MICs of OOPE against Salmonella Typhimurium and S. aureus were 0.625 and 0.625-1.25 mg/mL, respectively. The growth of Salmonella Typhimurium and S. aureus (∼8 log CFU/mL) was completely inhibited after treatments with 0.625 mg/mL of OOPE for 3 h and 0.625-1.25 mg/mL for 5 h, respectively. When Salmonella Typhimurium and S. aureus were exposed to OOPE, the physiological functions associated with cell activity were destroyed, as manifested by reduction of intracellular ATP concentrations, cell membrane depolarization, lower bacterial protein content, and leakage of cytoplasm. These findings suggested a strong antibacterial effect of OOPE against Salmonella Typhimurium and S. aureus, and provided a possible strategy of controlling contamination by these two pathogens in food products.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shaoying Gong
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanyan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qi Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Kai Duo
- Heilongjiang Institute for Food and Drug Control, Harbin, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
33
|
Rehman T, Yin L, Latif MB, Chen J, Wang K, Geng Y, Huang X, Abaidullah M, Guo H, Ouyang P. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb Pathog 2019; 137:103748. [PMID: 31521802 DOI: 10.1016/j.micpath.2019.103748] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023]
Abstract
Salmonellosis is a serious threat to human and animal health. Salmonella adhesion to the host cell is an initial and most crucial step in the pathogenesis of salmonellosis. Many factors are involved in the adhesion process of Salmonella infection. Fimbriae are one of the most important factors in the adhesion of Salmonella. The Salmonella fimbriae are assembled in three types of assembly pathways: chaperon-usher, nucleation-precipitation, and type IV fimbriae. These assembly pathways lead to multiple types of fimbriae. Salmonella fimbriae bind to host cell receptors to initiate adhesion. So far, many receptors have been identified, such as Toll-like receptors. However, several receptors that may be involved in the adhesive mechanism of Salmonella fimbriae are still un-identified. This review aimed to summarize the types of Salmonella fimbriae produced by different assembly pathways and their role in adhesion. It also enlisted previously discovered receptors involved in adhesion. This review might help readers to develop a comprehensive understanding of Salmonella fimbriae, their role in adhesion, and recently developed strategies to counter Salmonella infection.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Bilal Latif
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, 44195, Ohio, USA.
| | - Jiehao Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Abaidullah
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hongrui Guo
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
34
|
Manore C, Graham T, Carr A, Feryn A, Jakhar S, Mukundan H, Highlander HC. Modeling and Cost Benefit Analysis to Guide Deployment of POC Diagnostics for Non-typhoidal Salmonella Infections with Antimicrobial Resistance. Sci Rep 2019; 9:11245. [PMID: 31375759 PMCID: PMC6677775 DOI: 10.1038/s41598-019-47359-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/05/2019] [Indexed: 12/03/2022] Open
Abstract
Invasive non-typhoidal Salmonella (NTS) is among the leading causes of blood stream infections in sub-Saharan Africa and other developing regions, especially among pediatric populations. Invasive NTS can be difficult to treat and have high case-fatality rates, in part due to emergence of strains resistant to broad-spectrum antibiotics. Furthermore, improper treatment contributes to increased antibiotic resistance and death. Point of care (POC) diagnostic tests that rapidly identify invasive NTS infection, and differentiate between resistant and non-resistant strains, may greatly improve patient outcomes and decrease resistance at the community level. Here we present for the first time a model for NTS dynamics in high risk populations that can analyze the potential advantages and disadvantages of four strategies involving POC diagnostic deployment, and the resulting impact on antimicrobial treatment for patients. Our analysis strongly supports the use of POC diagnostics coupled with targeted antibiotic use for patients upon arrival in the clinic for optimal patient and public health outcomes. We show that even the use of imperfect POC diagnostics can significantly reduce total costs and number of deaths, provided that the diagnostic gives results quickly enough that patients are likely to return or stay to receive targeted treatment.
Collapse
Affiliation(s)
- Carrie Manore
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, 87544, USA.
| | - Todd Graham
- University of Portland, Mathematics Department, Portland, 97203, USA
| | - Alexa Carr
- University of Portland, Mathematics Department, Portland, 97203, USA
| | - Alicia Feryn
- University of Portland, Mathematics Department, Portland, 97203, USA
| | - Shailja Jakhar
- Los Alamos National Laboratory, Chemistry, Los Alamos, 87544, USA
| | | | | |
Collapse
|
35
|
Prevalence and characterisation of Salmonella Waycross and Salmonella enterica subsp. salamae in Nile perch (Lates niloticus) of Lake Victoria, Tanzania. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World 2019; 12:504-521. [PMID: 31190705 PMCID: PMC6515828 DOI: 10.14202/vetworld.2019.504-521] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/03/2022] Open
Abstract
Salmonella genus represents the most common foodborne pathogens frequently isolated from food-producing animals that is responsible for zoonotic infections in humans and animal species including birds. Thus, Salmonella infections represent a major concern to public health, animals, and food industry worldwide. Salmonella enterica represents the most pathogenic specie and includes > 2600 serovars characterized thus far. Salmonella can be transmitted to humans along the farm-to-fork continuum, commonly through contaminated foods of animal origin, namely poultry and poultry-related products (eggs), pork, fish etc. Some Salmonella serovars are restricted to one specific host commonly referred to as "host-restricted" whereas others have broad host spectrum known as "host-adapted" serovars. For Salmonella to colonize its hosts through invading, attaching, and bypassing the host's intestinal defense mechanisms such as the gastric acid, many virulence markers and determinants have been demonstrated to play crucial role in its pathogenesis; and these factors included flagella, capsule, plasmids, adhesion systems, and type 3 secretion systems encoded on the Salmonella pathogenicity island (SPI)-1 and SPI-2, and other SPIs. The epidemiologically important non-typhoidal Salmonella (NTS) serovars linked with a high burden of foodborne Salmonella outbreaks in humans worldwide included Typhimurium, Enteritidis, Heidelberg, and Newport. The increased number of NTS cases reported through surveillance in recent years from the United States, Europe and low- and middle-income countries of the world suggested that the control programs targeted at reducing the contamination of food animals along the food chain have largely not been successful. Furthermore, the emergence of several clones of Salmonella resistant to multiple antimicrobials worldwide underscores a significant food safety hazard. In this review, we discussed on the historical background, nomenclature and taxonomy, morphological features, physical and biochemical characteristics of NTS with a particular focus on the pathogenicity and virulence factors, host specificity, transmission, and antimicrobial resistance including multidrug resistance and its surveillance.
Collapse
Affiliation(s)
- Saleh Mohammed Jajere
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB 1069, Maiduguri, Borno State, Nigeria
| |
Collapse
|
37
|
Schroll C, Huang K, Ahmed S, Kristensen BM, Pors SE, Jelsbak L, Lemire S, Thomsen LE, Christensen JP, Jensen PR, Olsen JE. The SPI-19 encoded type-six secretion-systems (T6SS) of Salmonella enterica serovars Gallinarum and Dublin play different roles during infection. Vet Microbiol 2019; 230:23-31. [PMID: 30827393 DOI: 10.1016/j.vetmic.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
Salmonella Pathogenicity Islands 19 (SPI19) encodes a type VI secretion system (T6SS). SPI19 is only present in few serovars of S. enterica, including the host-adapted serovar S. Dublin and the host-specific serovar S. Gallinarum. The role of the SPI19 encoded T6SS in virulence in these serovar is not fully understood. Here we show that during infection of mice, a SPI19/T6SS deleted strain of S. Dublin 2229 was less virulent than the wild type strain after oral challenge, but not after IP challenge. The mutant strain also competed significantly poorer than the wild type strain when co-cultured with strains of E. coli, suggesting that this T6SS plays a role in pathogenicity by killing competing bacteria in the intestine. No significant difference was found between wild type S. Gallinarum G9 and its ΔSPI19/T6SS mutant in infection, whether chicken were challenged orally or by the IP route, and the S. Gallinarum G9 ΔSPI19/T6SS strain competed equally well as the wild type strain against strains of E. coli. However, contrary to what was observed with S. Dublin, the wild type G9 strains was significantly more cytotoxic to monocyte derived primary macrophages from hens than the mutant, suggesting that SPI19/T6SS in S. Gallinarum mediates killing of eukaryotic cells. The lack of significant importance of SPI19/T6SS after oral and systemic challenge of chicken was confirmed by knocking out SPI19 in a second strain, J91. Together the results suggest that the T6SS encoded from SPI19 have different roles in the two serovars and that it is a virulence-factor after oral challenge of mice in S. Dublin, while we cannot confirm previous results that SPI19/T6SS influence virulence significantly in S. Gallinarum.
Collapse
Affiliation(s)
- Casper Schroll
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bodil M Kristensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Denmark
| | | | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Peter Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter R Jensen
- Department of Food, Technical University of Denmark, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
38
|
Kudirkiene E, Andoh LA, Ahmed S, Herrero-Fresno A, Dalsgaard A, Obiri-Danso K, Olsen JE. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana. Front Microbiol 2018; 9:1010. [PMID: 29867897 PMCID: PMC5966558 DOI: 10.3389/fmicb.2018.01010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either blaTEM52-B or blaCTX-M15 were present in two cephalosporin resistant isolates of S. Virchow and S. Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S. Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S. Typhimurium on plasmids of IncFII(S)/IncFIB(S)/IncQ1 type. In S. Virchow and in S. Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.
Collapse
Affiliation(s)
- Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linda A. Andoh
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Ferrari RG, Panzenhagen PHN, Conte-Junior CA. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front Microbiol 2017; 8:2587. [PMID: 29312260 PMCID: PMC5744012 DOI: 10.3389/fmicb.2017.02587] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.
Collapse
Affiliation(s)
- Rafaela G. Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. N. Panzenhagen
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Haselbeck AH, Panzner U, Im J, Baker S, Meyer CG, Marks F. Current perspectives on invasive nontyphoidal Salmonella disease. Curr Opin Infect Dis 2017; 30:498-503. [PMID: 28731899 PMCID: PMC7680934 DOI: 10.1097/qco.0000000000000398] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We searched PubMed for scientific literature published in the past 2 years for relevant information regarding the burden of invasive nontyphoidal Salmonella disease and host factors associated with nontyphoidal Salmonella infection and discuss current knowledge on vaccine development. The following search terms were used: Salmonella, non typhoidal/nontyphoidal, NTS, disease, bloodstream infection, invasive, sepsis/septicaemia/septicemia, bacteraemia/bacteremia, gastroenteritis, incidence, prevalence, morbidity, mortality, case fatality, host/risk factor, vaccination, and prevention/control. RECENT FINDINGS Estimates of the global invasive nontyphoidal Salmonella disease burden have been recently updated; additional data from Africa, Asia, and Latin America are now available. New data bridge various knowledge gaps, particularly with respect to host risk factors and the geographical distribution of iNTS serovars. It has also been observed that Salmonella Typhimurium sequence type 313 is emergent in several African countries. Available data suggest that genetic variation in the sequence type 313 strain has led to increased pathogenicity and human host adaptation. A bivalent efficacious vaccine, targeting Salmonella serovars Typhimurium and Enteritidis, would significantly lower the disease burden in high-risk populations. SUMMARY The mobilization of surveillance networks, especially in Asia and Latin America, may provide missing data regarding the invasive nontyphoidal Salmonella disease burden and their corresponding antimicrobial susceptibility profiles. Efforts and resources should be directed toward invasive nontyphoidal Salmonella disease vaccine development.
Collapse
Affiliation(s)
- Andrea H. Haselbeck
- International Vaccine Institute, Epidemiology Unit, Seoul, Republic of Korea
| | - Ursula Panzner
- International Vaccine Institute, Epidemiology Unit, Seoul, Republic of Korea
| | - Justin Im
- International Vaccine Institute, Epidemiology Unit, Seoul, Republic of Korea
| | - Stephen Baker
- Hospital for Tropical Diseases,Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City,Vietnam
- Department of Medicine, University of Cambridge, Cambridge,United Kingdom
| | - Christian G. Meyer
- Institute of Tropical Medicine, Eberhard-Karls University T€ubingen, T€ubingen, Germany and
- Duy Tan University, Da Nang, Vietnam
| | - Florian Marks
- International Vaccine Institute, Epidemiology Unit, Seoul, Republic of Korea
- Department of Medicine, University of Cambridge, Cambridge,United Kingdom
| |
Collapse
|