1
|
Shiraishi I, Yamagishi M, Hoashi T, Kato Y, Iwai S, Ichikawa H, Nishii T, Yamagishi H, Yasukochi S, Kawada M, Suzuki T, Shinkawa T, Yoshimura N, Inuzuka R, Hirata Y, Hirose K, Ikai A, Sakamoto K, Kotani Y, Kasahara S, Hisada T, Kurosaki K. Evaluation of the Efficacy and Accuracy of Super-Flexible Three-Dimensional Heart Models of Congenital Heart Disease Made via Stereolithography Printing and Vacuum Casting: A Multicenter Clinical Trial. J Cardiovasc Dev Dis 2024; 11:387. [PMID: 39728278 DOI: 10.3390/jcdd11120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional (3D) printing is an advanced technology for accurately understanding anatomy and supporting the successful surgical management of complex congenital heart disease (CHD). We aimed to evaluate whether our super-flexible 3D heart models could facilitate preoperative decision-making and surgical simulation for complex CHD. The super-flexible heart models were fabricated by stereolithography 3D printing of the internal and external contours of the heart from cardiac computed tomography (CT) data, followed by vacuum casting with a polyurethane material similar in elasticity to a child's heart. Nineteen pediatric patients with complex CHD were enrolled (median age, 10 months). The primary endpoint was defined as the percentage of patients rated as "essential" on the surgeons' postoperative 5-point Likert scale. The accuracy of the models was validated by a non-destructive method using industrial CT. The super-flexible heart models allowed detailed anatomical diagnosis and simulated surgery with incisions and sutures. Thirteen patients (68.4%) were classified as "essential" by the primary surgeons after surgery, with a 95% confidence interval of 43.4-87.4%, meeting the primary endpoint. The product error within 90% of the total external and internal surfaces was 0.54 ± 0.21 mm. The super-flexible 3D heart models are accurate, reliable, and useful tools to assist surgeons in decision-making and allow for preoperative simulation in CHD.
Collapse
Affiliation(s)
- Isao Shiraishi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Masaaki Yamagishi
- Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takaya Hoashi
- Department of Pediatric Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
- Department of Pediatric Cardiac Surgery, Saitama Medical University International Medical Center, Hidaka 350-1298, Japan
| | - Yoshiaki Kato
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Shigemitsu Iwai
- Department of Pediatric Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Hajime Ichikawa
- Department of Pediatric Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Masaaki Kawada
- Division of Pediatric and Congenital Cardiovascular Surgery, Jichi Children's Medical Center Tochigi, Shimotsuke 329-0498, Japan
| | - Takaaki Suzuki
- Department of Pediatric Cardiac Surgery, Saitama Medical University International Medical Center, Hidaka 350-1298, Japan
| | - Takeshi Shinkawa
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Naoki Yoshimura
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Ryo Inuzuka
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasutaka Hirata
- Department of Cardiovascular Surgery, The University of Tokyo, Tokyo 113-8655, Japan
| | - Keiichi Hirose
- Department of Cardiovascular Surgery, Mt. Fuji Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Akio Ikai
- Department of Cardiovascular Surgery, Mt. Fuji Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Kisaburo Sakamoto
- Department of Cardiovascular Surgery, Mt. Fuji Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Yasuhiro Kotani
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama 700-8558, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiaki Hisada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 227-0871, Japan
| | - Kenichi Kurosaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| |
Collapse
|
2
|
Kong F, Stocker S, Choi PS, Ma M, Ennis DB, Marsden AL. SDF4CHD: Generative modeling of cardiac anatomies with congenital heart defects. Med Image Anal 2024; 97:103293. [PMID: 39146700 PMCID: PMC11372630 DOI: 10.1016/j.media.2024.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Congenital heart disease (CHD) encompasses a spectrum of cardiovascular structural abnormalities, often requiring customized treatment plans for individual patients. Computational modeling and analysis of these unique cardiac anatomies can improve diagnosis and treatment planning and may ultimately lead to improved outcomes. Deep learning (DL) methods have demonstrated the potential to enable efficient treatment planning by automating cardiac segmentation and mesh construction for patients with normal cardiac anatomies. However, CHDs are often rare, making it challenging to acquire sufficiently large patient cohorts for training such DL models. Generative modeling of cardiac anatomies has the potential to fill this gap via the generation of virtual cohorts; however, prior approaches were largely designed for normal anatomies and cannot readily capture the significant topological variations seen in CHD patients. Therefore, we propose a type- and shape-disentangled generative approach suitable to capture the wide spectrum of cardiac anatomies observed in different CHD types and synthesize differently shaped cardiac anatomies that preserve the unique topology for specific CHD types. Our DL approach represents generic whole heart anatomies with CHD type-specific abnormalities implicitly using signed distance fields (SDF) based on CHD type diagnosis. To capture the shape-specific variations, we then learn invertible deformations to morph the learned CHD type-specific anatomies and reconstruct patient-specific shapes. After training with a dataset containing the cardiac anatomies of 67 patients spanning 6 CHD types and 14 combinations of CHD types, our method successfully captures divergent anatomical variations across different types and the meaningful intermediate CHD states across the spectrum of related CHD diagnoses. Additionally, our method demonstrates superior performance in CHD anatomy generation in terms of CHD-type correctness and shape plausibility. It also exhibits comparable generalization performance when reconstructing unseen cardiac anatomies. Moreover, our approach shows potential in augmenting image-segmentation pairs for rarer CHD types to significantly enhance cardiac segmentation accuracy for CHDs. Furthermore, it enables the generation of CHD cardiac meshes for computational simulation, facilitating a systematic examination of the impact of CHDs on cardiac functions.
Collapse
Affiliation(s)
- Fanwei Kong
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA; Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| | - Sascha Stocker
- Department of Radiology, Stanford University, Stanford, CA, USA; Institute for Biomedical Engineering, ETH Zurich and University Zurich, Zurich, Switzerland
| | - Perry S Choi
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Michael Ma
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Daniel B Ennis
- Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA; Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Kanumilli SLD, Kosuru BP, Shaukat F, Repalle UK. Advancements and Applications of Three-dimensional Printing Technology in Surgery. J Med Phys 2024; 49:319-325. [PMID: 39526161 PMCID: PMC11548071 DOI: 10.4103/jmp.jmp_89_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional (3D) printing technology has revolutionized surgical practices, offering precise solutions for planning, education, and patient care. Surgeons now wield tangible, patient-specific 3D models derived from imaging data, allowing for meticulous presurgical planning. These models enhance surgical precision, reduce operative times, and minimize complications, ultimately improving patient outcomes. The technology also serves as a powerful educational tool, providing hands-on learning experiences for medical professionals and clearer communication with patients and their families. Despite its advantages, challenges such as model accuracy and material selection exist. Ongoing advancements, including bioactive materials and artificial intelligence integration, promise to further enhance 3D printing's impact. The future of 3D printing in surgery holds potential for regenerative medicine, increased global accessibility, and collaboration through telemedicine. Interdisciplinary collaboration between medical and engineering fields is crucial for responsible and innovative use of this technology.
Collapse
Affiliation(s)
| | - Bhanu P. Kosuru
- Department of Internal Medicine, University of Pittsburgh Medical Center East, Monroeville, Pennsylvania, USA
| | - Faiza Shaukat
- Department of General Surgery, Akhtar Saeed Medical and Dental College, Lahore, Punjab, India
| | - Uday Kumar Repalle
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
4
|
SUN ZH. Cardiovascular computed tomography in cardiovascular disease: An overview of its applications from diagnosis to prediction. J Geriatr Cardiol 2024; 21:550-576. [PMID: 38948894 PMCID: PMC11211902 DOI: 10.26599/1671-5411.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cardiovascular computed tomography angiography (CTA) is a widely used imaging modality in the diagnosis of cardiovascular disease. Advancements in CT imaging technology have further advanced its applications from high diagnostic value to minimising radiation exposure to patients. In addition to the standard application of assessing vascular lumen changes, CTA-derived applications including 3D printed personalised models, 3D visualisations such as virtual endoscopy, virtual reality, augmented reality and mixed reality, as well as CT-derived hemodynamic flow analysis and fractional flow reserve (FFRCT) greatly enhance the diagnostic performance of CTA in cardiovascular disease. The widespread application of artificial intelligence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease. Clinical value of CTA has extended from the initial diagnosis to identification of vulnerable lesions, and prediction of disease extent, hence improving patient care and management. In this review article, as an active researcher in cardiovascular imaging for more than 20 years, I will provide an overview of cardiovascular CTA in cardiovascular disease. It is expected that this review will provide readers with an update of CTA applications, from the initial lumen assessment to recent developments utilising latest novel imaging and visualisation technologies. It will serve as a useful resource for researchers and clinicians to judiciously use the cardiovascular CT in clinical practice.
Collapse
Affiliation(s)
- Zhong-Hua SUN
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth 6012, Australia
| |
Collapse
|
5
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
6
|
Lu T, Meng Y, Yang Q, Zhu C, Wu Z, Lu Z, Gao Y, Wang S. Analysis and evaluation of patient-specific three-dimensional printing in complex septal myectomy. Eur J Cardiothorac Surg 2024; 65:ezad335. [PMID: 37831900 DOI: 10.1093/ejcts/ezad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES This study aimed to assess the effectiveness of three-dimensional printing (3DP) in patients with complex hypertrophic cardiomyopathy requiring combined transaortic and transapical septal myectomy. METHODS We created 3DP models for 7 patients undergoing this surgery approach between June and October 2022 using silicone-like resin and conducted mock operations. The models were compared with echocardiography to identify abnormal muscle bundles and heart structures. These patients were then compared with a 1:2 matched group without 3DP, considering age, sex and additional operations. RESULTS The models mostly presenting with midventricular obstruction showed high consistency with original computed tomography data (r = 0.978, P < 0.001). 3DP identified more abnormal muscle bundles than echocardiography, primarily between the interventricular septum and apex. Excised specimens in mock operations mirrored those in actual myectomies. While cardiopulmonary bypass time was not significantly different, a near-20-min decrease was observed in the 3DP group (135.5 ± 31.1 vs 154.4 ± 36.6 min, P = 0.054). CONCLUSIONS While no significant differences in surgical outcomes were observed, 3DP appeared to enhance the visualization and understanding of spatial structures (average Likert scale score 4.0), potentially contributing to surgical proficiency (overall rating score 3.9). The use of 3DP may offer additional value in the preparation and execution of operations for complex hypertrophic cardiomyopathy cases.
Collapse
Affiliation(s)
- Tao Lu
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanhai Meng
- Department of Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiulan Yang
- Department of Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changsheng Zhu
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zining Wu
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengyang Lu
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Gao
- Department of Ultrasound, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Kong F, Stocker S, Choi PS, Ma M, Ennis DB, Marsden A. SDF4CHD: Generative Modeling of Cardiac Anatomies with Congenital Heart Defects. ARXIV 2023:arXiv:2311.00332v2. [PMID: 37961745 PMCID: PMC10635288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Congenital heart disease (CHD) encompasses a spectrum of cardiovascular structural abnormalities, often requiring customized treatment plans for individual patients. Computational modeling and analysis of these unique cardiac anatomies can improve diagnosis and treatment planning and may ultimately lead to improved outcomes. Deep learning (DL) methods have demonstrated the potential to enable efficient treatment planning by automating cardiac segmentation and mesh construction for patients with normal cardiac anatomies. However, CHDs are often rare, making it challenging to acquire sufficiently large patient cohorts for training such DL models. Generative modeling of cardiac anatomies has the potential to fill this gap via the generation of virtual cohorts; however, prior approaches were largely designed for normal anatomies and cannot readily capture the significant topological variations seen in CHD patients. Therefore, we propose a type- and shape-disentangled generative approach suitable to capture the wide spectrum of cardiac anatomies observed in different CHD types and synthesize differently shaped cardiac anatomies that preserve the unique topology for specific CHD types. Our DL approach represents generic whole heart anatomies with CHD type-specific abnormalities implicitly using signed distance fields (SDF) based on CHD type diagnosis, which conveniently captures divergent anatomical variations across different types and represents meaningful intermediate CHD states. To capture the shape-specific variations, we then learn invertible deformations to morph the learned CHD type-specific anatomies and reconstruct patient-specific shapes. Our approach has the potential to augment the image-segmentation pairs for rarer CHD types for cardiac segmentation and generate cohorts of CHD cardiac meshes for computational simulation.
Collapse
Affiliation(s)
- Fanwei Kong
- Department of Pediatrics, Cardiovascular Institute, Stanford University, Stanford
| | - Sascha Stocker
- Department of Radiology, Stanford University, Stanford
- Institute for Biomedical Engineering, ETH Zurich and University Zurich, Zurich
| | - Perry S Choi
- Department of Cardiothoracic Surgery, Stanford University, Stanford
| | - Michael Ma
- Department of Cardiothoracic Surgery, Stanford University, Stanford
| | - Daniel B Ennis
- Department of Radiology, Cardiovascular Institute, Stanford University, Stanford
| | - Alison Marsden
- Department of Bioengineering, Department of Mechanical Engineering, Department of Pediatrics, Stanford University, Stanford
| |
Collapse
|
8
|
Senderovich N, Shah S, Ow TJ, Rand S, Nosanchuk J, Wake N. Assessment of Staphylococcus Aureus growth on biocompatible 3D printed materials. 3D Print Med 2023; 9:30. [PMID: 37914942 PMCID: PMC10621153 DOI: 10.1186/s41205-023-00195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The customizability of 3D printing allows for the manufacturing of personalized medical devices such as laryngectomy tubes, but it is vital to establish the biocompatibility of printing materials to ensure that they are safe and durable. The goal of this study was to assess the presence of S. aureus biofilms on a variety of 3D printed materials (two surgical guide resins, a photopolymer, an elastomer, and a thermoplastic elastomer filament) as compared to standard, commercially available laryngectomy tubes.C-shaped discs (15 mm in height, 20 mm in diameter, and 3 mm in thickness) were printed with five different biocompatible 3D printing materials and S. aureus growth was compared to Shiley™ laryngectomy tubes made from polyvinyl chloride. Discs of each material were inoculated with S. aureus cultures and incubated overnight. All materials were then removed from solution, washed in phosphate-buffered saline to remove planktonic bacteria, and sonicated to detach biofilms. Some solution from each disc was plated and colony-forming units were manually counted the following day. The resulting data was analyzed using a Kruskal-Wallis and Wilcoxon Rank Sum test to determine pairwise significance between the laryngectomy tube material and the 3D printed materials.The Shiley™ tube grew a median of 320 colonies (IQR 140-520), one surgical guide resin grew a median of 640 colonies (IQR 356-920), the photopolymer grew a median of 340 colonies (IQR 95.5-739), the other surgical guide resin grew a median of 431 colonies (IQR 266.5-735), the thermoplastic elastomer filament grew a median of 188 colonies (IQR 113.5-335), and the elastomer grew a median of 478 colonies (IQR 271-630). Using the Wilcoxon Rank Sum test, manual quantification showed a significant difference between biofilm formation only between the Shiley™ tube and a surgical guide resin (p = 0.018).This preliminary study demonstrates that bacterial colonization was comparable among most 3D printed materials as compared to the conventionally manufactured device. Continuation of this work with increased replicates will be necessary to determine which 3D printing materials optimally resist biofilm formation.
Collapse
Affiliation(s)
- Nicole Senderovich
- Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, USA.
| | - Sharan Shah
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas J Ow
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stephanie Rand
- Department of Physical Medicine & Rehabilitation, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua Nosanchuk
- Department of Infectious Disease, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicole Wake
- Department of Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI²R) and Bernard and Irene, Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, Ramakrishna S, Saidin S, Jaganathan SK. A Systematic Analysis of Additive Manufacturing Techniques in the Bioengineering of In Vitro Cardiovascular Models. Ann Biomed Eng 2023; 51:2365-2383. [PMID: 37466879 PMCID: PMC10598155 DOI: 10.1007/s10439-023-03322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
Collapse
Affiliation(s)
| | - Vivek Nair
- Computational Fluid Dynamics (CFD) Lab, Mechanical and Aerospace Engineering, University of Texas Arlington, Arlington, TX, 76010, USA
| | | | - Ahmad Athif Mohd Faudzi
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nick Tucker
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology Initiative, National University of Singapore, Singapore, Singapore
| | - Syafiqah Saidin
- IJNUTM Cardiovascular Engineering Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK.
| |
Collapse
|
10
|
Betancourt MC, Araújo C, Marín S, Buriticá W. The Quantitative Impact of Using 3D Printed Anatomical Models for Surgical Planning Optimization: Literature Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1130-1139. [PMID: 37886412 PMCID: PMC10599434 DOI: 10.1089/3dp.2021.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
3D printing has entered the medical field as a visualization tool that allows the manufacture of three-dimensional (3D) models that physically represent the anatomy of a patient in need of analysis to improve surgical results. This article analyzes the literature around reported study cases that make use of anatomical models for their surgical processes' planning, focusing on obtaining the quantitative results of each one of them. A search of case studies was carried out in the main medical databases such as PubMed, ScienceDirect, SpringerLink, among others; to obtain the most relevant results of the 56 selected articles, the information of each study was analyzed and categorized. These articles presented figures and data about the benefits that are considered more representative to measure the positive impact of this technology. These benefits are summarized in variables such as the decrease in surgical time, greater accuracy in the diagnosis of pathology, blood loss reduction, and decreasing operating room costs; owed to an improvement in the surgery planning. It was found that in all the cases analyzed there was an improvement in the surgical results related to these variables, which were summarized in macro figures that combine this improvement quantitatively. In the analyzed studies, it was evident that there is great potential in the use of 3D printing for presurgical planning, being as the results of these analyzed interventions were better when using this technology. In addition, it was found that the results obtained initially, before applying the inclusion and exclusion criteria, were mostly of a qualitative nature; expressing the perception of researchers regarding the positive use of this tool in the field and evidencing an opportunity for this research to focus on concrete and technical information to show in numerical terms the effectiveness of this tool, to demonstrate the cost-benefit that it has for the field.
Collapse
|
11
|
Sun Z, Zhao J, Leung E, Flandes-Iparraguirre M, Vernon M, Silberstein J, De-Juan-Pardo EM, Jansen S. Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2023; 13:1180. [PMID: 37627245 PMCID: PMC10452258 DOI: 10.3390/biom13081180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) printing plays an important role in cardiovascular disease through the use of personalised models that replicate the normal anatomy and its pathology with high accuracy and reliability. While 3D printed heart and vascular models have been shown to improve medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance communication with patients, 3D bioprinting represents a potential advancement of 3D printing technology by allowing the printing of cellular or biological components, functional tissues and organs that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting technology have shown the ability to support vascularisation of large-scale constructs with enhanced biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart valves and myocardium. Limitations and future research directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jack Zhao
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Emily Leung
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Maria Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Michael Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jenna Silberstein
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Elena M. De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
- Heart and Vascular Research Institute, Harry Perkins Medical Research Institute, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020319. [PMID: 36832448 PMCID: PMC9955978 DOI: 10.3390/children10020319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Three-dimensional (3D) printing technology has become increasingly used in the medical field, with reports demonstrating its superior advantages in both educational and clinical value when compared with standard image visualizations or current diagnostic approaches. Patient-specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D flat screens. Additionally, the added value of using 3D-printed models is especially apparent in congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for medical students or graduates, clinical applications such as pre-operative planning and simulation of congenital heart surgical procedures, and communication between physicians and patients/parents of patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives on future research directions for the application of 3D printing technology into pediatric cardiology practice are highlighted.
Collapse
|
13
|
Shahbaz M, Miao H, Farhaj Z, Gong X, Weikai S, Dong W, Jun N, Shuwei L, Yu D. Mixed reality navigation training system for liver surgery based on a high-definition human cross-sectional anatomy data set. Cancer Med 2023; 12:7992-8004. [PMID: 36607128 PMCID: PMC10134360 DOI: 10.1002/cam4.5583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/24/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES This study aims to use the three-dimensional (3D) mixed-reality model of liver, entailing complex intrahepatic systems and to deeply study the anatomical structures and to promote the training, diagnosis and treatment of liver diseases. METHODS Vascular perfusion human specimens were used for thin-layer frozen milling to obtain liver cross-sections. The 104-megapixel-high-definition cross sectional data set was established and registered to achieve structure identification and manual segmentation. The digital model was reconstructed and data was used to print a 3D hepatic model. The model was combined with HoloLens mixed reality technology to reflect the complex relationships of intrahepatic systems. We simulated 3D patient specific anatomy for identification and preoperative planning, conducted a questionnaire survey, and evaluated the results. RESULTS The 3D digital model and 1:1 transparent and colored model of liver established truly reflected intrahepatic vessels and their complex relationships. The reconstructed model imported into HoloLens could be accurately matched with the 3D model. Only 7.7% participants could identify accessory hepatic veins. The depth and spatial-relationship of intrahepatic structures were better understandable for 92%. The 100%, 84.6%, 69% and 84% believed the 3D models were useful in planning, safer surgical paths, reducing intraoperative complications and training of young surgeons respectively. CONCLUSIONS A detailed 3D model can be reconstructed using the higher quality cross-sectional anatomical data set. When combined with 3D printing and HoloLens technology, a novel hybrid-reality navigation-training system for liver surgery is created. Mixed Reality training is a worthy alternative to provide 3D information to clinicians and its possible application in surgery. This conclusion was obtained based on a questionnaire and evaluation. Surgeons with extensive experience in surgical operations perceived in the questionnaire that this technology might be useful in liver surgery, would help in precise preoperative planning, accurate intraoperative identification, and reduction of hepatic injury.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Radiology, Qilu Hospital of Shandong UniversityJinanShandongChina
- Research Center for Sectional and Imaging AnatomyDigital Human Institute, School of Basic Medical Science, Shandong UniversityJinanShandongChina
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Huachun Miao
- Department of Anatomy, Wannan Medical CollegeWuhuAnhuiChina
| | - Zeeshan Farhaj
- Department of Cardiovascular Surgery, Shandong Qianfoshan Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Xin Gong
- Department of Anatomy, Wannan Medical CollegeWuhuAnhuiChina
| | - Sun Weikai
- Department of Radiology, Qilu Hospital of Shandong UniversityJinanShandongChina
| | - Wenqing Dong
- Department of Anatomy, Wannan Medical CollegeWuhuAnhuiChina
| | - Niu Jun
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Liu Shuwei
- Research Center for Sectional and Imaging AnatomyDigital Human Institute, School of Basic Medical Science, Shandong UniversityJinanShandongChina
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
14
|
Barbosa WS, Gioia MM, Temporão GP, Meggiolaro MA, Gouvea FC. Impact of multi-lattice inner structures on FDM PLA 3D printed orthosis using Industry 4.0 concepts. INTERNATIONAL JOURNAL ON INTERACTIVE DESIGN AND MANUFACTURING (IJIDEM) 2023; 17:371-383. [PMCID: PMC9884601 DOI: 10.1007/s12008-022-00962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/12/2022] [Indexed: 12/21/2024]
Abstract
The use of digital manufacturing for the construction of orthosis and prostheses has become common since the popularization of 3D printers and the advent of Industry 4.0. Furthermore, due to the fact that the manufacture of orthosis is interactive and for personal use, generic production is difficult. In this sense, the large-scale production of these products lacks of improvements, standardization of processes and production optimization. An aggravation of this is the recent social distance due to the COVID-19 pandemic, which makes the use of temporary orthosis made in 3D printers to have a recent growth. Parallel to this, the use of multi-lattice inner structures for internal structuring of prints has also been increasing and taking on a more consolidated form. This article aims to present the multi-lattice optimization as a solution to this problem, in order to reduce material waste while maintaining the mechanical behavior of printed parts.
Collapse
Affiliation(s)
| | - Mariana M. Gioia
- Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
15
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
16
|
Ponchant K, Nguyen DA, Prsa M, Beghetti M, Sologashvili T, Vallée JP. Three-dimensional printing and virtual reconstruction in surgical planning of double-outlet right ventricle repair. JTCVS Tech 2022; 17:138-150. [PMID: 36820361 PMCID: PMC9938382 DOI: 10.1016/j.xjtc.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives For more than a decade, 3-dimensional (3D) printing has been identified as an innovative tool for the surgical planning of double-outlet right ventricle (DORV). Nevertheless, lack of evidence concerning its benefits encourages us to identify valuable criteria for future prospective trials. Methods We conducted a retrospective study involving 10 patients with DORV operated between 2015 and 2019 in our center. During a preoperative multidisciplinary heart team meeting, we harvested surgical decisions following a 3-increment step process: (1) multimodal imaging; (2) 3D virtual valvular reconstruction (3DVVR); and (3) 3D-printed heart model (3DPHM). The primary outcome was the proportion of predicted surgical strategy following each of the 3 steps, compared with the institutional retrospective surgical strategy. The secondary outcome was the change of surgical strategy through 3D modalities compared with multimodal imaging. The incremental benefit of the 3DVVR and 3DPHM over multimodal imaging was then assessed. Results The operative strategy was predicted in 5 cases after multimodal imaging, in 9 cases after 3DVVR, and the 10 cases after 3DPHM. Compared with multimodal imaging, 3DVVR modified the strategy for 4 cases. One case was correctly predicted only after 3DPHM inspection. Conclusions 3DVVR and 3DPHM improved multimodal imaging in the surgical planning of patients with DORV. 3DVVR allowed a better appreciation of the relationships between great vessels, valves, and ventricular septal defects. 3DPHM offers a realistic preoperative view at patient scale and enhances the evaluation of outflow tract obstruction. Our retrospective study demonstrates benefits of preoperative 3D modalities and supports future prospective trials to assess their impact on postoperative outcomes.
Collapse
Key Words
- 3D modality in surgical planning
- 3D printed heart model
- 3D printing
- 3D virtual valvular reconstruction
- 3D, 3-dimensional
- 3DPHM, 3D-printed heart model
- 3DVVR, 3D virtual valvular annulus reconstruction
- CTA, computed tomography angiogram
- DORV, double-outlet right ventricle
- LV, left ventricle
- PA, pulmonary artery
- PV, pulmonary valve
- TGA, transposition of the great arteries
- TTE, transthoracic echocardiography
- VSD, ventricular septal defect
- double-outlet right ventricle
Collapse
Affiliation(s)
- Kevin Ponchant
- Cardiovascular Radiology Unit, Geneva University Hospitals and University of Geneva, Geneva, Switzerland,Address for reprints: Kevin Ponchant, Cardiovascular Radiology Unit, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Duy-Anh Nguyen
- Pediatric Cardiology Unit, Children's University Hospital, Geneva, Switzerland
| | - Milan Prsa
- Division of Pediatric Cardiology, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, Geneva University Hospitals/Lausanne University Hospital, Geneva/Lausanne, Switzerland
| | - Maurice Beghetti
- Pediatric Cardiology Unit, Children's University Hospital, Geneva, Switzerland,Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, Geneva University Hospitals/Lausanne University Hospital, Geneva/Lausanne, Switzerland
| | - Tornike Sologashvili
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, Geneva University Hospitals/Lausanne University Hospital, Geneva/Lausanne, Switzerland,Division of Cardiac Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Paul Vallée
- Cardiovascular Radiology Unit, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Sun Z, Wee C. 3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine. MICROMACHINES 2022; 13:1575. [PMID: 36295929 PMCID: PMC9610217 DOI: 10.3390/mi13101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
3D printing has shown great promise in medical applications with increased reports in the literature. Patient-specific 3D printed heart and vascular models replicate normal anatomy and pathology with high accuracy and demonstrate superior advantages over the standard image visualizations for improving understanding of complex cardiovascular structures, providing guidance for surgical planning and simulation of interventional procedures, as well as enhancing doctor-to-patient communication. 3D printed models can also be used to optimize CT scanning protocols for radiation dose reduction. This review article provides an overview of the current status of using 3D printing technology in cardiovascular disease. Limitations and barriers to applying 3D printing in clinical practice are emphasized while future directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Cleo Wee
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia
| |
Collapse
|
18
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
19
|
Illi J, Bernhard B, Nguyen C, Pilgrim T, Praz F, Gloeckler M, Windecker S, Haeberlin A, Gräni C. Translating Imaging Into 3D Printed Cardiovascular Phantoms. JACC Basic Transl Sci 2022; 7:1050-1062. [PMID: 36337920 PMCID: PMC9626905 DOI: 10.1016/j.jacbts.2022.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
3D printed patient specific phantoms can visualize complex cardiovascular anatomy Common imaging modalities for 3D printing are CCT and CMR Material jetting/PolyJet and stereolithography are widely used printing techniques Standardized validation is warranted to compare different 3D printing technologies
Translation of imaging into 3-dimensional (3D) printed patient-specific phantoms (3DPSPs) can help visualize complex cardiovascular anatomy and enable tailoring of therapy. The aim of this paper is to review the entire process of phantom production, including imaging, materials, 3D printing technologies, and the validation of 3DPSPs. A systematic review of published research was conducted using Embase and MEDLINE, including studies that investigated 3DPSPs in cardiovascular medicine. Among 2,534 screened papers, 212 fulfilled inclusion criteria and described 3DPSPs as a valuable adjunct for planning and guiding interventions (n = 108 [51%]), simulation of physiological or pathological conditions (n = 19 [9%]), teaching of health care professionals (n = 23 [11%]), patient education (n = 3 [1.4%]), outcome prediction (n = 6 [2.8%]), or other purposes (n = 53 [25%]). The most common imaging modalities to enable 3D printing were cardiac computed tomography (n = 131 [61.8%]) and cardiac magnetic resonance (n = 26 [12.3%]). The printing process was conducted mostly by material jetting (n = 54 [25.5%]) or stereolithography (n = 43 [20.3%]). The 10 largest studies that evaluated the geometric accuracy of 3DPSPs described a mean bias <±1 mm; however, the validation process was very heterogeneous among the studies. Three-dimensional printed patient-specific phantoms are highly accurate, used for teaching, and applied to guide cardiovascular therapy. Systematic comparison of imaging and printing modalities following a standardized validation process is warranted to allow conclusions on the optimal production process of 3DPSPs in the field of cardiovascular medicine.
Collapse
|
20
|
Cornejo J, Cornejo-Aguilar JA, Vargas M, Helguero CG, Milanezi de Andrade R, Torres-Montoya S, Asensio-Salazar J, Rivero Calle A, Martínez Santos J, Damon A, Quiñones-Hinojosa A, Quintero-Consuegra MD, Umaña JP, Gallo-Bernal S, Briceño M, Tripodi P, Sebastian R, Perales-Villarroel P, De la Cruz-Ku G, Mckenzie T, Arruarana VS, Ji J, Zuluaga L, Haehn DA, Paoli A, Villa JC, Martinez R, Gonzalez C, Grossmann RJ, Escalona G, Cinelli I, Russomano T. Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6797745. [PMID: 35372574 PMCID: PMC8970887 DOI: 10.1155/2022/6797745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
Three-dimensional printing (3DP) has recently gained importance in the medical industry, especially in surgical specialties. It uses different techniques and materials based on patients' needs, which allows bioprofessionals to design and develop unique pieces using medical imaging provided by computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, the Department of Biology and Medicine and the Department of Physics and Engineering, at the Bioastronautics and Space Mechatronics Research Group, have managed and supervised an international cooperation study, in order to present a general review of the innovative surgical applications, focused on anatomical systems, such as the nervous and craniofacial system, cardiovascular system, digestive system, genitourinary system, and musculoskeletal system. Finally, the integration with augmented, mixed, virtual reality is analyzed to show the advantages of personalized treatments, taking into account the improvements for preoperative, intraoperative planning, and medical training. Also, this article explores the creation of devices and tools for space surgery to get better outcomes under changing gravity conditions.
Collapse
Affiliation(s)
- José Cornejo
- Facultad de Ingeniería, Universidad San Ignacio de Loyola, La Molina, Lima 15024, Peru
- Department of Medicine and Biology & Department of Physics and Engineering, Bioastronautics and Space Mechatronics Research Group, Lima 15024, Peru
| | | | | | | | - Rafhael Milanezi de Andrade
- Robotics and Biomechanics Laboratory, Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Brazil
| | | | | | - Alvaro Rivero Calle
- Department of Oral and Maxillofacial Surgery, Hospital 12 de Octubre, Madrid, Spain
| | - Jaime Martínez Santos
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Aaron Damon
- Department of Neurosurgery, Mayo Clinic, FL, USA
| | | | | | - Juan Pablo Umaña
- Cardiovascular Surgery, Instituto de Cardiología-Fundación Cardioinfantil, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manolo Briceño
- Villamedic Group, Lima, Peru
- Clínica Internacional, Lima, Peru
| | | | - Raul Sebastian
- Department of Surgery, Northwest Hospital, Randallstown, MD, USA
| | | | - Gabriel De la Cruz-Ku
- Universidad Científica del Sur, Lima, Peru
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jiakai Ji
- Obstetrics and Gynecology, Lincoln Medical and Mental Health Center, Bronx, NY, USA
| | - Laura Zuluaga
- Department of Urology, Fundación Santa Fe de Bogotá, Colombia
| | | | - Albit Paoli
- Howard University Hospital, Washington, DC, USA
| | | | | | - Cristians Gonzalez
- Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut of Image-Guided Surgery (IHU-Strasbourg), Strasbourg, France
| | | | - Gabriel Escalona
- Experimental Surgery and Simulation Center, Department of Digestive Surgery, Catholic University of Chile, Santiago, Chile
| | - Ilaria Cinelli
- Aerospace Human Factors Association, Aerospace Medical Association, VA, USA
| | | |
Collapse
|
21
|
Deng X, He S, Huang P, Luo J, Yang G, Zhou B, Xiao Y. A three-dimensional printed model in preoperative consent for ventricular septal defect repair. J Cardiothorac Surg 2021; 16:229. [PMID: 34380540 PMCID: PMC8359557 DOI: 10.1186/s13019-021-01604-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background The 3D printing technology in congenital cardiac surgery has been widely utilized to improve patients’ understanding of their disease. However, there has been no randomized controlled study on its usefulness in surgical consent for congenital heart disease repair. Methods A randomized controlled study was performed during consent process in which guardians of candidates for ventricular septal defect repair were given detailed explanation of the anatomy, indication for surgery and potential complication and risks using 3D print ventricular septal defect model (n = 20) versus a conventional 2D diagram (n = 20). A questionnaire was finished by each guardian of the patients. Data collected from questionnaires as well as medical records were statistically analyzed. Results Statistically significant improvements in ratings of understanding of ventricular septal defect anatomy (p = 0.02), and of the surgical procedure and potential complications (p = 0.02) were noted in the group that used the 3D model, though there was no difference in overall ratings of the consent process (p = 0.09). There was no difference in questionnaire score between subjects with different education levels. The clinical outcomes, as represented by the duration of intensive care unit stay, intubation duration was comparable between the two groups. Conclusions The results indicated that it was an effective tool which may be used to consent for congenital heart surgery. Different education levels do not affect guardians’ understanding in consent. The impact of 3D printing used in this scenario on long term outcomes remains to be defined.
Collapse
Affiliation(s)
- Xicheng Deng
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China.
| | - Siping He
- Department of Radiology, Hunan Children's Hospital, Changsha, 410007, China
| | - Peng Huang
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| | - Jinwen Luo
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| | - Guangxian Yang
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| | - Bing Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410007, Hunan, China
| | - Yunbin Xiao
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| |
Collapse
|
22
|
Talanki VR, Peng Q, Shamir SB, Baete SH, Duong TQ, Wake N. Three-Dimensional Printed Anatomic Models Derived From Magnetic Resonance Imaging Data: Current State and Image Acquisition Recommendations for Appropriate Clinical Scenarios. J Magn Reson Imaging 2021; 55:1060-1081. [PMID: 34046959 DOI: 10.1002/jmri.27744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) printing technologies have been increasingly utilized in medicine over the past several years and can greatly facilitate surgical planning thereby improving patient outcomes. Although still much less utilized compared to computed tomography (CT), magnetic resonance imaging (MRI) is gaining traction in medical 3D printing. The purpose of this study was two-fold: 1) to determine the prevalence in the existing literature of using MRI to create 3D printed anatomic models for surgical planning and 2) to provide image acquisition recommendations for appropriate clinical scenarios where MRI is the most suitable imaging modality. The workflow for creating 3D printed anatomic models from medical imaging data is complex and involves image segmentation of the regions of interest and conversion of that data into 3D surface meshes, which are compatible with printing technologies. CT is most commonly used to create 3D printed anatomic models due to the high image quality and relative ease of performing image segmentation from CT data. As compared to CT datasets, 3D printing using MRI data offers advantages since it provides exquisite soft tissue contrast needed for accurate organ segmentation and it does not expose patients to unnecessary ionizing radiation. MRI, however, often requires complicated imaging techniques and time-consuming postprocessing procedures to generate high-resolution 3D anatomic models needed for 3D printing. Despite these challenges, 3D modeling and printing from MRI data holds great clinical promises thanks to emerging innovations in both advanced MRI imaging and postprocessing techniques. EVIDENCE LEVEL: 2 TECHNICAL EFFICATCY: 5.
Collapse
Affiliation(s)
- Varsha R Talanki
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qi Peng
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephanie B Shamir
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven H Baete
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
23
|
Tack P, Willems R, Annemans L. An early health technology assessment of 3D anatomic models in pediatric congenital heart surgery: potential cost-effectiveness and decision uncertainty. Expert Rev Pharmacoecon Outcomes Res 2021; 21:1107-1115. [PMID: 33475446 DOI: 10.1080/14737167.2021.1879645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Three-dimensional anatomic models have been used for surgical planning and simulation in pediatric congenital heart surgery. This research is the first to evaluate the potential cost-effectiveness of 3D anatomic models with the intent to guide surgeons and decision makers on its use.Method: A decision tree and subsequent Markov model with a 15-year time horizon was constructed and analyzed for nine cardiovascular surgeries. Epidemiological, clinical, and economic data were derived from databases. Literature and experts were consulted to close data gaps. Scenario, one-way, threshold, and probabilistic sensitivity analysis captured methodological and parameter uncertainty.Results: Incremental costs of using anatomical models ranged from -366€ (95% credibility interval: -2595€; 1049€) in the Norwood operation to 1485€ (95% CI: 1206€; 1792€) in atrial septal defect repair. Incremental health-benefits ranged from negligible in atrial septal defect repair to 0.54 Quality Adjusted Life Years (95% CI: 0.06; 1.43) in truncus arteriosus repair. Variability in the results was mainly caused by a temporary postoperative quality-adjusted life years gain.Conclusion: For complex operations, the implementation of anatomic models is likely to be cost-effective on a 15 year time horizon. For the right indication, these models thus provide a clinical advantage at an acceptable cost.
Collapse
Affiliation(s)
- Philip Tack
- Department of Innovation, Entrepreneurship and Service Management, Ghent University, Ghent, Belgium
| | - Ruben Willems
- Department of Public Health, Ghent University, Ghent, Belgium
| | - Lieven Annemans
- Department of Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Yoo SJ, Hussein N, Peel B, Coles J, van Arsdell GS, Honjo O, Haller C, Lam CZ, Seed M, Barron D. 3D Modeling and Printing in Congenital Heart Surgery: Entering the Stage of Maturation. Front Pediatr 2021; 9:621672. [PMID: 33614554 PMCID: PMC7892770 DOI: 10.3389/fped.2021.621672] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/05/2022] Open
Abstract
3D printing allows the most realistic perception of the surgical anatomy of congenital heart diseases without the requirement of physical devices such as a computer screen or virtual headset. It is useful for surgical decision making and simulation, hands-on surgical training (HOST) and cardiovascular morphology teaching. 3D-printed models allow easy understanding of surgical morphology and preoperative surgical simulation. The most common indications for its clinical use include complex forms of double outlet right ventricle and transposition of the great arteries, anomalous systemic and pulmonary venous connections, and heterotaxy. Its utility in congenital heart surgery is indisputable, although it is hard to "scientifically" prove the impact of its use in surgery because of many confounding factors that contribute to the surgical outcome. 3D-printed models are valuable resources for morphology teaching. Educational models can be produced for almost all different variations of congenital heart diseases, and replicated in any number. HOST using 3D-printed models enables efficient education of surgeons in-training. Implementation of the HOST courses in congenital heart surgical training programs is not an option but an absolute necessity. In conclusion, 3D printing is entering the stage of maturation in its use for congenital heart surgery. It is now time for imagers and surgeons to find how to effectively utilize 3D printing and how to improve the quality of the products for improved patient outcomes and impact of education and training.
Collapse
Affiliation(s)
- Shi Joon Yoo
- Department of Diagnostic Imaging, The University of Toronto, Toronto, ON, Canada
- Department of Paediatrics–Division of Cardiology, The University of Toronto, Toronto, ON, Canada
- Center for Image Guided Innovation and Therapeutic Intervention, The University of Toronto, Toronto, ON, Canada
| | - Nabil Hussein
- Center for Image Guided Innovation and Therapeutic Intervention, The University of Toronto, Toronto, ON, Canada
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Brandon Peel
- Center for Image Guided Innovation and Therapeutic Intervention, The University of Toronto, Toronto, ON, Canada
| | - John Coles
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Glen S. van Arsdell
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
- Department of Surgery, Mattel Children's Hospital at UCLA, Los Angeles, CA, United States
| | - Osami Honjo
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Christopher Z. Lam
- Department of Diagnostic Imaging, The University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Department of Diagnostic Imaging, The University of Toronto, Toronto, ON, Canada
- Department of Paediatrics–Division of Cardiology, The University of Toronto, Toronto, ON, Canada
| | - David Barron
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2020; 10:biom10111577. [PMID: 33233652 PMCID: PMC7699768 DOI: 10.3390/biom10111577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.
Collapse
|
26
|
Ballard DH, Mills P, Duszak R, Weisman JA, Rybicki FJ, Woodard PK. Medical 3D Printing Cost-Savings in Orthopedic and Maxillofacial Surgery: Cost Analysis of Operating Room Time Saved with 3D Printed Anatomic Models and Surgical Guides. Acad Radiol 2020; 27:1103-1113. [PMID: 31542197 DOI: 10.1016/j.acra.2019.08.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVE Three-dimensional (3D) printed anatomic models and surgical guides have been shown to reduce operative time. The purpose of this study was to generate an economic analysis of the cost-saving potential of 3D printed anatomic models and surgical guides in orthopedic and maxillofacial surgical applications. MATERIALS AND METHODS A targeted literature search identified operating room cost-per-minute and studies that quantified time saved using 3D printed constructs. Studies that reported operative time differences due to 3D printed anatomic models or surgical guides were reviewed and cataloged. A mean of $62 per operating room minute (range of $22-$133 per minute) was used as the reference standard for operating room time cost. Different financial scenarios were modeled with the provided cost-per-minute of operating room time (using high, mean, and low values) and mean time saved using 3D printed constructs. RESULTS Seven studies using 3D printed anatomic models in surgical care demonstrated a mean 62 minutes ($3720/case saved from reduced time) of time saved, and 25 studies of 3D printed surgical guides demonstrated a mean 23 minutes time saved ($1488/case saved from reduced time). An estimated 63 models or guides per year (or 1.2/week) were predicted to be the minimum number to breakeven and account for annual fixed costs. CONCLUSION Based on the literature-based financial analyses, medical 3D printing appears to reduce operating room costs secondary to shortening procedure times. While resource-intensive, 3D printed constructs used in patients' operative care provides considerable downstream value to health systems.
Collapse
Affiliation(s)
- David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110.
| | | | - Richard Duszak
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffery A Weisman
- University of Illinois at Chicago Occupational Medicine, Chicago, Illinois
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| |
Collapse
|
27
|
Sun Z. 3D Printed Coronary Models Offer Potential Value in Visualising Coronary Anatomy and Coronary Stents for Investigation of Coronary CT Protocols. Curr Med Imaging 2020; 16:625-628. [PMID: 32723233 DOI: 10.2174/157340561606200523215058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences Curtin University Perth, Australia
| |
Collapse
|
28
|
Bezek LB, Cauchi MP, De Vita R, Foerst JR, Williams CB. 3D printing tissue-mimicking materials for realistic transseptal puncture models. J Mech Behav Biomed Mater 2020; 110:103971. [PMID: 32763836 DOI: 10.1016/j.jmbbm.2020.103971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
Applications of additive manufacturing (commonly referred to as 3D printing) in direct fabrication of models for pre-surgical planning, functional testing, and medical training are on the rise. However, one current limitation to the accuracy of models for cardiovascular procedural training is a lack of printable materials that accurately mimic human tissue. Most of the available elastomeric materials lack mechanical properties representative of human tissues. To address the gap, the authors explore the multi-material capability of material jetting additive manufacturing to combine non-curing and photo-curing inks to achieve material properties that more closely replicate human tissues. The authors explore the impact of relative material concentration on tissue-relevant properties from puncture and tensile testing under submerged conditions. Further, the authors demonstrate the ability to mimic the mechanical properties of the fossa ovalis, which proves beneficial for accurately simulating transseptal punctures. A fossa ovalis mimic was printed and assembled within a full patient-specific heart model for validation, where it exhibited accuracy in both mechanical properties and geometry. The explored material combination provides the opportunity to fabricate future medical models that are more realistic and better suited for pre-surgical planning and medical student training. This will ultimately guide safer, more efficient practices.
Collapse
Affiliation(s)
- Lindsey B Bezek
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jason R Foerst
- Section of Interventional and Structural Cardiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | | |
Collapse
|
29
|
Abdullah I. Commentary: Is 3-dimensional printing the panacea for preoperative surgical planning of complex congenital heart disease? JTCVS Tech 2020; 2:143-144. [PMID: 34317783 PMCID: PMC8298852 DOI: 10.1016/j.xjtc.2020.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ibrahim Abdullah
- Department of Pediatric Cardiac Surgery, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Winlaw DS, Ayer JG. Commentary: Three-dimensional printing for preoperative planning-Beyond illustrating the obvious. JTCVS Tech 2020; 2:141-142. [PMID: 34317782 PMCID: PMC8298845 DOI: 10.1016/j.xjtc.2020.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- David S. Winlaw
- Pediatric Cardiothoracic Surgery, The Children's Hospital at Westmead, Sydney, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Address for reprints: David S. Winlaw, MBBS, MD, FRACS, Children's Hospital Medical Centre, Suite 19, Hainsworth St, Westmead 2145, Australia.
| | - Julian G. Ayer
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Pediatric Cardiology, The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|
31
|
Abstract
Tetralogy of Fallot is considered a prototype congenital heart disease because of its embryological, anatomical, pathophysiological, and management aspects. Current management usually relies on a complete surgical repair that is electively performed between 3 and 6 months of age. With the advances of interventional cardiology especially in the fields of ventricular septal defect closure, stent, and pulmonary valve replacement, the question of complete repair of tetralogy of Fallot by interventional means can be discussed. Tetralogy of Fallot is a complex disease with multiple lesions, all individually amenable to transcatheter treatment. In this article, we will review current status of various aspects of tetralogy of Fallot focusing on interventional aspects, giving insights of what would be the ideal platform of a fully interventional repair.
Collapse
|
32
|
Lau IWW, Sun Z. Dimensional Accuracy and Clinical Value of 3D Printed Models in Congenital Heart Disease: A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:jcm8091483. [PMID: 31540421 PMCID: PMC6780783 DOI: 10.3390/jcm8091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this paper is to summarize and evaluate results from existing studies on accuracy and clinical value of three-dimensional printed heart models (3DPHM) for determining whether 3D printing can significantly improve on how the congenital heart disease (CHD) is managed in current clinical practice. Proquest, Google Scholar, Scopus, PubMed, and Medline were searched for relevant studies until April 2019. Two independent reviewers performed manual data extraction and assessed the risk of bias of the studies using the tools published on National Institutes of Health (NIH) website. The following data were extracted from the studies: author, year of publication, study design, imaging modality, segmentation software, utility of 3DPHM, CHD types, and dimensional accuracy. R software was used for the meta-analysis. Twenty-four articles met the inclusion criteria and were included in the systematic review. However, only 7 studies met the statistical requirements and were eligible for meta-analysis. Cochran's Q test demonstrated significant variation among the studies for both of the meta-analyses of accuracy of 3DPHM and the utility of 3DPHM in medical education. Analysis of all included studies reported the mean deviation between the 3DPHM and the medical images is not significant, implying that 3DPHM are highly accurate. As for the utility of the 3DPHM, it is reported in all relevant studies that the 3DPHM improve the learning experience and satisfaction among the users, and play a critical role in facilitating surgical planning of complex CHD cases. 3DPHM have the potential to enhance communication in medical practice, however their clinical value remains debatable. More studies are required to yield a more meaningful meta-analysis.
Collapse
Affiliation(s)
- Ivan Wen Wen Lau
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia.
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia.
| |
Collapse
|
33
|
Parthasarathy J, Krishnamurthy R, Ostendorf A, Shinoka T, Krishnamurthy R. 3D printing with MRI in pediatric applications. J Magn Reson Imaging 2019; 51:1641-1658. [PMID: 31329332 DOI: 10.1002/jmri.26870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
3D printing (3DP) applications for clinical evaluation, preoperative planning, patient and trainee education, and simulation has increased in the past decade. Most of the applications are found in cardiovascular, head and neck, orthopedic, neurological, urological, and oncological surgical cases. This review has three parts. The first part discusses the technical pathway to realizing a physical model, 3DP considerations in pediatric MRI image acquisition, data and resolution requirements, and related structural segmentation and postprocessing steps needed to generalize both virtual and physical models. Standard practices and processing software used in these processes will be assessed. The second part discusses complementary examples in pediatric applications, including cases from cardiology, neuroradiology, neurology, and neurosurgery, head and neck, orthopedics, pelvic and urological applications, oncological applications, and fetal imaging. The third part explores other 3D printing applications and considerations such as using 3DP to develop tissue-specific phantoms and devices for testing in the MR environment, to educate patients and their families, to train clinicians and students, and facility requirements for building a 3DP program. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2020;51:1641-1658.
Collapse
Affiliation(s)
| | | | - Adam Ostendorf
- Department of Neurology Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Toshiharu Shinoka
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rajesh Krishnamurthy
- The Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
34
|
Personalized Three-Dimensional Printed Models in Congenital Heart Disease. J Clin Med 2019; 8:jcm8040522. [PMID: 30995803 PMCID: PMC6517984 DOI: 10.3390/jcm8040522] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Patient-specific three-dimensional (3D) printed models have been increasingly used in cardiology and cardiac surgery, in particular, showing great value in the domain of congenital heart disease (CHD). CHD is characterized by complex cardiac anomalies with disease variations between individuals; thus, it is difficult to obtain comprehensive spatial conceptualization of the cardiac structures based on the current imaging visualizations. 3D printed models derived from patient's cardiac imaging data overcome this limitation by creating personalized 3D heart models, which not only improve spatial visualization, but also assist preoperative planning and simulation of cardiac procedures, serve as a useful tool in medical education and training, and improve doctor-patient communication. This review article provides an overall view of the clinical applications and usefulness of 3D printed models in CHD. Current limitations and future research directions of 3D printed heart models are highlighted.
Collapse
|
35
|
Sun Z. Insights into 3D printing in medical applications. Quant Imaging Med Surg 2019; 9:1-5. [PMID: 30788241 PMCID: PMC6351810 DOI: 10.21037/qims.2019.01.03] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
36
|
Lau I, Wong YH, Yeong CH, Abdul Aziz YF, Md Sari NA, Hashim SA, Sun Z. Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models. Quant Imaging Med Surg 2019; 9:107-114. [PMID: 30788252 DOI: 10.21037/qims.2019.01.02] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current visualization techniques of complex congenital heart disease (CHD) are unable to provide comprehensive visualization of the anomalous cardiac anatomy as the medical datasets can essentially only be viewed from a flat, two-dimensional (2D) screen. Three-dimensional (3D) printing has therefore been used to replicate patient-specific hearts in 3D views based on medical imaging datasets. This technique has been shown to have a positive impact on the preoperative planning of corrective surgery, patient-doctor communication, and the learning experience of medical students. However, 3D printing is often costly, and this impedes the routine application of this technology in clinical practice. This technical note aims to investigate whether reducing 3D printing costs can have any impact on the clinical value of the 3D-printed heart models. Low-cost and a high-cost 3D-printed models based on a selected case of CHD were generated with materials of differing cost. Quantitative assessment of dimensional accuracy of the cardiac anatomy and pathology was compared between the 3D-printed models and the original cardiac computed tomography (CT) images with excellent correlation (r=0.99). Qualitative evaluation of model usefulness showed no difference between the two models in medical applications.
Collapse
Affiliation(s)
- Ivan Lau
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Yin How Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Yang Faridah Abdul Aziz
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Research Imaging Centre (UMRIC) University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Ashikin Md Sari
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Research Imaging Centre (UMRIC) University of Malaya, Kuala Lumpur, Malaysia
| | - Shahrul Amry Hashim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|