1
|
Früholz I, Meyer-Luehmann M. The intricate interplay between microglia and adult neurogenesis in Alzheimer's disease. Front Cell Neurosci 2024; 18:1456253. [PMID: 39360265 PMCID: PMC11445663 DOI: 10.3389/fncel.2024.1456253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer's disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Iris Früholz
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Shukla M, Duangrat R, Nopparat C, Sotthibundhu A, Govitrapong P. Melatonin Augments the Expression of Core Transcription Factors in Aged and Alzheimer's Patient Skin Fibroblasts. BIOLOGY 2024; 13:698. [PMID: 39336125 PMCID: PMC11428320 DOI: 10.3390/biology13090698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Altered neurogenesis and the appearance of AD pathological hallmarks are fundamental to this disease. SRY-Box transcription factor 2 (Sox2), octamer-binding transcription factor 4 (Oct4), and Nanog are a set of core transcription factors that play a very decisive role in the preservation of pluripotency and the self-renewal capacity of embryonic and adult stem cells. These factors are critically involved in AD pathogenesis, senescence, and aging. Skin fibroblasts are emblematic of cellular damage in patients. We, therefore, in the present study, analyzed the basal expression of these factors in young, aged, and AD fibroblasts. AD fibroblasts displayed an altered expression of these factors, differing from aged and young fibroblasts. Since melatonin is well acknowledged for its anti-aging, anti-senescence and anti-AD therapeutic benefits, we further investigated the effects of melatonin treatment on the expression of these factors in fibroblasts, along with precise validation of the observed data in human neuroblastoma SH-SY5Y cells. Our findings reveal that melatonin administration augmented the expression levels of Sox2, Oct4, and Nanog significantly in both cells. Altogether, our study presents the neuroprotective potential and efficacy of melatonin, which might have significant therapeutic benefits for aging and AD patients.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6, Bangkok 10210, Thailand
| | - Raphiporn Duangrat
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6, Bangkok 10210, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
| | - Areechun Sotthibundhu
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6, Bangkok 10210, Thailand
| |
Collapse
|
3
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Medoro A, Davinelli S, Milella L, Willcox BJ, Allsopp RC, Scapagnini G, Willcox DC. Dietary Astaxanthin: A Promising Antioxidant and Anti-Inflammatory Agent for Brain Aging and Adult Neurogenesis. Mar Drugs 2023; 21:643. [PMID: 38132964 PMCID: PMC10744637 DOI: 10.3390/md21120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Decreased adult neurogenesis, or the gradual depletion of neural stem cells in adult neurogenic niches, is considered a hallmark of brain aging. This review provides a comprehensive overview of the intricate relationship between aging, adult neurogenesis, and the potential neuroregenerative properties of astaxanthin, a carotenoid principally extracted from the microalga Haematococcus pluvialis. The unique chemical structure of astaxanthin enables it to cross the blood-brain barrier and easily reach the brain, where it may positively influence adult neurogenesis. Astaxanthin can affect molecular pathways involved in the homeostasis, through the activation of FOXO3-related genetic pathways, growth, and regeneration of adult brain neurons, enhancing cell proliferation and the potency of stem cells in neural progenitor cells. Furthermore, astaxanthin appears to modulate neuroinflammation by suppressing the NF-κB pathway, reducing the production of pro-inflammatory cytokines, and limiting neuroinflammation associated with aging and chronic microglial activation. By modulating these pathways, along with its potent antioxidant properties, astaxanthin may contribute to the restoration of a healthy neurogenic microenvironment, thereby preserving the activity of neurogenic niches during both normal and pathological aging.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (S.D.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (S.D.)
| | - Luigi Milella
- Department of Science, University of Basilicata, V. le Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Bradley J. Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA; (B.J.W.); (R.C.A.); (D.C.W.)
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| | - Richard C. Allsopp
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA; (B.J.W.); (R.C.A.); (D.C.W.)
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (S.D.)
| | - Donald Craig Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA; (B.J.W.); (R.C.A.); (D.C.W.)
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
- Department of Human Welfare, Okinawa International University, Ginowan 901-2211, Japan
| |
Collapse
|
7
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
8
|
Chudakova DA, Samoilova EM, Chekhonin VP, Baklaushev VP. Improving Efficiency of Direct Pro-Neural Reprogramming: Much-Needed Aid for Neuroregeneration in Spinal Cord Injury. Cells 2023; 12:2499. [PMID: 37887343 PMCID: PMC10605572 DOI: 10.3390/cells12202499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Spinal cord injury (SCI) is a medical condition affecting ~2.5-4 million people worldwide. The conventional therapy for SCI fails to restore the lost spinal cord functions; thus, novel therapies are needed. Recent breakthroughs in stem cell biology and cell reprogramming revolutionized the field. Of them, the use of neural progenitor cells (NPCs) directly reprogrammed from non-neuronal somatic cells without transitioning through a pluripotent state is a particularly attractive strategy. This allows to "scale up" NPCs in vitro and, via their transplantation to the lesion area, partially compensate for the limited regenerative plasticity of the adult spinal cord in humans. As recently demonstrated in non-human primates, implanted NPCs contribute to the functional improvement of the spinal cord after injury, and works in other animal models of SCI also confirm their therapeutic value. However, direct reprogramming still remains a challenge in many aspects; one of them is low efficiency, which prevents it from finding its place in clinics yet. In this review, we describe new insights that recent works brought to the field, such as novel targets (mitochondria, nucleoli, G-quadruplexes, and others), tools, and approaches (mechanotransduction and electrical stimulation) for direct pro-neural reprogramming, including potential ones yet to be tested.
Collapse
Affiliation(s)
- Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Ekaterina M. Samoilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
9
|
Afhami M, Behnam-Rassouli M, Gorji A, Karima S, Shahpasand K. Isolation and Culture of Neural Stem/Progenitor Cells from the Hippocampal Dentate Gyrus of Young Adult and Aged Rats. Bio Protoc 2023; 13:e4843. [PMID: 37817897 PMCID: PMC10560695 DOI: 10.21769/bioprotoc.4843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Adult neural stem/progenitor cells (NSPCs) in two neurogenic areas of the brain, the dentate gyrus and the subventricular zone, are major players in adult neurogenesis. Addressing specific questions regarding NSPCs outside of their niche entails in vitro studies through isolation and culture of these cells. As there is heterogeneity in their morphology, proliferation, and differentiation capacity between these two neurogenic areas, NSPCs should be isolated from each area through specific procedures and media. Identifying region-specific NPSCs provides an accurate pathway for assessing the effects of extrinsic factors and drugs on these cells and investigating the mechanisms of neurogenesis in both healthy and pathologic conditions. A great number of isolation and expansion techniques for NSPCs have been reported. The growth and expansion of NSPCs obtained from the dentate gyrus of aged rats are generally difficult. There are relatively limited data and protocols about NSPCs isolation and their culture from aged rats. Our approach is an efficient and reliable strategy to isolate and expand NSPCs obtained from young adult and aged rats. NSPCs isolated by this method maintain their self-renewal and multipotency. Key features • NSPCs isolated from the hippocampal dentate gyrus of young adult and aged rats, based on Kempermann et al. (2014) and Aligholi et al. (2014). • Maintenance of NSPCs isolated from the dentate gyrus of aged rats (20-24 months) in our culture condition is feasible. • According to our protocol, maximum growth of primary neurospheres obtained from isolated NSPCs of young and aged rats took 15 and 35 days, respectively.
Collapse
Affiliation(s)
- Mina Afhami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Morteza Behnam-Rassouli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
10
|
Plesa AM, Shadpour M, Boyden E, Church GM. Transcriptomic reprogramming for neuronal age reversal. Hum Genet 2023; 142:1293-1302. [PMID: 37004545 PMCID: PMC10066999 DOI: 10.1007/s00439-023-02529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 04/04/2023]
Abstract
Aging is a progressive multifaceted functional decline of a biological system. Chronic age-related conditions such as neurodegenerative diseases are leading causes of death worldwide, and they are becoming a pressing problem for our society. To address this global challenge, there is a need for novel, safe, and effective rejuvenation therapies aimed at reversing age-related phenotypes and improving human health. With gene expression being a key determinant of cell identity and function, and in light of recent studies reporting rejuvenation effects through genetic perturbations, we propose an age reversal strategy focused on reprogramming the cell transcriptome to a youthful state. To this end, we suggest using transcriptomic data from primary human cells to predict rejuvenation targets and develop high-throughput aging assays, which can be used in large perturbation screens. We propose neural cells as particularly relevant targets for rejuvenation due to substantial impact of neurodegeneration on human frailty. Of all cell types in the brain, we argue that glutamatergic neurons, neuronal stem cells, and oligodendrocytes represent the most impactful and tractable targets. Lastly, we provide experimental designs for anti-aging reprogramming screens that will likely enable the development of neuronal age reversal therapies, which hold promise for dramatically improving human health.
Collapse
Affiliation(s)
- Alexandru M. Plesa
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Michael Shadpour
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Department of Biological Engineering, MIT, Cambridge, MA USA
| | - Ed Boyden
- Department of Biological Engineering, MIT, Cambridge, MA USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| |
Collapse
|
11
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
12
|
Pantiya P, Thonusin C, Ongnok B, Chunchai T, Kongkaew A, Nawara W, Arunsak B, Chattipakorn N, Chattipakorn SC. Chronic D-Galactose Administration Induces Natural Aging Characteristics, in Rat's Brain and Heart. Toxicology 2023; 492:153553. [PMID: 37225035 DOI: 10.1016/j.tox.2023.153553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
We aimed to investigate the effect of chronic D-galactose exposure on the mimicking of natural aging processes based upon the hallmarks of aging. Seven-week-old male Wistar rats (n = 12) were randomly assigned to receive either normal saline solution as a vehicle (n = 6) or 150mg/kg/day of D-galactose subcutaneously for 28 weeks. Seventeen-month-old rats (n = 6) were also included as the chronologically aged controls. At the end of week 28 of the experiment (when the rats reach 35 weeks old and 24 months old), all rats were sacrificed for brain and heart collection. Our results showed that chronic D-galactose exposure mimicked natural aging characteristics of the brain and the heart in terms of deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, and functional impairment. All of which highlight the potential of D-galactose as a substance for inducing brain and cardiac aging in animal experiments. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
13
|
Danciu DP, Hooli J, Martin-Villalba A, Marciniak-Czochra A. Mathematics of neural stem cells: Linking data and processes. Cells Dev 2023; 174:203849. [PMID: 37179018 DOI: 10.1016/j.cdev.2023.203849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Adult stem cells are described as a discrete population of cells that stand at the top of a hierarchy of progressively differentiating cells. Through their unique ability to self-renew and differentiate, they regulate the number of end-differentiated cells that contribute to tissue physiology. The question of how discrete, continuous, or reversible the transitions through these hierarchies are and the precise parameters that determine the ultimate performance of stem cells in adulthood are the subject of intense research. In this review, we explain how mathematical modelling has improved the mechanistic understanding of stem cell dynamics in the adult brain. We also discuss how single-cell sequencing has influenced the understanding of cell states or cell types. Finally, we discuss how the combination of single-cell sequencing technologies and mathematical modelling provides a unique opportunity to answer some burning questions in the field of stem cell biology.
Collapse
Affiliation(s)
- Diana-Patricia Danciu
- Heidelberg University, Institute of Mathematics (IMA), Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Jooa Hooli
- Heidelberg University, Institute of Mathematics (IMA), Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ana Martin-Villalba
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Heidelberg University, Institute of Mathematics (IMA), Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Xiong W, Li R, Li B, Wang X, Wang H, Sun Y, Wang X, Li Y, Ren F. Nobiletin Mitigates D-Galactose-Induced Memory Impairment via Improving Hippocampal Neurogenesis in Mice. Nutrients 2023; 15:2228. [PMID: 37432372 DOI: 10.3390/nu15092228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Memory impairment is a characteristic of brain aging, and it is associated with a decrease in neurogenesis. Therefore, enhancing neurogenesis is a potential method for mitigating brain aging. Nobiletin (NOB) is a natural polymethoxylated flavonoid derived from citrus peels. It acts as an antioxidant, enhances anti-inflammation, and displays neuroprotective properties. However, the mechanism of NOB on brain aging has not been elucidated. In this study, D-galactose-induced aging mice were treated with NOB (100 mg/kg/day) for 10 weeks. NOB administration attenuated D-galactose-induced memory impairment and restored hippocampal neurogenesis, including the number of newborn neurons and neural stem cells in mice. Furthermore, it downregulated the pro-inflammatory mediators IL-1 β, IL-6, and pP65 (by 42.2%, 22.9%, and 46.4% of those in the D-galactose treated group, respectively) in the hippocampus and blocked microglia and astrocyte activation. In vitro, NOB inhibited D-galactose-induced inflammatory responses in BV2 cells, and the conditioned medium prepared from NOB- and D-galactose-co-treated BV2 cells elevated the viability (90.3% of control) and differential ability (94.9% of control) of C17.2 cells, compared to the D-galactose-treated group alone. It was concluded that NOB could restore memory impairment via the improvement of neurogenesis by ameliorating neuroinflammation in the hippocampus. Overall, NOB is a potential candidate neurogenesis enhancer for improving brain function.
Collapse
Affiliation(s)
- Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Rongzi Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Boying Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Huihui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| |
Collapse
|
15
|
Dennison R, Usuga E, Chen H, Paul JZ, Arbelaez CA, Teng YD. Direct Cell Reprogramming and Phenotypic Conversion: An Analysis of Experimental Attempts to Transform Astrocytes into Neurons in Adult Animals. Cells 2023; 12:618. [PMID: 36831283 PMCID: PMC9954435 DOI: 10.3390/cells12040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Central nervous system (CNS) repair after injury or disease remains an unresolved problem in neurobiology research and an unmet medical need. Directly reprogramming or converting astrocytes to neurons (AtN) in adult animals has been investigated as a potential strategy to facilitate brain and spinal cord recovery and advance fundamental biology. Conceptually, AtN strategies rely on forced expression or repression of lineage-specific transcription factors to make endogenous astrocytes become "induced neurons" (iNs), presumably without re-entering any pluripotent or multipotent states. The AtN-derived cells have been reported to manifest certain neuronal functions in vivo. However, this approach has raised many new questions and alternative explanations regarding the biological features of the end products (e.g., iNs versus neuron-like cells, neural functional changes, etc.), developmental biology underpinnings, and neurobiological essentials. For this paper per se, we proposed to draw an unconventional distinction between direct cell conversion and direct cell reprogramming, relative to somatic nuclear transfer, based on the experimental methods utilized to initiate the transformation process, aiming to promote a more in-depth mechanistic exploration. Moreover, we have summarized the current tactics employed for AtN induction, comparisons between the bench endeavors concerning outcome tangibility, and discussion of the issues of published AtN protocols. Lastly, the urgency to clearly define/devise the theoretical frameworks, cell biological bases, and bench specifics to experimentally validate primary data of AtN studies was highlighted.
Collapse
Affiliation(s)
- Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Harriet Chen
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Z. Paul
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
- Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
A Gelatin Methacrylate-Based Hydrogel as a Potential Bioink for 3D Bioprinting and Neuronal Differentiation. Pharmaceutics 2023; 15:pharmaceutics15020627. [PMID: 36839949 PMCID: PMC9959598 DOI: 10.3390/pharmaceutics15020627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Neuronal loss is the ultimate pathophysiologic event in central nervous system (CNS) diseases and replacing these neurons is one of the most significant challenges in regenerative medicine. Providing a suitable microenvironment for new neuron engraftment, proliferation, and synapse formation is a primary goal for 3D bioprinting. Among the various biomaterials, gelatin methacrylate (GelMA) stands out due to its Arg-Gly-Asp (RGD) domains, which assure its biocompatibility and degradation under physiological conditions. This work aimed to produce different GelMA-based bioink compositions, verify their mechanical and biological properties, and evaluate their ability to support neurogenesis. We evaluated four different GelMA-based bioink compositions; however, when it came to their biological properties, incorporating extracellular matrix components, such as GeltrexTM, was essential to ensure human neuroprogenitor cell viability. Finally, GeltrexTM: 8% GelMA (1:1) bioink efficiently maintained human neuroprogenitor cell stemness and supported neuronal differentiation. Interestingly, this bioink composition provides a suitable environment for murine astrocytes to de-differentiate into neural stem cells and give rise to MAP2-positive cells.
Collapse
|
17
|
Davinelli S, Medoro A, Ali S, Passarella D, Intrieri M, Scapagnini G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr Neuropharmacol 2023; 21:651-668. [PMID: 36321225 PMCID: PMC10207917 DOI: 10.2174/1570159x21666221031103909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 02/10/2023] Open
Abstract
Adult neurogenesis deficiency has been proposed to be a common hallmark in different age-related neurodegenerative diseases. The administration of flavonoids is currently reported as a potentially beneficial strategy for preventing brain aging alterations, including adult neurogenesis decline. Flavonoids are a class of plant-derived dietary polyphenols that have drawn attention for their neuroprotective and pro-cognitive effects. Although they undergo extensive metabolism and localize in the brain at low concentrations, flavonoids are now believed to improve cerebral vasculature and interact with signal transduction cascades involved in the regulation of adult neurogenesis. Furthermore, many dietary flavonoids have been shown to reduce oxidative stress and neuroinflammation, improving the neuronal microenvironment where adult neurogenesis occurs. The overall goal of this review is to summarize the evidence supporting the role of flavonoids in modulating adult neurogenesis as well as to highlight how these dietary agents may be promising candidates in restoring healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
18
|
Li Q, Ma Z, Qin S, Zhao WJ. Virtual Screening-Based Drug Development for the Treatment of Nervous System Diseases. Curr Neuropharmacol 2023; 21:2447-2464. [PMID: 36043797 PMCID: PMC10616913 DOI: 10.2174/1570159x20666220830105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence rate of nervous system diseases has increased in recent years. Nerve injury or neurodegenerative diseases usually cause neuronal loss and neuronal circuit damage, which seriously affect motor nerve and autonomic nervous function. Therefore, safe and effective treatment is needed. As traditional drug research becomes slower and more expensive, it is vital to enlist the help of cutting- edge technology. Virtual screening (VS) is an attractive option for the identification and development of promising new compounds with high efficiency and low cost. With the assistance of computer- aided drug design (CADD), VS is becoming more and more popular in new drug development and research. In recent years, it has become a reality to transform non-neuronal cells into functional neurons through small molecular compounds, which provides a broader application prospect than transcription factor-mediated neuronal reprogramming. This review mainly summarizes related theory and technology of VS and the drug research and development using VS technology in nervous system diseases in recent years, and focuses more on the potential application of VS technology in neuronal reprogramming, thus facilitating new drug design for both prevention and treatment of nervous system diseases.
Collapse
Affiliation(s)
- Qian Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Zhaobin Ma
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, Yunnan, P.R. China
| | - Shuhua Qin
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, Yunnan, P.R. China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
19
|
Rhodes C, Lin CH. Role of the histone methyltransferases Ezh2 and Suv4-20h1/Suv4-20h2 in neurogenesis. Neural Regen Res 2023; 18:469-473. [DOI: 10.4103/1673-5374.350188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Yamada H, Kase Y, Okano Y, Kim D, Goto M, Takahashi S, Okano H, Toda M. Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death. Inflamm Regen 2022; 42:61. [PMID: 36514181 DOI: 10.1186/s41232-022-00236-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a fatal disease, with early brain injury (EBI) occurring within 72 h of SAH injury contributes to its poor prognosis. EBI is a complicated phenomenon involving multiple mechanisms. Although neuroinflammation has been shown to be important prognosis factor of EBI, whether neuroinflammation spreads throughout the cerebrum and the extent of its depth in the cerebral cortex remain unknown. Knowing how inflammation spreads throughout the cerebrum is also important to determine if anti-inflammatory agents are a future therapeutic strategy for EBI. METHODS In this study, we induced SAH in mice by injecting hematoma into prechiasmatic cistern and created models of mild to severe SAH. In sections of the mouse cerebrum, we investigated neuroinflammation and neuronal cell death in the cortex distal to the hematoma injection site, from anterior to posterior region 24 h after SAH injury. RESULTS Neuroinflammation caused by SAH spread to all layers of the cerebral cortex from the anterior to the posterior part of the cerebrum via the invasion of activated microglia, and neuronal cell death increased in correlation with neuroinflammation. This trend increased with the severity of the disease. CONCLUSIONS Neuroinflammation caused by SAH had spread throughout the cerebrum, causing neuronal cell death. Considering that the cerebral cortex is responsible for long-term memory and movement, suppressing neuroinflammation in all layers of the cerebral cortex may improve the prognosis of patients with SAH.
Collapse
Affiliation(s)
- Hiroki Yamada
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuji Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Doyoon Kim
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Maraku Goto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
21
|
Egiazarian MA, Strømstad S, Sakshaug T, Nunez-Nescolarde AB, Bethge N, Bjørås M, Scheffler K. Age- and sex-dependent effects of DNA glycosylase Neil3 on amyloid pathology, adult neurogenesis, and memory in a mouse model of Alzheimer's disease. Free Radic Biol Med 2022; 193:685-693. [PMID: 36395955 DOI: 10.1016/j.freeradbiomed.2022.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Oxidative stress generating DNA damage has been shown to be a key characteristic in Alzheimer's disease (AD). However, how it affects the pathogenesis of AD is not yet fully understood. Neil3 is a DNA glycosylase initiating repair of oxidative DNA base lesions and with a distinct expression pattern in proliferating cells. In brain, its function has been linked to hippocampal-dependent memory and to induction of neurogenesis after stroke and in prion disease. Here, we generated a novel AD mouse model deficient for Neil3 to study the impact of impaired oxidative base lesion repair on the pathogenesis of AD. Our results demonstrate an age-dependent decrease in amyloid-β (Aβ) plaque deposition in female Neil3-deficient AD mice, whereas no significant difference was observed in male mice. Furthermore, male but not female Neil3-deficient AD mice show reduced neural stem cell proliferation in the adult hippocampus and impaired working memory compared to controls. These effects seem to be independent of DNA repair as both sexes show increased level of oxidative base lesions in the hippocampus upon loss of Neil3. Thus, our findings suggest an age- and sex-dependent role of Neil3 in the progression of AD by altering cerebral Aβ accumulation and promoting adult hippocampal neurogenesis to maintain cognitive function.
Collapse
Affiliation(s)
- Milena A Egiazarian
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Silje Strømstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Teri Sakshaug
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ana B Nunez-Nescolarde
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicole Bethge
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital Trondheim, Trondheim, Norway.
| |
Collapse
|
22
|
Badner A, Cummings BJ. The endogenous progenitor response following traumatic brain injury: a target for cell therapy paradigms. Neural Regen Res 2022; 17:2351-2354. [PMID: 35535870 PMCID: PMC9120693 DOI: 10.4103/1673-5374.335833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Although there is ample evidence that central nervous system progenitor pools respond to traumatic brain injury, the reported effects are variable and likely contribute to both recovery as well as pathophysiology. Through a better understanding of the diverse progenitor populations in the adult brain and their niche-specific reactions to traumatic insult, treatments can be tailored to enhance the benefits and dampen the deleterious effects of this response. This review provides an overview of endogenous precursors, the associated effects on cognitive recovery, and the potential of exogenous cell therapeutics to modulate these endogenous repair mechanisms. Beyond the hippocampal dentate gyrus and subventricular zone of the lateral ventricles, more recently identified sites of adult neurogenesis, the meninges, as well as circumventricular organs, are also discussed as targets for endogenous repair. Importantly, this review highlights that progenitor proliferation alone is no longer a meaningful outcome and studies must strive to better characterize precursor spatial localization, transcriptional profile, morphology, and functional synaptic integration. With improved insight and a more targeted approach, the stimulation of endogenous neurogenesis remains a promising strategy for recovery following traumatic brain injury.
Collapse
Affiliation(s)
- Anna Badner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Brian J. Cummings
- Sue and Bill Gross Stem Cell Center, University of California-Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, USA
- Physical Medicine and Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
23
|
Shabani Z, Soltani Zangbar H, Nasrolahi A. Cerebral dopamine neurotrophic factor increases proliferation, Migration and differentiation of subventricular zone neuroblasts in photothrombotic stroke model of mouse. J Stroke Cerebrovasc Dis 2022; 31:106725. [PMID: 36116218 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Cerebral ischemic stroke can induce the proliferation of subventricular zone (SVZ) neural stem cells (NSCs) in the adult brain. However, this reparative process is restricted because of NSCs' death shortly after injury or disability of them to reach the infarct boundary. In the present study, we investigated the ability of cerebral dopamine neurotrophic factor (CDNF) on the attraction of SVZ-resident NSCs toward the lesioned area and neurological recovery in a photothrombotic (PT) stroke model of mice METHODS: The mice were assigned to three groups stroke, stroke+phosphate buffered saline (PBS), and stroke+CDNF. Migration of SVZ NSCs were evaluated by BrdU/doublecortin (DCX) double immunofluorescence method on days 7 and 14 and their differentiation were evaluated by BrdU/ Neuronal Nuclei (NeuN) double immunofluorescence method 28 days after intra-SVZ CDNF injection. Serial coronal sections were stained with cresyl violet to detect the infarct volume and a modified neurological severity score (mNSS) was performed to assess the neurological performance RESULTS: Injection of CDNF increased the proliferation of SVZ NSCs and the number of DCX-expressing neuroblasts migrated from the SVZ toward the ischemic site. It also enhanced the differentiation of migrated neuroblasts into the mature neurons in the lesioned site. Along with this, the infarct volume was significantly decreased and the neurological performance was improved as compared to other groups CONCLUSION: These results demonstrate that CDNF is capable of enhancing the proliferation of NSCs residing in the SVZ and their migration toward the ischemia region and finally, differentiation of them in stroke mice, concomitantly decreased infarct volume and improved neurological abilities were revealed.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA; Infectious Ophthalmologic Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Sukhorukov V, Magnaeva A, Baranich T, Gofman A, Voronkov D, Gulevskaya T, Glinkina V, Illarioshkin S. Brain Neurons during Physiological Aging: Morphological Features, Autophagic and Mitochondrial Contribution. Int J Mol Sci 2022; 23:ijms231810695. [PMID: 36142604 PMCID: PMC9501539 DOI: 10.3390/ijms231810695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating data suggest that the brain undergoes various changes during aging. Among them are loss of both white and gray matter, neurons and synapses degeneration, as well as oxidative, inflammatory, and biochemical changes. The above-mentioned age-related features are closely related to autophagy and mitochondria. Therefore, we aimed to reveal the most peculiar morphological features of brain nervous tissue and to characterize the expression of autophagy and mitochondrial immunohistochemical biomarkers in neurons of different human brain zones during aging. Counting the number of neurons as well as Microtubule-associated proteins 1A/1B light chain 3B (LC3B), Heat shock protein 70 (HSP70), Lysosome-associated membrane protein type 2A (LAMP2A), Alpha subunit of ATP synthase (ATP5A), and Parkinson disease protein 7 (DJ1) immunohistochemical staining were performed on FFPE samples of human prefrontal cortex, corpus striatum, and hippocampus obtained from autopsy. Statistical analysis revealed a loss of neurons in the studied elderly group in comparison to the young group. When the expression of macroautophagy (LC3B), chaperon-mediated autophagy (HSP70, LAMP2A), and mitochondrial respiratory chain complex V (ATP5A) markers for the young and elderly groups were compared, the latter was found to have a significantly higher rate of optical density, whilst there was no significance in DJ1 expression. These findings, while preliminary, suggest that both autophagy and mitochondria are involved in neuronal maintenance during aging and could indicate their potential role in adaptive mechanisms that occur in aging.
Collapse
Affiliation(s)
- Vladimir Sukhorukov
- Department for Brain Research, Research Center of Neurology, 125367 Moscow, Russia
| | - Alina Magnaeva
- Department for Brain Research, Research Center of Neurology, 125367 Moscow, Russia
- Correspondence:
| | - Tatiana Baranich
- Department for Brain Research, Research Center of Neurology, 125367 Moscow, Russia
- Department for Histology, Embryology, and Cytology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anna Gofman
- International Medical Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry Voronkov
- Department for Brain Research, Research Center of Neurology, 125367 Moscow, Russia
| | - Tatiana Gulevskaya
- Department for Brain Research, Research Center of Neurology, 125367 Moscow, Russia
| | - Valeria Glinkina
- Department for Histology, Embryology, and Cytology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Sergey Illarioshkin
- Department for Brain Research, Research Center of Neurology, 125367 Moscow, Russia
| |
Collapse
|
25
|
Loureiro-Campos E, Mateus-Pinheiro A, Patrício P, Soares-Cunha C, Silva J, Sardinha VM, Mendes-Pinheiro B, Silveira-Rosa T, Domingues AV, Rodrigues AJ, Oliveira J, Sousa N, Alves ND, Pinto L. Constitutive deficiency of the neurogenic hippocampal modulator AP2γ promotes anxiety-like behavior and cumulative memory deficits in mice from juvenile to adult periods. eLife 2021; 10:70685. [PMID: 34859784 PMCID: PMC8709574 DOI: 10.7554/elife.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.
Collapse
Affiliation(s)
- Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
26
|
Therapeutically viable generation of neurons with antisense oligonucleotide suppression of PTB. Nat Neurosci 2021; 24:1089-1099. [PMID: 34083786 PMCID: PMC8338913 DOI: 10.1038/s41593-021-00864-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid. Radial glial-like cells and other GFAP-expressing cells convert into new neurons that, over a 2-month period, acquire mature neuronal character in a process mimicking normal neuronal maturation. The new neurons functionally integrate into endogenous circuits and modify mouse behavior. Thus, generation of new neurons in the dentate gyrus of the aging brain can be achieved with a therapeutically feasible approach, thereby opening prospects for production of neurons to replace those lost to neurodegenerative disease.
Collapse
|
27
|
Rojas-Vázquez S, Blasco-Chamarro L, López-Fabuel I, Martínez-Máñez R, Fariñas I. Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Front Neurosci 2021; 15:666881. [PMID: 33958987 PMCID: PMC8093510 DOI: 10.3389/fnins.2021.666881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-mediated signals derived from vascular elements. Furthermore, studies of parabiosis indicate that NSCs are also exposed to blood-borne factors, sensing and responding to the systemic circulation. Both structural and functional alterations occur in vasculature with age at the cellular level that can affect the proper extrinsic regulation of NSCs. Additionally, blood exchange experiments in heterochronic parabionts have revealed that age-associated changes in blood composition also contribute to adult neurogenesis impairment in the elderly. Although the mechanisms of vascular- or blood-derived signaling in aging are still not fully understood, a general feature of organismal aging is the accumulation of senescent cells, which act as sources of inflammatory and other detrimental signals that can negatively impact on neighboring cells. This review focuses on the interactions between vascular senescence, circulating pro-senescence factors and the decrease in NSC potential during aging. Understanding the mechanisms of NSC dynamics in the aging brain could lead to new therapeutic approaches, potentially include senolysis, to target age-dependent brain decline.
Collapse
Affiliation(s)
- Sara Rojas-Vázquez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
| | - Laura Blasco-Chamarro
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene López-Fabuel
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|