1
|
Wang Y, Chang J, Hu P, Deng C, Luo Z, Zhao J, Zhang Z, Yi W, Zhu G, Zheng G, Wang S, He K, Liu J, Liu H. Key factors in epidemiological exposure and insights for environmental management: Evidence from meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124991. [PMID: 39303936 PMCID: PMC7616677 DOI: 10.1016/j.envpol.2024.124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the precision of exposure assessment methods has been rapidly improved and more widely adopted in epidemiological studies. However, such methodological advancement has introduced additional heterogeneity among studies. The precision of exposure assessment has become a potential confounding factors in meta-analyses, whose impacts on effect calculation remain unclear. To explore, we conducted a meta-analysis to integrate the long- and short-term exposure effects of PM2.5, NO2, and O3 on all-cause, cardiovascular, and respiratory mortality in the Chinese population. Literature was identified through Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure before August 28, 2023. Sub-group analyses were performed to quantify the impact of exposure assessment precisions and pollution levels on the estimated risk. Studies achieving merely city-level resolution and population exposure are classified as using traditional assessment methods, while those achieving sub-kilometer simulations and individual exposure are considered finer assessment methods. Using finer assessment methods, the RR (under 10 μg/m3 increment, with 95% confidence intervals) for long-term NO2 exposure to all-cause mortality was 1.13 (1.05-1.23), significantly higher (p-value = 0.01) than the traditional assessment result of 1.02 (1.00-1.03). Similar trends were observed for long-term PM2.5 and short-term NO2 exposure. A decrease in short-term PM2.5 levels led to an increase in the RR for all-cause and cardiovascular mortality, from 1.0035 (1.0016-1.0053) and 1.0051 (1.0021-1.0081) to 1.0055 (1.0035-1.0075) and 1.0086 (1.0061-1.0111), with weak between-group significance (p-value = 0.13 and 0.09), respectively. Based on the quantitative analysis and literature information, we summarized four key factors influencing exposure assessment precision under a conceptualized framework: pollution simulation resolution, subject granularity, micro-environment classification, and pollution levels. Our meta-analysis highlighted the urgency to improve pollution simulation resolution, and we provide insights for researchers, policy-makers and the public. By integrating the most up-to-date epidemiological research, our study has the potential to provide systematic evidence and motivation for environmental management.
Collapse
Affiliation(s)
- Yongyue Wang
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Chang
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100084, China; Centre for Clinical and Epidemiologic Research, Beijing an Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Piaopiao Hu
- Centre for Clinical and Epidemiologic Research, Beijing an Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chun Deng
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenyu Luo
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Junchao Zhao
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhining Zhang
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wen Yi
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guanlin Zhu
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guangjie Zheng
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuxiao Wang
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kebin He
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jing Liu
- Centre for Clinical and Epidemiologic Research, Beijing an Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Huan Liu
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Zhou X, Fang Z, Lv Y, Li C, Xu S, Cheng K, Ren Y, Lv N, Gao B, Xu H. Combined health effects of air pollutant mixtures on respiratory mortality using BKMR in Hangzhou, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024:1-11. [PMID: 39348213 DOI: 10.1080/10962247.2024.2411033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Previous research on respiratory system mortality primarily focused on understanding their combined effects and have neglected the fact that air pollution mixtures are interrelated. This study used Bayesian kernel machine regression (BKMR) to analyze the relationship between air pollutant mixtures and respiratory mortality in Hangzhou, China from 2014 to 2018. The results showed a significant association between pollutant mixtures and respiratory system mortality primarily driven by PM2.5 and SO2. The joint exposure of air pollutants was positively correlated with respiratory system mortality at lag 01 and lag 02 days. The estimated joint effects of log-transformed mixture air pollution exposure on log-transformed respiratory system mortality increased from -0.02 (95% CI: -0.08-0.02) and -0.01 (95% CI: -0.05-0.04) at the 25th percentile to 0.06 (95% CI: 0.01-0.12) and 0.04 (95% CI: -0.001, 0.09) at the 75th percentile. Additionally, there was evidence of an interaction between O3 and PM10. This study confirms that exposure to multiple pollutants is a significant public health problem facing the Hangzhou population given the compounded effect proven with regression analysis, while furthermore, the control of PM2.5 and SO2 also represents a serious concern.Implications: Evidence indicates interactions between O3 and PM10. This study demonstrates that exposure to multiple pollutants exerts combined effects on the public health of the Hangzhou population, highlighting the importance of controlling PM2.5 and SO2.
Collapse
Affiliation(s)
- Xiaocong Zhou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zisi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ye Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Chaokang Li
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Shanshan Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Keyi Cheng
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Yanjun Ren
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Na Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Bing Gao
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Hong Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Liu T, Liu Y, Su Y, Hao J, Liu S. Air pollution and upper respiratory diseases: an examination among medically insured populations in Wuhan, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1123-1132. [PMID: 38507092 DOI: 10.1007/s00484-024-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Multiple evidence has supported that air pollution exposure has detrimental effects on the cardiovascular and respiratory systems. However, most investigations focus on the general population, with limited research conducted on medically insured populations. To address this gap, the current research was designed to examine the acute effects of inhalable particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ground-level ozone (O3), and sulfur dioxide (SO2) on the incidence of upper respiratory tract infections (URTI), utilizing medical insurance data in Wuhan, China. Data on URTI were collected from the China Medical Insurance Basic Database for Wuhan covering the period from 2014 to 2018, while air pollutant data was gathered from ten national monitoring stations situated in Wuhan city. Statistical analysis was performed using generalized additive models for quasi-Poisson distribution with a log link function. The analysis indicated that except for ozone, higher exposure to four other pollutants (NO2, SO2, PM2.5, and PM10) were significantly linked to an elevated risk of URTI, particularly during the previous 0-3 days and previous 0-4 days. Additionally, NO2 and SO2 were found to be positively linked with laryngitis. Furthermore, the effects of air pollutants on the risk of URTI were more pronounced during cold seasons than hot seasons. Notably, females and the employed population were more susceptible to infection than males and non-employed individuals. Our findings gave solid proof of the link between ambient air pollution exposure and the risk of URTI in medically insured populations.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuehua Liu
- Vanke School of Public Health, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, China
| | - Yaqian Su
- School of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Jiayuan Hao
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Suyang Liu
- School of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
4
|
Psistaki K, Achilleos S, Middleton N, Paschalidou AK. Exploring the impact of particulate matter on mortality in coastal Mediterranean environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161147. [PMID: 36587685 DOI: 10.1016/j.scitotenv.2022.161147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Air pollution is one of the most important problems the world is facing nowadays, adversely affecting public health and causing millions of deaths every year. Particulate matter is a criteria pollutant that has been linked to increased morbidity, as well as all-cause and cause-specific mortality. However, this association remains under-investigated in smaller-size cities in the Eastern Mediterranean, which are also frequently affected by heat waves and dust storms. This study explores the impact of particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) on mortality (all-cause, cardiovascular, respiratory) in two coastal cities in the Eastern Mediterranean; Thessaloniki, Greece and Limassol, Cyprus. Generalized additive Poisson models were used to explore overall and gender-specific associations, controlling for long- and short-term patterns, day of week and the effect of weather variables. Moreover, the effect of different lags, season, co-pollutants and dust storms on primary associations was investigated. A 10 μg/m3 increase in PM2.5 resulted in 1.10 % (95 % CI: -0.13, 2.34) increase in cardiovascular mortality in Thessaloniki, and in 3.07 % (95 % CI: -0.90, 7.20) increase in all-cause mortality in Limassol on the same day. Additionally, significant positive associations were observed between PM2.5 as well as PM10 and mortality at different lags up to seven days. Interestingly, an association with dust storms was observed only in Thessaloniki, having a protective effect, while the gender-specific analysis revealed significant associations only for the males in both cities. The outcome of this study highlights the need of city- or county-specific public health interventions to address the impact of climate, population lifestyle behaviour and other socioeconomic factors that affect the exposure to air pollution and other synergistic effects that alter the effect of PM on population health.
Collapse
Affiliation(s)
- K Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada 68200, Greece
| | - S Achilleos
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
| | - N Middleton
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - A K Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada 68200, Greece.
| |
Collapse
|
5
|
Ji Y, Su X, Zhang F, Huang Z, Zhang X, Chen Y, Song Z, Li L. Impacts of short-term air pollution exposure on appendicitis admissions: Evidence from one of the most polluted cities in mainland China. Front Public Health 2023; 11:1144310. [PMID: 37006531 PMCID: PMC10061118 DOI: 10.3389/fpubh.2023.1144310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundEmerging evidence indicates that air pollutants contribute to the development and progression of gastrointestinal diseases. However, there is scarce evidence of an association with appendicitis in mainland China.MethodsIn this study, Linfen city, one of the most polluted cities in mainland China, was selected as the study site to explore whether air pollutants could affect appendicitis admissions and to identify susceptible populations. Daily data on appendicitis admissions and three principal air pollutants, including inhalable particulate matter (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were collected in Linfen, China. The impacts of air pollutants on appendicitis were studied by using a generalized additive model (GAM) combined with the quasi-Poisson function. Stratified analyses were also performed by sex, age, and season.ResultsWe observed a positive association between air pollution and appendicitis admissions. For a 10 μg/m3 increase in pollutants at lag01, the corresponding relative risks (RRs) and 95% confidence intervals (95% CIs) were 1.0179 (1.0129–1.0230) for PM10, 1.0236 (1.0184–1.0288) for SO2, and 1.0979 (1.0704–1.1262) for NO2. Males and people aged 21–39 years were more susceptible to air pollutants. Regarding seasons, the effects seemed to be stronger during the cold season, but there was no statistically significant difference between the seasonal groups.ConclusionsOur findings indicated that short-term air pollution exposure was significantly correlated with appendicitis admissions, and active air pollution interventions should be implemented to reduce appendicitis hospitalizations, especially for males and people aged 21–39 years.
Collapse
Affiliation(s)
- Yanhu Ji
- School of Public Health, Shantou University, Shantou, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | | | - Fengying Zhang
- China National Environmental Monitoring Center, Beijing, China
| | - Zepeng Huang
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaowei Zhang
- School of Public Health, Shantou University, Shantou, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | - Yueliang Chen
- School of Public Health, Shantou University, Shantou, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | - Ziyi Song
- School of Public Health, Shantou University, Shantou, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | - Liping Li
- School of Public Health, Shantou University, Shantou, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
- *Correspondence: Liping Li
| |
Collapse
|
6
|
Song R, Liu L, Wei N, Li X, Liu J, Yuan J, Yan S, Sun X, Mei L, Liang Y, Li Y, Jin X, Wu Y, Pan R, Yi W, Song J, He Y, Tang C, Liu X, Cheng J, Su H. Short-term exposure to air pollution is an emerging but neglected risk factor for schizophrenia: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158823. [PMID: 36116638 DOI: 10.1016/j.scitotenv.2022.158823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This meta-analysis aimed to explore the association between short-term exposure to air pollution and schizophrenia (SCZ)1, and investigate the susceptible population and the lag characteristics of different pollutants. METHODS A systematic review and meta-analysis was conducted by searching PubMed, Cochrane, Web of Sciences, and CNKI for relevant literature published up to 28 Feb 2022. Meta-analysis was performed separately to investigate the association of ambient particulates (diameter ≤ 2.5 μm (PM2.5)2, 2.5 μm < diameter < 10 μm (PMC)3, ≤10μm (PM10)4) and gaseous pollutants (nitrogen dioxide (NO2)5, sulfur dioxide (SO2)6, carbon monoxide (CO)7) with SCZ. Relative risk (RR)8 per 10 μg/m3 increase in air pollutants concentration was used as the effect estimate. Subgroup analyses were conducted by age, gender, country, median pollutant concentration, and median temperature. RESULTS We identified 17 articles mainly conducted in Asia, of which 13 were included in the meta-analysis. Increased risk of SCZ was associated with short-term exposure to PM2.5 (RR: 1.0050, 95 % confidence interval (CI)9: 1.0017, 1.0083), PMC (1.0117, 1.0023, 1.0211), PM10 (1.0047, 1.0025, 1.0070), NO2 (1.0275, 1.0132, 1.0420), and SO2 (1.0288, 1.0146, 1.0432) exposure. Subgroup analyses showed that females may be more susceptible to SO2 and NO2, and the young seem to be more sensitive to PM2.5 and PM10. Gaseous pollutants presented the immediate risk, and particulates showed the delayed risk. CONCLUSIONS The present meta-analysis suggests that short-term exposure to PM2.5, PMC, PM10, SO2, and NO2 exposure may be associated with an elevated risk of SCZ.
Collapse
Affiliation(s)
- Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Jiang G, Ji Y, Chen C, Wang X, Ye T, Ling Y, Wang H. Effects of extreme precipitation on hospital visit risk and disease burden of depression in Suzhou, China. BMC Public Health 2022; 22:1710. [PMID: 36085022 PMCID: PMC9463798 DOI: 10.1186/s12889-022-14085-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
Background The purpose of this study was to explore the impact of extreme precipitation on the risk of outpatient visits for depression and to further explore its associated disease burden and vulnerable population. Methods A quasi-Poisson generalized linear regression model combined with distributed lag non-linear model (DLNM) was used to investigate the exposure-lag-response relationship between extreme precipitation (≥95th percentile) and depression outpatient visits from 2017 to 2019 in Suzhou city, Anhui Province, China. Results Extreme precipitation was positively associated with the outpatient visits for depression. The effects of extreme precipitation on depression firstly appeared at lag4 [relative risk (RR): 1.047, 95% confidence interval (CI): 1.005–1.091] and lasted until lag7 (RR = 1.047, 95% CI: 1.009–1.087). Females, patients aged ≥65 years and patients with multiple outpatient visits appeared to be more sensitive to extreme precipitation. The attributable fraction (AF) and numbers (AN) of extreme precipitation on outpatient visits for depression were 5.00% (95% CI: 1.02–8.82%) and 1318.25, respectively. Conclusions Our findings suggested that extreme precipitation may increase the risk of outpatient visits for depression. Further studies on the burden of depression found that females, aged ≥65 years, and patients with multiple visits were priority targets for future warnings. Active intervention measures against extreme precipitation events should be taken to reduce the risk of depression outpatient visits. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-14085-w.
Collapse
|
8
|
Liu Y, Jiang Y, Wu M, Muheyat S, Yao D, Jin X. Short-term effects of ambient air pollution on daily emergency room visits for abdominal pain: a time-series study in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40643-40653. [PMID: 35084676 DOI: 10.1007/s11356-021-18200-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Short-term exposure to ambient air pollution has been proven to result in respiratory, cardiovascular, and digestive diseases, leading to increased emergency room visits (ERVs). Abdominal pain complaints provide a large proportion of the ERVs, as yet few studies have focused on the correlations between ambient air pollution and abdominal pain, especially in emergency departments within China. Daily data for daily ERVs were collected in Wuhan, China (from January 1, 2016 to December 31, 2018), including air pollution concentration (SO2, NO2, PM2.5, PM10, CO, and O3), and meteorological variables. We conducted a time-series study to investigate the potential correlation between six ambient air pollutants and ERVs for abdominal pain and their effects, in different genders, ages, and seasons. A total of 16,318 abdominal pain ERVs were identified during the study period. A 10-μg/m3 increase in concentration of SO2, NO2, PM2.5, PM10, CO, and O3 corresponded respectively to incremental increases in abdominal pain of 4.89% (95% confidence interval [CI]: - 1.50-11.70), 1.85% (95% CI: - 0.29-4.03), 0.83% (95% CI: - 0.05-1.72), - 0.22% (95% CI: - 0.73-0.30), 0.24% (95% CI: 0.08-0.40), and 0.86% (95% CI: 0.04 - 1.69). We observed significant correlations between CO and O3 and increases in daily abdominal pain ERVs and positive but insignificant correlations between the other pollutants and ERVs (except PM10). The effects were stronger for females (especially SO2 and O3: 13.53% vs. - 2.46%; 1.20% vs. 0.47%, respectively) and younger people (especially CO and O3: 0.25% vs. 0.01%; 1.36% vs. 0.15%, respectively). Males (1.38% vs. 0.87%) and elders (1.27% vs. 0.99%) were more likely to be affected by PM2.5. The correlations with PM2.5 were stronger in cool seasons (1.25% vs. - 0.07%) while the correlation with CO was stronger in warm seasons (0.47% vs. 0.14%). Our time-series study suggests that short-term exposure to air pollution (especially CO and O3) was positively correlated with ERVs for abdominal pain in Wuhan, China, and that the effects varied by season, gender and age. These data can add evidence on how air pollutants affect the human body and may prompt hospitals to take specific precautions on polluted days and maintain order in emergency departments made busier due to the pollution.
Collapse
Affiliation(s)
- Yaqi Liu
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yi Jiang
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Manyi Wu
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Sunghar Muheyat
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dongai Yao
- Physical Examination Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoqing Jin
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Ji Y, Liu B, Song J, Pan R, Cheng J, Wang H, Su H. Short-term effects and economic burden assessment of ambient air pollution on hospitalizations for schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45449-45460. [PMID: 35149942 DOI: 10.1007/s11356-022-19026-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The evidence on the health and economic impacts of air pollution with schizophrenia is scarce, especially in developing countries. In this study, we aimed to systemically examine the short-term effects of PM2.5 (particulate matter ≤ 2.5 μm in diameter), PM10 (≤ 10 μm in diameter), NO2 (nitrogen dioxide), SO2 (sulfur dioxide), CO (carbon monoxide), and O3 (ozone) on hospital admissions for schizophrenia in a Chinese coastal city (Qingdao) and to further assess the corresponding attributable risk and economic burden. A generalized additive model (GAM) was applied to model the impact of air pollution on schizophrenia, and the corresponding economic burden including the direct costs (medical expenses) and indirect costs (productivity loss). Stratified analyses were also performed by age, gender, and season (warm or cold). Our results showed that for a 10 μg/m3 increase in the concentrations of PM2.5, PM10, SO2, and CO at lag5, the corresponding relative risks (RRs) were 1.0160 (95% CI: 1.0038-1.0282), 1.0097 (1.0018-1.0177), 1.0738 (1.0222-1.01280), and 1.0013 (1.0001-1.0026), respectively. However, no significant effect of NO2 or O3 on schizophrenia admissions was found. The stratified analysis indicated that females and younger individuals (< 45 years old) appeared to be more vulnerable, but no significant difference was found between seasons. Furthermore, 12.41% of schizophrenia hospitalizations were attributable to exposure to air pollution exceeding the World Health Organization (WHO) air quality standard, with a total economic burden of 89.67 million RMB during the study period. At the individual level, excessive air pollution exposure resulted in an economic burden of 8232.08 RMB per hospitalization. Our study found that short-term exposure to air pollutants increased the risk of hospital admissions for schizophrenia and resulted in a substantial economic burden. Considerable health benefits can be achieved by further reducing air pollution.
Collapse
Affiliation(s)
- Yanhu Ji
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Bin Liu
- Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Heng Wang
- Department of Hospital Management, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
10
|
Ji Y, Liu B, Song J, Cheng J, Wang H, Su H. Association between traffic-related air pollution and anxiety hospitalizations in a coastal Chinese city: are there potentially susceptible groups? ENVIRONMENTAL RESEARCH 2022; 209:112832. [PMID: 35104480 DOI: 10.1016/j.envres.2022.112832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Motor vehicle exhaust emissions have become the main source of urban air pollution in China, but few studies have explored the association of short-term exposure to traffic-related air pollutants (TRAPs) with anxiety disorders. Thus, we used an overdispersed, generalized additive model (GAM) to investigate the association between TRAPs and hospital admissions (HAs) for anxiety in Qingdao, a coastal Chinese city with high vehicle ownership. In addition, stratified analyses were performed by gender, age, season and hospitalization frequency (first admission and readmission). A positive association between TRAPs and HAs for anxiety was observed. Both inhalable particulate matter (PM10) and nitrogen dioxide (NO2) showed significant effects at lag 3 in the single-day lag structure, and each 10 μg/m3 increase in the concentrations was significantly associated with increases of 0.88% [95% confidence interval (CI): 0.04%, 1.72%] for PM10 and 2.74% (0.45%, 5.08%) for NO2 on anxiety hospitalizations. For fine particulate matter (PM2.5) and carbon monoxide (CO), the strongest effects were found at lag05 and lag04 [2.67% (0.77%, 4.62%) and 0.19% (0.04%, 0.34%), respectively] in the multiday lag structure. The estimates of PM2.5 were relatively robust after adjusting for other pollutants in the two-pollutant model. Stratified analyses indicated that the associations were stronger in females and younger individuals (<45 in age) than in males and elderly individuals (≥45 in age). Furthermore, the effects of PM2.5 and CO were most obvious during the cold season. Regarding hospitalization frequency, only PM2.5 was found to have a significant effect in the first-admission group. The results showed that short-term exposure to TRAPs, especially to PM2.5, was significantly associated with the increased risk of daily HAs for anxiety, which can help clinicians and policymakers better understand the effects of TRAPs to implement targeted interventions.
Collapse
Affiliation(s)
- Yanhu Ji
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Bin Liu
- Qingdao Mental Health Center, Qingdao, Shandong Province, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Heng Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Ji Y, Liu B, Song J, Pan R, Cheng J, Su H, Wang H. Particulate matter pollution associated with schizophrenia hospital re-admissions: a time-series study in a coastal Chinese city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58355-58363. [PMID: 34115296 DOI: 10.1007/s11356-021-14816-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Schizophrenia (SCZ) hospital re-admissions constitute a serious disease burden worldwide. Some studies have reported an association between air pollutants and hospital admissions for SCZ. However, evidence is scarce regarding the effects of ambient particulate matter (PM) on SCZ hospital re-admissions, especially in coastal cities in China. The purpose of this study was to examine whether PM affects the risk of SCZ hospital re-admission in the coastal Chinese city of Qingdao. Daily SCZ hospital re-admissions, daily air pollutants, and meteorological factors from 2015 to 2019 were collected. A quasi-Poisson generalized linear regression model combined with distributed lag non-linear model (DLNM) was applied to model the exposure-lag-response relationship between PM and SCZ hospital re-admissions. The relative risks (RRs) were estimated for an inter-quartile range (IQR) increase in PM concentrations. Subgroup analyses by age and gender were conducted to identify the vulnerable subgroups. There were 6220 SCZ hospital re-admissions during 2015-2019. The results revealed that PM, including PM10 (particles with an aerodynamic diameter ≤10 μm), PMc (particles >2.5 μm but <10 μm), and PM2.5 (particles ≤2.5 μm), was positively correlated with SCZ hospital re-admissions. The strongest single-day effects all occurred on lag3 day, and the corresponding RRs were 1.07 (95% CI: 1.02-1.11) for PM10, 1.03 (95% CI: 1.00-1.07) for PMc, and 1.05 (95% CI: 1.01-1.09) for PM2.5 per IQR increase. Stronger associations were observed in males and younger individuals (<45 years). Our findings suggest that PM exposure is associated with increased risk of SCZ hospital re-admission. Active intervention measures against PM exposure should be taken to reduce the risk of SCZ hospital re-admission, especially for males and younger individuals.
Collapse
Affiliation(s)
- Yanhu Ji
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Bin Liu
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Heng Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
| |
Collapse
|
12
|
Al-Shidi HK, Ambusaidi AK, Sulaiman H. Public awareness, perceptions and attitudes on air pollution and its health effects in Muscat, Oman. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:1159-1174. [PMID: 33989134 DOI: 10.1080/10962247.2021.1930287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/04/2021] [Accepted: 05/08/2021] [Indexed: 05/23/2023]
Abstract
A survey was conducted in Muscat/Oman between February and May of 2020, with a total of 1289 respondents to investigate public knowledge, behavior, and attitudes about the air pollution via online questionnaire. We considered the disparity among gender, age and education level in four main aspects, viz. sources of access to information, knowledge and risk perception about air pollution and willingness to change and act for mitigation. Social media was a primary source of access to information regarding air pollution in Muscat. Further, the majority of the respondents were aware of the meaning of air pollution and interested in the issue of air quality, while females have a higher level of air pollution awareness than males. Over 94% of respondents were disturbed by air pollution from vehicles and other sources. Males and older participants have significantly higher level of interest about air quality information. The majority pay attention to air quality when they move outdoors but females are more susceptible than males to the effects of air pollution. Majority recognized the air pollution is always dangerous to their health, yet participants with higher education level have a higher risk perception of air pollution. Breathing contaminated air was the most common pathway of exposure to the toxic air pollutants reported by participants. Over 90% of participants care about air quality when they are performing outdoor sports activities. Most of the participants reported that they did not use public transportation to move within Muscat Governorate, their major transportation mode being private vehicle. Meanwhile, females, older participants (over 35) and postgraduate holders significantly expressed their willingness to reduce the duration of driving vehicles.Implications: This work is the first study in the country that try to investigate perception, attitude and behavior of the public about air pollution in Muscat, the capital of Oman. Use of private vehicles is a popular mode of transportation in the city and is the major contributor to the air quality issues. Any future directions by the government toward sustainable transportation need a better understanding of people's perception on the issue. The results show that most of the respondents were aware of air quality and related issues and they also expressed willingness to change their behavior to reduce air pollution.
Collapse
Affiliation(s)
- Hilal K Al-Shidi
- Department of Biology, Sultan Qaboos University, Al-Khoud, Muscat, Oman
| | | | - Hameed Sulaiman
- Department of Biology, Sultan Qaboos University, Al-Khoud, Muscat, Oman
| |
Collapse
|
13
|
Deng J, Hu X, Xiao C, Pan F. The association between gaseous pollutants and non-accidental mortality: a time series study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2887-2897. [PMID: 33411120 DOI: 10.1007/s10653-020-00800-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/15/2020] [Indexed: 05/22/2023]
Abstract
To evaluate the effects of gaseous pollutants (SO2, NO2) on non-accidental mortality of residents in Hefei city, we collected non-accidental deaths, air pollutants and meteorological data of Hefei city from 2014 to 2017. After controlling confounding factors with Poisson generalized additive model, we analyzed the relationship between air pollutants and non-accidental mortality and used subgroup analysis to identify susceptible groups. The number of non-accidental deaths during the study period was 42,116, with an average of 28.83 per day. The average concentrations of SO2 and NO2 were 16.08 μg/m3 and 39.10 μg/m3, respectively. In the single-pollutant model, every 10 μg/m3 increase in SO2 and NO2 concentrations was significantly associated with non-accidental mortality, and there was a significant lag effect. SO2 increased the risk of non-accidental death by 4.93% (95% CI: 1.94% ~ 8.00%) at lag0-3. In addition, male, the elderly, non-elderly and low-education people were more susceptible (P < 0.05). NO2 increased the risk of non-accidental death by 2.11% (95% CI: 1.18% ~ 3.05%) at lag0-1 and had an effect on all subgroups (P < 0.05). For every 10 μg/m3 increase in SO2 and NO2, the two-pollutant model showed that the risk of non-accidental death, respectively, increased by 3.34% (95% CI: 0.29% ~ 6.50%) and 1.82% (95% CI: 0.85% ~ 2.79%), suggesting that the effect was weakened. Our study suggested that SO2 and NO2 were associated with non-accidental mortality, and there were lag effects. Therefore, environmental management should be strengthened and health protection education should be carried out for different groups.
Collapse
Affiliation(s)
- Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xingxing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, 230032, Anhui Province, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
14
|
Association between short-term exposure to sulfur dioxide and carbon monoxide and ischemic heart disease and non-accidental death in Changsha city, China. PLoS One 2021; 16:e0251108. [PMID: 33939751 PMCID: PMC8092655 DOI: 10.1371/journal.pone.0251108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Background To investigate the effects of short-term exposure to sulfur dioxide (SO2) and carbon monoxide (CO) in the central and southern China areas on ischemic heart disease (IHD) and non-accidental deaths. Method We investigated the associations between short-term exposure to SO2 and CO in a city in south-central China and IHD and non-accidental death using a time-series design and generalized additive models with up to a 5-day lag adjusting for day of the week, temperature, air pressure, wind speed, and relative humidity. The relative risks of IHD and non-accidental death per 10-unit increase in SO2 and CO were derived from zero to five days in single-pollutant models. Results Between 2016 and 2018, a total of 10,507 IHD and 44,070 non-accidental deaths were identified. The largest significant relative risk for IHD death was lag 02 for both SO2 (1.080; 95% confidence interval: 1.075–1.084) and CO (5.297; 95% confidence interval: 5.177–5.418) in single-pollutants models. A significant association was shown at all lag multiple-day moving averages. Two-pollutant models identified an association between SO2 and mortality when adjusting for CO. In stratified analyses, SO2 exhibited a stronger association with death during the cold season, while CO exhibited a stronger association with mortality from IHD during the warm season. The risk of death was more robust in the elderly for both pollutants, but was greater in men for CO and in women for SO2. Conclusions Overall, we found an association between short-term exposure to low-level SO2 and CO and the risk of IHD and non-accidental death.
Collapse
|
15
|
Liu X, He Y, Tang C, Wei Q, Xu Z, Yi W, Pan R, Gao J, Duan J, Su H. Association between cold spells and childhood asthma in Hefei, an analysis based on different definitions and characteristics. ENVIRONMENTAL RESEARCH 2021; 195:110738. [PMID: 33485910 DOI: 10.1016/j.envres.2021.110738] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
As the global climate continues to warm, there is an increased focus on heat, but the role of low temperatures on health has been overlooked, especially for developing countries. Methods We collected the admission data of childhood asthma in 2013-2016 from Anhui Provincial Children's Hospital, as well as meteorological data from the Meteorological Bureau for the study period and collected data of pollutants from 10 monitoring stations around Hefei city. Poisson's generalized additive model (GAM) combined with a distributed lag non-linear model (DLNM) was used to estimate the short-term effects of cold spell on childhood asthma in cold seasons (November to March). 16 definitions of cold spells were clearly compared, which combining 4 temperature indexes (daily minimum and mean temperature; daily minimum and mean apparent temperature), 2 temperature thresholds (2.5th and 5th) and 3 durations of at least 2-4 days. We then have an analysis of the modifying effect of characteristics of cold spells and individuals(gender and age), with a view to discovering the susceptible population to cold spell. Results There was significant association between cold spells and admission risk for childhood asthma. And the definition, in which daily minimum apparent temperature falls below 5th percentile for at least 3 consecutive days, produced the optimum model fit performance. Based on this optimal fit we found that, for the total population, the effect of cold spell lasted approximately five days (lag1-lag5), with the largest effect occurring in lag 3 (RR = 1.110; 95% CI: 1.052-1.170). In subgroup analysis, the cumulative effect of lag0-7 was higher in males and school-age children than in females and other age groups, respectively. In addition, we found that the effect of is higher as the duration increases. Conclusion This study suggests an association between cold spell and childhood asthma, and minimum AT may be a better indicator to define the cold spells. Boys and school-age children are more vulnerable to cold spell. And one of our very interesting findings is that if a cold spell lasts for several days, the impact of the cold spell on those later days is likely to be greater than that of the previous days. In conclusion, we should pay more attention to the protection of boys and school-aged children in our future public health protection and give more attention to those cold spells that last longer. Therefore, we recommend that schools and health authorities need to take targeted measures to reduce the risk of asthma in children during the cold spell.
Collapse
Affiliation(s)
- Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Zihan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jiaojiao Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jun Duan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
16
|
Niu Z, Liu F, Li B, Li N, Yu H, Wang Y, Tang H, Chen X, Lu Y, Cheng Z, Liu S, Chen G, Zhang Y, Xiang H. Acute effect of ambient fine particulate matter on heart rate variability: an updated systematic review and meta-analysis of panel studies. Environ Health Prev Med 2020; 25:77. [PMID: 33261557 PMCID: PMC7706193 DOI: 10.1186/s12199-020-00912-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Decreased heart rate variability (HRV) is a predictor of autonomic system dysfunction, and is considered as a potential mechanism of increased risk of cardiovascular disease (CVD) induced by exposure to particulate matter less than 2.5 μm in diameter (PM2.5). Previous studies have suggested that exposure to PM2.5 may lead to decreased HRV levels, but the results remain inconsistent. Methods An updated systematic review and meta-analysis of panel studies till November 1, 2019 was conducted to evaluate the acute effect of exposure to ambient PM2.5 on HRV. We searched electronic databases (PubMed, Web of Science, and Embase) to identify panel studies reporting the associations between exposure to PM2.5 and the four indicators of HRV (standard deviation of all normal-to-normal intervals (SDNN), root mean square of successive differences in adjacent normal-to-normal intervals (rMSSD), high frequency power (HF), and low frequency power (LF)). Random-effects model was used to calculate the pooled effect estimates. Results A total of 33 panel studies were included in our meta-analysis, with 16 studies conducted in North America, 12 studies in Asia, and 5 studies in Europe. The pooled results showed a 10 μg/m3 increase in PM2.5 exposure which was significantly associated with a − 0.92% change in SDNN (95% confidence intervals (95%CI) − 1.26%, − 0.59%), − 1.47% change in rMSSD (95%CI − 2.17%, − 0.77%), − 2.17% change in HF (95%CI − 3.24%, − 1.10%), and − 1.52% change in LF (95%CI − 2.50%, − 0.54%), respectively. Overall, subgroup analysis suggested that short-term exposure to PM2.5 was associated with lower HRV levels in Asians, healthy population, and those aged ≥ 40 years. Conclusion Short-term exposure to PM2.5 was associated with decreased HRV levels. Future studies are warranted to clarity the exact mechanism of exposure to PM2.5 on the cardiovascular system through disturbance of autonomic nervous function. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-020-00912-2.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Baojing Li
- Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18, Solna, SE-171 65, Stockholm, Sweden
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hongmei Yu
- School of Management, Chengdu University of Traditional Chinese Medicine, 37# Shierqiao Road, Chengdu, China
| | - Yongbo Wang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122# Luoshi Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
17
|
Wang M, Chen J, Zhang Z, Yu P, Gan W, Tan Z, Bao J. Associations between air pollution and outpatient visits for arrhythmia in Hangzhou, China. BMC Public Health 2020; 20:1524. [PMID: 33032561 PMCID: PMC7542945 DOI: 10.1186/s12889-020-09628-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022] Open
Abstract
Background Arrhythmia is a common cardiovascular event that is associated with increased cardiovascular health risks. Previous studies that have explored the association between air pollution and arrhythmia have obtained inconsistent results, and the association between the two in China is unclear. Methods We collected daily data on air pollutants and meteorological factors from 1st January 2014 to 31st December 2016, along with daily outpatient visits for arrhythmia in Hangzhou, China. We used a quasi-Poisson regression along with a distributed lag nonlinear model to study the association between air pollution and arrhythmia morbidity. Results The results of the single-pollutant model showed that each increase of 10 μg/m3 of Fine particulate matter (PM2.5), Coarse particulate matter (PM10), Sulphur dioxide (SO2), Nitrogen dioxide (NO2), and Ozone (O3) resulted in increases of 0.6% (− 0.9, 2.2%), 0.7% (− 0.4, 1.7%), 11.9% (4.5, 19.9%), 6.7% (3.6, 9.9%), and − 0.9% (− 2.9, 1.2%), respectively, in outpatient visits for arrhythmia; each increase of 1 mg/m3 increase of carbon monoxide (CO) resulted in increase of 11.3% (− 5.9, 31.6%) in arrhythmia. The short-term effects of air pollution on arrhythmia lasted 3 days, and the most harmful effects were observed on the same day that the pollution occurred. Results of the subgroup analyses showed that SO2 and NO2 affected both men and women, but differences between the sexes were not statistically significant. The effect of SO2 on the middle-aged population was statistically significant. The effect of NO2 was significant in both the young and middle-aged population, and no significant difference was found between them. Significant effects of air pollution on arrhythmia were only detected in the cold season. The results of the two-pollutants model and the single-pollutant model were similar. Conclusions SO2 and NO2 may induce arrhythmia, and the harmful effects are primarily observed in the cold season. There is no evidence of PM2.5, PM10, CO and O3 increasing arrhythmia risk. Special attention should be given to sensitive populations during the high-risk period.
Collapse
Affiliation(s)
- Mingwei Wang
- Department of Cardiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Juan Chen
- Department of Cardiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhi Zhang
- Department of Cardiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ping Yu
- Department of Cardiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wentao Gan
- Department of Cardiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhaoming Tan
- Nanjing Municipal Human Resources and Social Security Bureau, Nanjing, China
| | - Junzhe Bao
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Franzke B, Schwingshackl L, Wagner KH. Chromosomal damage measured by the cytokinesis block micronucleus cytome assay in diabetes and obesity - A systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108343. [DOI: 10.1016/j.mrrev.2020.108343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
|
19
|
Zhang P, Zhou X. Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139114. [PMID: 32447079 DOI: 10.1016/j.scitotenv.2020.139114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 04/14/2023]
Abstract
The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013-2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34-4.16%), 6.38% (95%CI: 4.79-7.97%), and 3.81% (95%CI: 2.13-5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable.
Collapse
Affiliation(s)
- Pei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyuan Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
20
|
Chen D, Mayvaneh F, Baaghideh M, Entezari A, Ho HC, Xiang Q, Jiao A, Zhang F, Hu K, Chen G, Zhao Q, Sun S, Zhang Y. Utilizing daily excessive concentration hours to estimate cardiovascular mortality and years of life lost attributable to fine particulate matter in Tehran, Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134909. [PMID: 31757557 DOI: 10.1016/j.scitotenv.2019.134909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/22/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Evidence for associations between fine particulate matter (PM2.5) and cardiovascular diseases (CVDs) in Iran is scarce. Given large within-day variations of PM2.5 concentration, using the daily mean of PM2.5 (PM2.5mean) as exposure metric might bias the health-related assessment. This study applied a novel indicator, daily excessive concentration hours (DECH), to evaluate the effect of ambient PM2.5 on CVD mortality and years of life lost (YLL) in Tehran, the capital city of Iran. METHODS Hourly concentration data for PM2.5, daily information for meteorology and records of registered cardiovascular deaths from 2012 to 2016 were obtained from Tehran, Iran. Daily excessive concentration hours of PM2.5 (PM2.5DECH) was defined as daily total concentration-hours exceeding 35 μg/m3. Using a time-series design, we applied generalized linear models to assess the attributable effects of PM2.5DECH and PM2.5mean on CVD mortality and YLL. RESULTS For an interquartile range (IQR) rise in PM2.5DECH, total CVD mortality at lag 0-10 days and YLL at lag 0-8 days increased 2.26% (95% confidence interval (CI): 0.85-3.69%) and 23.24 (6.07-40.42) person years, respectively. Corresponding increases were 3.45% (1.44-5.49%) and 35.21 (10.85-59.58) person years for an IQR rise in PM2.5mean. Significant associations between PM2.5 pollution (i.e., PM2.5mean and PM2.5DECH) and cause-specific cardiovascular health (i.e., mortality and YLL) were only identified in stroke. Subgroup analyses showed that male and people aged 0-64 years suffered more from PM2.5 pollution. Furthermore, we attributed a greater CVD burden to PM2.5DECH (1.67% for mortality and 2.67% for YLL) than PM2.5mean (0.63% for mortality and 0.70% for YLL) during the study period. CONCLUSIONS This study strengthened the evidence for the aggravated CVD mortality burden associated with short-term exposure to PM2.5. Our findings also suggested that PM2.5DECH might be a potential alternative indicator of exposure assessment in PM2.5-related health investigations.
Collapse
Affiliation(s)
- Dieyi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Fatemeh Mayvaneh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran
| | - Mohammad Baaghideh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran
| | - Alireza Entezari
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
| | - Qianqian Xiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Anqi Jiao
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Faxue Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Kejia Hu
- Department of Precision Health and Data Science, School of Public Health, Zhejiang University, Hangzhou 310003, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Zhao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Shengzhi Sun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
21
|
Jiao A, Xiang Q, Ding Z, Cao J, Ho HC, Chen D, Cheng J, Yang Z, Zhang F, Yu Y, Zhang Y. Short-term impacts of ambient fine particulate matter on emergency department visits: Comparative analysis of three exposure metrics. CHEMOSPHERE 2020; 241:125012. [PMID: 31606575 DOI: 10.1016/j.chemosphere.2019.125012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Accepted: 09/29/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Research argued that daily excessive concentration hours (DECH) could be more informative through accounting for within-day variations, when assessing population-level exposure to ambient fine particle (PM2.5). However, few studies have comparatively investigated PM2.5-associated risks using DECH and two common metrics of daily mean and hourly peak concentration. METHODS We collected daily records of all-cause emergency department visits (EDVs) and hourly data on air pollutants and meteorological factors from Shenzhen, China, 2015-2018. According to guidelines proposed by the World Health Organization, DECH was calculated by summing up daily concentrations exceeding 25 μg/m3. Based on time-stratified case-crossover design, we adopted conditional logistic regression models to assess short-term attributable risks of EDVs associated with PM2.5 using three exposure metrics. RESULTS DECH and daily average of PM2.5 strongly elevated risks of EDVs, while less evident associations were observed using hourly peak metric. Estimated excess relative risks at lag 0 day were 0.56% (95% confidence interval [CI]: 0.21 to 0.91), 0.69% (95% CI: 0.25 to 1.13) and 0.37% (95% CI: 0.02 to 0.76), respectively, associated with an interquartile range increase in DECH (420.2 μg/m3), 24-h average (24.9 μg/m3) and hourly peak concentration (38 μg/m3). More emergency visits could be attributed to DECH than daily mean PM2.5, with attributable fractions of 2.02% (95% CI: 1.42 to 2.61) and 1.09% (95% CI: 0.69 to 1.49), respectively. CONCLUSIONS This study added evidence for increased risk of EDVs associated with exposure to ambient PM2.5. DECH was a potential alternative exposure metric for PM2.5 assessment, which may have implications for future revision of air quality standards.
Collapse
Affiliation(s)
- Anqi Jiao
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China; Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Qianqian Xiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Zan Ding
- The Institute of Metabolic Diseases, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518102, China
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
| | - Dieyi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Jian Cheng
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, 4059, Australia
| | - Zhiming Yang
- Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China
| | - Faxue Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Yong Yu
- School of Public Health and Management, Hubei University of Medicine, Shiyan, 442000, China.
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
22
|
Impact of Ambient Temperature and Relative Humidity on the Incidence of Hand-Foot-Mouth Disease in Wuhan, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020428. [PMID: 31936369 PMCID: PMC7013846 DOI: 10.3390/ijerph17020428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Background: Few studies have previously explored the relationship between hand, foot, and mouth disease (HFMD) and meteorological factors with the effect modification of air pollution, and these studies had inconsistent findings. We therefore applied a time-series analysis assessing the effects of temperature and humidity on the incidence of HFMD in Wuhan, China to deepen our understanding of the relationship between meteorological factors and the risk of HFMD. Methods: Daily HFMD cases were retrieved from Hubei Provincial Center for Disease Control and Prevention from 1 February 2013 to 31 January 2017. Daily meteorological data including 24 h average temperature, relative humidity, wind velocity, and atmospheric pressure were obtained from Hubei Meteorological Bureau. Data on Air pollution was collected from 10 national air-monitoring stations in Wuhan city. We adopted a distributed lag non-linear model (DLNM) combined with Poisson regression and time-series analysis to estimate the effects of temperature and relative humidity on the incidence HFMD. Results: We found that the association between temperature and HFMD incidence was non-linear, exhibiting an approximate "M" shape with two peaks occurring at 2.3 °C (RR = 1.760, 95% CI: 1.218-2.542) and 27.9 °C (RR = 1.945, 95% CI: 1.570-2.408), respectively. We observed an inverted "V" shape between relative humidity and HFMD. The risk of HFMD reached a maximum value at a relative humidity of 89.2% (RR = 1.553, 95% CI: 1.322-1.824). The largest delayed cumulative effects occurred at lag 6 for temperature and lag 13 for relative humidity. Conclusions: The non-linear relationship between meteorological factors and the incidence of HFMD on different lag days could be used in the early targeted warning system of infectious diseases, reducing the possible outbreaks and burdens of HFMD among sensitive populations.
Collapse
|
23
|
Hao J, Yang Z, Yang W, Huang S, Tian L, Zhu Z, Lu Y, Xiang H, Liu S. Impact of Ambient Temperature and Relative Humidity on the Incidence of Hand-Foot-Mouth Disease in Wuhan, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:117358. [PMID: 31936369 DOI: 10.1016/j.atmosenv.2020.117358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 05/19/2023]
Abstract
Background: Few studies have previously explored the relationship between hand, foot, and mouth disease (HFMD) and meteorological factors with the effect modification of air pollution, and these studies had inconsistent findings. We therefore applied a time-series analysis assessing the effects of temperature and humidity on the incidence of HFMD in Wuhan, China to deepen our understanding of the relationship between meteorological factors and the risk of HFMD. Methods: Daily HFMD cases were retrieved from Hubei Provincial Center for Disease Control and Prevention from 1 February 2013 to 31 January 2017. Daily meteorological data including 24 h average temperature, relative humidity, wind velocity, and atmospheric pressure were obtained from Hubei Meteorological Bureau. Data on Air pollution was collected from 10 national air-monitoring stations in Wuhan city. We adopted a distributed lag non-linear model (DLNM) combined with Poisson regression and time-series analysis to estimate the effects of temperature and relative humidity on the incidence HFMD. Results: We found that the association between temperature and HFMD incidence was non-linear, exhibiting an approximate "M" shape with two peaks occurring at 2.3 °C (RR = 1.760, 95% CI: 1.218-2.542) and 27.9 °C (RR = 1.945, 95% CI: 1.570-2.408), respectively. We observed an inverted "V" shape between relative humidity and HFMD. The risk of HFMD reached a maximum value at a relative humidity of 89.2% (RR = 1.553, 95% CI: 1.322-1.824). The largest delayed cumulative effects occurred at lag 6 for temperature and lag 13 for relative humidity. Conclusions: The non-linear relationship between meteorological factors and the incidence of HFMD on different lag days could be used in the early targeted warning system of infectious diseases, reducing the possible outbreaks and burdens of HFMD among sensitive populations.
Collapse
Affiliation(s)
- Jiayuan Hao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
- Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Zhiyi Yang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
- Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Wenwen Yang
- Hubei Provincial Center for Disease control and Prevention, Wuhan 430079, China
| | - Shuqiong Huang
- Hubei Provincial Center for Disease control and Prevention, Wuhan 430079, China
| | - Liqiao Tian
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
| | - Zhongmin Zhu
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
- College of Information Science and Engineering, Wuchang Shouyi University, Wuhan 430064, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University of Hawaii at Manoa, 1960 East-West Rd, Biomed Bldg, D105, Honolulu, HI 96822, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
- Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
- Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| |
Collapse
|
24
|
Qi J, Ruan Z, Qian Z(M, Yin P, Yang Y, Acharya BK, Wang L, Lin H. Potential gains in life expectancy by attaining daily ambient fine particulate matter pollution standards in mainland China: A modeling study based on nationwide data. PLoS Med 2020; 17:e1003027. [PMID: 31951613 PMCID: PMC6968855 DOI: 10.1371/journal.pmed.1003027] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ambient fine particulate matter pollution (PM2.5) is one leading cause of disease burden, but no study has quantified the association between daily PM2.5 exposure and life expectancy. We aimed to assess the potential benefits in life expectancy by attaining the daily PM2.5 standards in 72 cities of China during 2013-2016. METHODS AND FINDINGS We applied a two-stage approach for the analysis. At the first stage, we used a generalized additive model (GAM) with a Gaussian link to examine the city-specific short-term association between daily PM2.5 and years of life lost (YLL); at the second stage, a random-effects meta-analysis was used to generate the regional and national estimations. We further estimated the potential gains in life expectancy (PGLE) by assuming that ambient PM2.5 has met the Chinese National Ambient Air Quality Standard (NAAQS, 75 μg/m3) or the ambient air quality guideline (AQG) of the World Health Organization (WHO) (25 μg/m3). We also calculated the attributable fraction (AF), which denoted the proportion of YLL attributable to a higher-than-standards daily mean PM2.5 concentration. During the period from January 18, 2013 to December 31, 2016, we recorded 1,226,849 nonaccidental deaths in the study area. We observed significant associations between daily PM2.5 and YLL: each 10 μg/m3 increase in three-day-averaged (lag02) PM2.5 concentrations corresponded to an increment of 0.43 years of life lost (95% CI: 0.29-0.57). We estimated that 168,065.18 (95% CI: 114,144.91-221,985.45) and 68,684.95 (95% CI: 46,648.79-90,721.11) years of life lost can be avoided by achieving WHO's AQG and Chinese NAAQS in the study area, which corresponded to 0.14 (95% CI: 0.09-0.18) and 0.06 (95% CI: 0.04-0.07) years of gain in life expectancy for each death in these cities. We observed differential regional estimates across the 7 regions, with the highest gains in the Northwest region (0.28 years of gain [95% CI: 0.06-0.49]) and the lowest in the North region (0.08 [95% CI: 0.02-0.15]). Furthermore, using WHO's AQG and Chinese NAAQS as the references, we estimated that 1.00% (95% CI: 0.68%-1.32%) and 0.41% (95% CI: 0.28%-0.54%) of YLL could be attributable to the PM2.5 exposure at the national level. Findings from this study were mainly limited by the unavailability of data on individual PM2.5 exposure. CONCLUSIONS This study indicates that significantly longer life expectancy could be achieved by a reduction in the ambient PM2.5 concentrations. It also highlights the need to formulate a stricter ambient PM2.5 standard at both national and regional levels of China to protect the population's health.
Collapse
Affiliation(s)
- Jinlei Qi
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin (Min) Qian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, Missouri, United States of America
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bipin Kumar Acharya
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (LW); (HL)
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- * E-mail: (LW); (HL)
| |
Collapse
|
25
|
Hao J, Yang Z, Huang S, Yang W, Zhu Z, Tian L, Lu Y, Xiang H, Liu S. The association between short-term exposure to ambient air pollution and the incidence of mumps in Wuhan, China: A time-series study. ENVIRONMENTAL RESEARCH 2019; 177:108660. [PMID: 31445438 DOI: 10.1016/j.envres.2019.108660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous studies have estimated the association between meteorological factors and mumps outbreaks without assessing the influence of air pollution. In this research, we explored the effects of short-term exposure to air pollution on the incidence of mumps. METHODS Our time-series analysis was conducted using data collected in Wuhan, China from 2015 to 2017. Daily number of mumps cases was obtained from Disease Reporting System in Hubei Provincial Center for Disease Control and Prevention. Data on air pollution was obtained from 10 national air quality monitoring stations, including nitrogen dioxide (NO2), sulfur dioxide (SO2), ground-level ozone (O3), particulate matter less than or equal to 10 μm in aerodynamic diameter (PM10), and particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5). Daily meteorological data including temperature and relative humidity were obtained from Hubei Meteorological Bureau. We performed a Poisson regression in generalized additive models (GAM) to explore the association between the incidence of mumps and exposure to air pollution. RESULTS We observed that the effects of air pollutants were statistically significant mainly in two periods, lag 0 to lag 5 and lag 20 to lag 25, with the strongest effects appearing at lag 2 and lag 23. The cumulative effects were stronger than single-day lag effects. The stratified analysis showed the effect of pollutants during the hot season was stronger than that during the cold season, especially for NO2 and SO2. CONCLUSIONS We found that exposure to NO2 and SO2 was significantly associated with higher risk of developing mumps. Our findings could help deepen the understanding of how air pollution exposure affects the incidence of mumps.
Collapse
Affiliation(s)
- Jiayuan Hao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| | - Zhiyi Yang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| | - Shuqiong Huang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Wenwen Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Zhongmin Zhu
- College of Information Science and Engineering, Wuchang Shouyi University, Wuhan, 430064, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China.
| | - Liqiao Tian
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China.
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University of Hawaii at Manoa, 1960 East-West Rd, Biomed Bldg, D105, Honolulu, HI, 96822, USA.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
26
|
Liu G, Sun B, Yu L, Chen J, Han B, Liu B, Chen J. Short-term exposure to ambient air pollution and daily atherosclerotic heart disease mortality in a cool climate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23603-23614. [PMID: 31203548 DOI: 10.1007/s11356-019-05565-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The associations between exposure to short-term ambient air pollution and daily atherosclerotic heart disease (ASHD) mortality in cool climate have not been established. We performed a time-series analysis in Shenyang, the largest city of Northeastern China. We identified 7659 ASHD deaths and obtained deaths, ambient air pollution levels, and meteorological data for Shenyang during 2014-2017. The impact of ambient air pollution on daily ASHD deaths was analyzed using generalized additive models (GAMs). Cumulative lag effects were investigated using distributed lag non-linear models (DLNM). We found ASHD deaths significantly increased during days with higher air pollution. Particulate matter with diameter < 2.5 μm (PM2.5), PM10, and sulfur dioxide (SO2) were positively associated with ASHD deaths among the total population. Both single- and multi-pollutants models indicated that PM2.5, PM10, and sulfur dioxide (SO2) were positively associated with the deaths of women with AHSD, whereas only SO2 was significant in men. This suggests significant gender-based differences in the fatal effects of ambient air pollution. Up to 28 days of single-day lag effects were observed for PM2.5 and PM10 in women. The cumulative lag effects of PM2.5 and PM10 showed increasing trends in both men and women; however, exposure to higher pollutant concentrations did not necessarily translate to greater risks. The ERRs differences between women and men were larger in cold days than in hot days, suggesting that lower temperature may exacerbate the adverse effects of air pollution on vulnerable women.
Collapse
Affiliation(s)
- Guangcong Liu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang, 110122, People's Republic of China
- Liaoning Key Laboratory of Urban Ecology, Shenyang Academy of Environmental Sciences, No. 98 Quanyunsan Road, Shenyang, 110167, People's Republic of China
| | - Baijun Sun
- Shenyang Center for Disease Control and Prevention, No.37 Qishan Road, Shenyang, 110031, People's Republic of China
| | - Lianzheng Yu
- Department of Noncommunicable Chronic Disease Prevention, Liaoning Center for Disease Control and Prevention, No.242 Shayang Road, Shenyang, 110005, People's Republic of China
| | - Jianping Chen
- Shenyang Center for Disease Control and Prevention, No.37 Qishan Road, Shenyang, 110031, People's Republic of China
| | - Bing Han
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Bo Liu
- Liaoning Key Laboratory of Urban Ecology, Shenyang Academy of Environmental Sciences, No. 98 Quanyunsan Road, Shenyang, 110167, People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
27
|
Jiao A, Yu C, Xiang Q, Zhang F, Chen D, Zhang L, Hu K, Zhang L, Zhang Y. Impact of summer heat on mortality and years of life lost: Application of a novel indicator of daily excess hourly heat. ENVIRONMENTAL RESEARCH 2019; 172:596-603. [PMID: 30875513 DOI: 10.1016/j.envres.2019.01.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Previous studies have widely assessed heat-mortality relationships across global regions, while the epidemiological evidence regarding the heat effect on years of life lost (YLL) is relatively sparse. Current investigations using daily mean data cannot take hourly temperature variation into consideration and may underestimate heat effects. We developed a novel indicator, daily excess hourly heat (DEHH), to precisely evaluate the potential heat effects on mortality and YLL. METHODS Hourly data on temperature and daily information, including concentrations of air pollutants, relative humidity, and records of all registered deaths were obtained in Wuhan, China during the warm seasons (May-September) of 2009-2012. DEHH, developed in this study, is defined as daily total hourly temperatures that exceed a specific heat threshold. By performing time series regression analyses, we assessed the changes in daily mortality and YLL per interquartile range (IQR) increase in DEHH across different lag days. RESULTS The heat threshold evaluated by the Akaike Information Criterion for DEHH calculation is 30 °C (92th percentile of whole-year mean temperature distribution). Daily average DEHH was 13.9 °C, with an IQR of 19.9 °C. Linear exposure-response curves were found between DEHH and two health outcomes. Generally, heat effects lasted for 2-3 days and DEHH at lag 0-1 was most strongly associated with increased mortality and YLL. The effects were especially remarkable for stroke and ischemic heart disease mortality. Most intense effect on YLL was found in non-accidental deaths (20.11, 95% confidence interval: 8.90-31.33) at lag 0-1. More DEHH-related mortality and YLL from cardiovascular deaths were observed among males. People aged 0-74 years and males suffered more from YLL burden due to high temperatures. CONCLUSIONS Our study demonstrated that DEHH may be an alternative indicator to precisely measure heat effects on daily mortality and YLL. Further DEHH-based evidence from large scale investigations is needed so as to better understand heat-associated health burden and improve public response to extremely high temperatures.
Collapse
Affiliation(s)
- Anqi Jiao
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Chuanhua Yu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China; Global Health Institute, Wuhan University, Wuhan 430072, China
| | - Qianqian Xiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Faxue Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Dieyi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Lan Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Kejia Hu
- Institute of Island and Coastal Ecosystems, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ling Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yunquan Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|