1
|
DeCandia AL, Lu J, Hamblen EE, Brenner LJ, King JL, Gagorik CN, Schamel JT, Baker SS, Ferrara FJ, Booker M, Bridges A, Carrasco C, vonHoldt BM, Koepfli KP, Maldonado JE. Phylosymbiosis and Elevated Cancer Risk in Genetically Depauperate Channel Island Foxes. Mol Ecol 2025; 34:e17610. [PMID: 39655703 DOI: 10.1111/mec.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Examination of the host-associated microbiome in wildlife can provide critical insights into the eco-evolutionary factors driving species diversification and response to disease. This is particularly relevant for isolated populations lacking genomic variation, a phenomenon that is increasingly common as human activities create habitat 'islands' for wildlife. Here, we characterised the gut and otic microbial communities of one such species: Channel Island foxes (Urocyon littoralis). The gut microbiome provided evidence of phylosymbiosis by reflecting the host phylogeny, geographic proximity, history of island colonisation and contemporary ecological differences, whereas the otic microbiome primarily reflected geography and disease. Santa Catalina Island foxes are uniquely predisposed to ceruminous gland tumours following infection with Otodectes cynotis ear mites, while San Clemente and San Nicolas Island foxes exhibit ear mite infections without evidence of tumours. Comparative analyses of otic microbiomes revealed that mite-infected Santa Catalina and San Clemente Island foxes exhibited reduced bacterial diversity, skewed abundance towards the opportunistic pathogen Staphylococcus pseudintermedius and disrupted microbial community networks. However, Santa Catalina Island foxes uniquely harboured Fusobacterium and Prevotella bacteria as potential keystone taxa. These bacteria have previously been associated with colorectal cancer and may predispose Santa Catalina Island foxes to an elevated cancer risk. In contrast, mite-infected San Nicolas Island foxes maintained high bacterial diversity and robust microbial community networks, suggesting that they harbour more resilient microbiomes. Considered together, our results highlight the diverse eco-evolutionary factors influencing commensal microbial communities and their hosts and underscore how the microbiome can contribute to disease outcomes.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, USA
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Jasmine Lu
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | - Julie L King
- Catalina Island Conservancy, Avalon, California, USA
- Santa Clara Valley Habitat Agency, Morgan Hill, California, USA
| | - Calypso N Gagorik
- Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | | | | | - Francesca J Ferrara
- Environmental Division - Environmental Planning and Conservation Branch, Naval Base Ventura County, Point Mugu, California, USA
| | - Melissa Booker
- Environmental Division, Naval Base Coronado, San Diego, California, USA
| | - Andrew Bridges
- Institute for Wildlife Studies, San Diego, California, USA
| | - Cesar Carrasco
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Bridgett M vonHoldt
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, Virginia, USA
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
2
|
Pollard MD, Meyer WK, Puckett EE. Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets. Genome Res 2024; 34:2176-2189. [PMID: 39578099 DOI: 10.1101/gr.278930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Mammalia comprises a great diversity of diet types and associated adaptations. An understanding of the genomic mechanisms underlying these adaptations may offer insights for improving human health. Comparative genomic studies of diet that employ taxonomically restricted analyses or simplified diet classifications may suffer reduced power to detect molecular convergence associated with diet evolution. Here, we use a quantitative carnivory score-indicative of the amount of animal protein in the diet-for 80 mammalian species to detect significant correlations between the relative evolutionary rates of genes and changes in diet. We have identified six genes-ACADSB, CLDN16, CPB1, PNLIP, SLC13A2, and SLC14A2-that experienced significant changes in evolutionary constraint alongside changes in carnivory score, becoming less constrained in lineages evolving more herbivorous diets. We further consider the biological functions associated with diet evolution and observe that pathways related to amino acid and lipid metabolism, biological oxidation, and small molecule transport experienced reduced purifying selection as lineages became more herbivorous. Liver and kidney functions show similar patterns of constraint with dietary change. Our results indicate that these functions are important for the consumption of animal matter and become less important with the evolution of increasing herbivory. So, genes expressed in these tissues experience a relaxation of evolutionary constraint in more herbivorous lineages.
Collapse
Affiliation(s)
- Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA;
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
3
|
Osburn KR, Crossey B, Majelantle TL, Ganswindt A. A field-friendly alternative to freeze-drying faeces for glucocorticoid metabolite quantification in animals of different feeding classes. MethodsX 2024; 13:103077. [PMID: 39717121 PMCID: PMC11665413 DOI: 10.1016/j.mex.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024] Open
Abstract
Monitoring stress-related faecal glucocorticoid metabolite (fGCM) concentrations is a reliable, popular and established approach for understanding wildlife responses to perceived stressors. To maintain fGCM integrity post-defaecation, faecal material must be promptly stored frozen, or dried to prevent continued suspected bacterial enzyme activity. We compare the effectiveness of freeze-drying with other field-friendly drying techniques (food dehydrator and homemade solar oven). We collected 10 fresh faecal samples each from nine species (giraffe, impala, blue wildebeest, plains zebra, African elephant, white rhino, cheetah, spotted hyena, and leopard) and monitored alterations in fGCM concentrations over time utilizing these different drying techniques. Our findings indicate that a homemade solar oven is as effective as freeze-drying faecal samples. A food dehydrator is also a suitable method for drying faecal samples for the carnivores monitored. Our findings provide field-friendly methods for researchers dealing with logistical constraints in remote field sites.•For all species examined, a homemade solar oven offers a practical and affordable alternative to freeze-drying faeces for fGCM quantification.•A food dehydrator provides an affordable alternative to freeze-drying faeces for fGCM analysis when monitoring carnivores.•Different faecal sample drying techniques should not be utilized within a single study to ensure comparable analyses of fGCM values.
Collapse
Affiliation(s)
- Kayla Rae Osburn
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, 0028 Hatfield, South Africa
- Endocrine Research Lab, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Bruce Crossey
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, 0028 Hatfield, South Africa
- Endocrine Research Lab, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Tshepiso L Majelantle
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, 0028 Hatfield, South Africa
- Endocrine Research Lab, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, 0028 Hatfield, South Africa
- Endocrine Research Lab, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
4
|
Grobbelaar A, Osthoff G, du Preez I, Deacon F. First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes ( Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study. Metabolites 2024; 14:586. [PMID: 39590822 PMCID: PMC11596133 DOI: 10.3390/metabo14110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study provides the first insights to the fecal metabolome of the giraffe (Giraffa camelopardalis). By using untargeted metabolomics via gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS), this study primarily aims to provide results of the impact that external stimuli, such as supplemental feeding (SF) practices, seasonal variation and sex, might have on the fecal metabolome composition of healthy, free-roaming giraffes. METHODS Untargeted GCxGC/TOF-MS analysis was applied to the feces collected from thirteen giraffes (six males and seven females) from six different locations within the central Free State Province of South Africa over a period of two years. Statistical analysis of the generated data was used to identify the metabolites that were significantly different between the giraffes located in environments that provided SF and others where the giraffes only fed on the natural available vegetation. The same metabolomics analysis was used to investigate metabolite concentrations that were significantly different between the wet and dry seasons for a single giraffe male provided with SF over the two-year period, as well as for age and sex differences. RESULTS A total of 2042 features were detected from 26 giraffe fecal samples. Clear variations between fecal metabolome profiles were confirmed, with higher levels of amino acid-related and carbohydrate-related metabolites for giraffes receiving SF. In addition, a separation between the obtained profiles of samples collected from a single adult male giraffe during the wet and dry seasons was identified. Differences, such as higher levels of carbohydrate-related metabolites and organic compounds during the wet season were noted. Distinct variations in profiles were also identified for the metabolites from fecal samples collected from the six males and seven females, with higher concentrations in carbohydrate-related metabolites and alkanes for female giraffes comparatively. CONCLUSIONS This is the first study to investigate the composition of the fecal metabolome of free-roaming giraffes, as well as the effects that external factors, such as environmental exposures, feeding practices, seasonal variations, age and sex, have on it. This novel use of fecal metabolomics assists in developing non-invasive techniques to determine giraffe populations' health that do not require additional stressors such as capture, restraint and blood collection. Ultimately, such non-invasive advances are beneficial towards the conservation of wildlife species on a larger scale.
Collapse
Affiliation(s)
- Andri Grobbelaar
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Gernot Osthoff
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Ilse du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
| | - Francois Deacon
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| |
Collapse
|
5
|
Williams CE, Fontaine SS. Commentary: The microbial dependence continuum: Towards a comparative physiology approach to understand host reliance on microbes. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111690. [PMID: 38964709 DOI: 10.1016/j.cbpa.2024.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Comparative physiologists often compare physiological traits across organisms to understand the selective pressures influencing their evolution in different environments. Traditionally focused on the organisms themselves, comparative physiology has more recently incorporated studies of the microbiome-the communities of microbes living in and on animals that influence host physiology. In this commentary, we describe the utility of applying a comparative framework to study the microbiome, particularly in understanding how hosts vary in their dependence on microbial communities for physiological function, a concept we term the "microbial dependence continuum". This hypothesis suggests that hosts exist on a spectrum ranging from high to low reliance on their microbiota. Certain physiological traits may be highly dependent on microbes for proper function in some species but microbially independent in others. Comparative physiology can elucidate the selective pressures driving species along this continuum. Here, we discuss the microbial dependence continuum in detail and how comparative physiology can be useful to study it. Then, we discuss two example traits, herbivory and flight, where comparative physiology has helped reveal the selective pressures influencing host dependence on microbial communities. Lastly, we discuss useful experimental approaches for studying the microbial dependence continuum in a comparative physiology context.
Collapse
Affiliation(s)
- Claire E Williams
- University of Nevada, Department of Biology, 1664 N Virginia St, Reno, NV 89557, USA.
| | - Samantha S Fontaine
- Kent State University, Department of Biological Sciences, 800 E Summit St, Kent, OH, USA. https://twitter.com/sammiefontaine
| |
Collapse
|
6
|
Li Q, Ruscheweyh HJ, Østergaard LH, Libertella M, Simonsen KS, Sunagawa S, Scoma A, Schwab C. Trait-based study predicts glycerol/diol dehydratases as a key function of the gut microbiota of hindgut-fermenting carnivores. MICROBIOME 2024; 12:178. [PMID: 39300575 DOI: 10.1186/s40168-024-01863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/25/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Microbial pdu and cob-cbi-hem gene clusters encode the key enzyme glycerol/diol dehydratase (PduCDE), which mediates the transformation of dietary nutrients glycerol and 1,2-propanediol (1,2-PD) to a variety of metabolites, and enzymes for cobalamin synthesis, a co-factor and shared good of microbial communities. It was the aim of this study to relate pdu as a multipurpose functional trait to environmental conditions and microbial community composition. We collected fecal samples from wild animal species living in captivity with different gut physiology and diet (n = 55, in total 104 samples), determined occurrence and diversity of pdu and cob-cbi-hem using a novel approach combining metagenomics with quantification of metabolic and genetic biomarkers, and conducted in vitro fermentations to test for trait-based activity. RESULTS Fecal levels of the glycerol transformation product 1,3-propanediol (1,3-PD) were higher in hindgut than foregut fermenters. Gene-based analyses indicated that pduC harboring taxa are common feature of captive wild animal fecal microbiota that occur more frequently and at higher abundance in hindgut fermenters. Phylogenetic analysis of genomes reconstructed from metagenomic sequences identified captive wild animal fecal microbiota as taxonomically rich with a total of 4150 species and > 1800 novel species but pointed at only 56 species that at least partially harbored pdu and cbi-cob-hem. While taxonomic diversity was highest in fecal samples of foregut-fermenting herbivores, higher pduC abundance and higher diversity of pdu/cbi-cob-hem related to higher potential for glycerol and 1,2-PD utilization of the less diverse microbiota of hindgut-fermenting carnivores in vitro. CONCLUSION Our approach combining metabolite and gene biomarker analysis with metagenomics and phenotypic characterization identified Pdu as a common function of fecal microbiota of captive wild animals shared by few taxa and stratified the potential of fecal microbiota for glycerol/1,2-PD utilization and cobalamin synthesis depending on diet and physiology of the host. This trait-based study suggests that the ability to utilize glycerol/1,2-PD is a key function of hindgut-fermenting carnivores, which does not relate to overall community diversity but links to the potential for cobalamin formation. Video Abstract.
Collapse
Affiliation(s)
- Qing Li
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
- Present address: National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Lærke Hartmann Østergaard
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | - Micael Libertella
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Alberto Scoma
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | - Clarissa Schwab
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark.
| |
Collapse
|
7
|
DeCandia AL, Adeduro L, Thacher P, Crosier A, Marinari P, Bortner R, Garelle D, Livieri T, Santymire R, Comizzoli P, Maslanka M, Maldonado JE, Koepfli KP, Muletz-Wolz C, Bornbusch SL. Gut bacterial composition shows sex-specific shifts during breeding season in ex situ managed black-footed ferrets. J Hered 2024; 115:385-398. [PMID: 37886904 DOI: 10.1093/jhered/esad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome of mammals engages in a dynamic relationship with the body and contributes to numerous physiological processes integral to overall health. Understanding the factors shaping animal-associated bacterial communities is therefore paramount to the maintenance and management in ex situ wildlife populations. Here, we characterized the gut microbiome of 48 endangered black-footed ferrets (Mustela nigripes) housed at Smithsonian's National Zoo and Conservation Biology Institute (Front Royal, Virginia, USA). We collected longitudinal fecal samples from males and females across two distinct reproductive seasons to consider the role of host sex and reproductive physiology in shaping bacterial communities, as measured using 16S rRNA amplicon sequencing. Within each sex, gut microbial composition differed between breeding and non-breeding seasons, with five bacterial taxa emerging as differentially abundant. Between sexes, female and male microbiomes were similar during non-breeding season but significantly different during breeding season, which may result from sex-specific physiological changes associated with breeding. Finally, we found low overall diversity consistent with other mammalian carnivores alongside high relative abundances of potentially pathogenic microbes such as Clostridium, Escherichia, Paeniclostridium, and (to a lesser degree) Enterococcus-all of which have been associated with gastrointestinal or reproductive distress in mammalian hosts, including black-footed ferrets. We recommend further study of these microbes and possible therapeutic interventions to promote more balanced microbial communities. These results have important implications for ex situ management practices that can improve the gut microbial health and long-term viability of black-footed ferrets.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Biology Department, Georgetown University, Washington, DC, United States
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Laura Adeduro
- Biology Department, Georgetown University, Washington, DC, United States
| | - Piper Thacher
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, United States
| | - Adrienne Crosier
- Center for Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Paul Marinari
- Center for Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Robyn Bortner
- National Black-Footed Ferret Conservation Center, Carr, CO, United States
| | - Della Garelle
- National Black-Footed Ferret Conservation Center, Carr, CO, United States
| | - Travis Livieri
- Prairie Wildlife Research, Stevens Point, WI, United States
| | - Rachel Santymire
- Biology Department, Georgia State University, Atlanta, GA, United States
| | - Pierre Comizzoli
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, United States
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Carly Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| |
Collapse
|
8
|
Amin A, Mekadim C, Modrackova N, Bolechova P, Mrazek J, Neuzil-Bunesova V. Microbiome composition and presence of cultivable commensal groups of Southern Tamanduas (Tamandua tetradactyla) varies with captive conditions. Anim Microbiome 2024; 6:21. [PMID: 38698458 PMCID: PMC11064412 DOI: 10.1186/s42523-024-00311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Southern Tamanduas (Tamandua tetradactyla) belong to the specialized placental myrmecophages. There is not much information about their intestinal microbiome. Moreover, due to their food specialization, it is difficult to create an adequate diet under breeding conditions. Therefore, we used 16S rDNA amplicon sequencing to analyze the fecal microbiome of captive Southern Tamanduas from four locations in the Czech Republic and evaluated the impact of the incoming diet and facility conditions on microbiome composition. Together with the microbiome analysis, we also quantified and identified cultivable commensals. The anteater fecal microbiome was dominated by the phyla Bacillota and Bacteroidota, while Pseudomonadota, Spirochaetota, and Actinobacteriota were less abundant. At the taxonomic family level, Lachnospiraceae, Prevotellaceae, Bacteroidaceae, Oscillospiraceae, Erysipelotrichaceae, Spirochaetaceae, Ruminococcaceae, Leuconostocaceae, and Streptococcaceae were mainly represented in the fecal microbiome of animals from all locations. Interestingly, Lactobacillaceae dominated in the location with a zoo-made diet. These animals also had significantly lower diversity of gut microbiome in comparison with animals from other locations fed mainly with a complete commercial diet. Moreover, captive conditions of analyzed anteater included other factors such as the enrichment of the diet with insect-based products, probiotic interventions, the presence of other animals in the exposure, which can potentially affect the composition of the microbiome and cultivable microbes. In total, 63 bacterial species from beneficial commensal to opportunistic pathogen were isolated and identified using MALDI-TOF MS in the set of more than one thousand selected isolates. Half of the detected species were present in the fecal microbiota of most animals, the rest varied across animals and locations.
Collapse
Affiliation(s)
- Ahmad Amin
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Chahrazed Mekadim
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, v. v. i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Petra Bolechova
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, v. v. i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic.
| |
Collapse
|
9
|
Wu Y, Zhou T, Gu C, Yin B, Yang S, Zhang Y, Wu R, Wei W. Geographical distribution and species variation of gut microbiota in small rodents from the agro-pastoral transition ecotone in northern China. Ecol Evol 2024; 14:e11084. [PMID: 38469048 PMCID: PMC10926059 DOI: 10.1002/ece3.11084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
The gut microbiota of rodents is essential for survival and adaptation and is susceptible to various factors, ranging from environmental conditions to genetic predispositions. Nevertheless, few comparative studies have considered the contribution of species identity and geographic spatial distance to variations in the gut microbiota. In this study, a random sampling survey encompassing four rodent species (Apodemus agrarius, Cricetulus barabensis, Tscherskia triton and Rattus norvegicus) was conducted at five sites in northern China's farming-pastoral ecotone. Through a cross-factorial comparison, we aimed to discern whether belonging to the same species or sharing the same capture site predominantly influences the composition of gut microbiota. Notably, the observed variations in microbiome composition among these four rodent species match the host phylogeny at the family level but not at the species level. The gut microbiota of these four rodent species exhibited typical mammalian characteristics, predominantly characterized by the Firmicutes and Bacteroidetes phyla. As the geographic distance between populations increased, the number of shared microbial taxa among conspecific populations decreased. We observed that within a relatively small geographical range, even different species exhibited convergent α-diversity due to their inhabitation within the same environmental microbial pool. In contrast, the composition and structure of the intestinal microbiota in the allopatric populations of A. agrarius demonstrated marked differences, similar to those of C. barabensis. Additionally, geographical environmental elements exhibited significant correlations with diversity indices. Conversely, host-related factors had minimal influence on microbial abundance. Our findings indicated that the similarity of the microbial compositions was not determined primarily by the host species, and the location of the sampling explained a greater amount of variation in the microbial composition, indicating that the local environment played a crucial role in shaping the microbial composition.
Collapse
Affiliation(s)
- Yongzhen Wu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Taoxiu Zhou
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Chen Gu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Baofa Yin
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Shengmei Yang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Yunzeng Zhang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Ruiyong Wu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Wanhong Wei
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
10
|
Pasciullo Boychuck S, Brenner LJ, Gagorik CN, Schamel JT, Baker S, Tran E, vonHoldt BM, Koepfli K, Maldonado JE, DeCandia AL. The gut microbiomes of Channel Island foxes and island spotted skunks exhibit fine-scale differentiation across host species and island populations. Ecol Evol 2024; 14:e11017. [PMID: 38362164 PMCID: PMC10867392 DOI: 10.1002/ece3.11017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024] Open
Abstract
California's Channel Islands are home to two endemic mammalian carnivores: island foxes (Urocyon littoralis) and island spotted skunks (Spilogale gracilis amphiala). Although it is rare for two insular terrestrial carnivores to coexist, these known competitors persist on both Santa Cruz Island and Santa Rosa Island. We hypothesized that examination of their gut microbial communities would provide insight into the factors that enable this coexistence, as microbial symbionts often reflect host evolutionary history and contemporary ecology. Using rectal swabs collected from island foxes and island spotted skunks sampled across both islands, we generated 16S rRNA amplicon sequencing data to characterize their gut microbiomes. While island foxes and island spotted skunks both harbored the core mammalian microbiome, host species explained the largest proportion of variation in the dataset. We further identified intraspecific variation between island populations, with greater differentiation observed between more specialist island spotted skunk populations compared to more generalist island fox populations. This pattern may reflect differences in resource utilization following fine-scale niche differentiation. It may further reflect evolutionary differences regarding the timing of intraspecific separation. Considered together, this study contributes to the growing catalog of wildlife microbiome studies, with important implications for understanding how eco-evolutionary processes enable the coexistence of terrestrial carnivores-and their microbiomes-in island environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Elton Tran
- Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Klaus‐Peter Koepfli
- Center for Species SurvivalSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian's National Zoo & Conservation Biology InstituteWashingtonDCUSA
| | - Alexandra L. DeCandia
- Biology, Georgetown UniversityWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian's National Zoo & Conservation Biology InstituteWashingtonDCUSA
| |
Collapse
|
11
|
Williams CE, Hammer TJ, Williams CL. Diversity alone does not reliably indicate the healthiness of an animal microbiome. THE ISME JOURNAL 2024; 18:wrae133. [PMID: 39018234 PMCID: PMC11334719 DOI: 10.1093/ismejo/wrae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Affiliation(s)
- Claire E Williams
- Department of Biology, University of Nevada, Reno, NV 89557, United States
| | - Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| | - Candace L Williams
- Conservation Science, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, United States
| |
Collapse
|
12
|
Brunetti AE, Lyra ML, Monteiro JPC, Zurano JP, Baldo D, Haddad CFB, Moeller AH. Convergence of gut microbiota in myrmecophagous amphibians. Proc Biol Sci 2023; 290:20232223. [PMID: 37964521 PMCID: PMC10646458 DOI: 10.1098/rspb.2023.2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of Xenohyla truncata, one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include Paludibacter, Treponema, and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.
Collapse
Affiliation(s)
- Andrés E. Brunetti
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Mariana L. Lyra
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Juliane P. C. Monteiro
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Juan P. Zurano
- Instituto de Biología Subtropical (IBS, UNaM-CONICET), Puerto Iguazú, Misiones 3370, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina
| | - Celio F. B. Haddad
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
13
|
Clough J, Schwab S, Mikac K. Gut Microbiome Profiling of the Endangered Southern Greater Glider ( Petauroides volans) after the 2019-2020 Australian Megafire. Animals (Basel) 2023; 13:3583. [PMID: 38003202 PMCID: PMC10668662 DOI: 10.3390/ani13223583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Studying the gut microbiome can provide valuable insights into animal health and inform the conservation management of threatened wildlife. Gut microbiota play important roles in regulating mammalian host physiology, including digestion, energy metabolism and immunity. Dysbiosis can impair such physiological processes and compromise host health, so it is essential that the gut microbiome be considered in conservation planning. The southern greater glider (Petauroides volans) is an endangered arboreal marsupial that faced widespread habitat fragmentation and population declines following the 2019-2020 Australian bushfire season. This study details baseline data on the gut microbiome of this species. The V3-V4 region of the 16S rRNA gene was amplified from scats collected from individuals inhabiting burnt and unburnt sites across southeastern Australia and sequenced to determine bacterial community composition. Southern greater glider gut microbiomes were characterised by high relative abundances of Firmicutes and Bacteroidota, which is consistent with that reported for other marsupial herbivores. Significant differences in gut microbial diversity and community structure were detected among individuals from different geographic locations. Certain microbiota and functional orthologues were also found to be significantly differentially abundant between locations. The role of wildfire in shaping southern greater glider gut microbiomes was shown, with some significant differences in the diversity and abundance of microbiota detected between burnt and unburnt sites. Overall, this study details the first data on greater glider (Petauroides) gut microbiomes, laying the foundation for future studies to further explore relationships between microbial community structure, environmental stressors and host health.
Collapse
Affiliation(s)
- Jordyn Clough
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Sibylle Schwab
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katarina Mikac
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
14
|
Williams CE, Brown AE, Williams CL. The role of diet and host species in shaping the seasonal dynamics of the gut microbiome. FEMS Microbiol Ecol 2023; 99:fiad156. [PMID: 38070877 PMCID: PMC10750813 DOI: 10.1093/femsec/fiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
The gut microbiome plays an important role in the health and fitness of hosts. While previous studies have characterized the importance of various ecological and evolutionary factors in shaping the composition of the gut microbiome, most studies have been cross-sectional in nature, ignoring temporal variation. Thus, it remains unknown how these same factors might affect the stability and dynamics of the gut microbiome over time, resulting in variation across the tree of life. Here, we used samples collected in each of four seasons for three taxa: the herbivorous southern white rhinoceros (Ceratotherium simum simum, n = 5); the carnivorous Sumatran tiger (Panthera tigris sumatrae, n = 5); and the red panda (Ailurus fulgens, n = 9), a herbivorous carnivore that underwent a diet shift in its evolutionary history from carnivory to a primarily bamboo-based diet. We characterize the variability of the gut microbiome among these three taxa across time to elucidate the influence of diet and host species on these dynamics. Altogether, we found that red pandas exhibit marked seasonal variation in their gut microbial communities, experiencing both high microbial community turnover and high variation in how individual red panda's gut microbiota respond to seasonal changes. Conversely, while the gut microbiota of rhinoceros change throughout the year, all individuals respond in the same way to seasonal changes. Tigers experience relatively low levels of turnover throughout the year, yet the ways in which individuals respond to seasonal transitions are highly varied. We highlight how the differences in microbiome richness and network connectivity between these three species may affect the level of temporal stability in the gut microbiota across the year.
Collapse
Affiliation(s)
- Claire E Williams
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Ashli E Brown
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762, United States
| | - Candace L Williams
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762, United States
- Beckman Center for Conservation Science, San Diego Zoo Wildlife Alliance, San Diego, CA 92027, United States
| |
Collapse
|
15
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
16
|
Hasaka S, Sakamoto S, Fujii K. The Potential of Digested Sludge-Assimilating Microflora for Biogas Production from Food Processing Wastes. Microorganisms 2023; 11:2321. [PMID: 37764166 PMCID: PMC10535770 DOI: 10.3390/microorganisms11092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Food processing wastes (FPWs) are residues generated in food manufacturing, and their composition varies depending on the type of food product being manufactured. Therefore, selecting and acclimatizing seed microflora during the initiation of biogas production is crucial for optimal outcomes. The present study examined the biogas production capabilities of digested sludge-assimilating and biogas-yielding soil (DABYS) and enteric (DABYE) microflorae when used as seed cultures for biogas production from FPWs. After subculturing and feeding these microbial seeds with various FPWs, we assessed their biogas-producing abilities. The subcultures produced biogas from many FPWs, except orange peel, suggesting that the heterogeneity of the bacterial members in the seed microflora facilitates quick adaptation to FPWs. Microflorae fed with animal-derived FPWs contained several methanogenic archaeal families and produced methane. In contrast, microflorae fed with vegetable-, fruit-, and crop-derived FPWs generated hydrogen, and methanogenic archaeal populations were diminished by repeated subculturing. The subcultured microflorae appear to hydrolyze carbohydrates and protein in FPWs using cellulase, pectinase, or protease. Despite needing enhancements in biogas yield for future industrial scale-up, the DABYS and DABYE microflorae demonstrate robust adaptability to various FPWs.
Collapse
Affiliation(s)
- Sato Hasaka
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Saki Sakamoto
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
- Applied Chemistry and Chemical Engineering Program, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| |
Collapse
|
17
|
Williams CE, Williams CL, Logan ML. Climate change is not just global warming: Multidimensional impacts on animal gut microbiota. Microb Biotechnol 2023; 16:1736-1744. [PMID: 37247194 PMCID: PMC10443335 DOI: 10.1111/1751-7915.14276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023] Open
Abstract
Climate change has rapidly altered many ecosystems, with detrimental effects for biodiversity across the globe. In recent years, it has become increasingly apparent that the microorganisms that live in and on animals can substantially affect host health and physiology, and the structure and function of these microbial communities can be highly sensitive to environmental variables. To date, most studies have focused on the effects of increasing mean temperature on gut microbiota, yet other aspects of climate are also shifting, including temperature variation, seasonal dynamics, precipitation and the frequency of severe weather events. This array of environmental pressures might interact in complex and non-intuitive ways to impact gut microbiota and consequently alter animal fitness. Therefore, understanding the impacts of climate change on animals requires a consideration of multiple types of environmental stressors and their interactive effects on gut microbiota. Here, we present an overview of some of the major findings in research on climatic effects on microbial communities in the animal gut. Although ample evidence has now accumulated that shifts in mean temperature can have important effects on gut microbiota and their hosts, much less work has been conducted on the effects of other climatic variables and their interactions. We provide recommendations for additional research needed to mechanistically link climate change with shifts in animal gut microbiota and host fitness.
Collapse
|
18
|
Meili CH, Jones AL, Arreola AX, Habel J, Pratt CJ, Hanafy RA, Wang Y, Yassin AS, TagElDein MA, Moon CD, Janssen PH, Shrestha M, Rajbhandari P, Nagler M, Vinzelj JM, Podmirseg SM, Stajich JE, Goetsch AL, Hayes J, Young D, Fliegerova K, Grilli DJ, Vodička R, Moniello G, Mattiello S, Kashef MT, Nagy YI, Edwards JA, Dagar SS, Foote AP, Youssef NH, Elshahed MS. Patterns and determinants of the global herbivorous mycobiome. Nat Commun 2023; 14:3798. [PMID: 37365172 PMCID: PMC10293281 DOI: 10.1038/s41467-023-39508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.
Collapse
Affiliation(s)
- Casey H Meili
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Adrienne L Jones
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Alex X Arreola
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Jeffrey Habel
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Carrie J Pratt
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Radwa A Hanafy
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Moustafa A TagElDein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Christina D Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Mitesh Shrestha
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Prajwal Rajbhandari
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Magdalena Nagler
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Julia M Vinzelj
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Sabine M Podmirseg
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | | | | - Diana Young
- Bavarian State Research Center for Agriculture, Freising, Germany
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics Czech Academy of Sciences, Prague, Czechia
| | - Diego Javier Grilli
- Área de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sardinia, Italy
| | - Silvana Mattiello
- University of Milan, Dept. of Agricultural and Environmental Sciences, Milan, Italy
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Andrew P Foote
- Oklahoma State University, Department of Animal and Food Sciences, Stillwater, OK, USA
| | - Noha H Youssef
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| | - Mostafa S Elshahed
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| |
Collapse
|
19
|
Azziz G, Giménez M, Carballo C, Espino N, Barlocco N, Batista S. Characterization of the fecal microbiota of Pampa Rocha pigs, a genetic resource endemic to eastern Uruguay. Heliyon 2023; 9:e16643. [PMID: 37303559 PMCID: PMC10248110 DOI: 10.1016/j.heliyon.2023.e16643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Pampa Rocha (PR) is a breed of pig that emerged in eastern Uruguay during the 18th century. They represent an important resource for non-intensive production using purebred or crossbred animals. However, productive activities have been oriented towards intensive production using commercial breeds, abandoning, except by some academic and educational institutions, the promotion of this creole breed. Thus, a population of few animals is still maintained, which could be in danger of disappearing. This work focuses on the fecal microbiota of these animals, which is related to the animal genetic background but also to their grazing capacity and resistance to weather. The structure and diversity of bacterial communities in the intestines of four PR adult females and of other breeds, including crosses, reared under non-grazing conditions, were analyzed and compared. Results obtained indicate that PR fecal microbiota is clearly different from those of other animals analyzed. Some sequences, corresponding to particular groups apparently related to the consumption of fiber, were strongly associated with PR pigs.
Collapse
Affiliation(s)
- Gastón Azziz
- Laboratorio de Microbiología, Facultad de Agronomía, UdelaR, Montevideo, Uruguay
| | - Matías Giménez
- Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Cecilia Carballo
- Unidad de Producción de Cerdos, Centro Regional Sur, Facultad de Agronomía, UdelaR, Canelones, Uruguay
| | - Nandy Espino
- Unidad de Producción de Cerdos, Centro Regional Sur, Facultad de Agronomía, UdelaR, Canelones, Uruguay
| | - Nelson Barlocco
- Unidad de Producción de Cerdos, Centro Regional Sur, Facultad de Agronomía, UdelaR, Canelones, Uruguay
| | - Silvia Batista
- Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
20
|
de Flamingh A, Ishida Y, Pečnerová P, Vilchis S, Siegismund HR, van Aarde RJ, Malhi RS, Roca AL. Combining methods for non-invasive fecal DNA enables whole genome and metagenomic analyses in wildlife biology. Front Genet 2023; 13:1021004. [PMID: 36712847 PMCID: PMC9876978 DOI: 10.3389/fgene.2022.1021004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
Non-invasive biological samples benefit studies that investigate rare, elusive, endangered, or dangerous species. Integrating genomic techniques that use non-invasive biological sampling with advances in computational approaches can benefit and inform wildlife conservation and management. Here, we used non-invasive fecal DNA samples to generate low- to medium-coverage genomes (e.g., >90% of the complete nuclear genome at six X-fold coverage) and metagenomic sequences, combining widely available and accessible DNA collection cards with commonly used DNA extraction and library building approaches. DNA preservation cards are easy to transport and can be stored non-refrigerated, avoiding cumbersome or costly sample methods. The genomic library construction and shotgun sequencing approach did not require enrichment or targeted DNA amplification. The utility and potential of the data generated was demonstrated through genome scale and metagenomic analyses of zoo and free-ranging African savanna elephants (Loxodonta africana). Fecal samples collected from free-ranging individuals contained an average of 12.41% (5.54-21.65%) endogenous elephant DNA. Clustering of these elephants with others from the same geographic region was demonstrated by a principal component analysis of genetic variation using nuclear genome-wide SNPs. Metagenomic analyses identified taxa that included Loxodonta, green plants, fungi, arthropods, bacteria, viruses and archaea, showcasing the utility of this approach for addressing complementary questions based on host-associated DNA, e.g., pathogen and parasite identification. The molecular and bioinformatic analyses presented here contributes towards the expansion and application of genomic techniques to conservation science and practice.
Collapse
Affiliation(s)
- Alida de Flamingh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Patrícia Pečnerová
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sahara Vilchis
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hans R. Siegismund
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rudi J. van Aarde
- Department of Zoology and Entomology, Conservation Ecology Research Unit, University of Pretoria, Pretoria, South Africa
| | - Ripan S. Malhi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alfred L. Roca
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
21
|
Rapid Oxford Nanopore Technologies MinION Sequencing Workflow for Campylobacter jejuni Identification in Broilers on Site—A Proof-of-Concept Study. Animals (Basel) 2022; 12:ani12162065. [PMID: 36009653 PMCID: PMC9405271 DOI: 10.3390/ani12162065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.
Collapse
|
22
|
Comparative Analysis of Microbiome Metagenomics in Reintroduced Wild Horses and Resident Asiatic Wild Asses in the Gobi Desert Steppe. Microorganisms 2022; 10:microorganisms10061166. [PMID: 35744684 PMCID: PMC9229091 DOI: 10.3390/microorganisms10061166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome offers important ecological benefits to the host; however, our understanding of the functional microbiome in relation to wildlife adaptation, especially for translocated endangered species, is lagging. In this study, we adopted a comparative metagenomics approach to test whether the microbiome diverges for translocated and resident species with different adaptive potentials. The composition and function of the microbiome of sympatric Przewalski’s horses and Asiatic wild asses in desert steppe were compared for the first time using the metagenomic shotgun sequencing approach. We identified a significant difference in microbiome composition regarding the microbes present and their relative abundances, while the diversity of microbe species was similar. Furthermore, the functional profile seemed to converge between the two hosts, with genes related to core metabolism function tending to be more abundant in wild asses. Our results indicate that sympatric wild equids differ in their microbial composition while harboring a stable microbial functional core, which may enable them to survive in challenging habitats. A higher abundance of beneficial taxa, such as Akkermansia, and genes related to metabolism pathways and enzymes, such as lignin degradation, may contribute to more diverse diet choices and larger home ranges of wild asses.
Collapse
|