1
|
Kouider Amar M, Rahal S, Laidi M, Kouar I, Bourahla RFEK, Akouche Y, Bouaraba R. Balancing competing objectives in bigel formulations using many-objective optimization algorithms and different decision-making methods. Eur J Pharm Biopharm 2024; 195:114167. [PMID: 38122946 DOI: 10.1016/j.ejpb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Many-objective optimization, which deals with balancing multiple competing objectives to find compromised solutions, is essential for solving complex problems. This study explores evolutionary algorithms for optimizing the microstructural, rheological, stability, and drug release properties of bigel systems formulated using structured almond oil, mixed organogelators, and carbopol. The oleogel was identified as the dispersed phase, with droplet sizes ranging from 1.43 µm to 7.37 µm, indicating improved characteristics compared to other bigels. Each formulation exhibited non-Newtonian shear-thinning and thixotropic behaviors, which were positively influenced by the proportions of the excipients. After undergoing multiple stress cycles, highly concentrated bigels exhibited phase separation. Unexpectedly, bigels with lower viscosity exhibited reduced rates of drug release. FT-IR and HPLC analyses confirmed the compatibility and stability of drug-excipient interactions, with impurities remaining below 4%. This study emphasizes the complex interactions within mixed lipid-based bigels, requiring many-objective optimization techniques to address conflicting objectives. The objectives of optimization involve simultaneously minimizing microstructural properties while maximizing structural recovery and drug release properties. This led to conflicting objectives, where achieving higher structural recovery did not align with the desired drug release rate. Additionally, more stable formulations did not meet the optimal microstructural objectives. To resolve these conflicts, an RSM-MaOEAs approach was applied, employing various decision-making methods. Among EAs, RSM-RVEA notably achieved exceptional convergence. Furthermore, three MaOEAs-integrated decision-making methods-WSM, WPM, NED-and the RSM-desirability, offered potential solutions. Overall, this research proposes a robust framework for compromising the bigels' performance and stability, with broader applications in drug delivery and related fields.
Collapse
Affiliation(s)
- Mohamed Kouider Amar
- Biomaterials and Transport Phenomena Laboratory (LBMPT), University Dr., Yahia Fares of Medea, Medea 26000, Algeria; Department of Process Engineering, Institute of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria; Laboratory of Quality Control, Physico-Chemical Department, SAIDAL of Medea, Medea 26000, Algeria; Faculty of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria.
| | - Soufiane Rahal
- Faculty of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria
| | - Maamar Laidi
- Biomaterials and Transport Phenomena Laboratory (LBMPT), University Dr., Yahia Fares of Medea, Medea 26000, Algeria; Faculty of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria
| | - Ibtihal Kouar
- Department of Process Engineering, Institute of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria; Faculty of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria
| | - Rym Farah El-Khansaa Bourahla
- Department of Process Engineering, Institute of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria; Faculty of Technology, University Dr., Yahia Fares of Medea, Medea 26000, Algeria
| | - Youcef Akouche
- Laboratory of Quality Control, Physico-Chemical Department, SAIDAL of GDC, Algiers 16000, Algeria
| | - Razki Bouaraba
- Laboratory of Quality Control, Physico-Chemical Department, SAIDAL of GDC, Algiers 16000, Algeria
| |
Collapse
|
2
|
Krishnappa M, Abraham S, Furtado SC, Krishnamurthy S, Rifaya A, Asiri YI, Chidambaram K, Pavadai P. An Integrated Computational and Experimental Approach to Formulate Tamanu Oil Bigels as Anti-Scarring Agent. Pharmaceuticals (Basel) 2024; 17:102. [PMID: 38256935 PMCID: PMC10818744 DOI: 10.3390/ph17010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Tamanu oil has traditionally been used to treat various skin problems. The oil has wound-healing and skin-regenerating capabilities and encourages the growth of new skin cells, all of which are helpful for fading scars and hyperpigmentation, as well as promoting an all-around glow. The strong nutty odor and high viscosity are the major disadvantages associated with its application. The aim of this study was to create bigels using tamanu oil for its anti-scarring properties and predict the possible mechanism of action through the help of molecular docking studies. In silico studies were performed to analyze the binding affinity of the protein with the drug, and the anti-scarring activity was established using a full-thickness excision wound model. In silico studies revealed that the components inophyllum C, 4-norlanosta-17(20),24-diene-11,16-diol-21-oic acid, 3-oxo-16,21-lactone, calanolide A, and calophyllolide had docking scores of -11.3 kcal/mol, -11.1 kcal/mol, -9.8 kcal/mol, and -8.6 kcal/mol, respectively, with the cytokine TGF-β1 receptor. Bigels were prepared with tamanu oil ranging from 5 to 20% along with micronized xanthan gum and evaluated for their pH, viscosity, and spreadability. An acute dermal irritation study in rabbits showed no irritation, erythema, eschar, or edema. In vivo excisional wound-healing studies performed on Wistar rats and subsequent histopathological studies showed that bigels had better healing properties when compared to the commercial formulation (MurivennaTM oil). This study substantiates the wound-healing and scar reduction potential of tamanu oil bigels.
Collapse
Affiliation(s)
- Megha Krishnappa
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, Bengaluru 56054, Karnataka, India; (M.K.); (S.C.F.); (S.K.)
| | - Sindhu Abraham
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, Bengaluru 56054, Karnataka, India; (M.K.); (S.C.F.); (S.K.)
| | - Sharon Caroline Furtado
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, Bengaluru 56054, Karnataka, India; (M.K.); (S.C.F.); (S.K.)
| | - Shwetha Krishnamurthy
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, Bengaluru 56054, Karnataka, India; (M.K.); (S.C.F.); (S.K.)
| | - Aynul Rifaya
- Department of Chemical Engineering, Erode Sengunther Engineering College, Erode 638057, Tamil Nadu, India;
| | - Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Asir Province, Saudi Arabia;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Asir Province, Saudi Arabia;
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, Bengaluru 560054, Karnataka, India
| |
Collapse
|
3
|
Loza-Rodríguez N, Millán-Sánchez A, López O. A biocompatible lipid-based bigel for topical applications. Eur J Pharm Biopharm 2023; 190:24-34. [PMID: 37433416 DOI: 10.1016/j.ejpb.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
The development of biocompatible delivery systems is a necessity for medical and topical applications. Herein, the development of a new bigel for topical application is described. It is composed of 40% colloidal lipid hydrogel and 60% olive oil and beeswax oleogel. Its characterization and the potential of the bigel as a drug carrier through the skin was evaluated in vitro using fluorescence microscopy and two phases of the bigel were labeled with two fluorescent probes: sodium fluorescein (hydrophilic phase) and Nile red (lipophilic phase). The structure of the bigel showed two phases with fluorescence microscopy in which the hydrogel phase was incorporated into a continuous oleogel matrix. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) presented a combination of vibrations characteristic of the different molecules forming the bigel, and Differential Scanning Calorimetry (DSC) showed different transitions attributed to beeswax lipids. Small-angle and wide-angle X-ray scattering (SAXS and WAXS) indicated a predominant lamellar structure with orthorhombic lateral packing that could be related to the arrangement of beeswax crystals. Bigel enables deeper penetration of hydrophilic and lipophilic probes into deeper layers, making it a promising candidate for effective topical carriers in medical and dermatological applications.
Collapse
Affiliation(s)
- Noèlia Loza-Rodríguez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Bicosome S.L. C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Aina Millán-Sánchez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Francavilla A, Corradini MG, Joye IJ. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023; 9:648. [PMID: 37623103 PMCID: PMC10453560 DOI: 10.3390/gels9080648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Bigels have been mainly applied in the pharmaceutical sector for the controlled release of drugs or therapeutics. However, these systems, with their intricate structures, hold great promise for wider application in food products. Besides their classical role as carrier and target delivery vehicles for molecules of interest, bigels may also be valuable tools for building complex food structures. In the context of reducing or even eliminating undesirable (but often highly functional) food components, current strategies often critically affect food structure and palatability. The production of solid fat systems that are trans-fat-free and have high levels of unsaturated fatty acids is one of the challenges the food industry currently faces. According to recent studies, bigels can be successfully used as ingredients for total or partial solid fat replacement in complex food matrices. This review aims to critically assess current research on bigels in food and pharmaceutical applications, discuss the role of bigel composition and production parameters on the characteristics of bigels and further expand the use of bigels as solid fat replacers and functional food ingredients. The hydrogel:oleogel ratio, selected gelators, inclusion of surfactants and encapsulation of molecules of interest, and process parameters (e.g., temperature, shear rate) during bigel production play a crucial role in the bigel's rheological and textural properties, microstructure, release characteristics, biocompatibility, and stability. Besides exploring the role of these parameters in bigel production, future research directions for bigels in a food context are explored.
Collapse
Affiliation(s)
- Alyssa Francavilla
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| | - Maria G. Corradini
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
- Arrell Food Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Iris J. Joye
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| |
Collapse
|
5
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Ilomuanya MO, Bassey PO, Ogundemuren DA, Ubani-Ukoma UN, Tsamis A, Fan Y, Michalakis K, Angsantikul P, Usman A, Amenaghawon AN. Development of Mucoadhesive Electrospun Scaffolds for Intravaginal Delivery of Lactobacilli spp., a Tenside, and Metronidazole for the Management of Bacterial Vaginosis. Pharmaceutics 2023; 15:pharmaceutics15041263. [PMID: 37111748 PMCID: PMC10143884 DOI: 10.3390/pharmaceutics15041263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial vaginosis (BV) is an infection of the vagina associated with thriving anaerobes, such as Gardnerella vaginitis and other associated pathogens. These pathogens form a biofilm responsible for the recurrence of infection after antibiotic therapy. The aim of this study was to develop a novel mucoadhesive polyvinyl alcohol and polycaprolactone electrospun nanofibrous scaffolds for vaginal delivery, incorporating metronidazole, a tenside, and Lactobacilli. This approach to drug delivery sought to combine an antibiotic for bacterial clearance, a tenside biofilm disruptor, and a lactic acid producer to restore healthy vaginal flora and prevent the recurrence of bacterial vaginosis. F7 and F8 had the least ductility at 29.25% and 28.39%, respectively, and this could be attributed to the clustering of particles that prevented the mobility of the crazes. F2 had the highest at 93.83% due to the addition of a surfactant that increased the affinity of the components. The scaffolds exhibited mucoadhesion between 31.54 ± 0.83% and 57.86 ± 0.95%, where an increased sodium cocoamphoacetate concentration led to increased mucoadhesion. F6 showed the highest mucoadhesion at 57.86 ± 0.95%, as compared to 42.67 ± 1.22% and 50.89 ± 1.01% for the F8 and F7 scaffolds, respectively. The release of metronidazole via a non-Fickian diffusion-release mechanism indicated both swelling and diffusion. The anomalous transport within the drug-release profile pointed to a drug-discharge mechanism that combined both diffusion and erosion. The viability studies showed a growth of Lactobacilli fermentum in both the polymer blend and the nanofiber formulation that was retained post-storage at 25 °C for 30 days. The developed electrospun scaffolds for the intravaginal delivery of Lactobacilli spp., along with a tenside and metronidazole for the management of bacterial vaginosis, provide a novel tool for the treatment and management of recurrent vaginal infection.
Collapse
Affiliation(s)
- Margaret O Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Peace O Bassey
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Deborah A Ogundemuren
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Uloma N Ubani-Ukoma
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Alkiviadis Tsamis
- Department of Mechanical Engineering, School of Engineering, University of Western Macedonia, 50100 Kozani, Greece
- School of Engineering, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Yuwei Fan
- Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Konstantinos Michalakis
- Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | - Abdulrahman Usman
- Department of Biotechnology and Pharmaceutical Microbiology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Andrew N Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City 300287, Nigeria
| |
Collapse
|
7
|
Alshorman A, Al-Hosainat N, Jackson T. Analysis of HIV latent infection model with multiple infection stages and different drug classes. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:713-732. [PMID: 36264087 DOI: 10.1080/17513758.2022.2113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Latently infected CD4+ T cells represent one of the major obstacles to HIV eradication even after receiving prolonged highly active anti-retroviral therapy (HAART). Long-term use of HAART causes the emergence of drug-resistant virus which is then involved in HIV transmission. In this paper, we develop mathematical HIV models with staged disease progression by incorporating entry inhibitor and latently infected cells. We find that entry inhibitor has the same effect as protease inhibitor on the model dynamics and therefore would benefit HIV patients who developed resistance to many of current anti-HIV medications. Numerical simulations illustrate the theoretical results and show that the virus and latently infected cells reach an infected steady state in the absence of treatment and are eliminated under treatment whereas the model including homeostatic proliferation of latently infected cells maintains the virus at low level during suppressive treatment. Therefore, complete cure of HIV needs complete eradication of latent reservoirs.
Collapse
Affiliation(s)
- Areej Alshorman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | | | - Trachette Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Ilomuanya MO, Salako BB, Ologunagba MO, Shonekan OO, Owodeha-Ashaka K, Osahon ES, Amenaghawon AN. Formulation and Optimization of Metronidazole and Lactobacillus spp. Layered Suppositories via a Three-Variable, Five-Level Central Composite Design for the Management of Bacterial Vaginosis. Pharmaceutics 2022; 14:2337. [PMID: 36365154 PMCID: PMC9694961 DOI: 10.3390/pharmaceutics14112337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Bacterial vaginosis, a polymicrobial clinical syndrome characterized by a shift in healthy vaginal microbiota due to bacterial colonization, is characterized by high recurrence rates after conventional treatment with an antimicrobial agent. This has necessitated the need to develop a formulation that has the potential to ensure Lactobacilli viability and bacterial clearance. This study seeks to develop and optimize a layered suppository using a five-level central composite design to ensure optimized metronidazole release and lactic acid viability. Layered suppositories were formulated using the fusion method using polyethylene glycol blend 1500/4000 and Ovucire® as suppository bases. Lactobacillus fermentum was incorporated in the molten mass before molding the solid body suppositories into the cavity of hollow-type suppositories and sealing the molten excipients. Artificial neural network model predictions for product optimization showed high predictive capacity, closely resembling experimental observations. The highest disintegration time recorded was 12.76 ± 0.37 min, with the optimized formulations showing lower times of 5.93 ± 0.98 min and an average weight of 1.17 ± 0.07 g. Histopathological observations determined high compatibility of suppositories with vaginal cells with no distortion or wearing of the vagina epithelium. This optimized formulation provides a safe and promising alternative to conventional suppositories in the treatment and prevention of the recurrence of bacterial vaginosis.
Collapse
Affiliation(s)
- Margaret O. Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, PMB 12003, Surulere, Lagos 101245, Nigeria
| | - Busayo B. Salako
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, PMB 12003, Surulere, Lagos 101245, Nigeria
| | - Modupe O. Ologunagba
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, PMB 12003, Surulere, Lagos 101245, Nigeria
| | - Omonike O. Shonekan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, PMB 12003, Surulere, Lagos 101245, Nigeria
| | - Kruga Owodeha-Ashaka
- Waterford Institute of Technology, School of Science and Computing, X91 K0EK Waterford, Ireland
| | - Eseosa S. Osahon
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, PMB 12003, Surulere, Lagos 101245, Nigeria
| | - Andrew N. Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City 300283, Nigeria
| |
Collapse
|
9
|
Catastrophic phase inversion of bigels characterized by fluorescence intensity-based 3D modeling and the formability for decorating and 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Martín-Illana A, Notario-Pérez F, Cazorla-Luna R, Ruiz-Caro R, Bonferoni MC, Tamayo A, Veiga MD. Bigels as drug delivery systems: From their components to their applications. Drug Discov Today 2021; 27:1008-1026. [PMID: 34942374 DOI: 10.1016/j.drudis.2021.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
Bigels are systems that usually result from mixing a hydrogel and an organogel: the aqueous phase is commonly formed by a hydrophilic biopolymer, whereas the organic phase comprises a gelled vegetable oil because of the presence of an organogelator. The proportion of the corresponding gelling agent in each phase, the organogel/hydrogel ratio, and the mixing temperature and speed all need to be taken into consideration for bigel manufacturing. Bigels, which are particularly useful drug delivery systems, have already been formulated for transdermal, buccal, and vaginal routes. Mechanical assessments and microscopy are the most reported characterization techniques. As we review here, their composition and unique structure confer promising drug delivery attributes, such as mucoadhesion, the ability to control drug release, and the possibility of including both hydrophilic and lipophilic drugs in the same system.
Collapse
Affiliation(s)
- Araceli Martín-Illana
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Notario-Pérez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raúl Cazorla-Luna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria C Bonferoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aitana Tamayo
- Department of Chemical-Physics of Surfaces and Processes, Institute of Ceramics and Glass, Spanish National Research Council, 28049 Madrid, Spain
| | - María D Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Development of Novel Rice Bran Wax/Gelatin-Based Biphasic Edible Gels and Characterization of their Microstructural, Thermal, and Mechanical Properties. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Cazorla-Luna R, Ruiz-Caro R, Veiga MD, Malcolm RK, Lamprou DA. Recent advances in electrospun nanofiber vaginal formulations for women's sexual and reproductive health. Int J Pharm 2021; 607:121040. [PMID: 34450222 DOI: 10.1016/j.ijpharm.2021.121040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
Electrospinning is an innovative technique that allows production of nanofibers and microfibers by applying a high voltage to polymer solutions of melts. The properties of these fibers - which include high surface area, high drug loading capacity, and ability to be manufactured from mucoadhesive polymers - may be particularly useful in a myriad of drug delivery and tissue engineering applications. The last decade has witnessed a surge of interest in the application of electrospinning technology for the fabrication of vaginal drug delivery systems for the treatment and prevention of diseases associated with women's sexual and reproductive health, including sexually transmitted infections (e.g. infection with human immunodeficiency virus and herpes simplex virus) vaginitis, preterm birth, contraception, multipurpose prevention technology strategies, cervicovaginal cancer, and general maintenance of vaginal health. Due to their excellent mechanical properties, electrospun scaffolds are also being investigated as next-generation materials in the surgical treatment of pelvic organ prolapse. In this article, we review the latest advances in the field.
Collapse
Affiliation(s)
- Raúl Cazorla-Luna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Soni K, Gour V, Agrawal P, Haider T, Kanwar IL, Bakshi A, Soni V. Carbopol-olive oil-based bigel drug delivery system of doxycycline hyclate for the treatment of acne. Drug Dev Ind Pharm 2021; 47:954-962. [PMID: 34280061 DOI: 10.1080/03639045.2021.1957916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The objective of this study was to prepare and evaluate the doxycycline hyclate containing bigel for the effective treatment of acne. METHODS Bigels are biphasic systems formed by water-based hydrogels and oil-based organogel. Carbopol 940 was used to prepare the hydrogel phase, whereas Span-60 and olive oil for the oleogel phase. RESULTS The microstructure of bigel confirmed the oil in water type emulsion formation. The average droplet size of formulations was found 15-50 µm, and a bell-shaped droplet distribution curve, rheological, or viscosity studies suggested that the consistency and stability of bigel decrease with high organogel concentration. Three formulations (F1, F2, and F3) of the different ratios of hydrogel:oleogel (60:40, 70:30, and 80:20) were prepared in which F1 was less stable compared to F2 and F3. The drug content of F2 and F3 was respectively 79.94 and 71.33%. Formulation F2 was found more effective as compared to F3 based on in vitro drug release studies. Bigel also showed better results during in vivo studies at the rabbit ear model, which reduce acne diameter up to 1.10 mm from 4.9 mm while gel reduced it up to 1.20 mm.
Collapse
Affiliation(s)
- Kumud Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Vishal Gour
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Poornima Agrawal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Indu Lata Kanwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Avijit Bakshi
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| |
Collapse
|