1
|
Bartz RH, Santos RRSA, Hellwig PS, Silva MS, Lenardão EJ, Jacob RG, Perin G. Synthesis of 5-Seleno-Substituted Spirocyclopenta[b]pyridine-2,5-dien-4-ones and Benzo[h]quinolines via Radical Cyclization of Arylethynylpyridines. Chem Asian J 2024; 19:e202400974. [PMID: 39297661 DOI: 10.1002/asia.202400974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Indexed: 11/09/2024]
Abstract
A practical strategy for obtaining novel 5-seleno-substituted spirocyclopenta[b]pyridines-2,5-dien-4-ones and benzo[h]quinolines via radical cyclization is reported. The synthetic protocol explores the reaction between arylethynylpyridines and diorganyl diselenides in acetonitrile as solvent and Oxone® as oxidant at 82 °C. This easy-to-handle, eco-friendly metal-free approach was carried out under an open atmosphere, affording functionalized organoselenium compounds in good to excellent yields. Control experiments and scale-up test were performed to demonstrate the efficiency of this methodology.
Collapse
Affiliation(s)
- Ricardo H Bartz
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas - RS, Brazil
| | - Rafaela R S A Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas - RS, Brazil
| | - Paola S Hellwig
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas - RS, Brazil
| | - Márcio S Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas - RS, Brazil
| | - Eder J Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas - RS, Brazil
| | - Raquel G Jacob
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas - RS, Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas - RS, Brazil
| |
Collapse
|
2
|
Kumar A, Kaushal A, Verma PK, Gupta MK, Chandra G, Kumar U, Yadav AK, Kumar D. An insight into recent developments in imidazole based heterocyclic compounds as anticancer agents: Synthesis, SARs, and mechanism of actions. Eur J Med Chem 2024; 280:116896. [PMID: 39366252 DOI: 10.1016/j.ejmech.2024.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Anjali Kaushal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India; Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Prabhakar K Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manoj K Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Ashok K Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
3
|
Abdelaziz ME, El-Miligy MMM, Fahmy SM, Abu-Serie MM, Hazzaa AA, Mahran MA. Imparting aromaticity to 2-pyridone derivatives by O-alkylation resulted in new competitive and non-competitive PIM-1 kinase inhibitors with caspase-activated apoptosis. J Enzyme Inhib Med Chem 2024; 39:2304044. [PMID: 38230430 PMCID: PMC10795791 DOI: 10.1080/14756366.2024.2304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024] Open
Abstract
New aromatic O-alkyl pyridine derivatives were designed and synthesised as Proviral Integration Moloney (PIM)-1 kinase inhibitors. 4c and 4f showed potent in vitro anticancer activity against NFS-60, HepG-2, PC-3, and Caco-2 cell lines and low toxicity against normal human lung fibroblast Wi-38 cell line. Moreover, 4c and 4f induced apoptosis in the four tested cancer cell lines with high percentage. In addition, 4c and 4f significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 4c and 4f showed potent PIM-1 kinase inhibitory activity with IC50 = 0.110, 0.095 µM, respectively. Kinetic studies indicated that 4c and 4f were both competitive and non-competitive inhibitors for PIM-1 kinase enzyme. In addition, in silico prediction of physiochemical properties, pharmacokinetic profile, ligand efficiency, ligand lipophilic efficiency, and induced fit docking studies were consistent with the biological and kinetic studies, and predicted that 4c and 4f could act as PIM-1 kinase competitive non-adenosine triphosphate (ATP) mimetics with drug like properties.
Collapse
Affiliation(s)
- Marwa E. Abdelaziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mostafa M. M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salwa M. Fahmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mona A. Mahran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Dwivedi AR, Jaiswal S, Kukkar D, Kumar R, Singh TG, Singh MP, Gaidhane AM, Lakhanpal S, Prasad KN, Kumar B. A decade of pyridine-containing heterocycles in US FDA approved drugs: a medicinal chemistry-based analysis. RSC Med Chem 2024:d4md00632a. [PMID: 39493227 PMCID: PMC11528346 DOI: 10.1039/d4md00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Heterocyclic scaffolds, particularly, pyridine-containing azaheterocycles, constitute a major part of the drugs approved in the past decade. In the present review, we explored the pyridine ring part of US FDA-approved small molecules (2014-2023). The analysis of the approved drugs bearing a pyridine ring revealed that a total of 54 drugs were approved. Among them, the significant number comprised the anticancer category (18 drugs, 33%), followed by drugs affecting the CNS system (11 drugs, 20%), which include drugs to treat migraines, Parkinsonism disorders, chemotherapeutic-induced nausea, insomnia, and ADHD or as CNS-acting analgesics or sedatives. Next, six drugs (11%) were also approved to treat rare conditions, followed by five drugs that affect the hematopoietic system. The analysis also revealed that drug approval was granted for antibiotics, antivirals, and antifungals, including drugs for the treatment of tropical and sub-tropical diseases. Primary drug targets explored were kinases, and the major metabolizing enzyme was CYP3A4. Further analysis of formulation types revealed that 50% of the approved drugs were tablets, followed by 17% capsules and 15% injections. Elemental analysis showed that most approved drugs contained sulfur, while fluorine was noted in 32 compounds. Therefore, the present review is a concerted effort to cover drugs bearing pyridine rings approved in the last decade and provide thorough discussion and commentary on their pharmacokinetics and pharmacodynamics aspects. Furthermore, in-depth structural and elemental analyses were explored, thus providing comprehensive guidance for medicinal chemists and scientists working in allied science domains.
Collapse
Affiliation(s)
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University Mathura, 17, Km Stone, National Highway #2, Delhi-Mathura Road India
| | - Deepak Kukkar
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Roshan Kumar
- Graphic Era (Deemed to be University) Clement Town Dehradun 248002 India
- Department Of Microbiology, Central University of Punjab VPO-Ghudda Punjab-151401 India
| | - Thakur Gurjeet Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education Wardha India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University Phagwara-144411 India
| | | | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Chauras Campus, HNB Garhwal University (A Central University) Srinagar Uttarakhand 246174 India
| |
Collapse
|
5
|
Almas I, Malik A, Rasool N, Kanwal A, Khalid T, Nawaz H. Microwave-assisted protocol towards synthesis of heterocyclic molecules: a comparative analysis with conventional synthetic methodologies (years 2019-2023): a review. Mol Divers 2024:10.1007/s11030-024-10981-y. [PMID: 39302538 DOI: 10.1007/s11030-024-10981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Microwave-assisted protocols have become extensively accepted across various scientific and technological domains because of their numerous advantages, shorter reaction times, higher yields, and often milder reaction conditions. In this review, we focus on the synthesis of N, O, and S-containing heterocyclic structural cores, crucial in the development of pharmaceuticals, agrochemicals, and materials science following through conventional and microwave method via eliminating the side products and enhances the product yield that is nowadays the biggest barrier for a synthetic chemist. The major findings emphasizes the substantial advantages of microwave-assisted techniques over conventional synthetic protocols. This comparative study underscores the potential of microwave-assisted techniques to revolutionize heterocyclic compound synthesis, providing insights into optimizing reaction conditions and expanding the scope of chemical synthesis in industrial applications.
Collapse
Affiliation(s)
- Iffat Almas
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Malik
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Tahira Khalid
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Hamna Nawaz
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
6
|
Dos Santos JC, Alves JEF, de Azevedo RDS, de Lima ML, de Oliveira Silva MR, da Silva JG, da Silva JM, de Carvalho Correia AC, do Carmo Alves de Lima M, de Oliveira JF, de Moura RO, de Almeida SMV. Study of nitrogen heterocycles as DNA/HSA binder, topoisomerase inhibitors and toxicological safety. Int J Biol Macromol 2024; 254:127651. [PMID: 37949265 DOI: 10.1016/j.ijbiomac.2023.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 μM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.
Collapse
Affiliation(s)
- Jéssica Celerino Dos Santos
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | | | - Maksuelly Libanio de Lima
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | - Josefa Gerlane da Silva
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | - Jamire Muriel da Silva
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | | | - Maria do Carmo Alves de Lima
- Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ricardo Olímpio de Moura
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
7
|
El-Miligy MMM, Abdelaziz ME, Fahmy SM, Ibrahim TM, Abu-Serie MM, Mahran MA, Hazzaa AA. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities. J Enzyme Inhib Med Chem 2023; 38:2152810. [PMID: 36629075 PMCID: PMC9848351 DOI: 10.1080/14756366.2022.2152810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.
Collapse
Affiliation(s)
- Mostafa M. M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,CONTACT Mostafa M. M. El-Miligy
| | - Marwa E. Abdelaziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,Marwa E. Abdelaziz Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, 1st El-khartoum Square, Alexandria, 21521, Egypt
| | - Salwa M. Fahmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt)
| | - Mona A. Mahran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Voronin VV, Polynski MV, Ledovskaya MS. 1,2,4-Triazines and Calcium Carbide in the Catalyst-Free Synthesis of 2,3,6-Trisubstituted Pyridines and Their D-, 13 C-, and Doubly D 2 - 13 C 2 -Labeled Analogues. Chem Asian J 2023; 18:e202300781. [PMID: 37843978 DOI: 10.1002/asia.202300781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A novel synthetic approach to 2,3,6-trisubstituted pyridines, their 4,5-dideuterated derivatives, 4,5-13 C2 - and doubly-labeled D2 -13 C2 -pyridines has been developed using catalyst-free [4+2] cycloaddition of 1,2,4-triazines and in situ generated acetylene or labeled acetylene. Calcium carbide and water or deuterium oxide were used for the in situ generation of acetylene and dideuteroacetylene. Calcium carbide-13 C2 in the mixture with water or deuterium oxide was applied as 13 C2 -acetylene and D2 -13 C2 -acetylene source.
Collapse
Affiliation(s)
- Vladimir V Voronin
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
- Current address: National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Maria S Ledovskaya
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
| |
Collapse
|
9
|
Güngör SA. Synthesis, DNA Binding Properties, Molecular Docking and ADME Studies of Schiff Base Compound Containing Pyridine-Propargyl Group. Chem Biodivers 2023; 20:e202300752. [PMID: 37782576 DOI: 10.1002/cbdv.202300752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
The structure of the pyridine-based Schiff base compound containing the propargyl group was characterized by NMR spectroscopy. Binding of compound 2 with double-stranded fish sperm DNA (Fsds-DNA) was investigated using viscosity measurement studies and UV/VIS and fluorescence spectral techniques. Binding of compound 2 with Fsds-DNA results in minor hypochromism with no change in absorption maxima and fluorescence quenching with almost no shift in emission maxima, which can be attributed to the groove-binding mode of the interaction. The binding constant was found to be 4.7×104 M-1 . The Fsds-DNA viscosity measurement, KI quenching and NaCl quenching studies and the competitive interaction between compound 2 and ethidium bromide with DNA confirm the proposed binding mode. In addition, interactions between compound 2 and the DNA double helix were analysed by molecular docking study in order to determine the binding mode and binding affinity. As a result of molecular docking, the binding affinity of the 2-DNA complex, which has the most stable conformation -8.10 kcal/mol and it is located in its minor groove. In addition, molecular docking and ADME studies for compound 2 were also performed.
Collapse
Affiliation(s)
- Seyit Ali Güngör
- Chemistry Department, Faculty of Science, Kahramanmaras Sütcü Imam University, 46100, Kahramanmaras, Turkey
| |
Collapse
|
10
|
Anwer KE, Hamza ZK, Ramadan RM. Synthesis, spectroscopic, DFT calculations, biological activity, SAR, and molecular docking studies of novel bioactive pyridine derivatives. Sci Rep 2023; 13:15598. [PMID: 37730837 PMCID: PMC10511440 DOI: 10.1038/s41598-023-42714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Enaminonitrile pyridine derivative was used as a precursor for preparation of fourteen heterocyclic compounds using both conventional thermal and microwave techniques. Diverse organic reagents, such as chloroacetyl chloride, acetic anhydride, chloroacetic acid, carbon disulfide, p-toluene sulfonyl chloride, maleic anhydride, phthalic anhydride, were used. The chemical formulae and structures of isolated derivatives were obtained using different analytical and spectroscopic techniques such as IR, 1H-, 13C-NMR as well as mass spectrometry. The spectroscopic analyses revealed diverse structure arrangements for the products. Molecular structure optimization of certain compounds were performed by the density functional theory (DFT/B3LYP) method and the basis set 6-31 G with double zeta plus polarization (d,p). The antimicrobial inhibition and the antioxidant activity of the reported compounds were screened. Compounds 5, 6, 11 and 13 exhibited the highest antibacterial inhibition, while compound 8 gave the highest scavenging activity (IC50 43.39 µg/ml) against the DPPH radical. Structure-activity relationship of the reported compounds were correlated with the data of antibacterial and the antioxidant activity. The global reactivity descriptors were also correlated with the biological properties of compounds. The molecular docking studies of reported compounds were investigated, and the analysis showed that the docked compounds have highly negative values for the functional binding scores. The binding interaction was found to be correlated with the substituent fragments of the compounds.
Collapse
Affiliation(s)
- Kurls E Anwer
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zeinab K Hamza
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt
| | - Ramadan M Ramadan
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Abstract
Azines, such as pyridines, quinolines, pyrimidines, and pyridazines, are widespread components of pharmaceuticals. Their occurrence derives from a suite of physiochemical properties that match key criteria in drug design and is tunable by varying their substituents. Developments in synthetic chemistry, therefore, directly impact these efforts, and methods that can install various groups from azine C-H bonds are particularly valuable. Furthermore, there is a growing interest in late-stage functionalization (LSF) reactions that focus on advanced candidate compounds that are often complex structures with multiple heterocycles, functional groups, and reactive sites. Because of factors such as their electron-deficient nature and the effects of the Lewis basic N atom, azine C-H functionalization reactions are often distinct from their arene counterparts, and the application of these reactions in LSF contexts is difficult. However, there have been many significant advances in azine LSF reactions, and this review will describe this progress, much of which has occurred over the past decade. It is possible to categorize these reactions as radical addition processes, metal-catalyzed C-H activation reactions, and transformations occurring via dearomatized intermediates. Substantial variation in reaction design within each category indicates both the rich reactivity of these heterocycles and the creativity of the approaches involved.
Collapse
Affiliation(s)
- Celena M Josephitis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Shafiq N, Shahzad N, Rida F, Ahmad Z, Nazir HA, Arshad U, Zareen G, Attiq N, Parveen S, Rashid M, Ali B. One-pot multicomponent synthesis of novel pyridine derivatives for antidiabetic and antiproliferative activities. Future Med Chem 2023; 15:1069-1089. [PMID: 37503685 DOI: 10.4155/fmc-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background: Due to the close relationship of diabetes with hypertension reported in various research, a set of pyridine derivatives with US FDA-approved drug cores were designed and integrated by artificial intelligence. Methods: Novel pyridines were designed and synthesized. Compounds MNS-1-MNS-4 were evaluated for their structure and were screened for their in vitro antidiabetic (α-amylase) activity and anticancer (HepG2) activity by methyl thiazolyl tetrazolium assay. Comparative 3D quantitative structure-activity relationship analysis and pharmacophore generation were carried out. Results: The study revealed MNS-1 and MNS-4 as good alternatives to acarbose as antidiabetic agents, and MNS-2 as a more viable, better alternative to doxorubicin in the methyl thiazolyl tetrazolium assay. Conclusion: This combination of studies identifies new and more active analogs of existing FDA-approved drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Nabeel Shahzad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Fatima Rida
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Zaheer Ahmad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Hafiza Ayesha Nazir
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Uzma Arshad
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Gul Zareen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Naila Attiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Basharat Ali
- Department of Chemistry, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| |
Collapse
|
13
|
Dong G, Jiang Y, Zhang F, Zhu F, Liu J, Xu Z. Recent updates on 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids (2017-present): The anticancer activity, structure-activity relationships, and mechanisms of action. Arch Pharm (Weinheim) 2023; 356:e2200479. [PMID: 36372519 DOI: 10.1002/ardp.202200479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
Cancer is one of the leading causes of death across the world, and the prevalence and mortality rates of cancer will continue to grow. Chemotherapeutics play a critical role in cancer therapy, but drug resistance and side effects are major hurdles to effective treatment, evoking an immediate need for the discovery of new anticancer agents. Triazines including 1,2,3-, 1,2,4-, and 1,3,5-triazine have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Mechanistically, triazine derivatives could interfere with various signaling pathways to induce cancer cell death. Hence, triazine derivatives possess potential in vitro and in vivo efficacy against diverse cancers. In particular, triazine hybrids are able to overcome drug resistance and reduce side effects. Moreover, several triazine hybrids such as brivanib (indole-containing pyrrolo[2,1-f][1,2,4]triazine), gedatolisib (1,3,5-triazine-urea hybrid), and enasidenib (1,3,5-triazine-pyridine hybrid) have already been available in the market. Accordingly, triazine hybrids are useful scaffolds for the discovery of novel anticancer chemotherapeutics. This review focuses on the anticancer activity of 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids, together with the structure-activity relationships and mechanisms of action developed from 2017 to the present. The enriched structure-activity relationships may be useful for further rational drug development of triazine hybrids as potential clinical candidates.
Collapse
Affiliation(s)
- Gaoli Dong
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Yingchun Jiang
- College of Medicine, Huanghuai University, Zhumadian, China
| | - Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Fengyun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Junna Liu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| | - Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| |
Collapse
|
14
|
Synthesis of pyridine and furan based arylated ketones through palladium catalyst with DFT study of their static and frequency dependent NLO response. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
15
|
Elmorsy MR, Abdel-Latif E, Gaffer HE, Mahmoud SE, Fadda AA. Anticancer evaluation and molecular docking of new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives. Sci Rep 2023; 13:2782. [PMID: 36797448 PMCID: PMC9935538 DOI: 10.1038/s41598-023-29908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
3-Amino-4,6-dimethylpyrazolopyridine was applied as a precursor for the synthesis of some new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives through diazotization, followed by coupling with many 2-cyanoacetamide compounds, ethyl 3-(phenylamino)-3-thioxopropanoate, 3-oxo-N-phenylbutanethioamide, and α-bromo-ketone reagents [namely; 2-bromo-1-(4-fluorophenyl)ethan-1-one, 5-bromo-2-(bromoacetyl)thiophene, 3-(2-bromoacetyl)-2H-chromen-2-one and/or 3-chloroacetylacetone]. The prepared compounds were identified by spectroscopic analyses as IR, 1H NMR, and mass data. The anticancer activity of these pyrazolopyridine analogues was investigated in colon, hepatocellular, breast, and cervix carcinoma cell lines. The pyridopyrazolo-triazine compound 5a substituted with a carboxylate group gave a distinguished value of IC50 = 3.89 µM against the MCF-7 cell line compared to doxorubicin as a reference drug. Also, the pyridopyrazolo-triazine compound 6a substituted with the carbothioamide function gave good activity toward HCT-116 and MCF-7 cell lines with IC50 values of 12.58 and 11.71 µM, respectively. The discovered pyrazolopyridine derivatives were studied theoretically by molecular docking, and this study exhibited suitable binding between the active sides of pyrazolopyridine ligands and proteins (PDB ID: 5IVE). The pyridopyrazolo-triazine compound 6a showed the highest free binding energy (- 7.8182 kcal/mol) when docked inside the active site of selected proteins.
Collapse
Affiliation(s)
- Mohamed R. Elmorsy
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ehab Abdel-Latif
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Hatem E. Gaffer
- grid.419725.c0000 0001 2151 8157Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, 12622 Egypt
| | - Samar E. Mahmoud
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed A. Fadda
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
16
|
Synthesis, biological evaluation and molecular docking of new triphenylamine-linked pyridine, thiazole and pyrazole analogues as anticancer agents. BMC Chem 2022; 16:88. [DOI: 10.1186/s13065-022-00879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractA new series of pyridine, thiazole, and pyrazole analogues were synthesized. The pyridone analogues 4a-e were synthesized by treating N-aryl-2-cyano-3-(4-(diphenylamino)phenyl)acrylamides 3a-e with malononitrile. Many 4-arylidene-thiazolidin-5-one analogues 6a-d were obtained by Knoevenagel reactions of 4-(diphenylamino)benzaldehyde (1) with their corresponding thiazolidin-5-one derivatives 5a-d. The structural elucidation of the products was proven by the collections of spectroscopic methods such as IR, 1H NMR, 13C NMR, and MS data. Their anti-cancer activity was examined against two cell lines, MDA-MB-231 (mammary carcinomas) and A-549 (lung cancer). Compared with cisplatin as a reference standard drug, 6-amino-4-(4-(diphenylamino)phenyl)-2-oxo-1-(p-tolyl)-1,2-dihydropyridine-3,5-dicarbonitrile (4b) and 6-amino-4-(4-(diphenylamino)phenyl)-1-(4-nitrophenyl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile (4e) exhibited better efficiency against the A-549 cell line, with IC50 = 0.00803 and 0.0095 μM, respectively. Also, these compounds 4b and 4e showed the most potency among the examined compounds against MDA-MB-231 with IC50 = 0.0103 and 0.0147 μM, respectively. The newly synthesized compounds were docked inside the active sites of the selected proteins and were found to demonstrate proper binding. 2-Cyano-2-(4,4-(diphenylamino)benzylidene)-5-oxo-3-phenylthiazolidin-2-ylidene)-N-(p-tolyl)acetamide (6c) offered the highest binding affinity (− 8.1868 kcal/mol) when docked into (PDB ID:2ITO), in addition to 2-cyano-N-(4-(diethylamino)phenyl)-2-(4-(4-(diphenylamino)benzylidene)-5-oxo-3-phenylthiazolidin-2-ylidene)acetamide (6a) gave the highest energy score (− 9.3507 kcal/mol) with (PDB ID:2A4L).
Collapse
|
17
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
18
|
Friedrich M, Manolikakes G. Base‐mediated C4‐selective C‐H‐sulfonylation of pyridine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Friedrich
- University of Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Georg Manolikakes
- TU Kaiserslautern fachbereich Chemie Erwin-schrödinger-Str. Geb 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
19
|
Chaiputtanapun P, Lirdprapamongkol K, Thanaussavadate B, Phongphankhum T, Thippong T, Thangsan P, Montatip P, Ngiwsara L, Svasti J, Chuawong P. Biphasic dose-dependent G0/G1 and G2/M cell cycle arrest by synthetic 2,3-arylpyridylindole derivatives in A549 lung cancer cells. ChemMedChem 2022; 17:e202200127. [PMID: 35595678 DOI: 10.1002/cmdc.202200127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/19/2022] [Indexed: 11/09/2022]
Abstract
A collection of 2,3-arylpyridylindole derivatives were synthesized via the Larock heteroannulation and evaluated for their in vitro cytotoxic activity against A549 human lung cancer cells. Two derivatives expressed good cytotoxicity with IC 50 values of 1.18±0.25 μM and 0.87±0.10 μM and inhibited tubulin polymerization in vitro , with molecular docking studies suggesting the binding modes of the compounds in the colchicine binding site. Both derivatives have biphasic cell cycle arrest effects depending on their concentrations. At a lower concentration (0.5 μM), the two compounds induced G0/G1 cell cycle arrest by activating the JNK/p53/p21 pathway. At a higher concentration (2.0 μM), the two derivatives arrested the cell cycle at the G2/M phase via Akt signaling and inhibition of tubulin polymerization. Additional cytotoxic mechanisms of the two compounds involved the decreased expression of Bcl-2 and Mcl-1 antiapoptotic proteins through inhibition of the STAT3 and Akt signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pitak Chuawong
- Kasetsart University Faculty of Science, Chemistry, 50 Ngamwongwan Rd., Chatuchak, 10900, Bangkok, THAILAND
| |
Collapse
|
20
|
Nitulescu GM. Quantitative and Qualitative Analysis of the Anti-Proliferative Potential of the Pyrazole Scaffold in the Design of Anticancer Agents. Molecules 2022; 27:molecules27103300. [PMID: 35630776 PMCID: PMC9146646 DOI: 10.3390/molecules27103300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The current work presents an objective overview of the impact of one important heterocyclic structure, the pyrazole ring, in the development of anti-proliferative drugs. A set of 1551 pyrazole derivatives were extracted from the National Cancer Institute (NCI) database, together with their growth inhibition effects (GI%) on the NCI’s panel of 60 cancer cell lines. The structures of these derivatives were analyzed based on the compounds’ averages of GI% values across NCI-60 cell lines and the averages of the values for the outlier cells. The distribution and the architecture of the Bemis–Murcko skeletons were analyzed, highlighting the impact of certain scaffold structures on the anti-proliferative effect’s potency and selectivity. The drug-likeness, chemical reactivity and promiscuity risks of the compounds were predicted using AMDETlab. The pyrazole ring proved to be a versatile scaffold for the design of anticancer drugs if properly substituted and if connected with other cyclic structures. The 1,3-diphenyl-pyrazole emerged as a useful scaffold for potent and targeted anticancer candidates.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
21
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
22
|
Preclinical Therapeutic Assessment of a New Chemotherapeutics [Dichloro(4,4’-Bis(2,2,3,3-Tetrafluoropropoxy) Methyl)-2,2’-Bipryridine) Platinum] in an Orthotopic Patient-Derived Xenograft Model of Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:pharmaceutics14040839. [PMID: 35456673 PMCID: PMC9031226 DOI: 10.3390/pharmaceutics14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cisplatin is one of the most common therapeutics used in treatments of several types of cancers. To enhance cisplatin lipophilicity and reduce resistance and side effects, a polyfluorinated bipyridine-modified cisplatin analogue, dichloro[4,4’-bis(2,2,3,3-tetrafluoropropoxy)methyl)-2,2’-bipryridine] platinum (TFBPC), was synthesized and therapeutic assessments were performed. TFBPC displayed superior effects in inhibiting the proliferation of several cisplatin-resistant human cancer cell lines, including MDA-MB-231 breast cancers, COLO205 colon cancers and SK-OV-3 ovarian cancers. TFBPC bound to DNA and formed DNA crosslinks that resulted in DNA degradation, triggering the cell death program through the PARP/Bax/Bcl-2 apoptosis and LC3-related autophagy pathway. Moreover, TFBPC significantly inhibited tumor growth in both animal models which include a cell line-derived xenograft model (CDX) of cisplatin-resistant MDA-MB-231, and a patient-derived xenograft (PDX) model of triple-negative breast cancers (TNBCs). Furthermore, the biopsy specimen from TFBPC-treated xenografts revealed decreased expressions of P53, Ki-67 and PD-L1 coupled with higher expression of cleaved caspase 3, suggesting TFBPC treatment was effective and resulted in good prognostic indications. No significant pathological changes were observed in hematological and biochemistry tests in blood and histological examinations from the specimen of major organs. Therefore, TFBPC is a potential candidate for treatments of patients suffering from TNBCs as well as other cisplatin-resistant cancers.
Collapse
|
23
|
Albratty M, Ahmad Alhazmi H. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
De Rop AS, Rombaut J, Willems T, De Graeve M, Vanhaecke L, Hulpiau P, De Maeseneire SL, De Mol ML, Soetaert WK. Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization. Mar Drugs 2021; 20:md20010006. [PMID: 35049861 PMCID: PMC8777666 DOI: 10.3390/md20010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.
Collapse
Affiliation(s)
- Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Marilyn De Graeve
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Paco Hulpiau
- BioInformatics Knowledge Center (BiKC), Campus Station Brugge, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium;
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
- Correspondence:
| | - Maarten L. De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Wim K. Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| |
Collapse
|
25
|
Wang G, Sun S, Guo H. Current status of carbazole hybrids as anticancer agents. Eur J Med Chem 2021; 229:113999. [PMID: 34838335 DOI: 10.1016/j.ejmech.2021.113999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022]
Abstract
The drug resistance and low specificity of current available chemotherapeutics to cancer cells are the main reasons responsible for the failure of cancer chemotherapy and remain dramatic challenges for cancer therapy, creating an urgent need to develop novel anticancer agents. Carbazole nucleus, widely distributed in nature, is a predominant feature of a vast array of biologically active compounds. Carbazole derivatives exhibited potential antiproliferative activity against different cancer cell lines by diverse mechanisms, inclusive of arrest cell cycle and induce apoptosis, and several anticancer agents are carbazole-based compounds. Thus, carbazole derivatives represent a fertile source for discovery of novel anticancer therapeutic agents. Over the past several years, a variety of carbazole hybrids have been developed as potential anticancer agents. The present review focuses on the recent progress, from 2016 until now, in knowledge on anticancer properties, structure-activity relationships and mechanisms of action of carbazole hybrids to provide a basis for development of relevant therapeutic agents.
Collapse
Affiliation(s)
- Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, PR China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, 114005, Liaoning, PR China
| |
Collapse
|
26
|
Hagras M, Mandour AA, Mohamed EA, Elkaeed EB, Gobaara IMM, Mehany ABM, Ismail NSM, Refaat HM. Design, synthesis, docking study and anticancer evaluation of new trimethoxyphenyl pyridine derivatives as tubulin inhibitors and apoptosis inducers. RSC Adv 2021; 11:39728-39741. [PMID: 35494162 PMCID: PMC9044549 DOI: 10.1039/d1ra07922k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 12/05/2022] Open
Abstract
Microtubules have become an appealing target for anticancer drug development including mainly colchicine binding site inhibitors (CBSIs). A new series of novel trimethoxypyridine derivatives were designed and synthesized as tubulin targeting agents. In vitro anti-proliferative activities of the tested compounds compared to colchicine against hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), and breast cancer (MCF-7) was carried out. Most of compounds showed significant cytotoxic activities. Compounds Vb, Vc, Vf, Vj and VI showed superior anti-proliferative activities to colchicine. Where compound VI showed IC50 values of 4.83, 3.25 and 6.11 μM compared to colchicine (7.40, 9.32, 10.41 μM) against HCT 116, HepG-2 and MCF-7, respectively. The enzymatic activity against tubulin enzyme was carried out for the compounds that showed high anti-proliferative activity. Also, compound VI exhibited the highest tubulin polymerization inhibitory effect with an IC50 value of 8.92 nM compared to colchicine (IC50 value = 9.85 nM). Compounds Vb, Vc, Vf, Vj, & VIIIb showed promising activities with IC50 values of 22.41, 17.64, 20.39, 10.75, 31.86 nM, respectively. Cell cycle and apoptosis test for compound VI against HepG-2 cells, indicated that compound VI can arrest cell cycle at G2/M phase, and can cause apoptosis at pre-G1 phase, with high apoptotic effect 18.53%. Molecular docking studies of the designed compounds confirmed the essential hydrogen bonding with CYS241 beside the hydrophobic interaction at the binding site compared to reference compounds which assisted in the prediction of the structure requirements for the detected antitumor activity. Interaction of compounds VI (IC50 = 8.92 nM) (A) and Vj (IC50 = 10.75 nM) (B) with key amino acids of CBS.![]()
Collapse
Affiliation(s)
- Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Asmaa A. Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| | - Esraa A. Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| | - Eslam B. Elkaeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Nasser S. M. Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| | - Hanan M. Refaat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| |
Collapse
|