1
|
Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022; 9:896782. [PMID: 35677696 PMCID: PMC9167961 DOI: 10.3389/fcvm.2022.896782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. Ischemia and hypoxia following myocardial infarction (MI) cause subsequent cardiomyocyte (CM) loss, cardiac remodeling, and heart failure. Endothelial progenitor cells (EPCs) are involved in vasculogenesis, angiogenesis and paracrine effects and thus have important clinical value in alternative processes for repairing damaged hearts. In fact, this study showed that the endogenous repair of EPCs may not be limited to a single cell type. EPC interactions with cardiac cell populations and mesenchymal stem cells (MSCs) in ischemic heart disease can attenuate cardiac inflammation and oxidative stress in a microenvironment, regulate cell survival and apoptosis, nourish CMs, enhance mature neovascularization, alleviate adverse ventricular remodeling after infarction and enhance ventricular function. In this review, we introduce the definition and discuss the origin and biological characteristics of EPCs and summarize the mechanisms of EPC recruitment in ischemic heart disease. We focus on the crosstalk between EPCs and endothelial cells (ECs), smooth muscle cells (SMCs), CMs, cardiac fibroblasts (CFs), cardiac progenitor cells (CPCs), and MSCs during cardiac remodeling and repair. Finally, we discuss the translation of EPC therapy to the clinic and treatment strategies.
Collapse
|
2
|
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021; 17:195-206. [PMID: 33469209 PMCID: PMC9053333 DOI: 10.1038/s41574-020-00451-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus has profound effects on multiple organ systems; however, the loss of vision caused by diabetic retinopathy might be one of the most impactful in a patient's life. The retina is a highly metabolically active tissue that requires a complex interaction of cells, spanning light sensing photoreceptors to neurons that transfer the electrochemical signal to the brain with support by glia and vascular tissue. Neuronal function depends on a complex inter-dependency of retinal cells that includes the formation of a blood-retinal barrier. This dynamic system is negatively affected by diabetes mellitus, which alters normal cell-cell interactions and leads to profound vascular abnormalities, loss of the blood-retinal barrier and impaired neuronal function. Understanding the normal cell signalling interactions and how they are altered by diabetes mellitus has already led to novel therapies that have improved visual outcomes in many patients. Research highlighted in this Review has led to a new understanding of retinal pathophysiology during diabetes mellitus and has uncovered potential new therapeutic avenues to treat this debilitating disease.
Collapse
Affiliation(s)
- David A Antonetti
- Department of Ophthalmology and Visual Sciences, Department of Molecular and Integrative Physiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Paolo S Silva
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
3
|
O'Neill KM, Campbell DC, Edgar KS, Gill EK, Moez A, McLoughlin KJ, O'Neill CL, Dellett M, Hargey CJ, Abudalo RA, O'Hare M, Doyle P, Toh T, Khoo J, Wong J, McCrudden CM, Meloni M, Brunssen C, Morawietz H, Yoder MC, McDonald DM, Watson CJ, Stitt AW, Margariti A, Medina RJ, Grieve DJ. NOX4 is a major regulator of cord blood-derived endothelial colony-forming cells which promotes post-ischaemic revascularization. Cardiovasc Res 2020; 116:393-405. [PMID: 30937452 DOI: 10.1093/cvr/cvz090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/19/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Cord blood-derived endothelial colony-forming cells (CB-ECFCs) are a defined progenitor population with established roles in vascular homeostasis and angiogenesis, which possess low immunogenicity and high potential for allogeneic therapy and are highly sensitive to regulation by reactive oxygen species (ROS). The aim of this study was to define the precise role of the major ROS-producing enzyme, NOX4 NADPH oxidase, in CB-ECFC vasoreparative function. METHODS AND RESULTS In vitro CB-ECFC migration (scratch-wound assay) and tubulogenesis (tube length, branch number) was enhanced by phorbol 12-myristate 13-acetate (PMA)-induced superoxide in a NOX-dependent manner. CB-ECFCs highly-expressed NOX4, which was further induced by PMA, whilst NOX4 siRNA and plasmid overexpression reduced and potentiated in vitro function, respectively. Increased ROS generation in NOX4-overexpressing CB-ECFCs (DCF fluorescence, flow cytometry) was specifically reduced by superoxide dismutase, highlighting induction of ROS-specific signalling. Laser Doppler imaging of mouse ischaemic hindlimbs at 7 days indicated that NOX4-knockdown CB-ECFCs inhibited blood flow recovery, which was enhanced by NOX4-overexpressing CB-ECFCs. Tissue analysis at 14 days revealed consistent alterations in vascular density (lectin expression) and eNOS protein despite clearance of injected CB-ECFCs, suggesting NOX4-mediated modulation of host tissue. Indeed, proteome array analysis indicated that NOX4-knockdown CB-ECFCs largely suppressed tissue angiogenesis, whilst NOX4-overexpressing CB-ECFCs up-regulated a number of pro-angiogenic factors specifically-linked with eNOS signalling, in parallel with equivalent modulation of NOX-dependent ROS generation, suggesting that CB-ECFC NOX4 signalling may promote host vascular repair. CONCLUSION Taken together, these findings indicate a key role for NOX4 in CB-ECFCs, thereby highlighting its potential as a target for enhancing their reparative function through therapeutic priming to support creation of a pro-reparative microenvironment and effective post-ischaemic revascularization.
Collapse
Affiliation(s)
- Karla M O'Neill
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - David C Campbell
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Kevin S Edgar
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Eleanor K Gill
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Arya Moez
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Kiran J McLoughlin
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Christina L O'Neill
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Margaret Dellett
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Ciarán J Hargey
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Rawan A Abudalo
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Michael O'Hare
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Philip Doyle
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tinrui Toh
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Joshua Khoo
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - June Wong
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty and University Clinics Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty and University Clinics Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Denise M McDonald
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Chris J Watson
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Andriana Margariti
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - David J Grieve
- Centre for Experimental Medicine, Wellcome-Wolfson Institute, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| |
Collapse
|
4
|
Perrotta F, Perna A, Komici K, Nigro E, Mollica M, D’Agnano V, De Luca A, Guerra G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020; 9:E1886. [PMID: 32796767 PMCID: PMC7465688 DOI: 10.3390/cells9081886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ischemic heart disease is currently a major cause of mortality and morbidity worldwide. Nevertheless, the actual therapeutic scenario does not target myocardial cell regeneration and consequently, the progression toward the late stage of chronic heart failure is common. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that contribute to the homeostasis of the endothelial wall in acute and chronic ischemic disease. Calcium modulation and other molecular pathways (NOTCH, VEGFR, and CXCR4) contribute to EPC proliferation and differentiation. The present review provides a summary of EPC biology with a particular focus on the regulatory pathways of EPCs and describes promising applications for cardiovascular cell therapy.
Collapse
Affiliation(s)
- Fabio Perrotta
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Angelica Perna
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Klara Komici
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- CEINGE-Biotecnologie avanzate, 80145 Naples, Italy
| | - Mariano Mollica
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Vito D’Agnano
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Germano Guerra
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| |
Collapse
|
5
|
Von Willebrand Disease: From In Vivo to In Vitro Disease Models. Hemasphere 2020; 3:e297. [PMID: 31942548 PMCID: PMC6919471 DOI: 10.1097/hs9.0000000000000297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023] Open
Abstract
Von Willebrand factor (VWF) plays an essential role in primary hemostasis and is exclusively synthesized and stored in endothelial cells and megakaryocytes. Upon vascular injury, VWF is released into the circulation where this multimeric protein is required for platelet adhesion. Defects of VWF lead to the most common inherited bleeding disorder von Willebrand disease (VWD). Three different types of VWD exist, presenting with varying degrees of bleeding tendencies. The pathophysiology of VWD can be investigated by examining the synthesis, storage and secretion in VWF producing cells. These cells can either be primary VWF producing cells or transfected heterologous cell models. For many years transfected heterologous cells have been used successfully to elucidate many aspects of VWF synthesis. However, those cells do not fully reflect the characteristics of primary cells. Obtaining primary endothelial cells or megakaryocytes with a VWD phenotype, requires invasive procedures, such as vessel collection or a bone marrow biopsy. A more recent and promising development is the isolation of endothelial colony forming cells (ECFCs) from peripheral blood as a true-to-nature cell model. Alternatively, various animal models are available but limiting, therefore, new approaches are needed to study VWD and other bleeding disorders. A potential versatile source of endothelial cells and megakaryocytes could be induced pluripotent stem cells (iPSCs). This review gives an overview of models that are available to study VWD and VWF and will discuss novel approaches that can be considered to improve the understanding of the structural and functional mechanisms underlying this disease.
Collapse
|
6
|
Coco C, Sgarra L, Potenza MA, Nacci C, Pasculli B, Barbano R, Parrella P, Montagnani M. Can Epigenetics of Endothelial Dysfunction Represent the Key to Precision Medicine in Type 2 Diabetes Mellitus? Int J Mol Sci 2019; 20:ijms20122949. [PMID: 31212911 PMCID: PMC6628049 DOI: 10.3390/ijms20122949] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
In both developing and industrialized Countries, the growing prevalence of Type 2 Diabetes Mellitus (T2DM) and the severity of its related complications make T2DM one of the most challenging metabolic diseases worldwide. The close relationship between genetic and environmental factors suggests that eating habits and unhealthy lifestyles may significantly affect metabolic pathways, resulting in dynamic modifications of chromatin-associated proteins and homeostatic transcriptional responses involved in the progression of T2DM. Epigenetic mechanisms may be implicated in the complex processes linking environmental factors to genetic predisposition to metabolic disturbances, leading to obesity and type 2 diabetes mellitus (T2DM). Endothelial dysfunction represents an earlier marker and an important player in the development of this disease. Dysregulation of the endothelial ability to produce and release vasoactive mediators is recognized as the initial feature of impaired vascular activity under obesity and other insulin resistance conditions and undoubtedly concurs to the accelerated progression of atherosclerotic lesions and overall cardiovascular risk in T2DM patients. This review aims to summarize the most current knowledge regarding the involvement of epigenetic changes associated with endothelial dysfunction in T2DM, in order to identify potential targets that might contribute to pursuing “precision medicine” in the context of diabetic illness.
Collapse
Affiliation(s)
- Celeste Coco
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Luca Sgarra
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Assunta Potenza
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Carmela Nacci
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Barbara Pasculli
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Paola Parrella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Monica Montagnani
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
7
|
Crosby CO, Zoldan J. Mimicking the physical cues of the ECM in angiogenic biomaterials. Regen Biomater 2019; 6:61-73. [PMID: 30967961 PMCID: PMC6447000 DOI: 10.1093/rb/rbz003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
A functional microvascular system is imperative to build and maintain healthy tissue. Impaired microvasculature results in ischemia, thereby limiting the tissue's intrinsic regeneration capacity. Therefore, the ability to regenerate microvascular networks is key to the development of effective cardiovascular therapies. To stimulate the formation of new microvasculature, researchers have focused on fabricating materials that mimic the angiogenic properties of the native extracellular matrix (ECM). Here, we will review biomaterials that seek to imitate the physical cues that are natively provided by the ECM to encourage the formation of microvasculature in engineered constructs and ischemic tissue in the body.
Collapse
Affiliation(s)
- Cody O Crosby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
O'Neill CL, McLoughlin KJ, Chambers SEJ, Guduric-Fuchs J, Stitt AW, Medina RJ. The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. Front Med (Lausanne) 2018; 5:273. [PMID: 30460233 PMCID: PMC6232760 DOI: 10.3389/fmed.2018.00273] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
For over a decade various cell populations have been investigated for their vasoreparative potential. Cells with the capacity to promote blood vessel regeneration are commonly known as endothelial progenitor cells (EPCs); although such a definition is currently considered too simple for the complexity of cell populations involved in the reparative angiogenic process. A subset of EPCs called endothelial colony forming cells (ECFCs) have emerged as a suitable candidate for cytotherapy, primarily due to their clonogenic progenitor characteristics, unequivocal endothelial phenotype, and inherent ability to promote vasculogenesis. ECFCs can be readily isolated from human peripheral and cord blood, expanded ex vivo and used to revascularize ischemic tissues. These cells have demonstrated efficacy in several in vivo preclinical models such as the ischemic heart, retina, brain, limb, lung and kidney. This review will summarize the current pre-clinical evidence for ECFC cytotherapy and discuss their potential for clinical application.
Collapse
Affiliation(s)
- Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Kiran J McLoughlin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sarah E J Chambers
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability. Shock 2018; 46:390-7. [PMID: 27172159 DOI: 10.1097/shk.0000000000000606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. METHODS ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. RESULTS In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. DISCUSSION ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.
Collapse
|
10
|
Reid E, Guduric-Fuchs J, O'Neill CL, Allen LD, Chambers SEJ, Stitt AW, Medina RJ. Preclinical Evaluation and Optimization of a Cell Therapy Using Human Cord Blood-Derived Endothelial Colony-Forming Cells for Ischemic Retinopathies. Stem Cells Transl Med 2017; 7:59-67. [PMID: 29164803 PMCID: PMC5746158 DOI: 10.1002/sctm.17-0187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cell therapy using endothelial progenitors holds promise for vascular repair in ischemic retinopathies. Using a well-defined subpopulation of human cord blood-derived endothelial progenitors known as endothelial colony-forming cells (ECFCs), we have evaluated essential requirements for further development of this cell therapy targeting the ischemic retina, including dose response, delivery route, and toxicity. First, to evaluate therapeutic efficacy relating to cell dose, ECFCs were injected into the vitreous of mice with oxygen-induced retinopathy. Using angiography and histology, we found that intravitreal delivery of low dose (1 × 103 ) ECFCs was as effective as higher cell doses (1 × 104 , 1 × 105 ) in promoting vascular repair. Second, injection into the common carotid artery was tested as an alternative, systemic delivery route. Intracarotid ECFC delivery conferred therapeutic benefit which was comparable to intravitreal delivery using the same ECFC dose (1 × 105 ), although there were fewer human cells observed in the retinal vasculature following systemic delivery. Third, cell immunogenicity was evaluated by injecting ECFCs into the vitreous of healthy adult mice. Assessment of murine ocular tissues identified injected cells in the vitreous, while demonstrating integrity of the host retina. In addition, ECFCs did not invade into the retina, but remained in the vitreous, where they eventually underwent cell death within 3 days of delivery without evoking an inflammatory response. Human specific Alu sequences were not found in healthy mouse retinas after 3 days of ECFC delivery. These findings provide supportive preclinical evidence for the development of ECFCs as an efficacious cell product for ischemic retinopathies. Stem Cells Translational Medicine 2018;7:59-67.
Collapse
Affiliation(s)
- Emma Reid
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Lynsey-Dawn Allen
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Sarah E J Chambers
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Endothelial Progenitor Cells' Classification and Application in Neurological Diseases. Tissue Eng Regen Med 2017; 14:327-332. [PMID: 30603489 DOI: 10.1007/s13770-017-0043-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
Abstract
The therapeutic effects of endothelial progenitor cells (EPCs) on ischemic stroke have been extensively studied in recent years. However, the differences in early EPCs and endothelial outgrowth cells (EOCs) are still unclear. Clarifications of their respective properties and specific functioning characteristics contribute to better applications of EPCs in ischemic diseases. In this review, we discuss cellular origin, isolation, culture, surface markers of early EPCs and EOCs and relevant applications in neurological diseases. We conclude that EOCs possess all characteristics of true endothelial progenitors and have potent advantages in EPC-based therapies for ischemic diseases. A number of preclinical and clinical applications of EPCs in neurological diseases are under study. More studies are needed to determine the specific characteristics of EPCs and the relevant mechanisms of EPCs for neurological diseases.
Collapse
|
12
|
Carstens MH, Gómez A, Cortés R, Turner E, Pérez C, Ocon M, Correa D. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res 2017; 18:14-21. [DOI: 10.1016/j.scr.2016.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
|
13
|
Ormiston ML, Toshner MR, Kiskin FN, Huang CJZ, Groves E, Morrell NW, Rana AA. Generation and Culture of Blood Outgrowth Endothelial Cells from Human Peripheral Blood. J Vis Exp 2015:e53384. [PMID: 26780290 PMCID: PMC4758763 DOI: 10.3791/53384] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Historically, the limited availability of primary endothelial cells from patients with vascular disorders has hindered the study of the molecular mechanisms underlying endothelial dysfunction in these individuals. However, the recent identification of blood outgrowth endothelial cells (BOECs), generated from circulating endothelial progenitors in adult peripheral blood, may circumvent this limitation by offering an endothelial-like, primary cell surrogate for patient-derived endothelial cells. Beyond their value to understanding endothelial biology and disease modeling, BOECs have potential uses in endothelial cell transplantation therapies. They are also a suitable cellular substrate for the generation of induced pluripotent stem cells (iPSCs) via nuclear reprogramming, offering a number of advantages over other cell types. We describe a method for the reliable generation, culture and characterization of BOECs from adult peripheral blood for use in these and other applications. This approach (i) allows for the generation of patient-specific endothelial cells from a relatively small volume of adult peripheral blood and (ii) produces cells that are highly similar to primary endothelial cells in morphology, cell signaling and gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amer A Rana
- Department of Medicine, University of Cambridge;
| |
Collapse
|
14
|
Kachamakova-Trojanowska N, Bukowska-Strakova K, Zukowska M, Dulak J, Jozkowicz A. The real face of endothelial progenitor cells - Circulating angiogenic cells as endothelial prognostic marker? Pharmacol Rep 2015; 67:793-802. [PMID: 26321283 DOI: 10.1016/j.pharep.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) have been extensively studied for almost 19 years now and were considered as a potential marker for endothelial regeneration ability. On the other hand, circulating endothelial cells (CEC) were studied as biomarker for endothelial injury. Yet, in the literature, there is also huge incoherency in regards to terminology and protocols used. This results in misleading conclusions on the role of so called "EPCs", especially in the clinical field. The discrepancies are mainly due to strong phenotypic overlap between EPCs and circulating angiogenic cells (CAC), therefore changes in "EPC" terminology have been suggested. Other factors leading to inconsistent results are varied definitions of the studied populations and the lack of universal data reporting, which could strongly affect data interpretation. The current review is focused on controversies concerning the use of "EPCs"/CAC and CEC as putative endothelial diagnostic markers.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
15
|
Zhang Z, Dong J, Lobe CG, Gong P, Liu J, Liao L. CCR5 facilitates endothelial progenitor cell recruitment and promotes the stabilization of atherosclerotic plaques in ApoE-/- mice. Stem Cell Res Ther 2015; 6:36. [PMID: 25889019 PMCID: PMC4404610 DOI: 10.1186/s13287-015-0026-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/04/2022] Open
Abstract
Introduction Unstable atherosclerotic plaques are prone to rupture, which leads to atherothrombosis. Endothelial progenitor cells (EPCs) are bone marrow-derived precursor cells that may repair vascular injury in atherosclerosis. Chemokine (C-C motif) receptor 5 (CCR5) promotes mobilization of EPCs. In this study, we investigated the therapeutic potential of CCR5-overexpressing EPCs on plaque stabilization in an apolipoprotein E (ApoE)−/− mouse model. Methods The expression of CCR5 and its cognate ligand chemokine (C-C motif) ligand 5 (CCL5) was examined in atherosclerotic aortas of humans and mice by immunohistochemistry. Splenectomized ApoE−/− C57BL/6 J mice fed a high-fat diet for 24 weeks were intravenously injected with EPCs transfected with CCR5 overexpression lentivirus. The recruitment of EPCs over the atherosclerotic plaques was evaluated by immunofluorescence. The content of lipid, smooth muscle cells, monocytes/macrophages, and endothelial cells in atherosclerotic plaques was assayed by specific immunostaining. The serum levels of atherosclerosis-related inflammatory factors in ApoE−/− mice were measured by mouse atherosclerosis antibody array I. Results CCR5 and CCL5 are highly expressed in atherosclerotic plaques in both humans and mice. The ApoE−/− mice with CCR5-overexpressing EPC treatment demonstrated a more stable plaque formation with enhanced recruitment of EPC, reduced lipid, and macrophage content in the atherosclerotic plaques. CCR5-overexpressing EPC treatment also increased the content of endothelial cells and nitric oxide production in the plaques. In addition, the serum levels of interleukin-3 (IL-3), IL-5, IL-6, IL-13, CD40, and tumor necrosis factor-alpha and the plaque contents of IL-6 and matrix metalloproteinase-9 were reduced in mice with CCR5-overexpressing EPC treatment. Conclusions These findings suggest that CCR5 is a novel therapeutic target in EPC treatment for stabilization of atherosclerotic plaques. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0026-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongwen Zhang
- Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China.
| | - Jianjun Dong
- Department of Medicine, Qilu Hospital of Shandong University, Wenhua Road, Jinan, 250012, China.
| | - Corrinne G Lobe
- Miami Mice Research Corp., 101 College Street, Toronto, Ontario, M5G 1 L7, Canada.
| | - Peiyun Gong
- Department of Medicine, Qilu Hospital of Shandong University, Wenhua Road, Jinan, 250012, China.
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China.
| | - Lin Liao
- Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
16
|
Rajasekar P, O'Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications. J Diabetes Res 2015; 2015:436879. [PMID: 26106624 PMCID: PMC4464584 DOI: 10.1155/2015/436879] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.
Collapse
Affiliation(s)
- Poojitha Rajasekar
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Christina L. O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Lydia Eeles
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Alan W. Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Reinhold J. Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
- *Reinhold J. Medina:
| |
Collapse
|
17
|
Mi XS, Yuan TF, Ding Y, Zhong JX, So KF. Choosing preclinical study models of diabetic retinopathy: key problems for consideration. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2311-9. [PMID: 25429204 PMCID: PMC4242133 DOI: 10.2147/dddt.s72797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes mellitus in the eye. Although the clinical treatment for DR has already developed to a relative high level, there are still many urgent problems that need to be investigated in clinical and basic science. Currently, many in vivo animal models and in vitro culture systems have been applied to solve these problems. Many approaches have also been used to establish different DR models. However, till now, there has not been a single study model that can clearly and exactly mimic the developmental process of the human DR. Choosing the suitable model is important, not only for achieving our research goals smoothly, but also, to better match with different experimental proposals in the study. In this review, key problems for consideration in choosing study models of DR are discussed. These problems relate to clinical relevance, different approaches for establishing models, and choice of different species of animals as well as of the specific in vitro culture systems. Attending to these considerations will deepen the understanding on current study models and optimize the experimental design for the final goal of preventing DR.
Collapse
Affiliation(s)
- Xue-Song Mi
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, People's Republic of China ; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yong Ding
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong ; Guangdong-Hongkong-Macau Institute of Central Nervous System, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Di Santo S, Seiler S, Fuchs AL, Staudigl J, Widmer HR. The secretome of endothelial progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-kinase. PLoS One 2014; 9:e95731. [PMID: 24755675 PMCID: PMC3995762 DOI: 10.1371/journal.pone.0095731] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
Background Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Methods Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Results Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. Conclusion The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, Bern, Switzerland
| | - Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, Bern, Switzerland
| | - Anna-Lena Fuchs
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, Bern, Switzerland
| | - Jennifer Staudigl
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, Bern, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Lois N, McCarter RV, O’Neill C, Medina RJ, Stitt AW. Endothelial progenitor cells in diabetic retinopathy. Front Endocrinol (Lausanne) 2014; 5:44. [PMID: 24782825 PMCID: PMC3988370 DOI: 10.3389/fendo.2014.00044] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/21/2014] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide. Patients with DR may irreversibly lose sight as a result of the development of diabetic macular edema (DME) and/or proliferative diabetic retinopathy (PDR); retinal blood vessel dysfunction and degeneration plays an essential role in their pathogenesis. Although new treatments have been recently introduced for DME, including intravitreal vascular endothelial growth factor inhibitors (anti-VEGFs) and steroids, a high proportion of patients (~40-50%) do not respond to these therapies. Furthermore, for people with PDR, laser photocoagulation remains a mainstay therapy despite this being an inherently destructive procedure. Endothelial progenitor cells (EPCs) are a low-frequency population of circulating cells known to be recruited to sites of vessel damage and tissue ischemia where they promote vascular healing and re-perfusion. A growing body of evidence suggests that the number and function of EPCs are altered in patients with varying degrees of diabetes duration, metabolic control, and in the presence or absence of DR. Although there are no clear-cut outcomes from these clinical studies, there is mounting evidence that some EPC sub-types may be involved in the pathogenesis of DR and may also serve as biomarkers for disease progression and stratification. Moreover, some EPC sub-types have considerable potential as therapeutic modalities for DME and PDR in the context of cell therapy. This study presents basic clinical concepts of DR and combines this with a general insight on EPCs and their relation to future directions in understanding and treating this important diabetic complication.
Collapse
Affiliation(s)
- Noemi Lois
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Royal Victoria Hospital, Belfast, UK
| | - Rachel V. McCarter
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Royal Victoria Hospital, Belfast, UK
| | - Christina O’Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Royal Victoria Hospital, Belfast, UK
| | - Reinhold J. Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Royal Victoria Hospital, Belfast, UK
| | - Alan W. Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Royal Victoria Hospital, Belfast, UK
| |
Collapse
|
20
|
Roy R, Brodarac A, Kukucka M, Kurtz A, Becher PM, Jülke K, Choi YH, Pinzur L, Chajut A, Tschöpe C, Stamm C. Cardioprotection by placenta-derived stromal cells in a murine myocardial infarction model. J Surg Res 2013; 185:70-83. [PMID: 23830369 DOI: 10.1016/j.jss.2013.05.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Autologous cells for cell therapy of ischemic cardiomyopathy often display age- and disease-related functional impairment, whereas an allogenic immunotolerant cell product would allow off-the-shelf application of uncompromised donor cells. We investigated the cardiac regeneration potential of a novel, clinical-grade placenta-derived human stromal cell product (PLX-PAD). METHODS PLX-PAD cells derived from human donor placentas and expanded in a three-dimensional bioreactor system were tested for surface marker expression, proangiogenic, anti-inflammatory, and immunomodulatory properties in vitro. In BALB/C mice, the left anterior descending artery was ligated and PLX-PAD cells (n = 10) or vehicle (n = 10) were injected in the infarct border zone. Four weeks later, heart function was analyzed by two-dimensional and M-mode echocardiography. Scar size, microvessel density, extracellular matrix composition, myocyte apoptosis, and PLX-PAD cell retention were studied by histology. RESULTS In vitro, PLX-PAD cells displayed both proangiogenesis and anti-inflammatory properties, represented by the secretion of both vascular endothelial growth factor and angiopoietin-1 that was upregulated by hypoxia, as well as by the capacity to suppress T-cell proliferation and augment IL-10 secretion when co-cultured with peripheral blood mononuclear cells. Compared with control mice, PLX-PAD-treated hearts had better contractile function, smaller infarct size, greater regional left ventricular wall thickness, and less apoptosis after 4 wk. PLX-PAD stimulated both angiogenesis and arteriogenesis in the infarct border zone, and periostin expression was upregulated in PLX-PAD-treated hearts. CONCLUSIONS Clinical-grade PLX-PAD cells exert beneficial effects on ischemic myocardium that are associated with improved contractile function, and may be suitable for further evaluation aiming at clinical pilot trials of cardiac cell therapy.
Collapse
Affiliation(s)
- Rajika Roy
- Berlin-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun CK, Leu S, Sheu JJ, Tsai TH, Sung HC, Chen YL, Chung SY, Ko SF, Chang HW, Yip HK. Paradoxical impairment of angiogenesis, endothelial function and circulating number of endothelial progenitor cells in DPP4-deficient rat after critical limb ischemia. Stem Cell Res Ther 2013; 4:31. [PMID: 23517567 PMCID: PMC3706813 DOI: 10.1186/scrt181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/04/2013] [Indexed: 12/29/2022] Open
Abstract
Introduction We hypothesized that dipeptidyl peptidase-IV (DPP4) may impair angiogenesis, endothelial function, and the circulating number of endothelial progenitor cells (EPC) in a model of critical limb ischemia (CLI) through ligating the left femoral artery using DPP4-deficient rats. Methods Adult male DPP4-deficient (DPP4D) rats (n = 18) were equally divided into CLI only (DPP4D-CLI) and CLI treated by granulocyte colony-stimulating factor (GCSF) (DPP4D-CLI-GCSF). For comparison, age-matched wild-type (WT) Fischer 344 rats (n = 18) were randomized into two groups receiving identical treatment compared to their DPP4-deficient counterparts and labeled as WT-CLI (n = 9) and WT-CLI-GCSF (n = 9), respectively. Results The circulating number of EPCs (CD31+, CD34+, CD133, C-kit+) was significantly lower in DPP4-deficient than in WT rats on post-CLI days 1 and 4 (all P < 0.01). The ratio of ischemia/normal blood flow was remarkably lower in DPP4D-CLI-GCSF rats than in WT-CLI-GCSF animals on post-CLI Day 14 (all P < 0.01). Protein expressions of pro-angiogenic factors (endothelial nitric oxide synthase (eNOS), CXCR4, SDF-1α, vascular endothelial growth factor (VEGF)) were remarkably higher in WT-CLI than in DPP4D-CLI rats, and higher in WT-CLI-GCSF than in DPP4D-CLI-GCSF animals (all P < 0.01). Moreover, the numbers of small vessel in the ischemic area were substantially higher in WT-CLI-GCSF than in DPP4D-CLI-GCSF rats (P < 0.001). Furthermore, vasorelaxation and nitric oxide production of the normal femoral artery were significantly reduced in DPP4-deficient than in WT Fischer rats (all P < 0.01). Conclusions Contrary to our hypothesis, DPP4-deficient rats were inferior to age-matched WT Fischer rats in terms of angiogenesis, endothelial function, circulating EPC number and response to GCSF, suggesting a positive role of DPP4 in maintaining vascular function and tissue perfusion in this experimental setting.
Collapse
|
22
|
Stitt AW, Lois N, Medina RJ, Adamson P, Curtis TM. Advances in our understanding of diabetic retinopathy. Clin Sci (Lond) 2013; 125:1-17. [PMID: 23485060 DOI: 10.1042/cs20120588] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy remains the most common complication of diabetes mellitus and is a leading cause of visual loss in industrialized nations. The clinicopathology of the diabetic retina has been extensively studied, although the precise pathogenesis and cellular and molecular defects that lead to retinal vascular, neural and glial cell dysfunction remain somewhat elusive. This lack of understanding has seriously limited the therapeutic options available for the ophthalmologist and there is a need to identify the definitive pathways that initiate retinal cell damage and drive progression to overt retinopathy. The present review begins by outlining the natural history of diabetic retinopathy, the clinical features and risk factors. Reviewing the histopathological data from clinical specimens and animal models, the recent paradigm that neuroretinal dysfunction may play an important role in the early development of the disease is discussed. The review then focuses on the molecular pathogenesis of diabetic retinopathy with perspective provided on new advances that have furthered our understanding of the key mechanisms underlying early changes in the diabetic retina. Studies have also emerged in the past year suggesting that defective repair of injured retinal vessels by endothelial progenitor cells may contribute to the pathogenesis of diabetic retinopathy. We assess these findings and discuss how they could eventually lead to new therapeutic options for diabetic retinopathy.
Collapse
Affiliation(s)
- Alan W Stitt
- Centre for Vision and Vascular Science, Queen's University of Belfast, The Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | | | | | | | | |
Collapse
|
23
|
Chang WY, Lavoie JR, Kwon SY, Chen Z, Manias JL, Behbahani J, Ling V, Kandel RA, Stewart DJ, Stanford WL. Feeder-independent derivation of induced-pluripotent stem cells from peripheral blood endothelial progenitor cells. Stem Cell Res 2012; 10:195-202. [PMID: 23291290 DOI: 10.1016/j.scr.2012.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 11/24/2012] [Accepted: 11/24/2012] [Indexed: 11/19/2022] Open
Abstract
Induced-pluripotent stem cells (iPSCs) are a potential alternative cell source in regenerative medicine, which includes the use of differentiated iPSCs for cell therapies to treat coronary artery and/or peripheral arterial diseases. Late-outgrowth endothelial progenitor cells (late-EPCs) are a unique primary cell present in peripheral blood that exhibit high proliferative capacity, are being used in a wide variety of clinical trials, and have the ability to differentiate into mature endothelial cells. The objective of this study was to reprogram peripheral blood-derived late-EPCs to a pluripotent state under feeder-free and defined culture conditions. Late-EPCs that were retrovirally transduced with OCT4, SOX2, KLF4, c-MYC, and iPSC colonies were derived in feeder-free and defined media conditions. EPC-iPSCs expressed pluripotent markers, were capable of differentiating to cells from all three germ-layers, and retained a normal karyotype. Transcriptome analyses demonstrated that EPC-iPSCs exhibit a global gene expression profile similar to human embryonic stem cells (hESCs). We have generated iPSCs from late-EPCs under feeder-free conditions. Thus, peripheral blood-derived late-outgrowth EPCs represent an alternative cell source for generating iPSCs.
Collapse
Affiliation(s)
- Wing Y Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|