1
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Goto T, Ousaka D, Hirai K, Kotani Y, Kasahara S. Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology. Eur J Cardiothorac Surg 2023; 64:ezad304. [PMID: 37824193 PMCID: PMC10576638 DOI: 10.1093/ejcts/ezad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES The goal of this study was to identify the practical applications of intravenous cell therapy for single-ventricle physiology (SVP) by establishing experimental SVP models. METHODS An SVP with a three-stage palliation was constructed in an acute swine model without cardiopulmonary bypass. A modified Blalock-Taussig (MBT) shunt was created using an aortopulmonary shunt with the superior and inferior venae cavae (SVC and IVC, respectively) connected to the left atrium (n = 10). A bidirectional cavopulmonary shunt (BCPS) was constructed using a graft between the IVC and the left atrium with an SVC cavopulmonary connection (n = 10). The SVC and the IVC were connected to the pulmonary artery to establish a total cavopulmonary connection (TCPC, n = 10). The survival times of half of the animal models were studied. The other half and the biventricular sham control (n = 5) were injected intravenously with cardiosphere-derived cells (CDCs), and the cardiac retention of CDCs was assessed after 2 h. RESULTS All SVP models died within 20 h. Perioperative mortality was higher in the BCPS group because of lower oxygen saturation (P < 0.001). Cardiac retention of intravenously delivered CDCs, as detected by magnetic resonance imaging and histologic analysis, was significantly higher in the modified Blalock-Taussig and BCPS groups than in the TCPC group (P < 0.01). CONCLUSIONS Without the total right heart exclusion, stage-specific SVP models can be functionally constructed in pigs with stable outcomes. Intravenous CDC injections may be applicable in patients with SVP before TCPC completion, given that the initial lung trafficking is efficiently bypassed and sufficient systemic blood flow is supplied from the single ventricle.
Collapse
Affiliation(s)
- Takuya Goto
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Daiki Ousaka
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Kenta Hirai
- Department of Cardiovascular Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Kotani
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
3
|
Tekieli Ł, Szot W, Kwiecień E, Mazurek A, Borkowska E, Czyż Ł, Dąbrowski M, Kozynacka A, Skubera M, Podolec P, Majka M, Kostkiewicz M, Musiałek P. Single-photon emission computed tomography as a fundamental tool in evaluation of myocardial reparation and regeneration therapies. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:326-339. [PMID: 36967839 PMCID: PMC10031666 DOI: 10.5114/aic.2023.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023] Open
Abstract
Despite unquestionable progress in interventional and pharmacologic therapies of ischemic heart disease, the number of patients with chronic ischemic heart failure is increasing and the prognosis remains poor. Repair/restoration of functional myocardium through progenitor cell-mediated (PCs) healing and renovation of injured myocardium is one of the pivotal directions in biomedical research. PCs release numerous pro-angiogenic and anti-apoptotic factors. Moreover, they have self-renewal capability and may differentiate into specialized cells that include endothelial cells and cardiomyocytes. Uptake and homing of PCs in the zone(s) of ischaemic injury (i.e., their effective transplantation to the target zone) is an essential pre-requisite for any potential therapeutic effect; thus effective cell tracking is fundamental in pre-clinical and early clinical studies. Another crucial requirement in rigorous research is quantification of the infarct zone, including the amount of non-perfused and hypo-perfused myocardium. Quantitative and reproducible evaluation of global and regional myocardial contractility and left ventricular remodeling is particularly relevant in clinical studies. Using SPECT, our earlier work has addressed several critical questions in cardiac regenerative medicine including optimizing transcoronary cell delivery, determination of the zone(s) of myocardial cell uptake, and late functional improvement in relation to the magnitude of cell uptake. Here, we review the role of single-photon emission computed tomography (SPECT), a technique that offers high-sensitivity, quantitative cell tracking on top of its ability to evaluate myocardial perfusion and function on both cross-sectional and longitudinal bases. SPECT, with its direct relevance to routine clinical practice, is a fundamental tool in evaluation of myocardial reparation and regeneration therapies.
Collapse
Affiliation(s)
- Łukasz Tekieli
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
- Department of Interventional Cardiology, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Wojciech Szot
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Ewa Kwiecień
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Adam Mazurek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Eliza Borkowska
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Łukasz Czyż
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Maciej Dąbrowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Anna Kozynacka
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Maciej Skubera
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Jagiellonian University, Krakow, Poland
| | | | - Piotr Musiałek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Roth SP, Burk J, Brehm W, Troillet A. MSC in Tendon and Joint Disease: The Context-Sensitive Link Between Targets and Therapeutic Mechanisms. Front Bioeng Biotechnol 2022; 10:855095. [PMID: 35445006 PMCID: PMC9015188 DOI: 10.3389/fbioe.2022.855095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stromal cells (MSC) represent a promising treatment option for tendon disorders and joint diseases, primarily osteoarthritis. Since MSC are highly context-sensitive to their microenvironment, their therapeutic efficacy is influenced by their tissue-specific pathologically altered targets. These include not only cellular components, such as resident cells and invading immunocompetent cells, but also components of the tissue-characteristic extracellular matrix. Although numerous in vitro models have already shown potential MSC-related mechanisms of action in tendon and joint diseases, only a limited number reflect the disease-specific microenvironment and allow conclusions about well-directed MSC-based therapies for injured tendon and joint-associated tissues. In both injured tissue types, inflammatory processes play a pivotal pathophysiological role. In this context, MSC-mediated macrophage modulation seems to be an important mode of action across these tissues. Additional target cells of MSC applied in tendon and joint disorders include tenocytes, synoviocytes as well as other invading and resident immune cells. It remains of critical importance whether the context-sensitive interplay between MSC and tissue- and disease-specific targets results in an overall promotion or inhibition of the desired therapeutic effects. This review presents the authors’ viewpoint on disease-related targets of MSC therapeutically applied in tendon and joint diseases, focusing on the equine patient as valid animal model.
Collapse
Affiliation(s)
- Susanne Pauline Roth
- Veterinary Teaching Hospital, Department for Horses, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Walter Brehm
- Veterinary Teaching Hospital, Department for Horses, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Antonia Troillet
- Clinic for Horses, Ludwig-Maximilians-University of Munich, Munich, Germany
- *Correspondence: Antonia Troillet,
| |
Collapse
|
5
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
6
|
Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration. Nutrients 2021; 13:275. [PMID: 33477916 PMCID: PMC7833367 DOI: 10.3390/nu13010275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), which include congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, and many other cardiac disorders, cause about 30% of deaths globally; representing one of the main health problems worldwide. Among CVDs, ischemic heart diseases (IHDs) are one of the major causes of morbidity and mortality in the world. The onset of IHDs is essentially due to an unbalance between the metabolic demands of the myocardium and its supply of oxygen and nutrients, coupled with a low regenerative capacity of the heart, which leads to great cardiomyocyte (CM) loss; promoting heart failure (HF) and myocardial infarction (MI). To date, the first strategy recommended to avoid IHDs is prevention in order to reduce the underlying risk factors. In the management of IHDs, traditional therapeutic options are widely used to improve symptoms, attenuate adverse cardiac remodeling, and reduce early mortality rate. However, there are no available treatments that aim to improve cardiac performance by replacing the irreversible damaged cardiomyocytes (CMs). Currently, heart transplantation is the only treatment being carried out for irreversibly damaged CMs. Hence, the discovery of new therapeutic options seems to be necessary. Interestingly, recent experimental evidence suggests that regenerative stem cell medicine could be a useful therapeutic approach to counteract cardiac damage and promote tissue regeneration. To this end, researchers are tasked with answering one main question: how can myocardial regeneration be stimulated? In this regard, natural compounds from plant extracts seem to play a particularly promising role. The present review will summarize the recent advances in our knowledge of stem cell therapy in the management of CVDs; focusing on the main properties and potential mechanisms of natural compounds in stimulating and activating stem cells for myocardial regeneration.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Abstract
Stem cell therapy offers a breakthrough opportunity for the improvement of ischemic heart diseases. Numerous clinical trials and meta-analyses appear to confirm its positive but variable effects on heart function. Whereas these trials widely differed in design, cell type, source, and doses reinjected, cell injection route and timing, and type of cardiac disease, crucial key factors that may favour the success of cell therapy emerge from the review of their data. Various types of cell have been delivered. Injection of myoblasts does not improve heart function and is often responsible for severe ventricular arrythmia occurrence. Using bone marrow mononuclear cells is a misconception, as they are not stem cells but mainly a mix of various cells of hematopoietic lineages and stromal cells, only containing very low numbers of cells that have stem cell-like features; this likely explain the neutral results or at best the modest improvement in heart function reported after their injection. The true existence of cardiac stem cells now appears to be highly discredited, at least in adults. Mesenchymal stem cells do not repair the damaged myocardial tissue but attenuate post-infarction remodelling and contribute to revascularization of the hibernated zone surrounding the scar. CD34+ stem cells - likely issued from pluripotent very small embryonic-like (VSEL) stem cells - emerge as the most convincing cell type, inducing structural and functional repair of the ischemic myocardial area, providing they can be delivered in large amounts via intra-myocardial rather than intra-coronary injection, and preferentially after myocardial infarct rather than chronic heart failure.
Collapse
Affiliation(s)
- Philippe Hénon
- CellProthera SAS and Institut de Recherche en Hématologie et Transplantation, CellProthera SAS 12 rue du Parc, 68100, Mulhouse, France.
| |
Collapse
|
8
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
9
|
Masterson CH, Curley GF, Laffey JG. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med Exp 2019; 7:41. [PMID: 31346794 PMCID: PMC6658643 DOI: 10.1186/s40635-019-0235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undergoing intensive translational research for several debilitating conditions, including critical illnesses such as ARDS and sepsis. MSCs exert diverse biologic effects via their interaction with host tissues, via mechanisms that require the MSC to be in close proximity to the area of injury. Fully harnessing the therapeutic potential of advanced medicinal therapeutic products such as MSCs and their successful translation to clinical use requires a detailed understanding of MSC distribution and persistence in the injured tissues. Key aspects include understanding MSC distribution within the body, the response of the host to MSC administration, and the ultimate fate of exogenously administered MSCs within the host. Factors affecting this interaction include the MSC tissue source, the in vitro MSC culture conditions, the route of MSC administration and the specific issues relating to the target disease state, each of which remains to be fully characterised. Understanding these factors may generate strategies to modify MSC distribution and fate that may enhance their therapeutic effect. This review will examine our understanding of the mechanisms of action of MSCs, the early and late phase distribution kinetics of MSCs following in vivo administration, the ultimate fate of MSCs following administration and the potential importance of these MSC properties to their therapeutic effects. We will critique current cellular imaging and tracking methodologies used to track exogenous MSCs and their suitability for use in patients, discuss the insights they provide into the distribution and fate of MSCs after administration, and suggest strategies by which MSC biodistribution and fate may be modulated for therapeutic effect and clinical use. In conclusion, a better understanding of patterns of biodistribution and of the fate of MSCs will add important additional safety data regarding MSCs, address regulatory requirements, and may uncover strategies to increase the distribution and/or persistence of MSC at the sites of injury, potentially increasing their therapeutic potential for multiple disorders.
Collapse
Affiliation(s)
- Claire H Masterson
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland Education and Research Centre Smurfit Building, Beaumont Hospital, Dublin, 9, Ireland
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland. .,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA Hospital Group, Galway, Ireland.
| |
Collapse
|
10
|
Xu S, Liu C, Ji H. Concise Review: Therapeutic Potential of the Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Radiation-Induced Lung Injury: Progress and Hypotheses. Stem Cells Transl Med 2019; 8:344-354. [PMID: 30618085 PMCID: PMC6431606 DOI: 10.1002/sctm.18-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a common complication in radiotherapy of thoracic tumors and limits the therapeutic dose of radiation that can be given to effectively control tumors. RILI develops through a complex pathological process, resulting in induction and activation of various cytokines, infiltration by inflammatory cells, cytokine-induced activation of fibroblasts, and subsequent tissue remodeling by activated fibroblasts, ultimately leading to impaired lung function and respiratory failure. Increasing evidence shows that mesenchymal stem cells (MSCs) may play a main role in modulating inflammation and immune responses, promoting survival and repair of damaged resident cells and enhancing regeneration of damaged tissue through soluble paracrine factors and therapeutic extracellular vesicles. Therefore, the use of the MSC-derived secretome and exosomes holds promising potential for RILI therapy. Here, we review recent progress on the potential mechanisms of MSC therapy for RILI, with an emphasis on soluble paracrine factors of MSCs. Hypotheses on how MSC derived exosomes or MSC-released exosomal miRNAs could attenuate RILI are also proposed. Problems and translational challenges of the therapies based on the MSC-derived secretome and exosomes are further summarized and underline the need for caution on rapid clinical translation. Stem Cells Translational Medicine 2019;8:344-354.
Collapse
Affiliation(s)
- Siguang Xu
- Institute of Lung and Molecular TherapyXinxiang Medical UniversityXinxiangHenanPeople's Republic of China
| | - Cong Liu
- Institute of Lung and Molecular TherapyXinxiang Medical UniversityXinxiangHenanPeople's Republic of China
| | - Hong‐Long Ji
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
- Texas Lung Injury InstituteUniversity of Texas Health Science Center at TylerTylerTexasUSA
| |
Collapse
|
11
|
Cheng XX, Yang QY, Qi YL, Liu ZZ, Liu D, He S, Yang LH, Xie J. Apoptosis of mesenchymal stem cells is regulated by Rspo1 via the Wnt/β-catenin signaling pathway. Chronic Dis Transl Med 2019; 5:53-63. [PMID: 30993264 PMCID: PMC6450805 DOI: 10.1016/j.cdtm.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 01/19/2023] Open
Abstract
Objective The aim of this study was to investigate the effect and possible mechanism of action of roof plate-specific spondin1 (Rspo1) in the apoptosis of rat bone marrow mesenchymal stem cells (BMSCs). Methods Osteogenic and adipogenic differentiation of BMSCs was identified by Alizarin Red and Oil Red O staining, respectively. BMSC surface markers (cluster of differentiation 29 [CD29], CD90, and CD45) were detected using flow cytometry. BMSCs were transfected with an adenoviral vector encoding Rspo1 (BMSCs-Rspo1 group). The expression levels of Rspo1 gene and Rspo1 protein in the BMSCs-Rspo1 group and the two control groups (untransfected BMSCs group and BMSCs-green fluorescent protein [GFP] group) were analyzed and compared by quantitative polymerase chain reaction and Western blot. The occurrence of apoptosis in the three groups was detected by flow cytometry and acridine orange-ethidium bromide (AO-EB) double dyeing. The activity of the Wnt/β-catenin signaling pathway was evaluated by measuring the expression levels of the key proteins of the pathway (β-catenin, c-Jun N-terminal kinase [JNK], and phospho-JNK). Results Osteogenic and adipogenic differentiation was confirmed in cultured BMSCs by the positive expression of CD29 and CD90 and the negative expression of CD45. Significantly increased expression levels of Rspo1 protein in the BMSCs-Rspo1 group compared to those in the BMSCs (0.60 ± 0.05 vs. 0.13 ± 0.02; t=95.007, P=0.001) and BMSCs-GFP groups (0.60 ± 0.05 vs. 0.10 ± 0.02; t=104.842, P=0.001) were observed. The apoptotic rate was significantly lower in the BMSCs-Rspo1 group compared with those in the BMSCs group ([24.06 ± 2.37]% vs. [40.87 ± 2.82]%; t = 49.872, P = 0.002) and the BMSCs-GFP group ([24.06 ± 2.37]% vs. [42.34 ± 0.26]%; t = 62.358, P = 0.001). In addition, compared to the BMSCs group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.14 ± 0.14; t = −9.217, P = 0.000) and JNK (1.87 ± 0.17 vs. 0.61 ± 0.07; t = −22.289, P = 0.000) were increased in the BMSCs-Rspo1 group. Compared to the BMSCs-GFP group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.44 ± 0.14; t = −5.692, P = 0.000) and JNK (1.87 ± 0.17 vs. 0.53 ± 0.06; t = −10.589, P = 0.000) were also upregulated in the BMSCs-Rspo1 group. Moreover, the protein expression levels of phospho-JNK were increased in the BMSCs-Rspo1 group compared to those in the BMSCs group (1.89 ± 0.10 vs. 0.63 ± 0.09; t = −8.975, P = 0.001) and the BMSCs-GFP group (1.89 ± 0.10 vs. 0.69 ± 0.08; t = −9.483, P = 0.001). Conclusion The Wnt/β-catenin pathway could play a vital role in the Rspo1-mediated inhibition of apoptosis in BMSCs.
Collapse
Affiliation(s)
- Xiao-Xia Cheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao-Yan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.,The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yong-Li Qi
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.,Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Zhi-Zhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dan Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Sheng He
- The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Li-Hong Yang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
12
|
Berebichez-Fridman R, Montero-Olvera PR. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18:e264-e277. [PMID: 30607265 DOI: 10.18295/squmj.2018.18.03.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources-including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues-have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Roberto Berebichez-Fridman
- Department of Orthopaedic Surgery, American British Cowdray Medical Center, Mexico City, Mexico.,Tissue Engineering, Cell Therapy & Regenerative Medicine Unit, National Institute of Rehabilitation, Mexico City, Mexico
| | - Pablo R Montero-Olvera
- Tissue Engineering, Cell Therapy & Regenerative Medicine Unit, National Institute of Rehabilitation, Mexico City, Mexico
| |
Collapse
|
13
|
Abstract
Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.
Collapse
|
14
|
Abstract
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity.
Collapse
|
15
|
Haider KH, Aziz S, Al-Reshidi MA. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 2017; 12:969-982. [PMID: 29215316 DOI: 10.2217/rme-2017-0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Collapse
Affiliation(s)
| | - Salim Aziz
- Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA
| | - Mateq Ali Al-Reshidi
- Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Yu H, Lu K, Zhu J, Wang J. Stem cell therapy for ischemic heart diseases. Br Med Bull 2017; 121:135-154. [PMID: 28164211 DOI: 10.1093/bmb/ldw059] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. SOURCES OF DATA Key recent published literatures and ClinicalTrials.gov. AREAS OF AGREEMENT Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. AREAS OF CONTROVERSY The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. GROWING POINTS Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. AREAS TIMELY FOR DEVELOPING RESEARCH Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Kai Lu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China.,Department of Cardiology, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, P.R. China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| |
Collapse
|
17
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
18
|
Braza F, Dirou S, Forest V, Sauzeau V, Hassoun D, Chesné J, Cheminant-Muller MA, Sagan C, Magnan A, Lemarchand P. Mesenchymal Stem Cells Induce Suppressive Macrophages Through Phagocytosis in a Mouse Model of Asthma. Stem Cells 2016; 34:1836-45. [PMID: 26891455 DOI: 10.1002/stem.2344] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell (MSC) immunosuppressive functions make them attractive candidates for anti-inflammatory therapy in allergic asthma. However, the mechanisms by which they ensure therapeutic effects remain to be elucidated. In an acute mouse model of house dust mite (Der f)-induced asthma, one i.v. MSC injection was sufficient to normalize and stabilize lung function in Der f-sensitized mice as compared to control mice. MSC injection decreased in vivo airway responsiveness and decreased ex vivo carbachol-induced bronchial contraction, maintaining bronchial expression of the inhibitory type 2 muscarinic receptor. To evaluate in vivo MSC survival, MSCs were labeled with PKH26 fluorescent marker prior to i.v. injection, and 1 to 10 days later total lungs were digested to obtain single-cell suspensions. 91.5 ± 2.3% and 86.6 ± 6.3% of the recovered PKH26(+) lung cells expressed specific macrophage markers in control and Der f mice, respectively, suggesting that macrophages had phagocyted in vivo the injected MSCs. Interestingly, only PKH26(+) macrophages expressed M2 phenotype, while the innate PKH26(-) macrophages expressed M1 phenotype. Finally, the remaining 0.5% PKH26(+) MSCs expressed 10- to 100-fold more COX-2 than before injection, suggesting in vivo MSC phenotype modification. Together, the results of this study indicate that MSCs attenuate asthma by being phagocyted by lung macrophages, which in turn acquire a M2 suppressive phenotype. Stem Cells 2016;34:1836-1845.
Collapse
Affiliation(s)
- Faouzi Braza
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France
| | - Stéphanie Dirou
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France.,CHU de Nantes, Nantes, F-44000, France
| | - Virginie Forest
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France
| | - Vincent Sauzeau
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France
| | - Dorian Hassoun
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France
| | - Julie Chesné
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France
| | - Marie-Aude Cheminant-Muller
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France
| | - Christine Sagan
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France.,CHU de Nantes, Nantes, F-44000, France
| | - Antoine Magnan
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France.,CHU de Nantes, Nantes, F-44000, France
| | - Patricia Lemarchand
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France.,CNRS, UMR 6291, Nantes, F-44000, France.,Université de Nantes, Nantes, F-44000, France.,CHU de Nantes, Nantes, F-44000, France
| |
Collapse
|
19
|
In Vivo Tracking of Cell Therapies for Cardiac Diseases with Nuclear Medicine. Stem Cells Int 2016; 2016:3140120. [PMID: 26880951 PMCID: PMC4737458 DOI: 10.1155/2016/3140120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022] Open
Abstract
Even though heart diseases are amongst the main causes of mortality and morbidity in the world, existing treatments are limited in restoring cardiac lesions. Cell transplantations, originally developed for the treatment of hematologic ailments, are presently being explored in preclinical and clinical trials for cardiac diseases. Nonetheless, little is known about the possible efficacy and mechanisms for these therapies and they are the center of continuous investigation. In this scenario, noninvasive imaging techniques lead to greater comprehension of cell therapies. Radiopharmaceutical cell labeling, firstly developed to track leukocytes, has been used successfully to evaluate the migration of cell therapies for myocardial diseases. A substantial rise in the amount of reports employing this methodology has taken place in the previous years. We will review the diverse radiopharmaceuticals, imaging modalities, and results of experimental and clinical studies published until now. Also, we report on current limitations and potential advances of radiopharmaceutical labeling for cell therapies in cardiac diseases.
Collapse
|
20
|
Abstract
"During the past decade, studies in animals and humans have suggested that cell therapy has positive effects for the treatment of heart failure. This clinical effect may be mediated by angiogenesis and reduction in fibrosis rather than by regeneration of myocytes. Increased microvasculature and decreased scar also likely lead to improved cardiac function in the failing heart. The effects of cell therapy are not limited to one type of cell or delivery technique. Well-designed, large-scale, randomized clinical trials with objective end points will help to fully realize the therapeutic potential of cell-based therapy for treating heart failure."
Collapse
Affiliation(s)
- Amit N Patel
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA.
| | - Francisco Silva
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA
| | - Amalia A Winters
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA
| |
Collapse
|
21
|
Zhong Z, Hu JQ, Wu XD, Sun Y, Jiang J. Myocardin-related transcription factor-A-overexpressing bone marrow stem cells protect cardiomyocytes and alleviate cardiac damage in a rat model of acute myocardial infarction. Int J Mol Med 2015; 36:753-9. [PMID: 26135208 DOI: 10.3892/ijmm.2015.2261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/15/2015] [Indexed: 11/05/2022] Open
Abstract
Myocardin-related transcription factor-A (MRTF-A) can transduce biomechanical and humoral signals, which can positively modulate cardiac damage induced by acute myocardial infarction (AMI). In the clinic, bone marrow stem cell (BMSC) therapy is being increasingly utilized for AMI; however, the effects of BMSC transplantation remain to be optimized. Therefore, a novel strategy to enhance BMSC‑directed myocardial repair is particularly important. The present study was performed to assess the efficacy of MRTF‑A-overexpressing BMSCs in a rat model of AMI. Primary cardiomyocytes were prepared from neonatal Sprague-Dawley rats and BMSCs were isolated from male Sprague-Dawley rats (aged 8-12 weeks). Annexin V-phycoerythrin/7-actinomycin D staining was used to evaluate BMSC and cardiomyocyte survival after exposure to hydrogen peroxide in vitro. B-cell lymphoma 2 (Bcl-2) protein expression was measured by flow cytometric and western blot analyses. The effects of MRTF-A‑overexpressing BMSCs in a rat model of AMI were investigated by hematoxylin and eosin staining and western blot analysis of Bcl-2 expression in myocardial tissue sections. MRTF-A enhanced the migration of BMSCs, and overexpression of MRTF-A in BMSCs prevented hydrogen peroxide-induced apoptosis in primary cardiomyocytes ex vivo. In addition, co-culture of cardiomyocytes with MRTF‑A-overexpressing BMSCs inhibited hydrogen peroxide-induced apoptosis and the enhanced expression of Bcl-2. Furthermore, in vivo, enhanced cell survival was observed in the MRTF-A-modified BMSC group compared with that in the control group. These observations indicated that MRTF-A-overexpressing BMSCs have the potential to exert cardioprotective effects against hydrogen peroxide-induced injury and that treatment with MRTF‑A‑modified BMSCs is able to reverse cardiac dysfunction after AMI.
Collapse
Affiliation(s)
- Ze Zhong
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Jia-Qing Hu
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Xin-Dong Wu
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Yong Sun
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Jun Jiang
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| |
Collapse
|
22
|
Porat Y, Assa-Kunik E, Belkin M, Krakovsky M, Lamensdorf I, Duvdevani R, Sivak G, Niven MJ, Bulvik S. A novel potential therapy for vascular diseases: blood-derived stem/progenitor cells specifically activated by dendritic cells. Diabetes Metab Res Rev 2014; 30:623-34. [PMID: 24638886 DOI: 10.1002/dmrr.2543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Vascular diseases are a major cause of morbidity and mortality, particularly in diabetic patients. Stem/progenitor cell treatments with bone marrow-derived cells show safety and promising outcomes, albeit not without some preprocedural adverse events related to cell collection and mobilization. We describe a novel technology for generating a therapeutic population (BGC101) of enriched endothelial progenitor cells (EPCs) from non-mobilized blood, using dendritic cells to specifically direct stem/progenitor cell activity in vitro. METHODS AND RESULTS Selected immature plasmacytoid and myeloid dendritic cells from 24 healthy and two diabetic donors were activated with anti-inflammatory and pro-angiogenic molecules to induce specific activation signals. Co-culturing of activated dendritic cells with stem/progenitor cells for 12-66 h generated 83.7 ± 7.4 × 10(6) BGC101 cells with 97% viability from 250 mL of blood. BGC101, comprising 52.4 ± 2.5% EPCs (expressing Ulex-lectin, AcLDL uptake, Tie2, vascular endothelial growth factor receptor 1 and 2, and CD31), 16.1 ± 1.9% stem/progenitor cells (expressing CD34 and CD184) and residual B and T helper cells, demonstrated angiogenic and stemness potential and secretion of interleukin-8, interleukin-10, vascular endothelial growth factor and osteopontin. When administered to immunodeficient mice with limb ischemia (n = 40), BGC101 yielded a high safety profile and significantly increased blood perfusion, capillary density and leg function after 21 days. Cell tracking and biodistribution showed that engraftment was restricted to the ischemic leg. CONCLUSIONS These observations provide preliminary evidence that alternatively activated dendritic cells can promote the generation of EPC-enriched stem/progenitor cells within a 1-day culture. The resulting product BGC101 has the potential for treatment of various vascular conditions such as coronary heart disease, stroke and peripheral ischemia.
Collapse
Affiliation(s)
- Yael Porat
- BioGenCell Ltd, Sanz Medical Center, Laniado Hospital, Netanya, Israel; Sanz Medical Center, Laniado Hospital, Netanya, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhao SL, Zhang YJ, Li MH, Zhang XL, Chen SL. Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction. Stem Cell Res Ther 2014; 5:37. [PMID: 24635859 PMCID: PMC4055147 DOI: 10.1186/scrt425] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/11/2014] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Elevated midkine (MK) expression may contribute to ventricular remodeling and ameliorate cardiac dysfunction after myocardial infarction (MI). Ex vivo modification of signaling mechanisms in mesenchymal stem cells (MSCs) with MK overexpression may improve the efficacy of cell-based therapy. This study sought to assess the safety and efficacy of MSCs with MK overexpression transplantation in a rat model of MI. METHODS A pLenO-DCE vector lentivirus encoding MK was constructed and infected in MSCs. MSC migration activity and cytoprotection was examined in hypoxia-induced H9C2 cells using transwell insert in vitro. Rats were randomized into five groups: sham, MI plus injection of phosphate buffered saline (PBS), MSCs, MSCs-green fluorescent protein (MSCs-GFP) and MSCs-MK, respectively. Survival rates were compared among groups using log-rank test and left ventricular function was measured by echocardiography at baseline, 4, 8 and 12 weeks. RESULTS Overexpression of MK partially prevented hypoxia-induced MSC apoptosis and exerted MSC cytoprotection to anoxia induced H9C2 cells. The underlying mechanisms may be associated with the increased mRNA and protein levels of vascular endothelial growth factor (VEGF), transformation growth factor-β (TGF-β), insulin-like growth factor 1 (IGF-1) and stromal cell-derived factor 1 (SDF-1a) in MSCs-MK compared with isolated MSCs and MSCs-GFP. Consistent with the qPCR results, the culture supernatant of MSCs-MK had more SDF-1a (9.23 ng/ml), VEGF (8.34 ng/ml) and TGF-β1 (17.88 ng/ml) expression. In vivo, a greater proportion of cell survival was observed in the MSCs-MK group than in the MSCs-GFP group. Moreover, MSCs-MK administration was related to a significant improvement of cardiac function compared with other control groups at 12 weeks. CONCLUSIONS Therapies employing MSCs with MK overexpression may represent an effective treatment for improving cardiac dysfunction and survival rate after MI.
Collapse
|
24
|
Napp LC, Templin C. What You See is What You Get? Imaging of Cell Therapy for Cardiac Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-013-9243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Schmuck EG, Mulligan JD, Ertel RL, Kouris NA, Ogle BM, Raval AN, Saupe KW. Cardiac fibroblast-derived 3D extracellular matrix seeded with mesenchymal stem cells as a novel device to transfer cells to the ischemic myocardium. Cardiovasc Eng Technol 2013; 5:119-131. [PMID: 24683428 DOI: 10.1007/s13239-013-0167-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Demonstrate a novel manufacturing method to generate extracellular matrix scaffolds from cardiac fibroblasts (CF-ECM) as a therapeutic mesenchymal stem cell-transfer device. MATERIALS AND METHODS Rat CF were cultured at high-density (~1.6×105/cm2) for 10-14 days. Cell sheets were removed from the culture dish by incubation with EDTA and decellularized with water and peracetic acid. CF-ECM was characterized by mass spectrometry, immunofluorescence and scanning electron microscopy. CF-ECM seeded with human embryonic stem cell derived mesenchymal stromal cells (hEMSCs) were transferred into a mouse myocardial infarction model. 48 hours later, mouse hearts were excised and examined for CF-ECM scaffold retention and cell transfer. RESULTS CF-ECM scaffolds are composed of fibronectin (82%), collagens type I (13%), type III (3.4%), type V (0.2%), type II (0.1%) elastin (1.3%) and 18 non-structural bioactive molecules. Scaffolds remained intact on the mouse heart for 48 hours without the use of sutures or glue. Identified hEMSCs were distributed from the epicardium to the endocardium. CONCLUSIONS High density cardiac fibroblast culture can be used to generate CF-ECM scaffolds. CF-ECM scaffolds seeded with hEMSCs can be maintained on the heart without suture or glue. hEMSC are successfully delivered throughout the myocardium.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Jacob D Mulligan
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Rebecca L Ertel
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Nicholas A Kouris
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Amish N Raval
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA ; Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Kurt W Saupe
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Warrick JW, Young EWK, Schmuck EG, Saupe KW, Beebe DJ. High-content adhesion assay to address limited cell samples. Integr Biol (Camb) 2013; 5:720-7. [PMID: 23426645 PMCID: PMC3832292 DOI: 10.1039/c3ib20224k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell adhesion is a broad topic in cell biology that involves physical interactions between cells and other cells or the surrounding extracellular matrix, and is implicated in major research areas including cancer, development, tissue engineering, and regenerative medicine. While current methods have contributed significantly to our understanding of cell adhesion, these methods are unsuitable for tackling many biological questions requiring intermediate numbers of cells (10(2)-10(5)), including small animal biopsies, clinical samples, and rare cell isolates. To overcome this fundamental limitation, we developed a new assay to quantify the adhesion of ~10(2)-10(3) cells at a time on engineered substrates, and examined the adhesion strength and population heterogeneity via distribution-based modeling. We validated the platform by testing adhesion strength of cancer cells from three different cancer types (breast, prostate, and multiple myeloma) on both IL-1β activated and non-activated endothelial monolayers, and observed significantly increased adhesion for each cancer cell type upon endothelial activation, while identifying and quantifying distinct subpopulations of cell-substrate interactions. We then applied the assay to characterize adhesion of primary bone marrow stromal cells to different cardiac fibroblast-derived matrix substrates to demonstrate the ability to study limited cell populations in the context of cardiac cell-based therapies. Overall, these results demonstrate the sensitivity and robustness of the assay as well as its ability to enable extraction of high content, functional data from limited and potentially rare primary samples. We anticipate this method will enable a new class of biological studies with potential impact in basic and translational research.
Collapse
Affiliation(s)
- Jay W. Warrick
- University of Wisconsin, Biomedical Engineering, Madison, WI. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX
| | - Edmond W. K. Young
- University of Wisconsin, Biomedical Engineering, Madison, WI. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX
| | - Eric G. Schmuck
- University of Wisconsin, School of Medicine and Public Health, Madison, WI
| | - Kurt W. Saupe
- University of Wisconsin, School of Medicine and Public Health, Madison, WI
| | - David J. Beebe
- University of Wisconsin, Biomedical Engineering, Madison, WI. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX
| |
Collapse
|
27
|
Fukushima S, Sawa Y, Suzuki K. Choice of cell-delivery route for successful cell transplantation therapy for the heart. Future Cardiol 2013; 9:215-27. [PMID: 23463974 DOI: 10.2217/fca.12.85] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cell-delivery route is one of the major factors influencing the therapeutic effect and complications of cell transplantation therapy for cardiac diseases. There are four major clinically practical routes, with each method having its own advantages and disadvantages. First, intramyocardial injection allows targeted cell delivery into the areas of interest, although this induces mechanical injury, inflammation and islet-like donor cell clusters, leading to limited donor cell survival and arrhythmogenicity. Second, intracoronary injection is less likely to induce inflammation, whereas poor initial cell retention in the heart is a concern. Third, intravenous injection is easy and economical, but cell recruitment into the heart is not frequent. Finally, epicardial placement of 'cell sheets' enables higher efficiency of cell engraftment, but poor integration into the myocardium may be an issue. This review summarizes up-to-date clinical and preclinical knowledge regarding these cell-delivery methods. We further discuss the ways to refine these methods towards optimizing cell transplantation therapy for the heart.
Collapse
Affiliation(s)
- Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | | | | |
Collapse
|
28
|
Huang Z, Pei N, Shen Y, Gong Y, Xie X, Sun X, Zou Y, Qian J, Sun A, Ge J. A novel method to delivery stem cells to the injured heart: spatially focused magnetic targeting strategy. J Cell Mol Med 2012; 16:1203-5. [PMID: 22500918 PMCID: PMC3823074 DOI: 10.1111/j.1582-4934.2012.01581.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zheyong Huang
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
| | - Ning Pei
- College of Science Shanghai UniversityShanghai, China
| | - Yunli Shen
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
| | - Yongyong Gong
- College of Science Shanghai UniversityShanghai, China
| | - Xinxing Xie
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
| | - Xiaoning Sun
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan UniversityShanghai, China
- *Correspondence to: Junbo GE, MD, FACC., FESC., FSCAI., or Aijun SUN, MD, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China. Tel.: +86 21 64041990x2153 Fax: +86 21 64223006 E-mail:
| |
Collapse
|
29
|
Campbell NG, Suzuki K. Cell delivery routes for stem cell therapy to the heart: current and future approaches. J Cardiovasc Transl Res 2012; 5:713-26. [PMID: 22648235 DOI: 10.1007/s12265-012-9378-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
Abstract
An important factor to determine the success of stem cell therapy to the heart is the choice of cell delivery route. This will affect the fate of donor cells and subsequently influence the outcome of treatment; however, there is currently no optimum cell delivery route appropriate for every disease condition or every donor cell type. This review summarises currently available approaches for administering cells to the heart, with a particular focus on cell retention/survival and the therapeutic benefits seen in preclinical and clinical studies. Two major approaches are intracoronary and intramyocardial injection, which have been widely used for the delivery of various types of cells. Although there are advantages to both approaches, donor cell retention and survival are poor using these methods, potentially limiting therapeutic effects. Various attempts to improve current approaches, along with the development of emerging new approaches, are also described and discussed in this review.
Collapse
Affiliation(s)
- Niall G Campbell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | |
Collapse
|
30
|
Affiliation(s)
- Angel T Chan
- Department of Cardiology, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | |
Collapse
|
31
|
Nguyen PK, Lan F, Wang Y, Wu JC. Imaging: guiding the clinical translation of cardiac stem cell therapy. Circ Res 2011; 109:962-79. [PMID: 21960727 DOI: 10.1161/circresaha.111.242909] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cells have been touted as the holy grail of medical therapy, with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large-animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Department of Medicine, Division of Cardiology, Molecular Imaging Program at Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
32
|
Fernandes S, Kuklok S, McGonigle J, Reinecke H, Murry CE. Synthetic matrices to serve as niches for muscle cell transplantation. Cells Tissues Organs 2011; 195:48-59. [PMID: 22005610 DOI: 10.1159/000331414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poor cell retention and limited cell survival after grafting are major limitations of cell therapy. Recent studies showed that the use of matrices as vehicles at the time of cell injection can significantly improve cell engraftment by providing an appropriate structure and physical support for the injected cells. Properly designed matrices can also promote the organization of the cells into a functioning cardiac-like tissue and enhance integration between the host and the engrafted tissue. Furthermore, the use of an injectable biomaterial provides an opportunity to release in situ bioactive molecules that can further enhance the beneficial effects of cell transplantation. In this article we review a large variety of biologically derived synthetic and hybrid materials that have been tested as matrices for cardiac repair. We summarize the optimal parameters required for an ideal matrix including biocompatibility, injectability, degradation rate, and mechanical properties. Using an in vivo subcutaneous grafting model, we also provide novel data involving a side-by-side comparison of six synthetic matrices derived from maltodextrin. By systematically varying polymer molecular weight, cross-link density, and availability of cell adhesion motifs, a synthetic matrix was identified that supported skeletal myotube formation similar to Matrigel™. Our results emphasize not only the need to have a range of tunable matrices for cardiac cell therapy but also the importance of further characterizing the physical properties required for an ideal injectable matrix.
Collapse
Affiliation(s)
- Sarah Fernandes
- Center for Cardiovascular Biology, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
33
|
Surgical Therapy of End-Stage Heart Failure: Understanding Cell-Mediated Mechanisms Interacting with Myocardial Damage. Int J Artif Organs 2011; 34:529-45. [DOI: 10.5301/ijao.5000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2011] [Indexed: 01/19/2023]
Abstract
Worldwide, cardiovascular disease results in an estimated 14.3 million deaths per year, giving rise to an increased demand for alternative and advanced treatment. Current approaches include medical management, cardiac transplantation, device therapy, and, most recently, stem cell therapy. Research into cell-based therapies has shown this option to be a promising alternative to the conventional methods. In contrast to early trials, modern approaches now attempt to isolate specific stem cells, as well as increase their numbers by means of amplifying in a culture environment. The method of delivery has also been improved to minimize the risk of micro-infarcts and embolization, which were often observed after the use of coronary catheterization. The latest approach entails direct, surgical, transepicardial injection of the stem cell mixture, as well as the use of tissue-engineered meshes consisting of embedded progenitor cells.
Collapse
|
34
|
|
35
|
Guest J, Benavides F, Padgett K, Mendez E, Tovar D. Technical aspects of spinal cord injections for cell transplantation. Clinical and translational considerations. Brain Res Bull 2011; 84:267-79. [DOI: 10.1016/j.brainresbull.2010.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 12/13/2022]
|
36
|
Shim W, Mehta A, Lim SY, Zhang G, Lim CH, Chua T, Wong P. G-CSF for stem cell therapy in acute myocardial infarction: friend or foe? Cardiovasc Res 2011; 89:20-30. [DOI: 10.1093/cvr/cvq301] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|