1
|
|
2
|
Liu J, Jin L, Zhou Q, Huang W, Wang S, Huang X, Zhao X. Collagen Nanofilm-Coated Partially Deproteinized Bone Combined With Bone Mesenchymal Stem Cells for Rat Femoral Defect Repair by Bone Tissue Engineering. Ann Plast Surg 2021; 87:580-588. [PMID: 34139739 DOI: 10.1097/sap.0000000000002905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The advantages of good biocompatibility, low degradation and low antigenicity of collagen, and the osteogenic differentiation characteristics of bone mesenchymal stem cells (BMSCs) were used to promote the recovery of bone defects using partially deproteinized bone (PDPB) by bone tissue engineering (BTE). METHODS The BMSCs were identified by examining their potential for osteogenic, lipogenic, and chondrogenic differentiation. The prepared pure PDPB was ground into bone blocks 4 × 2 × 2 mm in size, which were divided into the following groups: PDPB group, PDPB + collagen group, PDPB + collagen + BMSC group, PDPB with a composite collagen nanofilm, and BMSCs injected into the tail vein. At 2, 4, 6, and 8 weeks after surgery, the effects of the implants in the different groups on bone defect repair were continuously and dynamically observed through x-ray examination, gross specimen observation, histological evaluation, and microvascularization detection. RESULTS Postoperative x-ray examination and gross specimen observation revealed that, after 4 to 8 weeks, the external contour of the graft was gradually weakened, and the transverse comparison showed that the absorption of the graft and fusion of the defect were more obvious in PDPB + collagen + BMSC group than in PDPB group and PDPB + collagen group, and the healing was better (P < 0.05). Hematoxylin and eosin staining of histological sections showed very active proliferation of trabecular hematopoietic cells in groups PDPB + collagen + BMSC and PDPB + collagen. Masson's trichrome staining for evaluation of bone defect repair showed that the mean percent area of collagen fibers was greater in PDPB + collagen + BMSC group than in the PDPB group, with degradation of the scaffold material and the completion of repair. Immunofluorescence staining showed significantly enhanced expression of the vascular marker CD31 in group C (P < 0.05). CONCLUSIONS The proposed hybrid structure of the collagen matrix and PDPB provides an ideal 3-dimensional microenvironment for patient-specific BTE and cell therapy applications. The results showed that collagen appeared to regulate MSC-mediated osteogenesis and increase the migration and invasion of BMSCs. The combination of collagen nanofilm and biological bone transplantation with BMSC transplantation enhanced the proliferation and potential of the BMSCs for bone regeneration, successfully promoting bone repair after implantation at the defect site. This method may provide a new idea for treating clinical bone defects through BTE.
Collapse
Affiliation(s)
- Jiajie Liu
- From the Department of Plastic Surgery, Kunming Medical University
| | - Liang Jin
- From the Department of Plastic Surgery, Kunming Medical University
| | - Qingzhu Zhou
- From the Department of Plastic Surgery, Kunming Medical University
| | - Wenli Huang
- From the Department of Plastic Surgery, Kunming Medical University
| | - Songmei Wang
- From the Department of Plastic Surgery, Kunming Medical University
| | - Xinwei Huang
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, China
| | - Xian Zhao
- From the Department of Plastic Surgery, Kunming Medical University
| |
Collapse
|
3
|
Sasaki N, Itakura Y, Mohsin S, Ishigami T, Kubo H, Chiba Y. Cell Surface and Functional Features of Cortical Bone Stem Cells. Int J Mol Sci 2021; 22:ijms222111849. [PMID: 34769279 PMCID: PMC8584423 DOI: 10.3390/ijms222111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The newly established mouse cortical-bone-derived stem cells (mCBSCs) are unique stem cells compared to mouse mesenchymal stem cells (mMSCs). The mCBSC-treated hearts after myocardial infarction have been reported to have greater improvement in myocardial structure and functions. In this study, we examined the stemness features, cell surface glycan profiles, and paracrine functions of mCBSCs compared with mMSCs. The stemness analysis revealed that the self-renewing capacity of mCBSCs was greater than mMSCs; however, the differentiation capacity of mCBSCs was limited to the chondrogenic lineage among three types of cells (adipocyte, osteoblast, chondrocyte). The cell surface glycan profiles by lectin array analysis revealed that α2-6sialic acid is expressed at very low levels on the cell surface of mCBSCs compared with that on mMSCs. In contrast, the lactosamine (Galβ1-4GlcNAc) structure, poly lactosamine- or poly N-acetylglucosamine structure, and α2-3sialic acid on both N- and O-glycans were more highly expressed in mCBSCs. Moreover, we found that mCBSCs secrete a greater amount of TGF-β1 compared to mMSCs, and that the TGF-β1 contributed to the self-migration of mCBSCs and activation of fibroblasts. Together, these results suggest that unique characteristics in mCBSCs compared to mMSCs may lead to advanced utility of mCBSCs for cardiac and noncardiac repair.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (N.S.); (Y.I.)
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (N.S.); (Y.I.)
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Medical Education and Research Building, 3500N. Broad St., Philadelphia, PA 19140, USA; (S.M.); (H.K.)
| | - Tomoaki Ishigami
- School of Medicine, Medical Course, Medical Sciences and Cardiorenal Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Medical Education and Research Building, 3500N. Broad St., Philadelphia, PA 19140, USA; (S.M.); (H.K.)
| | - Yumi Chiba
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (N.S.); (Y.I.)
- Cancer/Advanced Adult Nursing, Department of Nursing, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Correspondence: ; Tel.: +8145-787-2564
| |
Collapse
|
4
|
The Efficacy of Schwann-Like Differentiated Muscle-Derived Stem Cells in Treating Rodent Upper Extremity Peripheral Nerve Injury. Plast Reconstr Surg 2021; 148:787-798. [PMID: 34550935 DOI: 10.1097/prs.0000000000008383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is a pressing need to identify alternative mesenchymal stem cell sources for Schwann cell cellular replacement therapy, to improve peripheral nerve regeneration. This study assessed the efficacy of Schwann cell-like cells (induced muscle-derived stem cells) differentiated from muscle-derived stem cells (MDSCs) in augmenting nerve regeneration and improving muscle function after nerve trauma. METHODS The Schwann cell-like nature of induced MDSCs was characterized in vitro using immunofluorescence, flow cytometry, microarray, and reverse-transcription polymerase chain reaction. In vivo, four groups (n = 5 per group) of rats with median nerve injuries were examined: group 1 animals were treated with intraneural phosphate-buffered saline after cold and crush axonotmesis (negative control); group 2 animals were no-injury controls; group 3 animals were treated with intraneural green fluorescent protein-positive MDSCs; and group 4 animals were treated with green fluorescent protein-positive induced MDSCs. All animals underwent weekly upper extremity functional testing. Rats were euthanized 5 weeks after treatment. The median nerve and extrinsic finger flexors were harvested for nerve histomorphometry, myelination, muscle weight, and atrophy analyses. RESULTS In vitro, induced MDSCs recapitulated native Schwann cell gene expression patterns and up-regulated pathways involved in neuronal growth/signaling. In vivo, green fluorescent protein-positive induced MDSCs remained stably transformed 5 weeks after injection. Induced MDSC therapy decreased muscle atrophy after median nerve injury (p = 0.0143). Induced MDSC- and MDSC-treated animals demonstrated greater functional muscle recovery when compared to untreated controls (hand grip after induced MDSC treatment: group 1, 0.91 N; group 4, 3.38 N); p < 0.0001) at 5 weeks after treatment. This may demonstrate the potential beneficial effects of MDSC therapy, regardless of differentiation stage. CONCLUSION Both MDSCs and induced MDSCs decrease denervation muscle atrophy and improve subsequent functional outcomes after upper extremity nerve trauma in rodents.
Collapse
|
5
|
He X, An W, Liu J. Effects of hypoxia on stemness, survival and angiogenic capacity of muscle-derived stem/progenitor cells. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1977725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiao He
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Weizheng An
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jianyu Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Thompson SD, Pichika R, Lieber RL, Lavasani M. Systemic transplantation of adult multipotent stem cells prevents articular cartilage degeneration in a mouse model of accelerated ageing. Immun Ageing 2021; 18:27. [PMID: 34098983 PMCID: PMC8183038 DOI: 10.1186/s12979-021-00239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/26/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most prevalent joint diseases of advanced age and is a leading cause of disability worldwide. Ageing is a major risk factor for the articular cartilage (AC) degeneration that leads to OA, and the age-related decline in regenerative capacity accelerates OA progression. Here we demonstrate that systemic transplantation of a unique population of adult multipotent muscle-derived stem/progenitor cells (MDSPCs), isolated from young wild-type mice, into Zmpste24-/- mice (a model of Hutchinson-Gilford progeria syndrome, a condition marked by accelerated ageing), prevents ageing-related homeostatic decline of AC. RESULTS MDSPC treatment inhibited expression of cartilage-degrading factors such as pro-inflammatory cytokines and extracellular matrix-proteinases, whereas pro-regenerative markers associated with cartilage mechanical support and tensile strength, cartilage resilience, chondrocyte proliferation and differentiation, and cartilage growth, were increased. Notably, MDSPC transplantation also increased the expression level of genes known for their key roles in immunomodulation, autophagy, stress resistance, pro-longevity, and telomere protection. Our findings also indicate that MDSPC transplantation increased proteoglycan content by regulating chondrocyte proliferation. CONCLUSIONS Together, these findings demonstrate the ability of systemically transplanted young MDSPCs to preserve a healthy homeostasis and promote tissue regeneration at the molecular and tissue level in progeroid AC. These results highlight the therapeutic potential of systemically delivered multipotent adult stem cells to prevent age-associated AC degeneration.
Collapse
Affiliation(s)
- Seth D Thompson
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, USA
| | - Rajeswari Pichika
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Richard L Lieber
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Mitra Lavasani
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA.
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, USA.
| |
Collapse
|
7
|
Lander EB, Berman MH, See JR. Personal cell therapy for interstitial cystitis with autologous stromal vascular fraction stem cells. Ther Adv Urol 2019; 11:1756287219868590. [PMID: 31452686 PMCID: PMC6698997 DOI: 10.1177/1756287219868590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The objective of this study was to evaluate whether autologous
stem-cell-based therapy may mitigate the symptoms of interstitial
cystitis. Methods: Stromal vascular fraction (SVF) rich in stem cells and derived from
autologous adipose tissue was deployed into 109 men and women with
interstitial cystitis/painful bladder syndrome as a surgical procedure. This
stem-cell-rich biologic product was injected both systemically and
regionally into pelvic floor targets. Patients were queried about quality of
life and symptom and bother subjective outcomes tests every 3 months for
2 years. Results: A total of 78 patients reported a positive response at 1 year. Symptom and
bother metrics were statistically improved at 1 year. There were minimal
adverse events associated with the harvesting, procurement, and clinical
deployment of SVF. Conclusion: Interstitial cystitis is a complex clinical problem that is known for its
resistance to conventional therapies. SVF as an autologous personalized
regenerative strategy shows good safety and efficacy and may potentially
have a role in the mitigation of interstitial cystitis.
Collapse
Affiliation(s)
- Elliot B Lander
- Cell Surgical Network, 72780 Country Club Drive #301, Rancho Mirage, CA 92270, USA
| | | | | |
Collapse
|
8
|
Huard J. Stem cells, blood vessels, and angiogenesis as major determinants for musculoskeletal tissue repair. J Orthop Res 2019; 37:1212-1220. [PMID: 29786150 DOI: 10.1002/jor.24058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/21/2018] [Indexed: 02/04/2023]
Abstract
This manuscript summarizes 20 years of research from my laboratories at the University of Pittsburgh and more recently, at the University of Texas Health Science Center at Houston and the Steadman Philippon Research Institute in Vail, Colorado. The discovery of muscle-derived stem cells (MDSCs) did not arise from a deliberate search to find a novel population of muscle cells with high regenerative potential, but instead was conceived in response to setbacks encountered while working in muscle cell transplantation for Duchenne muscular dystrophy (DMD). DMD is a devastating inherited X-linked muscle disease characterized by progressive muscle weakness due to lack of dystrophin expression in muscle fiber sarcolemma.1 Although the transplantation of normal myoblasts into dystrophin-deficient muscle can restore dystrophin, this approach has been hindered by limited survival (less than 1%) of the injected cells.1 The fact that 99% of the cells were not surviving implantation was seen as a major weakness with this technology by most. My research team decided to investigate which cells represent the 1% of the cells surviving post-implantation. We have subsequently confirmed that the few cells which exhibit high survival post-implantation also display stem cell characteristics, and were termed "muscle-derived stem cells" or MDSCs. Herein, I will describe the origin of these MDSCs, the mechanisms of MDSC action during tissue repair, and finally the development of therapeutic strategies to improve regeneration and repair of musculoskeletal tissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1212-1220, 2019.
Collapse
Affiliation(s)
- Johnny Huard
- Department of Orthopaedic Surgery, and The Brown Foundation Institute of Molecular Medicine Center for Tissue Engineering and Aging Research, McGovern Medical School, The University of Texas Health Science Center, 1881 East Road, 3SCR6.3618, Houston, Texas, 77054.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 W. Meadow Drive, Suite 1000, Vail, Colorado, 81657
| |
Collapse
|
9
|
Miroshnichenko S, Timofeeva V, Permykova E, Ershov S, Kiryukhantsev-Korneev P, Dvořaková E, Shtansky DV, Zajíčková L, Solovieva A, Manakhov A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E637. [PMID: 31010178 PMCID: PMC6523319 DOI: 10.3390/nano9040637] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds for wound healing requires a certain modification of the PCL surface. In this work, the morphology of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding of NH2 groups of protein molecules is a rather simple and technologically accessible procedure allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior of fibroblasts on the modified PCL surface was found to be very different when compared to the previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze-thawed platelet-rich plasma (PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the potential of PCL matrices for application in tissue engineering, while the plasma modification with COOH groups and their subsequent covalent binding with proteins expand this potential even further. The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged biological activity of the immobilized molecules and protects these biomolecules from the aggressive media of the wound.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
- Institute of Biochemistry ⁻ subdivision of the FRC FTM, 2 Timakova str., 630117 Novosibirsk, Russia.
| | - Valeriia Timofeeva
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| | - Elizaveta Permykova
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Sergey Ershov
- Physics and Materials Science Research Unit, Laboratory for the Physics of Advanced Materials, University of Luxembourg, 162a, avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg.
| | - Philip Kiryukhantsev-Korneev
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Eva Dvořaková
- CEITEC-Central European Institute of Technology-Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Dmitry V Shtansky
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Lenka Zajíčková
- CEITEC-Central European Institute of Technology-Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Anastasiya Solovieva
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| | - Anton Manakhov
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| |
Collapse
|
10
|
Unveiling Mesenchymal Stromal Cells' Organizing Function in Regeneration. Int J Mol Sci 2019; 20:ijms20040823. [PMID: 30769851 PMCID: PMC6413004 DOI: 10.3390/ijms20040823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Regeneration is a fundamental process attributed to the functions of adult stem cells. In the last decades, delivery of suspended adult stem cells is widely adopted in regenerative medicine as a leading means of cell therapy. However, adult stem cells cannot complete the task of human body regeneration effectively by themselves as far as they need a receptive microenvironment (the niche) to engraft and perform properly. Understanding the mechanisms underlying mammalian regeneration leads us to an assumption that improved outcomes of cell therapy require a specific microenvironment that is generated in damaged areas prior to stem cell delivery. To a certain extent, it may be achieved by the delivery of mesenchymal stromal cells (MSCs), not in dispersed form, but rather in self-organized cell sheets (CS) ⁻ tissue-like structures comprised of viable cells and microenvironment components: extracellular matrix and soluble factors deposited in the matrix. In this review, we highlight the potential role of MSCs as regeneration organizers and speculate that this function emerges in CS. This concept shifts our understanding of the therapeutic mechanism underlying a widely known CS-based delivery method for regenerative medicine.
Collapse
|
11
|
Ryu CM, Yu HY, Lee HY, Shin JH, Lee S, Ju H, Paulson B, Lee S, Kim S, Lim J, Heo J, Hong KS, Chung HM, Kim JK, Shin DM, Choo MS. Longitudinal intravital imaging of transplanted mesenchymal stem cells elucidates their functional integration and therapeutic potency in an animal model of interstitial cystitis/bladder pain syndrome. Am J Cancer Res 2018; 8:5610-5624. [PMID: 30555567 PMCID: PMC6276303 DOI: 10.7150/thno.27559] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Rationale: Mesenchymal stem cell (MSC) therapy may be a novel approach to improve interstitial cystitis/bladder pain syndrome (IC/BPS), an intractable disease characterized by severe pelvic pain and urinary frequency. Unfortunately, the properties of transplanted stem cells have not been directly analyzed in vivo, which hampers elucidation of the therapeutic mechanisms of these cells and optimization of transplantation protocols. Here, we monitored the behaviors of multipotent stem cells (M-MSCs) derived from human embryonic stem cells (hESCs) in real time using a novel combination of in vivo confocal endoscopic and microscopic imaging and demonstrated their improved therapeutic potency in a chronic IC/BPS animal model. Methods: Ten-week-old female Sprague-Dawley rats were instilled with 10 mg of protamine sulfate followed by 750 μg of lipopolysaccharide weekly for 5 weeks. The sham group was instilled with phosphate-buffered saline (PBS). Thereafter, the indicated dose (0.1, 0.25, 0.5, and 1×106 cells) of M-MSCs or PBS was injected once into the outer layer of the bladder. The distribution, perivascular integration, and therapeutic effects of M-MSCs were monitored by in vivo endoscopic and confocal microscopic imaging, awake cystometry, and histological and gene expression analyses. Results: A novel combination of longitudinal intravital confocal fluorescence imaging and microcystoscopy in living animals, together with immunofluorescence analysis of bladder tissues, demonstrated that transplanted M-MSCs engrafted following differentiation into multiple cell types and gradually integrated into a perivascular-like structure until 30 days after transplantation. The beneficial effects of transplanted M-MSCs on bladder voiding function and the pathological characteristics of the bladder were efficient and long-lasting due to the stable engraftment of these cells. Conclusion: This longitudinal bioimaging study of transplanted hESC-derived M-MSCs in living animals reveals their long-term functional integration, which underlies the improved therapeutic effects of these cells on IC/BPS.
Collapse
|
12
|
Musavi L, Brandacher G, Hoke A, Darrach H, Lee WPA, Kumar A, Lopez J. Muscle-derived stem cells: important players in peripheral nerve repair. Expert Opin Ther Targets 2018; 22:1009-1016. [PMID: 30347175 DOI: 10.1080/14728222.2018.1539706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Stem cell therapy for peripheral nerve repair is a rapidly evolving field in regenerative medicine. Although most studies to date have investigated stem cells originating from bone marrow or adipose, skeletal muscle has recently been recognized as an abundant and easily accessible source of stem cells. Muscle-derived stem cells (MDSCs) are a diverse population of multipotent cells with pronounced antioxidant and regenerative capacity. Areas covered: The current literature on the various roles MDSCs serve within the micro- and macro-environment of nerve injury. Furthermore, the exciting new research that is establishing MDSC-cellular therapy as an important therapeutic modality to improve peripheral nerve regeneration. Expert opinion: MDSCs are a promising therapeutic agent for the repair of peripheral nerves; MDSCs not only undergo gliogenesis and angiogenesis, but they also orchestrate larger pro-regenerative host responses. However, the isolation, transformation, and in-vivo behavior of MDSCs require further evaluation prior to clinical application.
Collapse
Affiliation(s)
- Leila Musavi
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Gerald Brandacher
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Ahmet Hoke
- b The Solomon H Snyder Department of Neuroscience , Johns Hopkins University , Baltimore , Maryland
| | - Halley Darrach
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - W P Andrew Lee
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Anand Kumar
- c Department of Plastic & Reconstructive Surgery , Case Western Reserve University, Rainbow Babies Children's Hospital , Cleveland , OH , USA
| | - Joseph Lopez
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| |
Collapse
|
13
|
Jensen AR, Kelley BV, Mosich GM, Ariniello A, Eliasberg CD, Vu B, Shah P, Devana SK, Murray IR, Péault B, Dar A, Petrigliano FA. Neer Award 2018: Platelet-derived growth factor receptor α co-expression typifies a subset of platelet-derived growth factor receptor β-positive progenitor cells that contribute to fatty degeneration and fibrosis of the murine rotator cuff. J Shoulder Elbow Surg 2018; 27:1149-1161. [PMID: 29653843 DOI: 10.1016/j.jse.2018.02.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND HYPOTHESIS After massive tears, rotator cuff muscle often undergoes atrophy, fibrosis, and fatty degeneration. These changes can lead to high surgical failure rates and poor patient outcomes. The identity of the progenitor cells involved in these processes has not been fully elucidated. Platelet-derived growth factor receptor β (PDGFRβ) and platelet-derived growth factor receptor α (PDGFRα) have previously been recognized as markers of cells involved in muscle fibroadipogenesis. We hypothesized that PDGFRα expression identifies a fibroadipogenic subset of PDGFRβ+ progenitor cells that contribute to fibroadipogenesis of the rotator cuff. METHODS We created massive rotator cuff tears in a transgenic strain of mice that allows PDGFRβ+ cells to be tracked via green fluorescent protein (GFP) fluorescence. We then harvested rotator cuff muscle tissues at multiple time points postoperatively and analyzed them for the presence and localization of GFP+ PDGFRβ+ PDGFRα+ cells. We cultured, induced, and treated these cells with the molecular inhibitor CWHM-12 to assess fibrosis inhibition. RESULTS GFP+ PDGFRβ+ PDGFRα+ cells were present in rotator cuff muscle tissue and, after massive tears, localized to fibrotic and adipogenic tissues. The frequency of PDGFRβ+ PDGFRα+ cells increased at 5 days after massive cuff tears and decreased to basal levels within 2 weeks. PDGFRβ+ PDGFRα+ cells were highly adipogenic and significantly more fibrogenic than PDGFRβ+ PDGFRα- cells in vitro and localized to adipogenic and fibrotic tissues in vivo. Treatment with CWHM-12 significantly decreased fibrogenesis from PDGFRβ+ PDGFRα+ cells. CONCLUSION PDGFRβ+ PDGFRα+ cells directly contribute to fibrosis and fatty degeneration after massive rotator cuff tears in the mouse model. In addition, CWHM-12 treatment inhibits fibrogenesis from PDGFRβ+ PDGFRα+ cells in vitro. Clinically, perioperative PDGFRβ+ PDGFRα+ cell inhibition may limit rotator cuff tissue degeneration and, ultimately, improve surgical outcomes for massive rotator cuff tears.
Collapse
Affiliation(s)
- Andrew R Jensen
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Benjamin V Kelley
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gina M Mosich
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Allison Ariniello
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Brandon Vu
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paras Shah
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sai K Devana
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Iain R Murray
- BHF Centre for Vascular Regeneration, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; BHF Centre for Vascular Regeneration, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Ayelet Dar
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Frank A Petrigliano
- Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Marei MK, El Backly RM. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement. Front Bioeng Biotechnol 2018; 6:49. [PMID: 29770323 PMCID: PMC5941981 DOI: 10.3389/fbioe.2018.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such "replacement therapies" appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use.
Collapse
Affiliation(s)
- Mona K Marei
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania M El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Mu X, Tang Y, Takayama K, Chen W, Lu A, Wang B, Weiss K, Huard J. RhoA/ROCK inhibition improves the beneficial effects of glucocorticoid treatment in dystrophic muscle: implications for stem cell depletion. Hum Mol Genet 2018; 26:2813-2824. [PMID: 28549178 DOI: 10.1093/hmg/ddx117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid treatment represents a standard palliative treatment for Duchenne muscular dystrophy (DMD) patients, but various adverse effects have limited this treatment. In an effort to understand the mechanism(s) by which glucocorticoids impart their effects on the dystrophic muscle, and potentially reduce the adverse effects, we have studied the effect of prednisolone treatment in dystrophin/utrophin double knockout (dKO) mice, which exhibit a severe dystrophic phenotype due to rapid muscle stem cell depletion. Our results indicate that muscle stem cell depletion in dKO muscle is related to upregulation of mTOR, and that prednisolone treatment reduces the expression of mTOR and other pro-inflammatory mediators, consequently slowing down muscle stem cell depletion. However, prednisolone treatment was unable to improve the myogenesis of stem cells and reduce fibrosis in dKO muscle. We then studied whether glucocorticoid treatment can be improved by co-administration of an inhibitor of RhoA/ROCK signaling, which can be activated by glucocorticoids and was found in our previous work to be over-activated in dystrophic muscle. Our results indicate that the combination of RhoA/ROCK inhibition and glucocorticoid treatment in dystrophic muscle have a synergistic effect in alleviating the dystrophic phenotype. Taken together, our study not only shed light on the mechanism by which glucocorticoid imparts its beneficial effect on dystrophic muscle, but also revealed the synergistic effect of RhoA/ROCK inhibition and glucocorticoid treatment, which could lead to the development of more efficient therapeutic approaches for treating DMD patients.
Collapse
Affiliation(s)
- Xiaodong Mu
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Wanqun Chen
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Department of Biochemistry and Molecular Biology, Jinan University, Guangdong, China
| | - Aiping Lu
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kurt Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| |
Collapse
|
16
|
Pelatti MV, Gomes JPA, Vieira NMS, Cangussu E, Landini V, Andrade T, Sartori M, Petrus L, Zatz M. Transplantation of Human Adipose Mesenchymal Stem Cells in Non-Immunosuppressed GRMD Dogs is a Safe Procedure. Stem Cell Rev Rep 2017; 12:448-53. [PMID: 27193781 DOI: 10.1007/s12015-016-9659-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The possibility to treat Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, through cell therapy with mesenchymal stromal cells (MSCs) has been widely investigated in different animal models. However, some crucial questions need to be addressed before starting human therapeutic trials, particularly regarding its use for genetic disorders. How safe is the procedure? Are there any side effects following mesenchymal stem cell transplantation? To address these questions for DMD the best model is the golden retriever muscular dystrophy dog (GRMD), which is the closest model to the human condition displaying a much longer lifespan than other models. Here we report the follow-up of 5 GRMD dogs, which were repeatedly transplanted with human adipose-derived mesenchymal stromal cells (hASC), derived from different donors. Xenogeneic cell transplantation, which was done without immunosuppression, was well tolerated in all animals with no apparent long-term adverse effect. In the present study, we show that repeated heterologous stem-cell injection is a safe procedure, which is fundamental before starting human clinical trials.
Collapse
Affiliation(s)
- M V Pelatti
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - J P A Gomes
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - N M S Vieira
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - E Cangussu
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - V Landini
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - T Andrade
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - M Sartori
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - L Petrus
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - Mayana Zatz
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090.
| |
Collapse
|
17
|
Steger CM, Bonatti J, Rieker RJ, Bonaros N, Schachner T. Stem cell therapy with skeletal myoblasts accelerates neointima formation in a mouse model of vein graft disease. ACTA ACUST UNITED AC 2017; 69:598-604. [DOI: 10.1016/j.etp.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/08/2017] [Accepted: 05/18/2017] [Indexed: 12/14/2022]
|
18
|
Zhou J, Cui H, Lu H, Xu Z, Feng W, Chen L, Jin X, Yang X, Qi Z. Muscle-derived stem cells in peripheral nerve regeneration: reality or illusion? Regen Med 2017. [PMID: 28621200 DOI: 10.2217/rme-2016-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Owing to the complicated and time-consuming regenerative process, the repair of injured peripheral nerves depends largely on ongoing stem-cell therapy. Decades ago, researchers successfully isolated and identified muscle-derived stem cells (MDSCs) and discovered their potential for multidifferentiation. MDSCs play an important role in trauma repair associated with neuromuscular and vascular injury by simultaneously promoting tissue regrowth via direct differentiation and systematic secretion under physiological conditions. However, the isolation, culture, induction and application of MDSCs require further methodological analysis before clinical application. In this review, we comprehensively discuss the challenges associated with neural regeneration and reviewed the progress of stem cell based regenerative medicine, in an effort to realize the potential of MDSCs in nerve regeneration.
Collapse
Affiliation(s)
- Jing Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Haiyan Cui
- Department of Plastic & Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Haibin Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Zhuqiu Xu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Weifeng Feng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Lulu Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Xiaolei Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Xiaonan Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
19
|
Carnevale G, Pisciotta A, Riccio M, Bertoni L, De Biasi S, Gibellini L, Zordani A, Cavallini GM, La Sala GB, Bruzzesi G, Ferrari A, Cossarizza A, de Pol A. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med 2017; 12:e774-e785. [PMID: 27943583 DOI: 10.1002/term.2378] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/10/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional defects. The application of stem cells able to differentiate in Schwann cell-like cells in vitro and in vivo, could represent an attractive therapeutic approach for the treatment of nerve injuries. Further, stem cells sources sharing the same embryological origin as Schwann cells might be considered a suitable tool. The aim of this study was to demonstrate the ability of a neuroectodermal subpopulation of human STRO-1+ /c-Kit+ /CD34+ DPSCs, expressing P75NTR , nestin and SOX-10, to differentiate into Schwann cell-like cells in vitro and to promote axonal regeneration in vivo, which led to functional recovery as measured by sustained gait improvement, in animal rat model of peripheral nerve injury. Transplanted human dental pulp stem cells (hDPSCs) engrafted into sciatic nerve defect, as revealed by the positive staining against human nuclei, showed the expression of typical Schwann cells markers, S100b and, noteworthy, a significant number of myelinated axons was detected. Moreover, hDPSCs promoted axonal regeneration from proximal to distal stumps 1 month after transplantation. This study demonstrates that STRO-1+ /c-Kit+ /CD34+ hDPSCs, associated with neural crest derivation, represent a promising source of stem cells for the treatment of demyelinating disorders and might provide a valid alternative tool for future clinical applications to achieve functional recovery after injury or peripheral neuropathies besides minimizing ethical issues. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Riccio
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessio Zordani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gian Maria Cavallini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giacomo Bruzzesi
- Oro-Maxillo-Facial Department, AUSL Baggiovara, Baggiovara, Modena, Italy
| | - Adriano Ferrari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Children Rehabilitation Special Unit, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Anto de Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall. Biomaterials 2017; 113:31-41. [DOI: 10.1016/j.biomaterials.2016.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
|
21
|
Li J, Pincu Y, Marjanovic M, Bower AJ, Chaney EJ, Jensen T, Boppart MD, Boppart SA. In vivo evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:86006. [PMID: 27533443 PMCID: PMC5995141 DOI: 10.1117/1.jbo.21.8.086006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/28/2016] [Indexed: 05/04/2023]
Abstract
Impaired skin wound healing is a significant comorbid condition of diabetes, which often results in nonhealing diabetic ulcers due to poor peripheral microcirculation, among other factors. The effectiveness of the regeneration of adipose-derived stem cells (ADSCs) and muscle-derived stem cells (MDSCs) was assessed using an integrated multimodal microscopy system equipped with two-photon fluorescence and second-harmonic generation imaging. These imaging modalities, integrated in a single platform for spatial and temporal coregistration, allowed us to monitor in vivo changes in the collagen network and cell dynamics in a skin wound. Fluorescently labeled ADSCs and MDSCs were applied topically to the wound bed of wild-type and diabetic (db/db) mice following punch biopsy. Longitudinal imaging demonstrated that ADSCs and MDSCs provided remarkable capacity for improved diabetic wound healing, and integrated microscopy revealed a more organized collagen remodeling in the wound bed of treated mice. The results from this study verify the regenerative capacity of stem cells toward healing and, with multimodal microscopy, provide insight regarding their impact on the skin microenvironment. The optical method outlined in this study, which has the potential for in vivo human use, may optimize the care and treatment of diabetic nonhealing wounds.
Collapse
Affiliation(s)
- Joanne Li
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1270 Digital Computer Laboratory MC-278, 1304 West Springfield Avenue, Urbana, Illinois 61801, United States
| | - Yair Pincu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Kinesiology and Community Health, 906 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Marina Marjanovic
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1270 Digital Computer Laboratory MC-278, 1304 West Springfield Avenue, Urbana, Illinois 61801, United States
| | - Andrew J. Bower
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, 306 North Wright Street, Urbana, Illinois 61801, United States
| | - Eric J. Chaney
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Tor Jensen
- University of Illinois at Urbana-Champaign, Illinois Health Sciences Initiative, 611 West Park Street, Urbana, Illinois 61801, United States
| | - Marni D. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Kinesiology and Community Health, 906 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1270 Digital Computer Laboratory MC-278, 1304 West Springfield Avenue, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, 306 North Wright Street, Urbana, Illinois 61801, United States
- University of Illinois at Urbana-Champaign, Department of Internal Medicine, 506 South Mathews Avenue, Urbana, Illinois 61801, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
22
|
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a disease characterized by pelvic pain, usually with urinary frequency. These symptoms make patients suffer from a poor quality of life. However, there is still a lack of consensus on the pathophysiology and curable treatment of IC/BPS. We have reviewed several candidates for the pathophysiology of this disease and also treatments that have been used. Although several oral medications, bladder instillation therapies, fulguration for Hunner's lesion, and hydrodistention have been tried as IC/BPS treatments, their outcomes have not been satisfactory. As the application of stem cell therapy is expanding into the urologic field, innovative strategies have been tested with animal models of IC/BPS and have shown promising therapeutic effects for reversing the symptoms of this disorder. Although several concerns about stem cell sources and their safety should be addressed before initiating human clinical trials, we introduce stem cell therapy as a valuable future treatment approach for IC/BPS.
Collapse
Affiliation(s)
- Aram Kim
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-RO 43 GIL SONGPA-GU, Seoul, 05505, South Korea
| | - Dong-Myung Shin
- Departments of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Myung-Soo Choo
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-RO 43 GIL SONGPA-GU, Seoul, 05505, South Korea.
| |
Collapse
|
23
|
Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016; 21:252-68. [PMID: 26687129 PMCID: PMC5200890 DOI: 10.1007/s10495-015-1203-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL, 60611, USA.
| | - Audrone Kalvelyte
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Aurimas Stulpinas
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Paraná, 80250-200, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Paraná, 80215-901, Brazil
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
24
|
Sicari BM, Dziki JL, Badylak SF. Strategies for functional bioscaffold-based skeletal muscle reconstruction. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:256. [PMID: 26605302 DOI: 10.3978/j.issn.2305-5839.2015.09.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue engineering and regenerative medicine-based strategies for the reconstruction of functional skeletal muscle tissue have included cellular and acellular approaches. The use of acellular biologic scaffold material as a treatment for volumetric muscle loss (VML) in five patients has recently been reported with a generally favorable outcome. Further studies are necessary for a better understanding of the mechanism(s) behind acellular bioscaffold-mediated skeletal muscle repair, and for combination cell-based/bioscaffold based approaches. The present overview highlights the current thinking on bioscaffold-based remodeling including the associated mechanisms and the future of scaffold-based skeletal muscle reconstruction.
Collapse
Affiliation(s)
- Brian M Sicari
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenna L Dziki
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Che X, Guo J, Li X, Wang L, Wei S. Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats. Mol Med Rep 2015; 13:681-8. [PMID: 26648442 PMCID: PMC4686095 DOI: 10.3892/mmr.2015.4578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Healing from injury requires the activation and proliferation of stem cells for tissue repair. Previous studies have demonstrated that bone marrow is a central pool of stem cells. The present study aimed to investigate the route undertaken by bone marrow mononuclear cells (BMMCs) following BMMC transplantation by masseter injection in a rat model of midpalatal expansion. The rats were divided into five groups according to the types of midpalatal expansion, incision and BMMC transplantation. Samples of midpalatal bone from the rats in each group were used for histological and immunohistochemical assessments to track and evaluate the differential potentials of the transplanted BMMCs in the masseter muscle and midpalatal bone. Bromodeoxyuridine was used as a BMMC tracing label, and M-cadherin was used to detect muscle satellite cells. The BMMCs injected into the masseter were observed, not only in the masseter, but also in the blood vessels and oral mucosa, and enveloped the midpalatal bone. A number of the BMMCs transformed into osteoblasts at the boundary of the neuromuscular bundle, and were embedded in the newly formed bone during midpalatal bone regeneration. The results of the present study suggested that BMMCs entered the circulation and migrated from muscle to the bone tissue, where they were involved in bone repair. Therefore, BMMCs may prove useful in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Xiaoxia Che
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Jie Guo
- Department of Orthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Lve Wang
- Department of Microbiology, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Silong Wei
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
26
|
Sakti M, Nakasa T, Shoji T, Usman MA, Kawanishi Y, Hamanishi M, Yusuf I, Ochi M. Acceleration of healing of the medial collateral ligament of the knee by local administration of synthetic microRNA-210 in a rat model. ASIA-PACIFIC JOURNAL OF SPORT MEDICINE ARTHROSCOPY REHABILITATION AND TECHNOLOGY 2015; 2:129-136. [PMID: 29264252 PMCID: PMC5730664 DOI: 10.1016/j.asmart.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 11/29/2022]
Abstract
Background Injury to the medial collateral ligament (MCL) of the knee joint is the most common ligament injury of the knee. Ligament healing generally takes a long time. Micro-ribonucleic acid (miRNA) is one of the noncoding RNAs and plays a crucial role in physiological function; miRNA (miR)-210 is known as a potent factor of angiogenesis, which is an important initiator of ligament healing. The purpose of this study is to examine the effect of local injection of double-stranded (ds) miR-210 on the healing of the MCL of rat knee joint. Methods MCLs of Sprague-Dawley rats were cut transversely. After the fascia and skin were sutured, dsmiR-210 or control dsRNA was injected into the injured site of MCL. At 2 weeks and 4 weeks, histological analysis and immunofluorescence staining of vascular endothelial growth factor, isolectin B4, collagen type 1, and Ki67 as well as a mechanical test were performed. Analysis of complementary deoxyribonucleic acid (cDNA) microarray data was performed at 1 week. Results Histological analysis showed that parallel fibres in the injured site were organised at 2 weeks and became thicker at 4 weeks in the miR-210-treated group, whereas the injured site in controls was filled with loose fibrous tissues and was thinner than that in the miR-210-treated group. The number of blood vessels in the miR-210-treated group was significantly higher than that in controls (p < 0.05), and vascular endothelial growth factor, Ki67, and collagen type 1 in the miR-210-treated group were intensely expressed in the repaired site as compared to the control group. The mechanical test indicated that the ultimate failure load in the miR-210-treated group was significantly higher than that in the control group at 2 weeks. The cDNA microarray analysis showed significant upregulation of genes related to cell proliferation and cell differentiation, and genes involved in negative regulation of apoptosis. Conclusion This study showed that local injection of dsmiR-210 could accelerate MCL healing in rat, which is likely due to stimulation of angiogenesis at the healing site.
Collapse
Affiliation(s)
- Muhammad Sakti
- University of Hasanuddin, Makassar, South Sulawesi, Indonesia
- Corresponding author. Faculty of Medicine, University of Hasanuddin, Makassar. Jln. Perintis Kemerdekaan, Tamalanrea, 90000, South Sulawesi, Indonesia.
| | | | | | | | | | | | - Irawan Yusuf
- University of Hasanuddin, Makassar, South Sulawesi, Indonesia
| | | |
Collapse
|
27
|
Sicari BM, Londono R, Badylak SF. Strategies for skeletal muscle tissue engineering: seed vs. soil. J Mater Chem B 2015; 3:7881-7895. [PMID: 32262901 DOI: 10.1039/c5tb01714a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most commonly used tissue engineering approach includes the ex vivo combination of site-appropriate cell(s) and scaffold material(s) to create three-dimensional constructs for tissue replacement or reconstruction. These three-dimensional combinations are typically subjected to a period of culture and conditioning (i.e., self-assembly and maturation) to promote the development of ex vivo constructs which closely mimic native target tissue. This cell-based approach is challenged by the host response to the engineered tissue construct following surgical implantation. As an alternative to the cell-based approach, acellular biologic scaffolds attract endogenous cells and remodel into partially functional mimics of native tissue upon implantation. The present review examines cell-types (i.e., seed), scaffold materials (i.e., soil), and challenges associated with functional tissue engineering. Skeletal muscle is used as the target tissue prototype but the discussed principles will largely apply to most body systems.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Suite 300, 450 Technology Drive, Pittsburgh, PA 15218, USA.
| | | | | |
Collapse
|
28
|
Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, La Sala GB, Bruzzesi G, Ferrari A, Huard J, De Pol A. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 2015; 6:156. [PMID: 26316011 PMCID: PMC4552417 DOI: 10.1186/s13287-015-0141-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/07/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD), caused by a lack of the functional structural protein dystrophin, leads to severe muscle degeneration where the patients are typically wheelchair-bound and die in their mid-twenties from cardiac or respiratory failure or both. The aim of this study was to investigate the potential of human dental pulp stem cells (hDPSCs) and human amniotic fluid stem cells (hAFSCs) to differentiate toward a skeletal myogenic lineage using several different protocols in order to determine the optimal conditions for achieving myogenic commitment and to subsequently evaluate their contribution in the improvement of the pathological features associated with dystrophic skeletal muscle when intramuscularly injected into mdx/SCID mice, an immune-compromised animal model of DMD. METHODS Human DPSCs and AFSCs were differentiated toward myogenic lineage in vitro through the direct co-culture with a myogenic cell line (C2C12 cells) and through a preliminary demethylation treatment with 5-Aza-2'-deoxycytidine (5-Aza), respectively. The commitment and differentiation of both hDPSCs and hAFSCs were evaluated by immunofluorescence and Western blot analysis. Subsequently, hDPSCs and hAFSCs, preliminarily demethylated and pre-differentiated toward a myogenic lineage for 2 weeks, were injected into the dystrophic gastrocnemius muscles of mdx/SCID mice. After 1, 2, and 4 weeks, the gastrocnemius muscles were taken for immunofluorescence and histological analyses. RESULTS Both populations of cells engrafted within the host muscle of mdx/SCID mice and through a paracrine effect promoted angiogenesis and reduced fibrosis, which eventually led to an improvement of the histopathology of the dystrophic muscle. CONCLUSION This study shows that hAFSCs and hDPSCs represent potential sources of stem cells for translational strategies to improve the histopathology and potentially alleviate the muscle weakness in patients with DMD.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Massimo Riccio
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Gianluca Carnevale
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Sara De Biasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Lara Gibellini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Giovanni B La Sala
- Department of Obstetrics and Gynecology, Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Giacomo Bruzzesi
- Oro-Maxillo-Facial Department, AUSL Baggiovara, via Giardini 1355, 41126, Modena, Baggiovara, Italy.
| | - Adriano Ferrari
- Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, Children Rehabilitation Special Unit, IRCCS Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Anto De Pol
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
29
|
Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT, Zorov DB. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Transl Med 2015; 4:1011-20. [PMID: 26160961 DOI: 10.5966/sctm.2015-0010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. SIGNIFICANCE The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to develop a detailed protocol for coculturing followed by cell separation.
Collapse
Affiliation(s)
- Valentina A Babenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Denis N Silachev
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Ljubava D Zorova
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Irina B Pevzner
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Anastasia A Khutornenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Egor Y Plotnikov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Gennady T Sukhikh
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Dmitry B Zorov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| |
Collapse
|
30
|
Kang H, Kim KH, Lim J, Kim YS, Heo J, Choi J, Jeong J, Kim Y, Kim SW, Oh YM, Choo MS, Son J, Kim SJ, Yoo HJ, Oh W, Choi SJ, Lee SW, Shin DM. The Therapeutic Effects of Human Mesenchymal Stem Cells Primed with Sphingosine-1 Phosphate on Pulmonary Artery Hypertension. Stem Cells Dev 2015; 24:1658-71. [PMID: 25761906 DOI: 10.1089/scd.2014.0496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cell (SC) therapy has become a potential treatment modality for pulmonary artery hypertension (PAH), but the efficacy of human SC and priming effects have not yet been established. The mobilization and homing of hematopoietic stem cells (HSCs) are modulated by priming factors that include a bioactive lipid, sphingosine-1-phosphate (S1P), which stimulates CXCR4 receptor kinase signaling. Here, we show that priming human mesenchymal stem cells (MSCs) with S1P enhances their therapeutic efficacy in PAH. Human MSCs, similar to HSCs, showed stronger chemoattraction to S1P in transwell assays. Concomitantly, MSCs treated with 0.2 μM S1P showed increased phosphorylation of both MAPKp42/44 and AKT protein compared with nonprimed MSCs. Furthermore, S1P-primed MSCs potentiated colony forming unit-fibroblast, anti-inflammatory, and angiogenic activities of MSCs in culture. In a PAH animal model induced by subcutaneously injected monocrotaline, administration of human cord blood-derived MSCs (hCB-MSCs) or S1P-primed cells significantly attenuated the elevated right ventricular systolic pressure. Notably, S1P-primed CB-MSCs, but not unprimed hCB-MSCs, also elicited a significant reduction in the right ventricular weight ratio and pulmonary vascular wall thickness. S1P-primed MSCs enhanced the expression of several genes responsible for stem cell trafficking and angiogenesis, increasing the density of blood vessels in the damaged lungs. Thus, this study demonstrates that human MSCs have potential utility for the treatment of PAH, and that S1P priming increases the effects of SC therapy by enhancing cardiac and vascular remodeling. By optimizing this protocol in future studies, SC therapy might form a basis for clinical trials to treat human PAH.
Collapse
Affiliation(s)
- Hyunsook Kang
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Kang-Hyun Kim
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jisun Lim
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - You-Sun Kim
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jinbeom Heo
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jongjin Choi
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jaeho Jeong
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - YongHwan Kim
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Seong Who Kim
- 4 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Yeon-Mok Oh
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Myung-Soo Choo
- 5 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jaekyoung Son
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Su Jung Kim
- 6 Department of Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Hyun Ju Yoo
- 6 Department of Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Wonil Oh
- 7 Biomedical Research Institute , Medipost Co., Ltd., Seoul, Korea
| | - Soo Jin Choi
- 7 Biomedical Research Institute , Medipost Co., Ltd., Seoul, Korea
| | - Sei Won Lee
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Dong-Myung Shin
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
31
|
Xu JJ, Sun YB, Zhang XL, Wang XF. Vitamin D analog EB1089 could repair the defective bone marrow-derived mesenchymal stromal cells in patients with systemic lupus erythematosus. Int J Clin Exp Med 2015; 8:916-921. [PMID: 25785075 PMCID: PMC4358530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Systemic lupus erythematosus (SLE) involves multiple factors, which result in the breakdown of self-tolerance and development of autoimmunity with organ damage. Bone marrow mesenchymal stem cells (BMMSCs) from the patients with SLE showed an impaired proliferative capacity compared with that from normal controls. In this study, we isolated BMMSCs from the patients with SLE and found that Vitamin D analog EB1089 could induce BMMSCs proliferation and mineralization deposition. Furthermore, we found that the expression of p-Smad 1/5/8 was promoted in BMMSCs with EB1089 treatment. In conclusion, our results support the notion that EB1089 promoted proliferation and osteogenic differentiation of BMMSCs by Smad 1/5/8 signaling pathway.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Department of Rheumatology, Shengjing Hospital of China Medical UniversitySanhao Street 36, Heping District, Shenyang City 110004, Liaoning Province, P. R. China
| | - Yan-Bin Sun
- Department of Thoracic Surgery, First Hospital of China Medical UniversityNanjing North Street 155, Heping District, Shenyang City 110001, Liaoning Province, P. R. China
| | - Xiao-Li Zhang
- Department of Rheumatology, Shengjing Hospital of China Medical UniversitySanhao Street 36, Heping District, Shenyang City 110004, Liaoning Province, P. R. China
| | - Xiao-Fei Wang
- Department of Rheumatology, Shengjing Hospital of China Medical UniversitySanhao Street 36, Heping District, Shenyang City 110004, Liaoning Province, P. R. China
| |
Collapse
|
32
|
Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res 2014; 24:1466-85. [PMID: 25418539 PMCID: PMC4260348 DOI: 10.1038/cr.2014.149] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/19/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022] Open
Abstract
The ability to identify and isolate lineage-specific stem cells from adult tissues could facilitate cell replacement therapy. Leydig cells (LCs) are the primary source of androgen in the mammalian testis, and the prospective identification of stem Leydig cells (SLCs) may offer new opportunities for treating testosterone deficiency. Here, in a transgenic mouse model expressing GFP driven by the Nestin (Nes) promoter, we observed Nes-GFP+ cells located in the testicular interstitial compartment where SLCs normally reside. We showed that these Nes-GFP+ cells expressed LIFR and PDGFR-α, but not LC lineage markers. We further observed that these cells were capable of clonogenic self-renewal and extensive proliferation in vitro and could differentiate into neural or mesenchymal cell lineages, as well as LCs, with the ability to produce testosterone, under defined conditions. Moreover, when transplanted into the testes of LC-disrupted or aging models, the Nes-GFP+ cells colonized the interstitium and partially increased testosterone production, and then accelerated meiotic and post-meiotic germ cell recovery. In addition, we further demonstrated that CD51 might be a putative cell surface marker for SLCs, similar with Nestin. Taken together, these results suggest that Nes-GFP+ cells from the testis have the characteristics of SLCs, and our study would shed new light on developing stem cell replacement therapy for testosterone deficiency.
Collapse
|
33
|
Brown BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol 2014; 5:510. [PMID: 25408693 PMCID: PMC4219501 DOI: 10.3389/fimmu.2014.00510] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host-biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes.
Collapse
Affiliation(s)
- Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
34
|
Xing L, Cui R, Peng L, Ma J, Chen X, Xie RJ, Li B. Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Res Ther 2014; 5:101. [PMID: 25145540 PMCID: PMC4159523 DOI: 10.1186/scrt489] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Studies have shown that stem cells exert their therapeutic effects on acute kidney injury (AKI) through paracrine/endocrine actions. If the protective effect is mediated in an endocrine manner, the injection of the factors that these cells secrete could be effective, but the effect of conditioned medium (CM) remains controversial. METHODS In this study, we cultured mesenchymal stem cells (MSCs) and then transplanted them into an ischemia-reperfusion (I/R) injury model. CM was also injected into mice, and the histological changes, level of cell proliferation, loss of peritubular capillaries and anti-inflammatory and anti-apoptotic effects were examined at different time points. RESULTS The results showed that MSC infusion improved renal function and histological alterations, leading to significantly reduced mortality. MSC administration also promoted kidney microvasculature repair, attenuated kidney peritubular capillary loss, increased the proliferation of parenchymal cells and decreased CD68-positive macrophage infiltration and apoptotic cells. Although we determined that CM contained proangiogenic factors, including hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A) and insulin-like growth factor-1 (IGF-1), no favorable effects were observed during the course of repair. CONCLUSIONS Our data show that MSC infusion promotes kidney repair in a variety of ways, including enhancement of the repair of peritubular capillaries and tubular epithelial cells and anti-inflammatory and anti-apoptotic effects. MSCs can secrete high levels of proangiogenic growth factors, but CM results in a nonsignificant improvement, indicating that MSCs play a role in kidney repair through paracrine rather than endocrine mechanisms. These results indicate that MSC infusion is a promising therapeutic strategy for promoting kidney repair after injury.
Collapse
|
35
|
Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, Clark KA, Sun B, Péault B, Huard J. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest 2014; 124:1745-56. [PMID: 24642464 DOI: 10.1172/jci44071] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/16/2014] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here, we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone, while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration, which led to functional recovery as measured by sustained gait improvement. Furthermore, no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy, gastrocnemius muscles from mice exhibited substantially less muscle atrophy, an increase in muscle mass after denervation, and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
Collapse
|
36
|
Hart DA. Is Adipocyte Differentiation the Default Lineage for Mesenchymal Stem/Progenitor Cells after Loss of Mechanical Loading? A Perspective from Space Flight and Model Systems. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.710079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Song M, Heo J, Chun JY, Bae HS, Kang JW, Kang H, Cho YM, Kim SW, Shin DM, Choo MS. The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells Dev 2013; 23:654-63. [PMID: 24192209 DOI: 10.1089/scd.2013.0277] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Overactive bladder (OAB), which is characterized by the sudden and uncomfortable need to urinate with or without urinary leakage, is a challenging urological condition. The insufficient efficacy of current pharmacotherapies that uses antimuscarinic agents has increased the demand for novel long-term/stable therapeutic strategies. Here, we report the superior therapeutic efficacy of using mesenchymal stem cells (MSCs) for the treatment of OAB and a novel therapeutic mechanism that activates endogenous Oct4(+) primitive stem cells. We induced OAB using bladder-outlet-obstruction (BOO) in a rat model and either administered a single transplantation of human adipose-derived MSCs or daily intravenous injections of solifenacin, an antimuscarinic agent, for 2 weeks. Within 2 weeks, both the MSC- and solifenacin-treated groups similarly demonstrated relief from BOO-induced detrusor overactivity, hypertrophic smooth muscle, and neurological injuries. In contrast with the solifenacin-treated groups, a single transplantation of MSCs improved most OAB parameters to normal levels within 4 weeks. Although the transplanted human MSCs were hardly engrafted into the damaged bladders, the bladder tissues transplanted with MSCs increased rat sequence-specific transcription of Oct4, Sox2, and Stella, which are surrogate markers for primitive pluripotent stem cells. In addition, MSCs enhanced the expression of several genes, responsible for stem cell trafficking, including SDF-1/CXCR4, HGF/cMet, PDGF/PDGFR, and VEGF/VEGFR signaling axis. These changes in gene expression were not observed in the solifenacin-treated group. Therefore, we suggest the novel mechanisms for the paracrine effect of MSCs as unleashing/mobilizing primitive endogenous stem cells, which could not only explain the long-term/stable therapeutic efficacy of MSCs, but also provide promising new therapies for the treatment of OAB.
Collapse
Affiliation(s)
- Miho Song
- 1 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hassan N, Tchao J, Tobita K. Concise review: skeletal muscle stem cells and cardiac lineage: potential for heart repair. Stem Cells Transl Med 2013; 3:183-93. [PMID: 24371329 DOI: 10.5966/sctm.2013-0122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Valuable and ample resources have been spent over the last two decades in pursuit of interventional strategies to treat the unmet demand of heart failure patients to restore myocardial structure and function. At present, it is clear that full restoration of myocardial structure and function is outside our reach from both clinical and basic research studies, but it may be achievable with a combination of ongoing research, creativity, and perseverance. Since the 1990s, skeletal myoblasts have been extensively investigated for cardiac cell therapy of congestive heart failure. Whereas the Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial revealed that transplanted skeletal myoblasts did not integrate into the host myocardium and also did not transdifferentiate into cardiomyocytes despite some beneficial effects on recipient myocardial function, recent studies suggest that skeletal muscle-derived stem cells have the ability to adopt a cardiomyocyte phenotype in vitro and in vivo. This brief review endeavors to summarize the importance of skeletal muscle stem cells and how they can play a key role to surpass current results in the future and enhance the efficacious implementation of regenerative cell therapy for heart failure.
Collapse
Affiliation(s)
- Narmeen Hassan
- Department of Developmental Biology, Department of Bioengineering, and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
39
|
Corona BT, Ward CL, Baker HB, Walters TJ, Christ GJ. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 2013; 20:705-15. [PMID: 24066899 DOI: 10.1089/ten.tea.2012.0761] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frank loss of a large volume of skeletal muscle (i.e., volumetric muscle loss [VML]) can lead to functional debilitation and presents a significant problem to civilian and military medicine. Current clinical treatment for VML involves the use of free muscle flaps and physical rehabilitation; however, neither are effective in promoting regeneration of skeletal muscle to replace the tissue that was lost. Toward this end, skeletal muscle tissue engineering therapies have recently shown great promise in offering an unprecedented treatment option for VML. In the current study, we further extend our recent progress (Machingal et al., 2011, Tissue Eng; Corona et al., 2012, Tissue Eng) in the development of tissue engineered muscle repair (TEMR) constructs (i.e., muscle-derived cells [MDCs] seeded on a bladder acellular matrix (BAM) preconditioned with uniaxial mechanical strain) for the treatment of VML. TEMR constructs were implanted into a VML defect in a tibialis anterior (TA) muscle of Lewis rats and observed up to 12 weeks postinjury. The salient findings of the study were (1) TEMR constructs exhibited a highly variable capacity to restore in vivo function of injured TA muscles, wherein TEMR-positive responders (n=6) promoted an ≈61% improvement, but negative responders (n=7) resulted in no improvement compared to nonrepaired controls, (2) TEMR-positive and -negative responders exhibited differential immune responses that may underlie these variant responses, (3) BAM scaffolds (n=7) without cells promoted an ≈26% functional improvement compared to uninjured muscles, (4) TEMR-positive responders promoted muscle fiber regeneration within the initial defect area, while BAM scaffolds did so only sparingly. These findings indicate that TEMR constructs can improve the in vivo functional capacity of the injured musculature at least, in part, by promoting generation of functional skeletal muscle fibers. In short, the degree of functional recovery observed following TEMR implantation (BAM+MDCs) was 2.3×-fold greater than that observed following implantation of BAM alone. As such, this finding further underscores the potential benefits of including a cellular component in the tissue engineering strategy for VML injury.
Collapse
Affiliation(s)
- Benjamin T Corona
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center , Winston Salem, North Carolina
| | | | | | | | | |
Collapse
|
40
|
Sicari BM, Dearth CL, Badylak SF. Tissue Engineering and Regenerative Medicine Approaches to Enhance the Functional Response to Skeletal Muscle Injury. Anat Rec (Hoboken) 2013; 297:51-64. [DOI: 10.1002/ar.22794] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Brian M. Sicari
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Cellular and Molecular Pathology Graduate Program; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Christopher L. Dearth
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
41
|
Best TM, Gharaibeh B, Huard J. Republished: Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Postgrad Med J 2013; 89:666-70. [DOI: 10.1136/postgradmedj-2012-091685rep] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2 dy/2j dystrophic mice. Stem Cell Rev Rep 2013; 9:93-109. [PMID: 22664740 DOI: 10.1007/s12015-012-9380-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The combination of cell therapy with growth factors could be a useful approach to treat progressive muscular dystrophies. Here, we demonstrate, for the first time, that IGF-1 considerably enhances the myogenesis of human umbilical cord (UC) mesenchymal stromal cells (MSCs) in vitro and that IGF-1 enhances interaction and restoration of dystrophin expression in co-cultures of MSCs and muscle cells from Duchenne patients. In vivo studies showed that human MSCs were able to reach the skeletal muscle of LAMA2(dy/2j) dystrophic mice, through systemic delivery, without immunosuppression. Moreover, we showed, for the first time, that IGF-1 injected systemically together with MSCs markedly reduced muscle inflammation and fibrosis, and significantly improved muscle strength in dystrophic mice. Our results suggest that a combined treatment with IGF-1 and MSCs enhances efficiency of muscle repair and, therefore, should be further considered as a potential therapeutic approach in muscular dystrophies.
Collapse
|
43
|
|
44
|
Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 2013; 4:70. [PMID: 23763837 PMCID: PMC3707041 DOI: 10.1186/scrt221] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. METHODS Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. RESULTS Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage inflammatory protein-2, vascular endothelial growth factor, transforming growth factor-beta and IL-6) was increased. CONCLUSION These results indicate that BM-MSCs promote tumor growth and suggest that the crosstalk between tumor cells and BM-MSCs increased the expression of pro-angiogenic factors, which may have induced tumor cell proliferation and angiogenesis thereby increasing solid tumor growth.
Collapse
|
45
|
Nees S, Weiss DR, Juchem G. Focus on cardiac pericytes. Pflugers Arch 2013; 465:779-87. [PMID: 23443852 DOI: 10.1007/s00424-013-1240-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 12/20/2022]
Abstract
The wall of myocardial terminal vessels, consisting of a continuous endothelial tube with an adventitial coat of pericytes in their extracellular matrix, constitutes a remarkably tight barrier to solute transport between the blood and the parenchyma. This constructional principle of precapillary arterioles, capillaries and postcapillary venules extends both up- and downstream into the arterial and venous limbs, where the original microvessel tube widens and becomes the innermost layer-the intima-of all the larger coronary vessels. In the myocardium's smallest functional units and in the intima of the coronaries, the pericytes play key roles by virtue of both their central histological localization and their physiological functions. Recognition and integration of these properties has led to new pathogenetic models for diverse heart diseases and suggests that current therapeutic concepts need to be revised.
Collapse
Affiliation(s)
- Stephan Nees
- Department of Physiology, University of Munich (LMU), Schillerstr. 44, 80336, Munich, Germany.
| | | | | |
Collapse
|
46
|
Tsao J, Vernet DA, Gelfand R, Kovanecz I, Nolazco G, Bruhn KW, Gonzalez-Cadavid NF. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle. Stem Cell Res Ther 2013; 4:4. [PMID: 23295128 PMCID: PMC3706886 DOI: 10.1186/scrt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs.
Collapse
|
47
|
Park HS, Choi GH, Hahn S, Yoo YS, Lee JY, Lee T. Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms. Biochem Biophys Res Commun 2013; 431:326-31. [PMID: 23291168 DOI: 10.1016/j.bbrc.2012.12.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
Abstract
Abdominal aortic aneurysms (AAA) are a growing problem worldwide, yet there is no known medical therapy. The pathogenesis involves degradation of the elastic lamina by two combined mechanisms: increased degradation of elastin by matrix metalloproteinases (MMP) and decreased formation of elastin due to apoptosis of vascular smooth muscle cells (VSMC). In this study, we set out to examine the potential role of stem cells in the attenuation of AAA formation by inhibition of these pathogenetic mechanisms. Muscle-derived stem cells from murine skeletal muscles were isolated and stimulated with PDGF-BB in vitro for differentiation to VSMC-like progenitor cells (VSMC-PC). These cells were implanted in to elastase-induced AAAs in rats. The cell therapy group had decreased rate of aneurysm formation compared to control, and MMP expression at the genetic, protein and enzymatic level were also significantly decreased. Furthermore, direct implantation of VSMC-PCs in the intima of harvested aortas was visualized under immunofluorescent staining, suggesting that these cells were responsible for the inhibition of MMPs and consequent attenuation of AAA formation. These results show a promising role of stem cell therapy for the treatment of AAAs, and with further studies, may be able to reach clinical significance.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Best TM, Gharaibeh B, Huard J. Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Br J Sports Med 2012. [PMID: 23197410 DOI: 10.1136/bjsports-2012-091685] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle injuries are among the most common and frequently disabling injuries sustained by athletes. Repair of injured skeletal muscle is an area that continues to present a challenge for sports medicine clinicians and researchers due, in part, to complete muscle recovery being compromised by development of fibrosis leading to loss of function and susceptibility to re-injury. Injured skeletal muscle goes through a series of coordinated and interrelated phases of healing including degeneration, inflammation, regeneration and fibrosis. Muscle regeneration initiated shortly after injury can be limited by fibrosis which affects the degree of recovery and predisposes the muscle to reinjury. It has been demonstrated in animal studies that antifibrotic agents that inactivate transforming growth factor (TGF)-β1 have been effective at decreasing scar tissue formation. Several studies have also shown that vascular endothelial growth factor (VEGF) can increase the efficiency of skeletal muscle repair by increasing angiogenesis and, at the same time, reducing the accumulation of fibrosis. We have isolated and thoroughly characterised a population of skeletal muscle-derived stem cells (MDSCs) that enhance repair of damaged skeletal muscle fibres by directly differentiating into myofibres and secreting paracrine factors that promote tissue repair. Indeed, we have found that MDSCs transplanted into skeletal and cardiac muscles have been successful at repair probably because of their ability to secrete VEGF that works in a paracrine fashion. The application of these techniques to the study of sport-related muscle injuries awaits investigation. Other useful strategies to enhance skeletal muscle repair through increased vascularisation may include gene therapy, exercise, neuromuscular electrical stimulation and, potentially, massage therapy. Based on recent studies showing an accelerated recovery of muscle function from intense eccentric exercise through massage-based therapies, we believe that this treatment modality offers a practical and non-invasive form of therapy for skeletal muscle injuries. However, the biological mechanism(s) behind the beneficial effect of massage are still unclear and require further investigation using animal models and potentially randomised, human clinical studies.
Collapse
Affiliation(s)
- Thomas M Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health And Performance Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
49
|
Flynn A, Chen X, O'Connell E, O'Brien T. A comparison of the efficacy of transplantation of bone marrow-derived mesenchymal stem cells and unrestricted somatic stem cells on outcome after acute myocardial infarction. Stem Cell Res Ther 2012; 3:36. [PMID: 22974654 PMCID: PMC3580427 DOI: 10.1186/scrt127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
Introduction A number of questions remain unanswered in the field of cell therapy for acute myocardial infarction, including what is the optimal cell type, and can therapeutic efficacy be enhanced by conditioning regimens. In this study, we sought to address these questions by directly comparing the effect of bone marrow-derived mesenchymal stem cells and unrestricted somatic stem cells delivered 24 hours post-myocardial infarction and by determining if the therapeutic efficacy of unrestricted somatic stem cells could be enhanced by exposing the cells to guiding factors before cell transplantation. Methods Unrestricted somatic stem cells were guided by exposure to 50 ng/mL basic fibroblast growth factor, 20 ng/mL hepatocyte growth factor and 20 ng/mL bone morphogenetic protein-2 for 24 hours. Using a Sprague-Dawley rat model of acute myocardial infarction, we transplanted cells by intramyocardial injection 24 hours post-myocardial infarction. Cardiac function was serially measured using echocardiography, and histological analyses of infarct morphology, angiogenesis and apoptosis were obtained. Transcriptomic and proteomic changes were assessed using microarray and real-time quantitative PCR. Results When assessed 28 days after the myocardial infarction, the delivery of mesenchymal stem cells 24 hours post-myocardial infarction did not improve ejection fraction (P = 0.19), and did not prevent the decline in ejection fraction observed in the absence of cell therapy (P = 0.17). The administration of unrestricted somatic stem cells also did not improve ejection fraction (P = 0.11), but did prevent a further decline in ejection fraction (P = 0.001). Delivery of guided unrestricted somatic stem cells significantly improved ejection fraction (P = 0.03). Guided unrestricted somatic stem cells restored function to a greater extent than mesenchymal stem cells (P = 0.03). The infarct area (P = 0.2), apoptosis (P = 0.07) and angiogenesis (P = 0.09) did not differ between groups. Microarray analysis revealed that, following pre-implantation guiding, the gene groupings of mitosis, signalling and angiogenesis were highly overrepresented, mediators of apoptosis were overrepresented, and cardiomyocyte-associated genes were not differentially expressed. Conclusions These results suggest that guided unrestricted somatic stem cells have a moderate capacity to repair cardiac damage and that they are more effective than mesenchymal stem cells in restoring cardiac function after a myocardial infarction. The mechanism of the benefit was not fully elucidated in this study, but these observations may be mediated by favorable dysregulation of angiogenic and apoptotic gene groupings.
Collapse
|
50
|
Gharaibeh B, Chun-Lansinger Y, Hagen T, Ingham SJM, Wright V, Fu F, Huard J. Biological approaches to improve skeletal muscle healing after injury and disease. ACTA ACUST UNITED AC 2012; 96:82-94. [PMID: 22457179 DOI: 10.1002/bdrc.21005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Skeletal muscle injury and repair are complex processes, including well-coordinated steps of degeneration, inflammation, regeneration, and fibrosis. We have reviewed the recent literature including studies by our group that describe how to modulate the processes of skeletal muscle repair and regeneration. Antiinflammatory drugs that target cyclooxygenase-2 were found to hamper the skeletal muscle repair process. Muscle regeneration phase can be aided by growth factors, including insulin-like growth factor-1 and nerve growth factor, but these factors are typically short-lived, and thus more effective methods of delivery are needed. Skeletal muscle damage caused by traumatic injury or genetic diseases can benefit from cell therapy; however, the majority of transplanted muscle cells (myoblasts) are unable to survive the immune response and hypoxic conditions. Our group has isolated neonatal skeletal muscle derived stem cells (MDSCs) that appear to repair muscle tissue in a more effective manner than myoblasts, most likely due to their better resistance to oxidative stress. Enhancing antioxidant levels of MDSCs led to improved regenerative potential. It is becoming increasingly clear that stem cells tissue repair by direct differentiation and paracrine effects leading to neovascularization of injured site and chemoattraction of host cells. The factors invoked in paracrine action are still under investigation. Our group has found that angiotensin II receptor blocker (losartan) significantly reduces fibrotic tissue formation and improves repair of murine injured muscle. Based on these data, we have conducted a case study on two hamstring injury patients and found that losartan treatment was well tolerated and possibly improved recovery time. We believe this medication holds great promise to optimize muscle repair in humans.
Collapse
Affiliation(s)
- Burhan Gharaibeh
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|