1
|
Dery KJ, Najjar SM, Beauchemin N, Shively JE, Kupiec‐Weglinski JW. Mechanism and function of CEACAM1 splice isoforms. Eur J Clin Invest 2024; 54 Suppl 2:e14350. [PMID: 39674874 PMCID: PMC11646291 DOI: 10.1111/eci.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles. The mechanisms that regulate CEACAM1 RNA splicing remain elusive. METHODS This narrative review summarizes the current knowledge of the mechanism and function of CEACAM1 splice isoforms. Historical perspectives address the biological significance of the glycosylated Ig domains, the variable exon 7, and phosphorylation events that dictate its signal transduction pathways. The use of small antisense molecules to target mis-spliced variable exon 7 is discussed. RESULTS The Ig variable-like N domain mediates cell adhesion and immune checkpoint inhibitory functions. Gly and Tyr residues in the transmembrane (TM) domain are essential for dimerization. Calmodulin, Calcium/Calmodulin-dependent protein kinase II delta (CamK2D), Actin and Annexin A2 are binding partners of CEACAM1-S. Homology studies of the muCEACAM1-S and huCEACAM1-S TM predict differences in their signal transduction pathways. Hypoxia-inducible factor 1-α (HIF-1-α) induces alternative splicing to produce CEACAM1-S under limited oxygen conditions. Antisense small molecules directed to exon 7 may correct faulty expression of the short and long cytoplasmic tail splicing isoforms. CONCLUSION More pre-clinical and clinical studies are needed to elucidate the precise mechanisms by which CEACAM1 RNA splicing may be exploited to develop targeted interventions towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth J. Dery
- Department of SurgeryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - John E. Shively
- Department of Theranostics and Immunology, Arthur D. Riggs Diabetes and Metabolism Research Institute, Beckman Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | | |
Collapse
|
2
|
Götz L, Rueckschloss U, Najjar SM, Ergün S, Kleefeldt F. Carcinoembryonic antigen-related cell adhesion molecule 1 in cancer: Blessing or curse? Eur J Clin Invest 2024; 54 Suppl 2:e14337. [PMID: 39451132 DOI: 10.1111/eci.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, also CD66a), a transmembrane glycoprotein of the immunoglobulin superfamily, is a pivotal mediator of various physiological and pathological processes, including oncologic disorders. However, its precise role in tumorigenicity is contradictory discussed by several clinical studies. This review aims to elucidate the clinical significance of CEACAM1 in different cancer entities focusing on tumour formation, progression and metastasis as well as on CEACAM1-mediated treatment resistance. Furthermore, we discuss the contribution of CEACAM1 to cancer immunity and modulation of the inflammatory microenvironment and finally provide a comprehensive review of treatment regimens targeting this molecule.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Irvine Hall, Ohio University, Athens, Ohio, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
3
|
Huang YH, Yoon CH, Gandhi A, Hanley T, Castrillon C, Kondo Y, Lin X, Kim W, Yang C, Driouchi A, Carroll M, Gray-Owen SD, Wesemann DR, Drake CG, Bertagnolli MM, Beauchemin N, Blumberg RS. High-dimensional mapping of human CEACAM1 expression on immune cells and association with melanoma drug resistance. COMMUNICATIONS MEDICINE 2024; 4:128. [PMID: 38956268 PMCID: PMC11219841 DOI: 10.1038/s43856-024-00525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/08/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is an inhibitory cell surface protein that functions through homophilic and heterophilic ligand binding. Its expression on immune cells in human tumors is poorly understood. METHODS An antibody that distinguishes human CEACAM1 from other highly related CEACAM family members was labeled with 159Tb and inserted into a panel of antibodies that included specificity for programmed cell death protein 1 (PD1) and PD-L1, which are targets of immunotherapy, to gain a data-driven immune cell atlas using cytometry by time-of-flight (CyTOF). A detailed inventory of CEACAM1, PD1, and PD-L1 expression on immune cells in metastatic lesions to lymph node or soft tissues and peripheral blood samples from patients with treatment-naive and -resistant melanoma as well as peripheral blood samples from healthy controls was performed. RESULTS CEACAM1 is absent or at low levels on healthy circulating immune cells but is increased on immune cells in peripheral blood and tumors of melanoma patients. The majority of circulating PD1-positive NK cells, innate T cells, B cells, monocytic cells, dendritic cells, and CD4+ T cells in the peripheral circulation of treatment-resistant disease co-express CEACAM1 and are demonstrable as discrete populations. CEACAM1 is present on distinct types of cells that are unique to the tumor microenvironment and exhibit expression levels that are highest in treatment resistance; this includes tumor-infiltrating CD8+ T cells. CONCLUSIONS To the best of our knowledge, this work represents the first comprehensive atlas of CEACAM1 expression on immune cells in a human tumor and reveals an important correlation with treatment-resistant disease. These studies suggest that agents targeting CEACAM1 may represent appropriate partners for PD1-related pathway therapies.
Collapse
Affiliation(s)
- Yu-Hwa Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amit Gandhi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Hanley
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Children's Hospital Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Kondo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Xi Lin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter Kim
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chao Yang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amine Driouchi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael Carroll
- Program in Cellular and Molecular Medicine, Children's Hospital Medical Center, Harvard Medical School, Boston, MA, USA
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Duane R Wesemann
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital and Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University School of Medicine, New York, NY, USA
- Janssen R&D, Springhouse, PA, USA
| | - Monica M Bertagnolli
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- National Institutes of Health, Bethesda, MD, USA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Richard S Blumberg
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Kuiper JWP, Gregg HL, Schüber M, Klein J, Hauck CR. Controling the cytoskeleton during CEACAM3-mediated phagocytosis. Eur J Cell Biol 2024; 103:151384. [PMID: 38215579 DOI: 10.1016/j.ejcb.2024.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
Collapse
Affiliation(s)
| | - Helena L Gregg
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Meike Schüber
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jule Klein
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
5
|
Götz L, Rueckschloss U, Balk G, Pfeiffer V, Ergün S, Kleefeldt F. The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. Front Immunol 2023; 14:1295232. [PMID: 38077351 PMCID: PMC10704240 DOI: 10.3389/fimmu.2023.1295232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Gözde Balk
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Li X, Zhao B, Luo L, Zhou Y, Lai D, Luan T. In vitro immunotoxicity detection for environmental pollutants: Current techniques and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Chean J, Chen CJ, Gugiu G, Wong P, Cha S, Li H, Nguyen T, Bhatticharya S, Shively JE. Human CEACAM1-LF regulates lipid storage in HepG2 cells via fatty acid transporter CD36. J Biol Chem 2021; 297:101311. [PMID: 34666041 PMCID: PMC8577156 DOI: 10.1016/j.jbc.2021.101311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed in the liver and secreted as biliary glycoprotein 1 (BGP1) via bile canaliculi (BCs). CEACAM1-LF is a 72 amino acid cytoplasmic domain mRNA splice isoform with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Ceacam1−/− or Ser503Ala transgenic mice have been shown to develop insulin resistance and nonalcoholic fatty liver disease; however, the role of the human equivalent residue, Ser508, in lipid dysregulation is unknown. Human HepG2 hepatocytes that express CEACAM1 and form BC in vitro were compared with CEACAM1−/− cells and CEACAM1−/− cells expressing Ser508Ala null or Ser508Asp phosphorylation mimic mutations or to phosphorylation null mutations in the tyrosine ITIMs known to be phosphorylated by the tyrosine kinase Src. CEACAM1−/− cells and the Ser508Asp and Tyr520Phe mutants strongly retained lipids, while Ser508Ala and Tyr493Phe mutants had low lipid levels compared with wild-type cells, indicating that the ITIM mutants phenocopied the Ser508 mutants. We found that the fatty acid transporter CD36 was upregulated in the S508A mutant, coexpressed in BCs with CEACAM1, co-IPed with CEACAM1 and Src, and when downregulated via RNAi, an increase in lipid droplet content was observed. Nuclear translocation of CD36 associated kinase LKB1 was increased sevenfold in the S508A mutant versus CEACAM1−/− cells and correlated with increased activation of CD36-associated kinase AMPK in CEACAM1−/− cells. Thus, while CEACAM1−/− HepG2 cells upregulate lipid storage similar to Ceacam1−/− in murine liver, the null mutation Ser508Ala led to decreased lipid storage, emphasizing evolutionary changes between the CEACAM1 genes in mouse and humans.
Collapse
Affiliation(s)
- Jennifer Chean
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Charng-Jui Chen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Gabriel Gugiu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Seung Cha
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Harry Li
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Tung Nguyen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhatticharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
8
|
Fan Z, Pathak JL, Ge L. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases. Front Cell Dev Biol 2021; 9:713254. [PMID: 34414191 PMCID: PMC8369417 DOI: 10.3389/fcell.2021.713254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory diseases have a negative impact on bone homeostasis via exacerbated local and systemic inflammation. Bone resorbing osteoclasts are mainly derived from hematopoietic precursors and bone marrow monocytes. Induced osteoclastogenesis during inflammation, autoimmunity, metabolic diseases, and cancers is associated with bone loss and osteoporosis. Proinflammatory cytokines, pathogen-associated molecular patterns, or endogenous pathogenic factors induce osteoclastogenic differentiation by binding to the Toll-like receptor (TLR) family expressed on surface of osteoclast precursors. As a non-canonical member of the TLRs, radioprotective 105 kDa (RP105 or CD180) and its ligand, myeloid differentiation protein 1 (MD1), are involved in several bone metabolic disorders. Reports from literature had demonstrated RP105 as an important activator of B cells, bone marrow monocytes, and macrophages, which regulates inflammatory cytokines release from immune cells. Reports from literature had shown the association between RP105 and other TLRs, and the downstream signaling mechanisms of RP105 with different “signaling-competent” partners in immune cells during different disease conditions. This review is focused to summarize: (1) the role of RP105 on immune cells’ function and inflammation regulation (2) the potential regulatory roles of RP105 in different disease-mediated osteoclast activation and the underlying mechanisms, and (3) the different “signaling-competent” partners of RP105 that regulates osteoclastogenesis.
Collapse
Affiliation(s)
- Zhou Fan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linhu Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Tsugawa N, Yamada D, Watabe T, Onizawa M, Wang S, Nemoto Y, Oshima S, Tsubata T, Adachi T, Kawano Y, Watanabe M, Blumberg RS, Okamoto R, Nagaishi T. CEACAM1 specifically suppresses B cell receptor signaling-mediated activation. Biochem Biophys Res Commun 2021; 535:99-105. [PMID: 33352461 PMCID: PMC9635307 DOI: 10.1016/j.bbrc.2020.11.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expressed in T cells may regulate immune responses in the gut. In addition to T cells, B cells are also an important population in the gut-associated lymphoid tissues that orchestrate mucosal homeostasis. However, the role of CEACAM1 in B cells has not been elucidated. We herein analyzed mature B cells to determine the functions of CEACAM1. Flow cytometry revealed high expression of CEACAM1 on B cells in secondary lymphoid tissues. Cytokine production induced by activation of B cell receptor (BCR) signaling was suppressed by CEACAM1 signaling in contrast to that associated with either Toll-like receptor 4 or CD40 signaling. Confocal microscopy revealed co-localization of CEACAM1 and BCR when activated with anti-Igμ F(ab')2 fragment. Overexpression of CEACAM1 in a murine B cell line, A20, resulted in reduced expressions of activation surface markers with decreased Ca2+ influx after BCR signal activation. Overexpression of CEACAM1 suppressed BCR signal cascade in A20 cells in association with decreased spontaneous proliferation. Our results suggest that CEACAM1 can regulate BCR-mediated mature B cell activation in lymphoid tissues. Therefore, further studies of this molecule may lead to greater insights into the mechanisms of immune responses within peripheral tissues and the potential treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Naoya Tsugawa
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daiki Yamada
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Taro Watabe
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Michio Onizawa
- Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Tokyo, Japan
| | - Shuang Wang
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Faculty of Medicine, Imperial College London, London, UK
| | - Yasuhiro Nemoto
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute (MRI), TMDU, Tokyo, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute (MRI), TMDU, Tokyo, Japan
| | - Yohei Kawano
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Advanced Research Institute, TMDU, Tokyo, Japan
| | - Richard S Blumberg
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryuichi Okamoto
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nagaishi
- Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Tokyo, Japan.
| |
Collapse
|
10
|
Interferon gamma induces inflammatory responses through the interaction of CEACAM1 and PI3K in airway epithelial cells. J Transl Med 2019; 17:147. [PMID: 31072323 PMCID: PMC6507156 DOI: 10.1186/s12967-019-1894-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Interferon gamma (IFNγ) plays an important role in the development of chronic lung diseases via the production of inflammatory mediators, although the exact mechanism remains unclear. The present study aimed at investigating the potential mechanisms by which IFNγ induced over-production of interleukins through the interaction between carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway. METHODS IFN-γ induced over-production of interleukin (IL) 6 and IL8, and RNA expression of CEACAM1 and its subtypes or PI3K and its subtypes in human bronchial epithelial cells (HBE). The production of IL6 and IL8 or cell proliferation and movement were also evaluated in cellCEACAM1- or cellCEACAM1+ after the induction of IFN-γ. Roles of PI3K subtype proteins, e.g. PI3Kp110α/δ, Akt, p110α/γ/δ/β/mTOR, PI3Kp110α/δ/β, PI3Kp110δ, or pan-PI3K in IFN-γ-induced CEACAM1 subtype alterations were furthermore validated using those proteins of PI3K subtypes. RESULTS CEACAM1, especially CEACAM1-S isoforms, was significantly up-regulated in HBE cells after treatment with IFN-γ. CEACAM1 played roles in expression of IL-6 and IL-8, and facilitated cellular proliferation and migration. IFN-γ up-regulated the expression of CEACAM1 in airway epithelial cells, especially CEACAM1-S isoforms, promoting cellular proliferation, migration, and the production of inflammatory factors. PI3K (p110δ)/Akt/mTOR pathway was involved in the process of IFN-γ-upregulated CEACAM1, especially CEACAM1-S. On the other hand, CEACAM1 could promote the activation of PI3K/Akt/mTOR pathway. CONCLUSION IFN-γ could induce inflammatory responses, cellular growth and proliferation through the interaction of CEACAM1 (especially CEACAM1-S isoforms) and PI3K(p110δ)/Akt/mTOR in airway epithelial cells, which might be new alternative of future therapies against epithelial transition from inflammation to cancer.
Collapse
|
11
|
Zhang Z, La Placa D, Nguyen T, Kujawski M, Le K, Li L, Shively JE. CEACAM1 regulates the IL-6 mediated fever response to LPS through the RP105 receptor in murine monocytes. BMC Immunol 2019; 20:7. [PMID: 30674283 PMCID: PMC6345024 DOI: 10.1186/s12865-019-0287-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Systemic inflammation and the fever response to pathogens are coordinately regulated by IL-6 and IL-1β. We previously showed that CEACAM1 regulates the LPS driven expression of IL-1β in murine neutrophils through its ITIM receptor. Results We now show that the prompt secretion of IL-6 in response to LPS is regulated by CEACAM1 expression on bone marrow monocytes. Ceacam1−/− mice over-produce IL-6 in response to an i.p. LPS challenge, resulting in prolonged surface temperature depression and overt diarrhea compared to their wild type counterparts. Intraperitoneal injection of a 64Cu-labeled LPS, PET imaging agent shows confined localization to the peritoneal cavity, and fluorescent labeled LPS is taken up by myeloid splenocytes and muscle endothelial cells. While bone marrow monocytes and their progenitors (CD11b+Ly6G−) express IL-6 in the early response (< 2 h) to LPS in vitro, these cells are not detected in the bone marrow after in vivo LPS treatment perhaps due to their rapid and complete mobilization to the periphery. Notably, tissue macrophages are not involved in the early IL-6 response to LPS. In contrast to human monocytes, TLR4 is not expressed on murine bone marrow monocytes. Instead, the alternative LPS receptor RP105 is expressed and recruits MD1, CD14, Src, VAV1 and β-actin in response to LPS. CEACAM1 negatively regulates RP105 signaling in monocytes by recruitment of SHP-1, resulting in the sequestration of pVAV1 and β-actin from RP105. Conclusion This novel pathway and regulation of IL-6 signaling by CEACAM1 defines a novel role for monocytes in the fever response of mice to LPS. Electronic supplementary material The online version of this article (10.1186/s12865-019-0287-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Tung Nguyen
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Maciej Kujawski
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Keith Le
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| |
Collapse
|
12
|
Tsubata T. Ligand Recognition Determines the Role of Inhibitory B Cell Co-receptors in the Regulation of B Cell Homeostasis and Autoimmunity. Front Immunol 2018; 9:2276. [PMID: 30333834 PMCID: PMC6175988 DOI: 10.3389/fimmu.2018.02276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
B cells express various inhibitory co-receptors including CD22, CD72, and Siglec-G. These receptors contain immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic region. Although many of the inhibitory co-receptors negatively regulate BCR signaling by activating SH2-containing protein tyrosine phosphatase 1 (SHP-1), different inhibitory co-receptors have distinct functional properties. CD22, Siglec-G, and CD72 preferentially regulate tonic signaling in conventional B cells, B-1 cell homeostasis, and development of lupus-like disease, respectively. CD72 recognizes RNA-related lupus self-antigen Sm/RNP as a ligand. This ligand recognition recruits CD72 to BCR in Sm/RNP-reactive B cells thereby suppressing production of anti-Sm/RNP autoantibody involved in the pathogenesis of lupus. In contrast, Siglec-G recognizes α2,3 as well as α2,6 sialic acids whereas CD22 recognizes α2,6 sialic acid alone. Because glycoproteins including BCR are dominantly glycosylated with α2,3 sialic acids in B-1 cells, Siglec-G but not CD22 recruits BCR as a ligand specifically in B-1 cells, and regulates B-1 cell homeostasis by suppressing BCR signaling in B-1 cells. Thus, recognition of distinct ligands determines functional properties of different inhibitory B cell co-receptors.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Cavaillé M, Ponelle-Chachuat F, Uhrhammer N, Viala S, Gay-Bellile M, Privat M, Bidet Y, Bignon YJ. Early Onset Multiple Primary Tumors in Atypical Presentation of Cowden Syndrome Identified by Whole-Exome-Sequencing. Front Genet 2018; 9:353. [PMID: 30233642 PMCID: PMC6127642 DOI: 10.3389/fgene.2018.00353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
A family with an aggregation of rare early onset multiple primary tumors has been managed in our oncogenetics department: the proband developed four early onset carcinomas between ages 31 and 33 years, including acral melanoma, bilateral clear cell renal carcinoma (RC), and follicular variant of papillary thyroid carcinoma. The proband's parent developed orbital lymphoma and small intestine mucosa-associated lymphoid tissue (MALT) lymphoma between 40 and 50 years old. Whole-exome-sequencing (WES) of the nuclear family (proband, parents, and sibling) identified in the proband a de novo deleterious heterozygous mutation c.1003C > T (p.Arg335∗) in the phosphatase and tensin homolog (PTEN) gene. Furthermore, WES allowed analysis of the nuclear family's genetic background, and identified deleterious variants in two candidate modifier genes: CEACAM1 and MIB2. CEACAM1, a tumor suppressor gene, presents loss of expression in clear cell RC and is involved in proliferation of B cells. It could explain in part the phenotype of proband's parent and the occurrence of clear cell RC in the proband. Deleterious mutations in the MIB2 gene are associated with melanoma invasion, and could explain the occurrence of melanoma in the proband. Cowden syndrome is a hereditary autosomal dominant disorder associated with increased risk of muco-cutaneous features, hamartomatous tumors, and cancer. This atypical presentation, including absence of muco-cutaneous lesions, four primary early onset tumors and bilateral clear cell RC, has not been described before. This encourages including the PTEN gene in panel testing in the context of early onset RC, whatever the histological subtype. Further studies are required to determine the implication of CEACAM1 and MIB2 in the severity of Cowden syndrome in our proband and occurrence of early onset MALT lymphoma in a parent.
Collapse
Affiliation(s)
- Mathias Cavaillé
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Flora Ponelle-Chachuat
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Nancy Uhrhammer
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Sandrine Viala
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Mathilde Gay-Bellile
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Maud Privat
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yannick Bidet
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
14
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Rovituso DM, Scheffler L, Wunsch M, Kleinschnitz C, Dörck S, Ulzheimer J, Bayas A, Steinman L, Ergün S, Kuerten S. CEACAM1 mediates B cell aggregation in central nervous system autoimmunity. Sci Rep 2016; 6:29847. [PMID: 27435215 PMCID: PMC4951702 DOI: 10.1038/srep29847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/26/2016] [Indexed: 11/18/2022] Open
Abstract
B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1+ B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain −3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease.
Collapse
Affiliation(s)
- Damiano M Rovituso
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Laura Scheffler
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Marie Wunsch
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospitals of Würzburg, Würzburg, Germany.,Department of Neurology, University Hospitals of Würzburg, Würzburg, Germany.,University Hospital Essen, Department of Neurology, Essen, Germany
| | - Sebastian Dörck
- Department of Neurology, University Hospitals of Würzburg, Würzburg, Germany
| | - Jochen Ulzheimer
- Department of Neurology, Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Germany
| | - Antonios Bayas
- Department of Neurology, Klinikum Augsburg, Augsburg, Germany
| | - Lawrence Steinman
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Süleyman Ergün
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Ling Y, Wang J, Wang L, Hou J, Qian P, Xiang-dong W. Roles of CEACAM1 in cell communication and signaling of lung cancer and other diseases. Cancer Metastasis Rev 2015; 34:347-57. [DOI: 10.1007/s10555-015-9569-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Khairnar V, Duhan V, Maney SK, Honke N, Shaabani N, Pandyra AA, Seifert M, Pozdeev V, Xu HC, Sharma P, Baldin F, Marquardsen F, Merches K, Lang E, Kirschning C, Westendorf AM, Häussinger D, Lang F, Dittmer U, Küppers R, Recher M, Hardt C, Scheffrahn I, Beauchemin N, Göthert JR, Singer BB, Lang PA, Lang KS. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production. Nat Commun 2015; 6:6217. [PMID: 25692415 PMCID: PMC4346637 DOI: 10.1038/ncomms7217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023] Open
Abstract
B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. Antibody responses are regulated by selective survival of B cells with proper antigen specificity. Here the authors show that CEACAM1 is critical for B-cell survival during homeostasis and antiviral responses.
Collapse
Affiliation(s)
- Vishal Khairnar
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Vikas Duhan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Sathish Kumar Maney
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Nadine Honke
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Namir Shaabani
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Aleksandra A Pandyra
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstrasse 173, Essen 45122, Germany
| | - Vitaly Pozdeev
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Haifeng C Xu
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Piyush Sharma
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Fabian Baldin
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Florian Marquardsen
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Katja Merches
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Department of Physiology I, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany
| | - Elisabeth Lang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Carsten Kirschning
- Institute of Medical Microbiology, Faculty of Medicine, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, Faculty of Medicine, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Florian Lang
- Department of Physiology I, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany
| | - Ulf Dittmer
- Institute of Virology, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstrasse 173, Essen 45122, Germany
| | - Mike Recher
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Inka Scheffrahn
- Clinic of Gastroenterology and Hepatology, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Centre, Departments of Biochemistry, Medicine and Oncology, McIntyre Medical Science Building, Montreal, Quebec, Canada H3G 1Y6
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Philipp A Lang
- 1] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany [2] Department of Molecular Medicine II, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Karl S Lang
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| |
Collapse
|
18
|
Soluble CEACAM8 interacts with CEACAM1 inhibiting TLR2-triggered immune responses. PLoS One 2014; 9:e94106. [PMID: 24743304 PMCID: PMC3990526 DOI: 10.1371/journal.pone.0094106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
Lower respiratory tract bacterial infections are characterized by neutrophilic inflammation in the airways. The carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 8 is expressed in and released by human granulocytes. Our study demonstrates that human granulocytes release CEACAM8 in response to bacterial DNA in a TLR9-dependent manner. Individuals with a high percentage of bronchial lavage fluid (BALF) granulocytes were more likely to have detectable levels of released CEACAM8 in the BALF than those with a normal granulocyte count. Soluble, recombinant CEACAM8-Fc binds to CEACAM1 expressed on human airway epithelium. Application of CEACAM8-Fc to CEACAM1-positive human pulmonary epithelial cells resulted in reduced TLR2-dependent inflammatory responses. These inhibitory effects were accompanied by tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM) of CEACAM1 and by recruitment of the phosphatase SHP-1, which could negatively regulate Toll-like receptor 2-dependent activation of the phosphatidylinositol 3-OH kinase-Akt kinase pathway. Our results suggest a new mechanism by which granulocytes reduce pro-inflammatory immune responses in human airways via secretion of CEACAM8 in neutrophil-driven bacterial infections.
Collapse
|
19
|
Tchoupa AK, Schuhmacher T, Hauck CR. Signaling by epithelial members of the CEACAM family - mucosal docking sites for pathogenic bacteria. Cell Commun Signal 2014; 12:27. [PMID: 24735478 PMCID: PMC4057559 DOI: 10.1186/1478-811x-12-27] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/24/2014] [Indexed: 11/22/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a group of immunoglobulin-related vertebrate glycoproteins. Several family members, including CEACAM1, CEA, and CEACAM6, are found on epithelial tissues throughout the human body. As they modulate diverse cellular functions, their signaling capacity is in the focus of current research. In this review we will summarize the knowledge about common signaling processes initiated by epithelial CEACAMs and suggest a model of signal transduction by CEACAM family members lacking significant cytoplasmic domains. As pathogenic and non-pathogenic bacteria exploit these receptors during mucosal colonization, we try to highlight the connection between CEACAMs, microbes, and cellular responses. Special emphasis in this context is placed on the functional interplay between CEACAMs and integrins that influences matrix adhesion of epithelial cells. The cooperation between these two receptor families provides an intriguing example of the fine tuning of cellular responses and their manipulation by specialized microorganisms.
Collapse
Affiliation(s)
| | | | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
20
|
Xie Q, Brackenbury LS, Hill DJ, Williams NA, Qu X, Virji M. Moraxella catarrhalis adhesin UspA1-derived recombinant fragment rD-7 induces monocyte differentiation to CD14+CD206+ phenotype. PLoS One 2014; 9:e90999. [PMID: 24599281 PMCID: PMC3944954 DOI: 10.1371/journal.pone.0090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/06/2014] [Indexed: 12/04/2022] Open
Abstract
Circulating monocytes in the bloodstream typically migrate to other tissues and differentiate into tissue resident macrophages, the process being determined by the constituents of the microenvironments encountered. These may include microbes and their products. In this study, we investigated whether Moraxella catarrhalis Ubiquitous Surface Protein A1 (UspA1), known to bind to a widely expressed human cell surface receptor CEACAM1, influences monocyte differentiation as receptor engagement has been shown to have profound effects on monocytes. We used the recombinant molecules corresponding to the regions of UspA1 which either bind (rD-7; UspA1527–665) or do not bind (r6–8; UspA1659–863) to CEACAM1 and investigated their effects on CD206, CD80 and CD86 expression on freshly isolated human CD14+ monocytes from peripheral blood mononuclear cells (PBMC). Exposure to rD-7, but not r6–8, biased monocyte differentiation towards a CD14+CD206+ phenotype, with reduced CD80 expression. Monocytes treated with rD-7 also secreted high levels of IL-1ra and chemokine IL-8 but not IL-10 or IL-12p70. The effects of rD-7 were independent of any residual endotoxin. Unexpectedly, these effects of rD-7 were also independent of its ability to bind to CEACAM1, as monocyte pre-treatment with the anti-CEACAM antibody A0115 known to inhibit rD-7 binding to the receptor, did not affect rD-7-driven differentiation. Further, another control protein rD-7/D (a mutant form of rD-7, known not to bind to CEACAMs), also behaved as the parent molecule. Our data suggest that specific regions of M. catarrhalis adhesin UspA1 may modulate inflammation during infection through a yet unknown receptor on monocytes.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Louise S. Brackenbury
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Neil A. Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * E-mail: (XQ); (NW)
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
- * E-mail: (XQ); (NW)
| | - Mumtaz Virji
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
21
|
Gender differences of B cell signature in healthy subjects underlie disparities in incidence and course of SLE related to estrogen. J Immunol Res 2014; 2014:814598. [PMID: 24741625 PMCID: PMC3987971 DOI: 10.1155/2014/814598] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to investigate mechanism of the gender differences of B cells. The results showed that 358 differential gene expressions (DEGs) were displayed between healthy females and males. Compared with male, 226 and 132 genes were found to be up- and downregulated in the female. 116 genes displayed possible correlation with estrogen. Moreover, the upregulated DEGs (Cav1, CD200R1, TNFRSF17, and CXCR3) and downregulated DEGs (EIF1AY and DDX3Y) in healthy female may be involved in gender predominance of some immune diseases. Furthermore, signaling pathway analysis for estrogen-relevant DEGs showed that only 26 genes were downregulated in SLE female versus SLE male, of which expressions of 8 genes had significant difference between SLE females and SLE males but are having nonsignificant difference between healthy females and healthy males. Except for the 5 Y-chromosome-related genes or varients, only 3 DEGs (LTF, CAMP, and DEFA4) were selected and qRT-PCR confirmed that the expressions of LTF and CAMP decreased significantly in B cells from female SLE patients. These data indicated that the gender differences were existent in global gene expression of B cells and the difference may be related to estrogen.
Collapse
|
22
|
CEACAM1 loss links inflammation to insulin resistance in obesity and non-alcoholic steatohepatitis (NASH). Semin Immunopathol 2013; 36:55-71. [PMID: 24258517 DOI: 10.1007/s00281-013-0407-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023]
Abstract
Mounting epidemiological evidence points to an association between metabolic syndrome and non-alcoholic steatohepatitis (NASH), an increasingly recognized new epidemic. NASH pathologies include hepatocellular ballooning, lobular inflammation, hepatocellular injury, apoptosis, and hepatic fibrosis. We will review the relationship between insulin resistance and inflammation in visceral obesity and NASH in an attempt to shed more light on the pathogenesis of these major metabolic diseases. Moreover, we will identify loss of the carcinoembryonic antigen-related cell adhesion molecule 1 as a unifying mechanism linking the immunological and metabolic abnormalities in NASH.
Collapse
|
23
|
Do inhibitory immune receptors play a role in the etiology of autoimmune disease? Clin Immunol 2013; 150:31-42. [PMID: 24333531 DOI: 10.1016/j.clim.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 12/21/2022]
Abstract
Inhibitory receptors are thought to be important in balancing immune responses. The general assumption is that lack of inhibition predisposes for autoimmune diseases. As reviewed here, various experimental and clinical data support this assumption. However, in humans genetic evidence implicates only a limited number of inhibitory receptors. GWAS have established common variation in a few inhibitory receptor genes, such as FCγRIIB, PD-1 and CTLA-4 as risk factors. The question arises whether inhibitory receptor function is a major determinant of autoimmune disease. In this respect, the finding that genetic variation in CSK and PTPN22 is strongly associated with multiple autoimmune diseases is of interest. We propose a model in which the molecules encoded by these genes are downstream of inhibitory receptors. We conclude that common genetic variation of inhibitory receptors, with few exceptions, is not a determining factor for autoimmunity in humans. However, common downstream signaling pathways are.
Collapse
|
24
|
Hosomi S, Chen Z, Baker K, Chen L, Huang YH, Olszak T, Zeissig S, Wang JH, Mandelboim O, Beauchemin N, Lanier LL, Blumberg RS. CEACAM1 on activated NK cells inhibits NKG2D-mediated cytolytic function and signaling. Eur J Immunol 2013; 43:2473-83. [PMID: 23696226 PMCID: PMC3775953 DOI: 10.1002/eji.201242676] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 04/09/2013] [Accepted: 05/17/2013] [Indexed: 12/29/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed on activated natural killer (NK) cells wherein it inhibits lysis of CEACAM1-bearing tumor cell lines. The mechanism for this is unknown. Here, we show that interleukin-2-induced expression of CEACAM1 on both mouse and primary human NK cells impairs the ability of NK gene complex group 2 member D (NKG2D) to stimulate cytolysis of CEACAM1-bearing cells. This process requires the expression of CEACAM1 on the NK cells and on the tumor cells, which is consistent with the involvement of trans-homophilic interactions between CEACAM1. Mechanistically, co-engagement of NKG2D and CEACAM1 results in a biochemical association between these two surface receptors and the recruitment of Src homology phosphatase 1 by CEACAM1 that leads to dephosphorylation of the guanine nucleotide exchange factor Vav1 and blockade of downstream signaling that is associated with the initiation of cytolysis. Thus, CEACAM1 on activated NK cells functions as an inhibitory receptor for NKG2D-mediated cytolysis, which has important implications for understanding the means by which CEACAM1 expression adversely affects tumor immunity.
Collapse
Affiliation(s)
- Shuhei Hosomi
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhangguo Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, National Jewish Health, University of Colorado Denver, Denver, CO, USA
| | - Kristi Baker
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lanfen Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-Hwa Huang
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Torsten Olszak
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian Zeissig
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing H. Wang
- Department of Immunology, National Jewish Health, University of Colorado Denver, Denver, CO, USA
| | - Ofer Mandelboim
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Nicole Beauchemin
- Goodman Cancer Research Centre and Depts. of Biochemistry, Medicine and Oncology, McGill University, Montreal, Canada
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Richard S. Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Klaile E, Klassert TE, Scheffrahn I, Müller MM, Heinrich A, Heyl KA, Dienemann H, Grünewald C, Bals R, Singer BB, Slevogt H. Carcinoembryonic antigen (CEA)-related cell adhesion molecules are co-expressed in the human lung and their expression can be modulated in bronchial epithelial cells by non-typable Haemophilus influenzae, Moraxella catarrhalis, TLR3, and type I and II interferons. Respir Res 2013; 14:85. [PMID: 23941132 PMCID: PMC3765474 DOI: 10.1186/1465-9921-14-85] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/10/2013] [Indexed: 11/18/2022] Open
Abstract
Background The carcinoembryonic antigen (CEA)-related cell adhesion molecules CEACAM1 (BGP, CD66a), CEACAM5 (CEA, CD66e) and CEACAM6 (NCA, CD66c) are expressed in human lung. They play a role in innate and adaptive immunity and are targets for various bacterial and viral adhesins. Two pathogens that colonize the normally sterile lower respiratory tract in patients with chronic obstructive pulmonary disease (COPD) are non-typable Haemophilus influenzae (NTHI) and Moraxella catarrhalis. Both pathogens bind to CEACAMs and elicit a variety of cellular reactions, including bacterial internalization, cell adhesion and apoptosis. Methods To analyze the (co-) expression of CEACAM1, CEACAM5 and CEACAM6 in different lung tissues with respect to COPD, smoking status and granulocyte infiltration, immunohistochemically stained paraffin sections of 19 donors were studied. To address short-term effects of cigarette smoke and acute inflammation, transcriptional regulation of CEACAM5, CEACAM6 and different CEACAM1 isoforms by cigarette smoke extract, interferons, Toll-like receptor agonists, and bacteria was tested in normal human bronchial epithelial (NHBE) cells by quantitative PCR. Corresponding CEACAM protein levels were determined by flow cytometry. Results Immunohistochemical analysis of lung sections showed the most frequent and intense staining for CEACAM1, CEACAM5 and CEACAM6 in bronchial and alveolar epithelium, but revealed no significant differences in connection with COPD, smoking status and granulocyte infiltration. In NHBE cells, mRNA expression of CEACAM1 isoforms CEACAM1-4L, CEACAM1-4S, CEACAM1-3L and CEACAM1-3S were up-regulated by interferons alpha, beta and gamma, as well as the TLR3 agonist polyinosinic:polycytidylic acid (poly I:C). Interferon-gamma also increased CEACAM5 expression. These results were confirmed on protein level by FACS analysis. Importantly, also NTHI and M. catarrhalis increased CEACAM1 mRNA levels. This effect was independent of the ability to bind to CEACAM1. The expression of CEACAM6 was not affected by any treatment or bacterial infection. Conclusions While we did not find a direct correlation between CEACAM1 expression and COPD, the COPD-associated bacteria NTHi and M. catarrhalis were able to increase the expression of their own receptor on host cells. Further, the data suggest a role for CEACAM1 and CEACAM5 in the phenomenon of increased host susceptibility to bacterial infection upon viral challenge in the human respiratory tract.
Collapse
Affiliation(s)
- Esther Klaile
- Septomics, Research Centre of the Friedrich-Schiller-University Jena, the Jena University Hospital and the Leibniz-Institute for Natural Products Research and Infection Biology - Hans Knöll Institute, Albert-Einstein-Strasse 10, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Huang J, Ledford KJ, Pitkin WB, Russo L, Najjar SM, Siragy HM. Targeted deletion of murine CEACAM 1 activates PI3K-Akt signaling and contributes to the expression of (Pro)renin receptor via CREB family and NF-κB transcription factors. Hypertension 2013; 62:317-23. [PMID: 23734002 DOI: 10.1161/hypertensionaha.113.01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The carcinoembryonic antigen-related cell adhesion molecule 1 regulates insulin sensitivity by promoting hepatic insulin clearance. Mice bearing a null mutation of Ceacam1 gene (Cc1(-/-)) develop impaired insulin clearance followed by hyperinsulinemia and insulin resistance, in addition to visceral obesity and increased plasma fatty acids. Because insulin resistance is associated with increased blood pressure, we investigated whether they develop higher blood pressure with activated renal renin-angiotensin system and whether this is mediated, in part, by the upregulation of renal (pro)renin receptor (PRR) expression. Compared with age-matched wild-type littermates, Cc1(-/-) mice exhibited increased blood pressure with increased activation of renal renin-angiotensin systems and renal PRR expression. Cytoplasmic and nuclear immunostaining of phospho-PI3K p85α and phospho-Akt was enhanced in the kidney of Cc1(-/-) mice. In murine renal inner medullary collecting duct epithelial cells with lentiviral-mediated small hairpin RNA knockdown of carcinoembryonic antigen-related cell adhesion molecule 1, PRR expression was upregulated and phosphorylation of PI3K (Tyr508), Akt (Ser473), NF-κB p65 (Ser276), cAMP response element-binding protein/activated transcription factor (ATF)-1 (Ser133), and ATF-2 (Thr71) was enhanced. Inhibiting PI3K with LY294002 or Akt with Akt inhibitor VIII attenuated PRR expression. In conclusion, global null deletion of Ceacam1 caused an increase in blood pressure with increased renin-angiotensin system activation together with upregulation of PRR via PI3K-Akt activation of cAMP response element-binding protein 1, ATF-1, ATF-2, and NF-κB p65 transcription factors.
Collapse
Affiliation(s)
- Jiqian Huang
- Division of Endocrinology and Metabolism, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA 22908-1409, USA
| | | | | | | | | | | |
Collapse
|
28
|
Li Y, Shively JE. CEACAM1 regulates Fas-mediated apoptosis in Jurkat T-cells via its interaction with β-catenin. Exp Cell Res 2013; 319:1061-72. [PMID: 23499736 DOI: 10.1016/j.yexcr.2013.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/12/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022]
Abstract
CEACAM1 (Carcinoembryonic Antigen Cell Adhesion molecule 1), an activation induced cell surface marker of T-cells, modulates the T-cell immune response by inhibition of the T-cell and IL-2 receptors. Since T-cells undergo activation induced cell death via Fas activation, it was of interest to determine if this pathway was also affected by CEACAM1. Previously, we identified a novel biochemical interaction between CEACAM1 and the armadillo repeats of β-catenin in Jurkat cells, in which two critical residues, H469 and K470 of the cytoplasmic domain of CEACAM1-4L played an essential role; while in other studies, β-catenin was shown to regulate Fas-mediated apoptosis in Jurkat cells. CEACAM1 expression in Jurkat cells leads to the re-distribution of β-catenin to the actin cytoskeleton as well as inhibition of β-catenin tyrosine phosphorylation and its degradation after Fas stimulation. As a result, Fas-mediated apoptosis in these cells was inhibited. The K470A mutation of CEACAM1 partially rescued the inhibitory effect, in agreement with the prediction that a CEACAM1-β-catenin interaction pathway is involved. Although CEACAM1 has two ITIMs, they were not tyrosine-phosphorylated upon Fas ligation, indicating an ITIM independent mechanism; however, mutation of the critical residue S508, located between the ITIMs, to aspartic acid and a prerequisite for ITIM activation, abrogates the inhibitory activity of CEACAM1 to Fas-mediated apoptosis. Since Fas-mediated apoptosis is a major form of activation-induced cell death, our finding supports the idea that CEACAM1 is a general inhibitory molecule for T-cell activation utilizing a variety of pathways.
Collapse
Affiliation(s)
- Yun Li
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA 91010, USA
| | | |
Collapse
|
29
|
Herishanu Y, Kay S, Dezorella N, Baron S, Hazan-Halevy I, Porat Z, Trestman S, Perry C, Braunstein R, Deutsch V, Polliack A, Naparstek E, Katz BZ. Divergence in CD19-Mediated Signaling Unfolds Intraclonal Diversity in Chronic Lymphocytic Leukemia, Which Correlates with Disease Progression. THE JOURNAL OF IMMUNOLOGY 2012; 190:784-93. [DOI: 10.4049/jimmunol.1200615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Chen L, Chen Z, Baker K, Halvorsen EM, da Cunha AP, Flak MB, Gerber G, Huang YH, Hosomi S, Arthur JC, Dery KJ, Nagaishi T, Beauchemin N, Holmes KV, Ho JWK, Shively JE, Jobin C, Onderdonk AB, Bry L, Weiner HL, Higgins DE, Blumberg RS. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction. Immunity 2012; 37:930-46. [PMID: 23123061 DOI: 10.1016/j.immuni.2012.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
Abstract
Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens.
Collapse
Affiliation(s)
- Lanfen Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kohnke PL, Mactier S, Almazi JG, Crossett B, Christopherson RI. Fludarabine and Cladribine Induce Changes in Surface Proteins on Human B-Lymphoid Cell Lines Involved with Apoptosis, Cell Survival, and Antitumor Immunity. J Proteome Res 2012; 11:4436-48. [PMID: 22839105 DOI: 10.1021/pr300079c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Philippa L. Kohnke
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | - Swetlana Mactier
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | - Juhura G. Almazi
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | - Ben Crossett
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | | |
Collapse
|
32
|
Lu R, Pan H, Shively JE. CEACAM1 negatively regulates IL-1β production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex. PLoS Pathog 2012; 8:e1002597. [PMID: 22496641 PMCID: PMC3320586 DOI: 10.1371/journal.ppat.1002597] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/08/2012] [Indexed: 01/07/2023] Open
Abstract
LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation. Pathogens often evade the immune system by directly binding to and inhibiting neutrophils, abundant white cells that accumulate at the site of infection. For example Gram-negative Neisseria pathogens, such as those that cause gonorrhea or meningitis, bind the neutrophil receptor CEACAM1. Gram-negative bacteria express lipopolysaccharide (LPS) that interacts with toll-like receptor-4 (TLR4) on neutrophils. Since CEACAM1 is an inhibitory receptor, we hypothesized that LPS activation of TLR4 would be inhibited. In this paper we show that this is the case and that the mechanism of LPS inhibition involves induction of a complex between the LPS receptor TLR4, CEACAM1 and an activating kinase called Syk. In the presence of CEACAM1, an inhibitory phosphatase (opposes the kinase) is recruited to the complex that prevents the activation of Syk. The net effect is the inhibition of the pathway that normally leads to the production of the pro-inflammatory cytokine IL-1β. We show that this inhibition is lost in CEACAM1 deficient neutrophils leading to hyper production of IL-1β. We think that CEACAM1 fine-tunes the normal inflammatory response at the site of infection preventing hyper-inflammation, but in the case of Gram-negative pathogens that actually bind to neutrophils, inflammation is further blunted, favoring the infectious process.
Collapse
Affiliation(s)
- Rongze Lu
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Hao Pan
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - John E. Shively
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Iqbal J, Meyer PN, Smith LM, Johnson NA, Vose JM, Greiner TC, Connors JM, Staudt LM, Rimsza L, Jaffe E, Rosenwald A, Ott G, Delabie J, Campo E, Braziel RM, Cook JR, Tubbs RR, Gascoyne RD, Armitage JO, Weisenburger DD, Chan WC. BCL2 predicts survival in germinal center B-cell-like diffuse large B-cell lymphoma treated with CHOP-like therapy and rituximab. Clin Cancer Res 2011; 17:7785-95. [PMID: 21933893 DOI: 10.1158/1078-0432.ccr-11-0267] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE We have previously shown the prognostic significance of BCL2 expression in the activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) patients treated with cyclophosphamide-Adriamycin-vincristine-prednisone (CHOP) or CHOP-like therapy. However, after the inclusion of rituximab (R) in the CHOP regimen, several conflicting observations about the prognostic value of BCL2 expression have been reported. EXPERIMENTAL DESIGN We evaluated the R-CHOP cohort of 221 DLBCL cases with gene expression profiling data. BCL2 protein (n = 169), mRNA (n = 221) expression, and t(14;18) (n = 144) were correlated with clinical outcome. The CHOP cohort (n = 181) was used for comparative analysis. RESULTS BCL2 protein expression has significant impact on overall survival (OS) and event-free survival (EFS) in DLBCL (OS, P = 0.009; EFS, P = 0.001) and GCB-DLBCL (OS, P = 0.03; EFS, P = 0.002) but not in ABC-DLBCL in the R-CHOP cohort. The survival differences for EFS in GCB-DLBCL were still observed in multivariate analysis. At the mRNA level, this correlation was observed in EFS in DLBCL (P = 0.006), but only a trend was observed in GCB-DLBCL (P = 0.09). The t(14;18) was detected in 34% of GCB-DLBCL but was not associated with significant differences in survival. Gene enrichment analysis identified significant enrichment of the DLBCL "stromal-1" signatures and hypoxia-inducible factor 1 (HIF1-α) signature in BCL2(-)GCB-DLBCL, whereas T(FH) cell signatures were enriched in BCL2(+)GCB-DLBCL. CONCLUSION The prognostic significance of BCL2 has changed after inclusion of rituximab in the treatment protocol and is observed in the GCB-DLBCL rather than the ABC-DLBCL. Although rituximab has benefited patients in both DLBCL subgroups, the BCL2(+)GCB-DLBCL seems to receive less benefit from this treatment and may require other novel therapeutic intervention.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cyclophosphamide/administration & dosage
- Disease-Free Survival
- Doxorubicin/administration & dosage
- Female
- Gene Expression Profiling
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Immunohistochemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Prednisolone/administration & dosage
- Prognosis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rituximab
- Translocation, Genetic
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Javeed Iqbal
- Departments of Pathology and Microbiology and Hematology/Oncology and College of Public Health, Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu GX, Xie Q, Zhou CJ, Zhang XY, Ma BL, Wang CQ, Wei FC, Qu X, Sun SZ. The possible roles of OPN-regulated CEACAM1 expression in promoting the survival of activated T cells and the apoptosis of oral keratinocytes in oral lichen planus patients. J Clin Immunol 2011; 31:827-39. [PMID: 21671129 DOI: 10.1007/s10875-011-9552-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Oral lichen planus is a chronic inflammatory disorder of the oral mucosa that represents T cell-mediated autoimmune diseases. The regulation and roles of carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1), a novel immune molecule, in the immunopathogenesis of T cell-mediated autoimmune diseases remain unclear. In the current paper, CEACAM1 was found to be overexpressed in peripheral T cells and epithelial cells in oral lichen planus patients. A fraction of infiltrating inflammatory mononuclear cells in the lamina propria of the oral lichen planus mucosa also expressed CEACAM1. Importantly, for the first time, CEACAM1 expression in T cells and in normal human oral keratinocytes was demonstrated to be regulated differently by osteopontin in vitro. Furthermore, the apoptosis of oral keratinocytes and activated T cells can be markedly suppressed by CEACAM1-specific monoclonal antibodies. In conclusion, OPN-regulated CEACAM1 expression may play a critical role in the immunopathogenesis of oral lichen planus.
Collapse
Affiliation(s)
- Gui-Xiang Liu
- Department of Pathology, Stomatology College of Shandong University, 44-1#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nouvion AL, Oubaha M, LeBlanc S, Davis EC, Jastrow H, Kammerer R, Breton V, Turbide C, Ergun S, Gratton JP, Beauchemin N. CEACAM1: a key regulator of vascular permeability. J Cell Sci 2010; 123:4221-30. [DOI: 10.1242/jcs.073635] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) is an immunoglobulin-like cell surface co-receptor expressed on epithelial, hematopoietic and endothelial cells. CEACAM1 functions as an adhesion molecule, mainly binding to itself or other members of the CEA family. We and others have previously shown that CEACAM1 is crucial for in vivo vascular integrity during ischemic neo-vascularization. Here, we have deciphered the roles of CEACAM1 in normal and pathological vascularization. We have found that Ceacam1−/− mice exhibit a significant increase in basal vascular permeability related to increased basal Akt and endothelial nitric oxide synthase (eNOS) activation in primary murine lung endothelial cells (MLECs). Moreover, CEACAM1 deletion in MLECs inhibits VEGF-mediated nitric oxide (NO) production, consistent with defective VEGF-dependent in vivo permeability in Ceacam1−/− mice. In addition, Ceacam1-null mice exhibit increased permeability of tumor vasculature. Finally, we demonstrate that CEACAM1 is tyrosine-phosphorylated upon VEGF treatment in a SHP-1- and Src-dependent manner, and that the key residues of the long cytoplasmic domain of CEACAM1 are crucial for CEACAM1 phosphorylation and NO production. This data represents the first report, to our knowledge, of a functional link between CEACAM1 and the VEGFR2/Akt/eNOS-mediated vascular permeability pathway.
Collapse
Affiliation(s)
- Anne-Laure Nouvion
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Malika Oubaha
- Laboratory of Endothelial Cell Biology, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 2T2, Canada
| | - Sarah LeBlanc
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Elaine C. Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Holger Jastrow
- Institute of Anatomy, University Hospital Essen, Essen 45147, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Tuebingen 72076, Germany
| | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire Turbide
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Suleyman Ergun
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Jean-Philippe Gratton
- Laboratory of Endothelial Cell Biology, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 2T2, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
- Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
36
|
Pan H, Shively JE. Carcinoembryonic antigen-related cell adhesion molecule-1 regulates granulopoiesis by inhibition of granulocyte colony-stimulating factor receptor. Immunity 2010; 33:620-31. [PMID: 21029969 DOI: 10.1016/j.immuni.2010.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/17/2010] [Accepted: 10/11/2010] [Indexed: 01/05/2023]
Abstract
Although carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is an activation marker for neutrophils and delays neutrophil apoptosis, the role of CEACAM1 in granulopoiesis and neutrophil-dependent host immune responses has not been investigated. CEACAM1 expression correlated with granulocytic differentiation, and Ceacam1(-/-) mice developed neutrophilia because of loss of the Src-homology-phosphatase-1 (SHP-1)-dependent inhibition of granulocyte colony-stimulating factor receptor (G-CSFR) signal transducer and activator of transcription (Stat3) pathway provided by CEACAM1. Moreover, Ceacam1(-/-) mice were hypersensitive to Listeria Monocytogenes (LM) infection with an accelerated mortality. Reintroduction of CEACAM1 into Ceacam1(-/-) bone marrow restored normal granulopoiesis and host sensitivity to LM infection, while mutation of its immunoreceptor tyrosine-based inhibitory motifs (ITIMs) abrogated this restoration. shRNA-mediated reduction of Stat3 amounts rescued normal granulopoiesis, attenuating host sensitivity to LM infection in Ceacam1(-/-) mice. Thus, CEACAM1 acted as a coinhibitory receptor for G-CSFR regulating granulopoiesis and host innate immune response to bacterial infections.
Collapse
Affiliation(s)
- Hao Pan
- City of Hope Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | | |
Collapse
|
37
|
Ghosh S, Kaw M, Patel PR, Ledford KJ, Bowman TA, McInerney MF, Erickson SK, Bourey RE, Najjar SM. Mice with null mutation of Ceacam I develop nonalcoholic steatohepatitis. Hepat Med 2010; 2010:69-78. [PMID: 21949477 PMCID: PMC3177946 DOI: 10.2147/hmer.s8902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transgenic liver-specific inactivation of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) impairs hepatic insulin clearance and causes hyperinsulinemia, insulin resistance, elevation in hepatic and serum triglyceride levels, and visceral obesity. It also predisposes to nonalchoholic steatohepatitis (NASH) in response to a high-fat diet. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we investigated whether Ceacam1 (gene encoding CEACAM1 protein) null mice with impaired insulin clearance also develop a NASH-like phenotype on a prolonged high-fat diet. Three-month-old male null and wild-type mice were fed a high-fat diet for 3 months and their NASH phenotype was examined. While high-fat feeding elevated hepatic triglyceride content in both strains of mice, it exacerbated macrosteatosis and caused NASH-characteristic fibrogenic changes and inflammatory responses more intensely in the null mouse. This demonstrates that CEACAM1-dependent insulin clearance pathways are linked with NASH pathogenesis.
Collapse
Affiliation(s)
- Sumona Ghosh
- Center for Diabetes and Endocrine Research, Toledo, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLoS One 2010; 5:e10067. [PMID: 20404914 PMCID: PMC2852402 DOI: 10.1371/journal.pone.0010067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/12/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human CEACAM1 is a cell-cell adhesion molecule with multiple functions including insulin clearance in the liver, vasculogenesis in endothelial cells, lumen formation in the mammary gland, and binding of certain human pathogens. PRINCIPAL FINDINGS Three genomic BAC clones containing the human CEACAM1 gene were microinjected into pronuclei of fertilized FVB mouse oocytes. The embryos were implanted in the oviducts of pseudopregnant females and allowed to develop to term. DNA from newborn mice was evaluated by PCR for the presence of the human CEACAM1 gene. Feces of the PCR positive offspring screened for expression of human CEACAM1. Using this assay, one out of five PCR positive lines was positive for human CEACAM1 expression and showed stable transmission to the F1 generation with the expected transmission frequency (0.5) for heterozygotes. Liver, lung, intestine, kidney, mammary gland, and prostate were strongly positive for the dual expression of both murine and human CEACAM1 and mimic that seen in human tissue. Peripheral blood and bone marrow granulocytes stained strongly for human CEACAM1 and bound Neisseria Opa proteins similar to that in human neutrophils. CONCLUSION These transgenic animals may serve as a model for the binding of human pathogens to human CEACAM1.
Collapse
|
39
|
|