1
|
Koumaki D, Gregoriou S, Evangelou G, Krasagakis K. Pruritogenic Mediators and New Antipruritic Drugs in Atopic Dermatitis. J Clin Med 2023; 12:2091. [PMID: 36983094 PMCID: PMC10054239 DOI: 10.3390/jcm12062091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Atopic dermatitis (AD) is a common highly pruritic chronic inflammatory skin disorder affecting 5-20% of children worldwide, while the prevalence in adults varies from 7 to 10%. Patients with AD experience intense pruritus that could lead to sleep disturbance and impaired quality of life. Here, we analyze the pathophysiology of itchiness in AD. We extensively review the histamine-dependent and histamine-independent pruritogens. Several receptors, substance P, secreted molecules, chemokines, and cytokines are involved as mediators in chronic itch. We also, summarize the new emerging antipruritic drugs in atopic dermatitis.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stamatios Gregoriou
- Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | |
Collapse
|
2
|
Yan C, Xu H, Rong C, Cao M, Miao Z, Zhou H. IL-31 expression in HIV-infected patients with different routes of disease transmission. Medicine (Baltimore) 2022; 101:e29509. [PMID: 35758393 PMCID: PMC9276414 DOI: 10.1097/md.0000000000029509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV). AIDS is characterized by an impaired immune system and low cellular immunity. The main manifestation of AIDS is a reduction in the number of CD4+ T cells and alteration in cytokine concentration. The present work aimed to explore the expression of IL-31 in HIV infection and disease progression.Serum samples were collected from HIV-infected patients with different routes of disease transmission. The subjects included 24 patients who were infected with HIV upon blood transmission and 36 patients who had acquired the disease through sexual transmission (21 cases of homosexual transmission and 15 cases of heterosexual transmission). In addition, 20 normal healthy individuals were included to serve as the control group. The levels of IL-31 in the collected serum samples were estimated using the human IL-31 Platinum ELISA kit.The serum analysis results revealed that the concentration of IL-31 in the serum samples for the blood transmission, sexually transmission, and normal group patients was 4.07 ± 1.63 pg/L, 7.43 ± 1.15 pg/L, and 2.87 ± 1.04 pg/L, respectively. The statistical analysis revealed that the concentration of IL-31 in HIV-1 infection was higher than that in the normal control. In addition, the expression of IL-31 was significantly higher in the sexual transmission group compared to the blood transmission group (P < .05).IL-31 could have an important role in HIV infection, although the role of IL-31 in disease progression in HIV-infected individuals requires further research.
Collapse
Affiliation(s)
- Changxin Yan
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Huafeng Xu
- Department of Radio-immunity, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150081, China
| | - Chunli Rong
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Meilin Cao
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhuo Miao
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
3
|
Datsi A, Steinhoff M, Ahmad F, Alam M, Buddenkotte J. Interleukin-31: The "itchy" cytokine in inflammation and therapy. Allergy 2021; 76:2982-2997. [PMID: 33629401 DOI: 10.1111/all.14791] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
The cytokine interleukin-31 has been implicated in the pathophysiology of multiple atopic disorders such as atopic dermatitis (AD), allergic rhinitis, and airway hyper-reactivity. In AD, IL-31 has been identified as one of the main "drivers" of its cardinal symptom, pruritus. Here, we summarize the mechanisms by which IL-31 modulates inflammatory and allergic diseases. TH 2 cells play a central role in AD and release high levels of TH 2-associated cytokines including IL-31, thereby mediating inflammatory responses, initiating immunoregulatory circuits, stimulating itch, and neuronal outgrowth through activation of the heterodimeric receptor IL-31 receptor A (IL31RA)/Oncostatin M receptor (OSMRβ). IL31RA expression is found on human and murine dorsal root ganglia neurons, epithelial cells including keratinocytes and various innate immune cells. IL-31 is a critical cytokine involved in neuroimmune communication, which opens new avenues for cytokine modulation in neuroinflammatory diseases including AD/pruritus, as validated by recent clinical trials using an anti-IL-31 antibody. Accordingly, inhibition of IL-31-downstream signaling may be a beneficial approach for various inflammatory diseases including prurigo. However, as to whether downstream JAK inhibitors directly block IL-31-mediated-signaling needs to be clarified. Targeting the IL-31/IL31RA/OSMRβ axis appears to be a promising approach for inflammatory, neuroinflammatory, and pruritic disorders in the future.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics University Hospital Düsseldorf Düsseldorf Germany
| | - Martin Steinhoff
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
- Department of Dermatology Weill Cornell Medicine‐Qatar Doha Qatar
- Qatar UniversityCollege of Medicine Doha Qatar
| | - Fareed Ahmad
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| | - Majid Alam
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| |
Collapse
|
4
|
Bang CH, Song JY, Song YM, Lee JH, Park YM, Lee JY. Production of IL-31 in CD45RO +CLA +H4R + T Cells in Atopic Dermatitis. J Clin Med 2021; 10:jcm10091976. [PMID: 34064490 PMCID: PMC8124489 DOI: 10.3390/jcm10091976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
IL-31 is involved in pruritus in atopic dermatitis (AD) and the pathogenesis of AD. However, the mechanism of IL-31 production is not fully understood. We sought to investigate the association between CD45RO+CLA+H4R+ T cells and IL-31 production. Immunofluorescence studies were performed retrospectively on punch-biopsy specimens from five people with AD and three healthy controls. In addition, blood samples were collected prospectively from eight patients with AD and eight healthy controls for sorting CD45RO+CLA+H4R+ T cells. There was no overlap of patients between the biopsy group and the blood sampling group. Sorted cells were stimulated with 4-methylhistamine (4MH), and the level of IL-31 was measured by an enzyme-linked immunosorbent assay. Immunofluorescence showed co-localization of H4R and IL-31 in lesional AD skin but not in normal skin of healthy controls. The proportion of CLA+H4R+ T cells among CD3+CD45RO+ lymphocytes was 18.3 ± 6.2% in patients with AD and 11.2 ± 7.6% in healthy controls. In the AD group, production of IL-31 by CD45RO+CLA+H4R+ T cells increased from 32.4 ± 13.3 pg/mL to 47.5 ± 18.7 pg/mL by 4MH stimulation after 24 h (p < 0.001). However, in the control group, production of IL-31 was 20.1 ± 10.6 pg/mL without and 22.1 ± 9.3 pg/mL with 4MH stimulation (p > 0.05). According to our study, CD45RO+CLA+H4R+ T cells are an important source of IL-31 in AD, and may be a target for treatment of IL-31-induced pruritus.
Collapse
Affiliation(s)
- Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Ji Young Song
- Program of Immunology & Microbiology, Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea;
| | - Yu Mee Song
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Young Min Park
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Jun Young Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
- Correspondence: ; Tel.: +82-2-2258-6222
| |
Collapse
|
5
|
Mishra SK, Wheeler JJ, Pitake S, Ding H, Jiang C, Fukuyama T, Paps JS, Ralph P, Coyne J, Parkington M, DeBrecht J, Ehrhardt-Humbert LC, Cruse GP, Bäumer W, Ji RR, Ko MC, Olivry T. Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep 2021; 31:107472. [PMID: 32268102 PMCID: PMC9210348 DOI: 10.1016/j.celrep.2020.03.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic allergic itch is a common symptom affecting millions of people and animals, but its pathogenesis is not fully explained. Herein, we show that periostin, abundantly expressed in the skin of patients with atopic dermatitis (AD), induces itch in mice, dogs, and monkeys. We identify the integrin αVβ3 expressed on a subset of sensory neurons as the periostin receptor. Using pharmacological and genetic approaches, we inhibited the function of neuronal integrin αVβ3, which significantly reduces periostin-induced itch in mice. Furthermore, we show that the cytokine TSLP, the application of AD-causing MC903 (calcipotriol), and house dust mites all induce periostin secretion. Finally, we establish that the JAK/STAT pathway is a key regulator of periostin secretion in keratinocytes. Altogether, our results identify a TSLP-periostin reciprocal activation loop that links the skin to the spinal cord via peripheral sensory neurons, and we characterize the non-canonical functional role of an integrin in itch. Mishra et al. demonstrate periostin-induced itch in mice, dogs, and monkeys and identify the integrin αVβ3 as the periostin neuronal receptor. They find that keratinocytes release periostin in response to TSLP, thus identifying a possible reciprocal vicious circle implicating the cytokine TSLP and periostin in chronic allergic itch.
Collapse
Affiliation(s)
- Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; The WM Keck Behavioral Center, North Carolina State University, Raleigh, NC, USA; Program in Genetics, North Carolina State University, Raleigh, NC, USA.
| | - Joshua J Wheeler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Tomoki Fukuyama
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Judy S Paps
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Patrick Ralph
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jacob Coyne
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michelle Parkington
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jennifer DeBrecht
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lauren C Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Glenn P Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thierry Olivry
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. IL-33/IL-31 Axis in Osteoporosis. Int J Mol Sci 2020; 21:E1239. [PMID: 32069819 PMCID: PMC7072890 DOI: 10.3390/ijms21041239] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The study of the immunoskeletal interface has led to the discovery of numerous cytokines involved in the regulation of bone remodeling, providing valuable information on the pathogenesis of osteoporosis. The role of inflammatory cytokines of the Th1 and Th17 profile in osteoporosis is well known. Here we focus on two newly discovered Th2 cytokines, IL-31 and IL-33, whose implications in osteoporosis are recently emerging. Clinical and experimental observations suggest an important role of the IL-33/IL-31 axis in osteoporosis. IL-33 induces IL-31 secretion by Th2 cells and inhibits RANKL-dependent osteoclastogenesis, thus counteracting bone loss. IL-31 influences Th1/Th17 osteoclastogenetic inflammation and limits Th2 osteoprotective processes, thus favoring osteoporosis. Better knowledge of the role of IL-31 and IL-33 and their receptor complexes in osteoporosis could provide an interesting perspective for the development of new and more effective therapies, possibly with less side effects.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|
7
|
Mannucci C, Calapai G, Gangemi S. Commentary: Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. Front Immunol 2019; 10:2666. [PMID: 31798591 PMCID: PMC6868060 DOI: 10.3389/fimmu.2019.02666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Affiliation(s)
- Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
9
|
IL-33/IL-31 Axis: A Potential Inflammatory Pathway. Mediators Inflamm 2018; 2018:3858032. [PMID: 29713240 PMCID: PMC5866851 DOI: 10.1155/2018/3858032] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/18/2023] Open
Abstract
Cytokines play an important role in the regulation of the immune system (adaptive and innate). Given their importance in proinflammatory processes, cytokines have been used for understanding the pathogenesis and as biomarkers in many diseases. IL-31 and IL-33 are still considered novel cytokines. IL-31 controls signalling and regulates a huge amount of biological functions: it induces proinflammatory cytokines, regulates cell proliferation, and is involved also in tissue remodelling. On the other hand, IL-33 has been identified as an “alarmin” released from the epithelial cells and from different human tissues and organs after a damage following, that is, an inflammatory process. The aim of this literature review is to strengthen the hypothesis about an IL-31/IL-33 axis by evaluating the most recent studies linking these two cytokines. Literature data showed that, in many cases, IL-31 and IL-33 are linked to each other and that their expression is correlated with disease severity. The presence of one interleukin might stimulate the induction of the other, amplifying inflammation and the consequent detrimental processes. In a near future, influencing their balance could be helpful in modulating the first responses of the immune system in order to prevent the development of many inflammation-related diseases.
Collapse
|
10
|
Petra AI, Tsilioni I, Taracanova A, Katsarou-Katsari A, Theoharides TC. Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E. Allergy Asthma Proc 2018; 39:153-160. [PMID: 29490771 DOI: 10.2500/aap.2018.38.4105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cytokine interleukin (IL) 31 has emerged as an important component of allergic and inflammatory diseases associated with pruritus, such as atopic dermatitis (AD) and mastocytosis. Mast cells (MC) are stimulated by allergic and nonallergic triggers, and play a critical role in such diseases by secreting histamine and tryptase as well as cytokines and chemokines. IL-33 has been reported to augment MC responses, but its effect on secretion of IL-31 is not known. OBJECTIVES To investigate whether IL-33 can stimulate the secretion of IL-31 from cultured human MCs and whether this response is augmented by either the neuropeptide substance P (SP) or immunoglobulin E (IgE) and anti-IgE in the absence or presence of IL-4. METHODS Laboratory of Allergic Diseases (LAD2) human MCs were cultured in StemProH-34 SFM medium supplemented by stem cell factor and were stimulated either with IL-33 (10 ng /mL) or SP (2 μM), or preincubated with IgE (1 μg/mL) overnight, and then stimulated with anti-IgE (1 μg/mL) for 24 hours. IL-31 gene expression was measured by quantitative polymerase chain reaction, and protein was measured by enzyme-linked immunosorbent assay. RESULTS IL-33 (10 ng/mL) induces IL-31 gene expression, synthesis, and secretion from LAD2 cells in the absence of degranulation, whereas SP and IgE on their own have no effect. However, the effect of IL-33 is augmented by SP (2 μM) and/or IgE and anti-IgE (1 μg/mL both) and especially their combination. Moreover, this response is significantly further increased when LAD2 cells are cultured in the presence of IL-4. CONCLUSION These findings provide evidence that IL-33 induced secretion of IL-31 from LAD2 MC, an action augmented by novel neuroimmune interactions that may help in the development of new treatments of allergic and inflammatory diseases, especially AD and mastocytosis.
Collapse
Affiliation(s)
- Anastasia I. Petra
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| | - Alexandra Taracanova
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| | | | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston. Massachusetts, USA
| |
Collapse
|
11
|
Park JL, Lee YS, Song MJ, Hong SH, Ahn JH, Seo EH, Shin SP, Lee SJ, Johnson BH, Stampfer MR, Kim HP, Kim SY, Lee YS. Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis. Oncogene 2017; 36:6793-6804. [PMID: 28846112 DOI: 10.1038/onc.2017.285] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
RNA polymerase III (Pol III) transcribes medium-sized non-coding RNAs (collectively termed Pol III genes). Emerging diverse roles of Pol III genes suggest that individual Pol III genes are exquisitely regulated by transcription and epigenetic factors. Here we report global Pol III expression/methylation profiles and molecular mechanisms of Pol III regulation that have not been as extensively studied, using nc886 as a representative Pol III gene. In a human mammary epithelial cell system that recapitulates early breast tumorigenesis, the fraction of actively transcribed Pol III genes increases reaching a plateau during immortalization. Hyper-methylation of Pol III genes inhibits Pol III binding to DNA via inducing repressed chromatin and is a determinant for the Pol III repertoire. When Pol III genes are hypo-methylated, MYC amplifies their transcription, regardless of its recognition DNA motif. Thus, Pol III expression during tumorigenesis is delineated by methylation and magnified by MYC.
Collapse
Affiliation(s)
- J-L Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Y-S Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - M-J Song
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - S-H Hong
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - J-H Ahn
- Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul, Korea
| | - E-H Seo
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - S-P Shin
- Immunotherapeutics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - S-J Lee
- Immunotherapeutics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - B H Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA
| | - M R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - H-P Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea.,Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - S-Y Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Y S Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA.,Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| |
Collapse
|
12
|
Saleem MD, Oussedik E, D'Amber V, Feldman SR. Interleukin-31 pathway and its role in atopic dermatitis: a systematic review. J DERMATOL TREAT 2017; 28:591-599. [PMID: 28145790 DOI: 10.1080/09546634.2017.1290205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Atopic dermatitis, a chronic inflammatory disease, has a lifetime prevalence of 10-20%. Atopic dermatitis reduces quality of life, primarily due to pruritus. Interleukin-31 and its target receptor are newly discovered entities that are involved in pruritus. PURPOSE To summarize the current understanding of interleukin-31 and its role in atopic dermatitis, potential therapeutic interventions and future prospects. METHODS A systematic review was designed to identify articles related to interleukin-31 and its role in pruritus. Predefined queries containing interleukin-31 and related key terms were searched with no past date restriction, through 31 August 2016, using MEDLINE, Cochrane Controlled Trials Register, ClinicalTrials.gov and the International Clinical Trials Registry Platform Search Portal database. RESULTS Of 151 identified articles, 61 met eligibility criteria. Interleukin-31 receptors are expressed constitutively on the surface of keratinocytes, eosinophils and small diameter neurons. Overexpression of interleukin-31, independent of mast cells and lymphocytes, induces clinical and histological features consistent with atopic dermatitis. In addition, overexpression of interleukin-31 causes reversible alopecia. Human monoclonal interleukin-31 antagonist, CIM331, decreased pruritus in phase-I and phase-II clinical trials. CONCLUSIONS Interleukin-31 plays an important role in atopic dermatitis and alopecia. Inhibiting this pathway may provide an alternative to antihistamines for the pruritus of atopic dermatitis.
Collapse
Affiliation(s)
- Mohammed D Saleem
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA
| | - Elias Oussedik
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA
| | - Veronica D'Amber
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA
| | - Steven R Feldman
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA.,b Department of Pathology , Wake Forest School of Medicine , Winston-Salem , NC , USA.,c Department of Pathology and Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
13
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
14
|
Jin M, Choi JK, Choi YA, Kim YY, Baek MC, Lee BH, Jang YH, Lee WJ, Lee SJ, Kim DW, Lee HS, Park EK, Lee S, Park ZY, Kim SH. 1,2,4,5-Tetramethoxybenzene Suppresses House Dust Mite-Induced Allergic Inflammation in BALB/c Mice. Int Arch Allergy Immunol 2016; 170:35-45. [DOI: 10.1159/000446510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
|
15
|
Park JH, Choi Y, Song MJ, Park K, Lee JJ, Kim HP. Dynamic Long-Range Chromatin Interaction Controls Expression of IL-21 in CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4378-89. [PMID: 27067007 DOI: 10.4049/jimmunol.1500636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2023]
Abstract
IL-21, a pleiotropic cytokine strongly linked with autoimmunity and inflammation, regulates diverse immune responses. IL-21 can be potently induced in CD4(+) T cells by IL-6; however, very little is known about the mechanisms underlying the transcriptional regulation of the Il21 gene at the chromatin level. In this study, we demonstrated that a conserved noncoding sequence located 49 kb upstream of the Il21 gene contains an enhancer element that can upregulate Il21 gene expression in a STAT3- and NFAT-dependent manner. Additionally, we identified enhancer-blocking insulator elements in the Il21 locus, which constitutively bind CTCF and cohesin. In naive CD4(+) T cells, these upstream and downstream CTCF binding sites interact with each other to make a DNA loop; however, the Il21 promoter does not interact with any cis-elements in the Il21 locus. In contrast, stimulation of CD4(+) T cells with IL-6 leads to recruitment of STAT3 to the promoter and novel distal enhancer region. This induces dynamic changes in chromatin configuration, bringing the promoter and the regulatory elements in close spatial proximity. The long-range interaction between the promoter and distal enhancer region was dependent on IL-6/STAT3 signaling pathway but was disrupted in regulatory T cells, where IL-21 expression was repressed. Thus, our work uncovers a novel topological chromatin framework underlying proper transcriptional regulation of the Il21 gene.
Collapse
Affiliation(s)
- Joo-Hong Park
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Yeeun Choi
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min-Ji Song
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Keunhee Park
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Jong-Joo Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
16
|
The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol 2016; 138:500-508.e24. [PMID: 27212086 DOI: 10.1016/j.jaci.2016.02.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND Pruritus is a cardinal symptom of atopic dermatitis, and an increased cutaneous sensory network is thought to contribute to pruritus. Although the immune cell-IL-31-neuron axis has been implicated in severe pruritus during atopic skin inflammation, IL-31's neuropoietic potential remains elusive. OBJECTIVE We sought to analyze the IL-31-related transcriptome in sensory neurons and to investigate whether IL-31 promotes sensory nerve fiber outgrowth. METHODS In vitro primary sensory neuron culture systems were subjected to whole-transcriptome sequencing, ingenuity pathway analysis, immunofluorescence, and nerve elongation, as well as branching assays after IL-31 stimulation. In vivo we investigated the cutaneous sensory neuronal network in wild-type, Il31-transgenic, and IL-31 pump-equipped mice. RESULTS Transgenic Il31 overexpression and subcutaneously delivered IL-31 induced an increase in the cutaneous nerve fiber density in lesional skin in vivo. Transcriptional profiling of IL-31-activated dorsal root ganglia neurons revealed enrichment for genes promoting nervous system development and neuronal outgrowth and negatively regulating cell death. Moreover, the growth cones of primary small-diameter dorsal root ganglia neurons showed abundant IL-31 receptor α expression. Indeed, IL-31 selectively promoted nerve fiber extension only in small-diameter neurons. Signal transducer and activator of transcription 3 phosphorylation mediated IL-31-induced neuronal outgrowth, and pharmacologic inhibition of signal transducer and activator of transcription 3 completely abolished this effect. In contrast, transient receptor potential cation channel vanilloid subtype 1 channels were dispensable for IL-31-induced neuronal sprouting. CONCLUSIONS The pruritus- and TH2-associated novel cytokine IL-31 induces a distinct transcriptional program in sensory neurons, leading to nerve elongation and branching both in vitro and in vivo. This finding might help us understand the clinical observation that patients with atopic dermatitis experience increased sensitivity to minimal stimuli inducing sustained itch.
Collapse
|
17
|
Song MJ, Lee JJ, Nam YH, Kim TG, Chung YW, Kim M, Choi YE, Shin MH, Kim HP. Modulation of dendritic cell function by Trichomonas vaginalis-derived secretory products. BMB Rep 2015; 48:103-8. [PMID: 24965578 PMCID: PMC4352611 DOI: 10.5483/bmbrep.2015.48.2.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 01/22/2023] Open
Abstract
Trichomoniasis caused by the parasitic protozoan Trichomonas vaginalis is the most common sexually transmitted disease in the world. Dendritic cells are antigen presenting cells that initiate immune responses by directing the activation and differentiation of naïve T cells. In this study, we analyzed the effect of Trichomonas vaginalis-derived Secretory Products on the differentiation and function of dendritic cells. Differentiation of bone marrow-derived dendritic cells in the presence of T. vaginalis-derived Secretory Products resulted in inhibition of lipopolysaccharide-induced maturation of dendritic cells, down-regulation of IL-12, and up-regulation of IL-10. The protein components of T. vaginalis-derived Secretory Products were shown to be responsible for altered function of bone marrow-derived dendritic cells. Chromatin immunoprecipitation assay demonstrated that IL-12 expression was regulated at the chromatin level in T. vaginalis-derived Secretory Productstreated dendritic cells. Our results demonstrated that T. vaginalis-derived Secretory Products modulate the maturation and cytokine production of dendritic cells leading to immune tolerance. [BMB Reports 2015; 48(2): 103-108]
Collapse
Affiliation(s)
- Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jong-Joo Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Young Hee Nam
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Youn Wook Chung
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ye-Eun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
18
|
Ginaldi L, De Martinis M, Ciccarelli F, Saitta S, Imbesi S, Mannucci C, Gangemi S. Increased levels of interleukin 31 (IL-31) in osteoporosis. BMC Immunol 2015; 16:60. [PMID: 26449657 PMCID: PMC4599585 DOI: 10.1186/s12865-015-0125-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022] Open
Abstract
Background Several inflammatory cytokines play a key part in the induction of osteoporosis. Until now, involvement of the Th2 cytokine interleukin-31 (IL-31) in osteoporosis hadn’t yet been studied. IL-31 is a proinflammatory cytokine mediating multiple immune functions, whose involvement in a wide range of diseases, such as atopic dermatitis, inflammatory bowel diseases and cutaneous lymphomas, is now emerging. Given the important role of IL-31 in inflammation, we measured its serum levels in postmenopausal osteoporotic patients. Methods and results In fifty-six postmenopausal females with osteoporosis and 26 healthy controls, bone mineral density (BMD) measurements were performed by using calcaneal quantitative ultrasound (QUS) technique, confirmed at the lumbar spine and hip by dual energy X-ray absorptiometry (DXA). Both patients and controls were divided according to age (less or more than 65 years) and disease severity (T-score levels and presence of fractures). Serum IL-31 levels were measured by ELISA technique. Osteoporotic patients exhibited elevated levels of serum IL-31 compared with healthy controls (43.12 ± 6.97 vs 29.58 ± 6.09 pg/ml; p < 0.049). IL-31 expression was higher in over 65 years old patients compared to age-matched controls (45 ± 11.05 vs. 17.92 ± 5.92; p < 0.01), whereas in younger subjects no statistically significant differences were detected between patients and controls (37.91 ± 6.9 vs 32.08 ± 8.2). No statistically significant differences were found between IL-31 levels in patients affected by mild (T-score > -3) compared to severe (T-score < -3) osteoporosis (59.17 ± 9.22 vs 37.91 ± 10.52), neither between fractured and unfractured osteoporotic women (33.75 ± 9.16 vs 51.25 ± 8.9). Conclusions We showed for the first time an increase of IL-31 serum levels in postmenopausal women with decreased BMD. Although they did not reflect the severity of osteoporosis and/or the presence of fractures, they clearly correlated with age, as reflected by the higher levels of this cytokine in aged patients.
Collapse
Affiliation(s)
- Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Fedra Ciccarelli
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Salvatore Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Selene Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Carmen Mannucci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
19
|
Hermanns HM. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev 2015. [DOI: 10.1016/j.cytogfr.2015.07.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Park SH, Chen WC, Durmus N, Bleck B, Reibman J, Riemekasten G, Grunig G. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution. PLoS One 2015; 10:e0129910. [PMID: 26079807 PMCID: PMC4469456 DOI: 10.1371/journal.pone.0129910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/14/2015] [Indexed: 12/14/2022] Open
Abstract
Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell-deficient and wild type mice. Our studies have identified B cells and antigen specific IgG1 as potential therapeutic targets for pulmonary hypertension associated with immune dysfunction and environmental exposures.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
| | - Wen-Chi Chen
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
| | - Nedim Durmus
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
| | - Bertram Bleck
- Department of Medicine, Division of Pulmonary Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Joan Reibman
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
- Department of Medicine, Division of Pulmonary Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | | | - Gabriele Grunig
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
- Department of Medicine, Division of Pulmonary Medicine, New York University Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hwang JS, Kim GC, Park E, Kim JE, Chae CS, Hwang W, Lee C, Hwang SM, Wang HS, Jun CD, Rudra D, Im SH. NFAT1 and JunB Cooperatively Regulate IL-31 Gene Expression in CD4+ T Cells in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2015; 194:1963-1974. [DOI: 10.4049/jimmunol.1401862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Abstract
IL-31 is a key mediator of itching in atopic dermatitis (AD) and is preferentially produced by activated CD4+ T cells and Th2 cells. Although pathophysiological functions of IL-31 have been suggested in diverse immune disorders, the molecular events underlying IL-31 gene regulation are still unclear. In this study we identified the transcription start site and functional promoter involved in IL-31 gene regulation in mouse CD4+ T cells. TCR stimulation–dependent IL-31 expression was found to be closely linked with in vivo binding of NFAT1 and JunB to the IL-31 promoter. Although NFAT1 alone enhanced IL-31 promoter activity, it was further enhanced in the presence of JunB. Conversely, knockdown of either NFAT1 or JunB resulted in reduced IL-31 expression. NFAT1-deficient CD4+ T cells showed a significant defect in IL-31 expression compared with wild-type CD4+ T cells. In agreement with these findings, mice subjected to atopic conditions showed much higher levels of IL-31, which were closely correlated with a significant increase in the number of infiltrated NFAT1+CD4+ T cells into the AD ears. Amelioration of AD progression by cyclosporin A treatment was well correlated with downregulation of IL-31 expressions in CD4+ T cells and total ear residual cells. In summary, our results suggest a functional cooperation between NFAT1 and JunB in mediating IL-31 gene expression in CD4+ T cells and indicate that interference with this interaction or their activity has the potential of reducing IL-31–mediated AD symptoms.
Collapse
Affiliation(s)
- Ji Sun Hwang
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
| | - Gi-Cheon Kim
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
- †School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - EunBee Park
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
| | - Jung-Eun Kim
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
- †School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Chang-Suk Chae
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
| | - Won Hwang
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
- †School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Changhon Lee
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
- ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; and
| | - Sung-Min Hwang
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
- ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; and
| | - Hui Sun Wang
- §Department of Neurosurgery, Chosun University College of Medicine, Gwangju 501-717, Republic of Korea
| | - Chang-Duk Jun
- †School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Dipayan Rudra
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
| | - Sin-Hyeog Im
- *Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
- ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; and
| |
Collapse
|
22
|
Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol 2013; 132:446-54.e5. [PMID: 23694808 DOI: 10.1016/j.jaci.2013.03.050] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND The pruritic cytokine IL-31 has been shown to be expressed by murine activated effector T Lymphocytes of a TH2 phenotype. Like IL-17 and IL-22, IL-31 is a tissue-signaling cytokine the receptor of which is mainly found on nonimmune cells. An overabundance of IL-31 has been shown in patients with atopic disorders, including dermatitis, as well as asthma, and therefore represents a promising drug target, although its regulation in the context of the human TH2 clusters is not yet known. OBJECTIVE We sought to address the gene regulation of human IL-31 and to test whether IL-31 possesses a similar proallergic function as members of the human TH2 cytokine family, such as IL-4, IL-5, and IL-13. METHODS Polyclonal and purified protein derivative of tuburculin-specific T-cell clones were generated. TH phenotype was determined, and IL-31 was measured by means of ELISA. Gene expression of primary bronchial epithelial cells treated with IL-31 was also measured. RESULTS IL-31 was expressed by all of the TH2 clones and not by TH1, TH17, or TH22. This expression was dependent on autocrine IL-4 expression from these clones because it could be reduced if blocking antibodies to IL-4 were present. Interestingly, TH1 clones were able to express IL-31 if IL-4 was added to culture. This IL-31 expression was transient and did not affect the phenotype of the TH1 clones. IL-31 was able to induce proinflammatory genes, such as CCL2 and granulocyte colony-stimulating factor. CONCLUSION IL-31 is not a TH2 cytokine in the classical sense but is likely to be expressed by a number of cells in an allergic situation in which IL-4 is present and possibly contribute to the allergic reaction.
Collapse
Affiliation(s)
- Bryony Stott
- Allergy and Clinical Immunology, Imperial College, London, United Kingdom
| | | | | | | | | | | |
Collapse
|