1
|
Murre C, Patta I, Mishra S, Hu M. Constructing polymorphonuclear cells: chromatin folding shapes nuclear morphology. Trends Immunol 2024; 45:851-860. [PMID: 39438171 DOI: 10.1016/j.it.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.
Collapse
Affiliation(s)
- Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| | - Indumathi Patta
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
2
|
Gordon S, Roberti A, Kaufmann SHE. Mononuclear Phagocytes, Cellular Immunity, and Nobel Prizes: A Historic Perspective. Cells 2024; 13:1378. [PMID: 39195266 PMCID: PMC11352343 DOI: 10.3390/cells13161378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Tjeerdema E, Lee Y, Metry R, Hamdoun A. Semi-automated, high-content imaging of drug transporter knockout sea urchin (Lytechinus pictus) embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:313-329. [PMID: 38087422 DOI: 10.1002/jez.b.23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 05/01/2024]
Abstract
A defining feature of sea urchins is their extreme fecundity. Urchins produce millions of transparent, synchronously developing embryos, ideal for spatial and temporal analysis of development. This biological feature has been effectively utilized for ensemble measurement of biochemical changes. However, it has been underutilized in imaging studies, where single embryo measurements are used. Here we present an example of how stable genetics and high content imaging, along with machine learning-based image analysis, can be used to exploit the fecundity and synchrony of sea urchins in imaging-based drug screens. Building upon our recently created sea urchin ABCB1 knockout line, we developed a high-throughput assay to probe the role of this drug transporter in embryos. We used high content imaging to compare accumulation and toxicity of canonical substrates and inhibitors of the transporter, including fluorescent molecules and antimitotic cancer drugs, in homozygous knockout and wildtype embryos. To measure responses from the resulting image data, we used a nested convolutional neural network, which rapidly classified embryos according to fluorescence or cell division. This approach identified sea urchin embryos with 99.8% accuracy and determined two-cell and aberrant embryos with 96.3% and 89.1% accuracy, respectively. The results revealed that ABCB1 knockout embryos accumulated the transporter substrate calcein 3.09 times faster than wildtypes. Similarly, knockouts were 4.71 and 3.07 times more sensitive to the mitotic poisons vinblastine and taxol. This study paves the way for large scale pharmacological screens in the sea urchin embryo.
Collapse
Affiliation(s)
- Evan Tjeerdema
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Rachel Metry
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Patta I, Zand M, Lee L, Mishra S, Bortnick A, Lu H, Prusty A, McArdle S, Mikulski Z, Wang HY, Cheng CS, Fisch KM, Hu M, Murre C. Nuclear morphology is shaped by loop-extrusion programs. Nature 2024; 627:196-203. [PMID: 38355805 PMCID: PMC11052650 DOI: 10.1038/s41586-024-07086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.
Collapse
Affiliation(s)
- Indumathi Patta
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Maryam Zand
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alexandra Bortnick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Hanbin Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Arpita Prusty
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Huan-You Wang
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Christine S Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Kuang G, Tan X, Liu X, Li N, Yi N, Mi Y, Shi Q, Zeng F, Xie X, Lu M, Xu X. The Role of Innate Immunity in Osteoarthritis and the Connotation of "Immune-joint" Axis: A Narrative Review. Comb Chem High Throughput Screen 2024; 27:2170-2179. [PMID: 38243960 DOI: 10.2174/0113862073264389231101190637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 01/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that results in constriction of the joint space due to the gradual deterioration of cartilage, alterations in subchondral bone, and synovial membrane. Recently, scientists have found that OA involves lesions in the whole joint, in addition to joint wear and tear and cartilage damage. Osteoarthritis is often accompanied by a subclinical form of synovitis, which is a chronic, relatively low-grade inflammatory response mainly mediated by the innate immune system. The "immune-joint" axis refers to an interaction of an innate immune response with joint inflammation and the whole joint range. Previous studies have underestimated the role of the immune-joint axis in OA, and there is no related research. For this reason, this review aimed to evaluate the existing evidence on the influence of innate immune mechanisms on the pathogenesis of OA. The innate immune system is the body's first line of defense. When the innate immune system is triggered, it instantly activates the downstream inflammatory signal pathway, causing an inflammatory response, while also promoting immune cells to invade joint synovial tissue and accelerate the progression of OA. We have proposed the concept of the "immune-joint" axis and explored it from two aspects of Traditional Chinese Medicine (TCM) theory and modern medical research, such as the innate immunity and OA, macrophages and OA, complement and OA, and other cells and OA, to enrich the scientific connotation of the "immune-joint" axis.
Collapse
Affiliation(s)
- Gaoyan Kuang
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xuyi Tan
- Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, 410006, China
| | - Xin Liu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Naping Li
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Nanxing Yi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yilin Mi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiyun Shi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Fan Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xinjun Xie
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Min Lu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xiaotong Xu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| |
Collapse
|
6
|
Novobrantseva T, Manfra D, Nguyen A, Feldman I. Macrophages - Controlling the Bifurcation Between Tumor Existence or Regression. Adv Biol (Weinh) 2023; 7:e2300047. [PMID: 37083213 DOI: 10.1002/adbi.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Macrophages are multifunctional cells that are employed by the tumor to further its growth and adaptation. While tumor-associated macrophages (TAMs) have widely diverse phenotypes, tumors coevolve with the ones that can promote tumorigenesis. Functionally, TAMs/myeloid cells constitute the largest negative influence on the tumor microenvironment and need to be reprogrammed in order to enable successful anti-tumor response in most tumors. It is predicted that successful TAM repolarization has the potential to become a staple of immuno-oncology across most indications.
Collapse
Affiliation(s)
| | - Denise Manfra
- Research and Development, Verseau Therapeutics, Newton, MA, 02466, USA
| | - Ani Nguyen
- Research and Development, Verseau Therapeutics, Newton, MA, 02466, USA
| | - Igor Feldman
- Research and Development, Verseau Therapeutics, Newton, MA, 02466, USA
| |
Collapse
|
7
|
Li SY, Guo YL, Tian JW, Zhang HJ, Li RF, Gong P, Yu ZL. Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages. Cancers (Basel) 2023; 15:2717. [PMID: 37345054 DOI: 10.3390/cancers15102717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.
Collapse
Affiliation(s)
- Si-Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yong-Lin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jia-Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - He-Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
8
|
Zhu Y, Lu J, Wang S, Xu D, Wu M, Xian S, Zhang W, Tong X, Liu Y, Huang J, Jiang L, Guo X, Xie S, Gu M, Jin S, Ma Y, Huang R, Xiao S, Ji S. Mapping intellectual structure and research hotspots in the field of fibroblast-associated DFUs: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1109456. [PMID: 37124747 PMCID: PMC10140415 DOI: 10.3389/fendo.2023.1109456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background Diabetic foot ulcers (DFUs) are one of the most popular and severe complications of diabetes. The persistent non-healing of DFUs may eventually contribute to severe complications such as amputation, which presents patients with significant physical and psychological challenges. Fibroblasts are critical cells in wound healing and perform essential roles in all phases of wound healing. In diabetic foot patients, the disruption of fibroblast function exacerbates the non-healing of the wound. This study aimed to summarize the hotspots and evaluate the global research trends on fibroblast-related DFUs through bibliometric analysis. Methods Scientific publications on the study of fibroblast-related DFUs from January 1, 2000 to April 27, 2022 were retrieved from the Web of Science Core Collection (WoSCC). Biblioshiny software was primarily performed for the visual analysis of the literature, CiteSpace software and VOSviewer software were used to validate the results. Results A total of 479 articles on fibroblast-related DFUs were retrieved. The most published countries, institutions, journals, and authors in this field were the USA, The Chinese University of Hong Kong, Wound Repair and Regeneration, and Seung-Kyu Han. In addition, keyword co-occurrence networks, historical direct citation networks, thematic map, and the trend topics map summarize the research hotspots and trends in this field. Conclusion Current studies indicated that research on fibroblast-related DFUs is attracting increasing concern and have clinical implications. The cellular and molecular mechanisms of the DFU pathophysiological process, the molecular mechanisms and therapeutic targets associated with DFUs angiogenesis, and the measures to promote DFUs wound healing are three worthy research hotspots in this field.
Collapse
Affiliation(s)
- Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Siqiao Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuxin Jin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yicheng Ma
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| |
Collapse
|
9
|
Xiong X, Xie X, Wang Z, Zhang Y, Wang L. Tumor-associated macrophages in lymphoma: From mechanisms to therapy. Int Immunopharmacol 2022; 112:109235. [DOI: 10.1016/j.intimp.2022.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
|
10
|
Kostarev S, Komyagina O, Fayzrakhmanov R, Kurushin D, Tatarnikova N, Novikova (Kochetova) O, Sereda T. Impact of the New Coronavirus Infection on the Immune System of Children and Adolescents in the Region of the Russian Federation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13669. [PMID: 36294250 PMCID: PMC9603771 DOI: 10.3390/ijerph192013669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The emergence of COVID-19 (SARS-CoV-2) has presented public health professionals with new challenges in the diagnosis of the disease and treatment of patients. Nowadays, the epidemiology, clinical features, prevention and treatment of the disease are studied poorly due to continuous mutation of the pathogen. One of the consequences of the new coronavirus infection could be changes in the immune system of the human population. A detailed analysis of the immunological status of different racial groups under the influence of the new coronavirus infection is currently studied insufficiently, making this work of particular relevance. There is also a reluctance among some Russian residents to be vaccinated, including the population of Perm Krai, due to a lack of research on possible deviations in cellular immunity due to SARS-CoV-2 vaccination. At the start of the third wave caused by the new coronavirus infection, only 40% of the Russian population had been vaccinated, which was insufficient to acquire collective immunity. In the autumn of 2021, a QR code measure was introduced for vaccinated residents, which resulted in exceeding the necessary barrier for acquiring collective immunity. Due to the high growth and severity of the disease, we analysed the immunograms of children and adolescents, aged from 5 months to 17 years, in Perm Krai during the pandemic years 2020-2021. The patients' immunological status results were divided into three categories. Laboratory diagnosis of the human immune system was carried out using serological and flow cytophotometric analyses. A total of 247 samples were analysed. The aim of this work was to investigate changes in the immune system of children and adolescents during the pandemic caused by the new coronavirus infection. The methodology was based on the analysis of immunograms, including biochemical studies, immune status and flow cytophotometric analysis. The immunograms were pre-sorted by IgA, IgM, IgG immunoglobulin status into four categories: absence of disease-k1 in which IgA, IgM, IgG immunoglobulin values were within the reference interval, active disease stage-k2 in which IgA, IgM immunoglobulins had gone beyond the reference interval, passive disease stage-k3 characterised by IgG and IgM immunoglobulin status, and patient recovery process-k4. In the immunograms, three immune status indicators were selected for further investigation: phagocytosis absolute value, phagocytic number and phagocytic index and five flow cytometry indices: leukocytes, lymphocytes, NK cells (CD16+CD56+), T helpers (CD3+CD4+) and CD4+/CD8+ immunoregulation index. A quantitative analysis of the deviations of these indicators from the reference intervals was performed in the three studied age groups of children and adolescents living in Perm Krai of the Russian Federation during the pandemic of 2020-2021.
Collapse
Affiliation(s)
- Sergey Kostarev
- Perm National Research Polytechnic University, 29, Komsomolski Avenue, Perm 614990, Russia
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
- Perm Institute of the FPS of Russia, 125, Karpinskogo St., Perm 614012, Russia
| | - Oksana Komyagina
- Medical Institution “Philosophy of Beauty and Health”, 64, KIM St., Perm 614990, Russia
| | - Rustam Fayzrakhmanov
- Perm National Research Polytechnic University, 29, Komsomolski Avenue, Perm 614990, Russia
| | - Daniel Kurushin
- Perm National Research Polytechnic University, 29, Komsomolski Avenue, Perm 614990, Russia
| | - Natalya Tatarnikova
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
| | - Oksana Novikova (Kochetova)
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
- Perm Institute of the FPS of Russia, 125, Karpinskogo St., Perm 614012, Russia
| | - Tatyana Sereda
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
| |
Collapse
|
11
|
Yadav S, Priya A, Borade DR, Agrawal-Rajput R. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res 2022; 71:130-152. [PMID: 36266603 PMCID: PMC9589538 DOI: 10.1007/s12026-022-09330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte–macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Astik Priya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Diksha R Borade
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
12
|
Orecchioni M, Matsunami H, Ley K. Olfactory receptors in macrophages and inflammation. Front Immunol 2022; 13:1029244. [PMID: 36311776 PMCID: PMC9606742 DOI: 10.3389/fimmu.2022.1029244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Olfactory receptors (ORs) that bind odorous ligands are the largest family of G-protein-coupled receptors. In the olfactory epithelium, approximately 400 and 1,100 members are expressed in humans and mice, respectively. Growing evidence suggests the extranasal functions of ORs. Here, we review OR expression and function in macrophages, specialized innate immune cells involved in the detection, phagocytosis, and destruction of cellular debris and pathogens as well as the initiation of inflammatory responses. RNA sequencing data in mice suggest that up to 580 ORs may be expressed in macrophages. Macrophage OR expression is increased after treatment with the Toll-like receptor 4 ligand lipopolysaccharide, which also induces the transcription of inflammasome components. Triggering human OR6A2 or its mouse orthologue Olfr2 with their cognate ligand octanal induces inflammasome assembly and the secretion of IL-1β, which exacerbates atherosclerosis. Octanal is positively correlated with blood lipids like low-density lipoprotein -cholesterol in humans. Another OR, Olfr78, is activated by lactate, which promotes the generation of tumor-associated macrophages that dampen the immune response and promote tumor progression. Olfactory receptors in macrophages are a rich source of untapped opportunity for modulating inflammation. It is not known which of the many ORs expressed in macrophages promote or modulate inflammation. Progress in this area also requires deorphanizing more ORs and determining the sources of their ligands.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Klaus Ley
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,Immunology Center of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| |
Collapse
|
13
|
Maheshwari A. The Phylogeny, Ontogeny, and Organ-specific Differentiation of Macrophages in the Developing Intestine. NEWBORN (CLARKSVILLE, MD.) 2022; 1:340-355. [PMID: 36698382 PMCID: PMC9872774 DOI: 10.5005/jp-journals-11002-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macrophages are large highly motile phagocytic leukocytes that appear early during embryonic development and have been conserved during evolution. The developmental roles of macrophages were first described nearly a century ago, at about the time these cells were being identified as central effectors in phagocytosis and elimination of microbes. Since then, we have made considerable progress in understanding the development of various subsets of macrophages and the diverse roles these cells play in both physiology and disease. This article reviews the phylogeny and the ontogeny of macrophages with a particular focus on the gastrointestinal tract, and the role of these mucosal macrophages in immune surveillance, innate immunity, homeostasis, tissue remodeling, angiogenesis, and repair of damaged tissues. We also discuss the importance of these macrophages in the inflammatory changes in neonatal necrotizing enterocolitis (NEC). This article presents a combination of our own peer-reviewed clinical and preclinical studies, with an extensive review of the literature using the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
14
|
Grossamide attenuates inflammation by balancing macrophage polarization through metabolic reprogramming of macrophages in mice. Int Immunopharmacol 2022; 112:109190. [PMID: 36116152 DOI: 10.1016/j.intimp.2022.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Macrophages exhibited different phenotypes in response to environmental cues. To meet the needs of rapid response to stimuli, M1-activated macrophages preferred glycolysis to oxidative phosphorylation (OXPHOS) in mitochondria to quickly produce energy and obtain ample raw materials to support cell activation at the same time. Activated macrophages produced free radicals and cytokines to eradicate pathogens but also induced oxidative damage and enhanced inflammation. Grossamide (GSE), a lignanamide from Polygonum multiflorum Thunb., exhibited notable anti-inflammatory effects. In this study, the potential of GSE on macrophage polarization was explored. GSE significantly down-regulated the levels of M1 macrophage biomarkers (Cd32a, Cd80 and Cd86) while increased the levels of M2 indicators (Cd163, Mrc1 and Socs1), showing its potential to inhibit LPS-induced M1 polarization of macrophages. This ability has close a link to its effect on metabolic reprogramming of macrophage. GSE shunted nitric oxide (NO) production from arginine by up-regulation of arginase and down-regulation of inducible nitric oxide synthase, thus attenuated the inhibition of NO on OXPHOS. LPS created three breakpoints in the tricarboxylic acid cycle (TCA) cycle of macrophage as evidenced by down-regulated isocitrate dehydrogenase, accumulation of succinate and the inhibited SDH activity, significantly decreased level of oxoglutarate dehydrogenase expression and its substrate α-ketoglutarate. Thus GSE reduced oxidative stress and amended fragmented TCA cycle. As a result, GSE maintained redox (NAD+/NADH) and energy (ATP/ADP) state, reduced extracellular acidification rate and enhanced the oxygen consumption rate. In addition, GSE decreased the release of inflammatory cytokines by inhibiting the activation of the LPS/TLR4/NF-κB pathway. These findings highlighted the central role of immunometabolism of macrophages in its functional plasticity, which invited future study of mode of action of anti-inflammatory drugs from viewpoint of metabolic reprogramming.
Collapse
|
15
|
Lu YN, Wang L, Zhang YZ. The promising roles of macrophages in geriatric hip fracture. Front Cell Dev Biol 2022; 10:962990. [PMID: 36092716 PMCID: PMC9458961 DOI: 10.3389/fcell.2022.962990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
As aging becomes a global burden, the incidence of hip fracture (HF), which is the most common fracture in the elderly population and can be fatal, is rapidly increasing, and its extremely high fatality rate places significant medical and financial burdens on patients. Fractures trigger a complex set of immune responses, and recent studies have shown that with aging, the immune system shows decreased activity or malfunctions in a process known as immune senescence, leading to disease and death. These phenomena are the reasons why elderly individuals typically exhibit chronically low levels of inflammation and increased rates of infection and chronic disease. Macrophages, which are key players in the inflammatory response, are critical in initiating the inflammatory response, clearing pathogens, controlling the innate and adaptive immune responses and repairing damaged tissues. Tissue-resident macrophages (TRMs) are widely present in tissues and perform immune sentinel and homeostatic functions. TRMs are combinations of macrophages with different functions and phenotypes that can be directly influenced by neighboring cells and the microenvironment. They form a critical component of the first line of defense in all tissues of the body. Immune system disorders caused by aging could affect the biology of macrophages and thus the cascaded immune response after fracture in various ways. In this review, we outline recent studies and discuss the potential link between monocytes and macrophages and their potential roles in HF in elderly individuals.
Collapse
Affiliation(s)
- Yi-ning Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| | - Ying-ze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| |
Collapse
|
16
|
Silberberg E, Filep JG, Ariel A. Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Front Immunol 2022; 13:863449. [PMID: 35615359 PMCID: PMC9124752 DOI: 10.3389/fimmu.2022.863449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The resolution of inflammation is a temporally and spatially coordinated process that in its innate manifestations, primarily involves neutrophils and macrophages. The shutdown of infection or injury-induced acute inflammation requires termination of neutrophil accumulation within the affected sites, neutrophil demise, and clearance by phagocytes (efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must be followed by macrophage reprogramming from the inflammatory to reparative and consequently resolution-promoting phenotypes and the production of resolution-promoting lipid and protein mediators that limit responses in various cell types and promote tissue repair and return to homeostatic architecture and function. Recent studies suggest that these events, and macrophage reprogramming to pro-resolving phenotypes in particular, are not only important in the acute setting, but might be paramount in limiting chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly associated with an exuberant cytokine storm that seems to trigger shock-like pathologies, leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and lung failure. Here, we address recent advances on effectors in the resolution of inflammation and discuss how pro-resolution mechanisms with particular emphasis on macrophage reprogramming, might be harnessed to limit the universal COVID-19 health threat.
Collapse
Affiliation(s)
- Esther Silberberg
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- *Correspondence: Amiram Ariel, ; János G. Filep,
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
- *Correspondence: Amiram Ariel, ; János G. Filep,
| |
Collapse
|
17
|
Alves RW, da Silva EM, Doretto-Silva L, Andrade-Oliveira V. Metabolic Pathways in Immune Cells Commitment and Fate. ESSENTIAL ASPECTS OF IMMUNOMETABOLISM IN HEALTH AND DISEASE 2022:53-82. [DOI: 10.1007/978-3-030-86684-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Role of macrophages in fetal development and perinatal disorders. Pediatr Res 2021; 90:513-523. [PMID: 33070164 DOI: 10.1038/s41390-020-01209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
In the fetus and the neonate, altered macrophage function has been implicated not only in inflammatory disorders but also in developmental abnormalities marked by altered onset, interruption, or imbalance of key structural changes. The developmental role of macrophages were first noted nearly a century ago, at about the same time when these cells were being identified as central effectors in phagocytosis and elimination of microbes. Since that time, we have made considerable progress in understanding the diverse roles that these cells play in both physiology and disease. Here, we review the role of fetal and neonatal macrophages in immune surveillance, innate immunity, homeostasis, tissue remodeling, angiogenesis, and repair of damaged tissues. We also discuss the possibility of therapeutic manipulation of the relative abundance and activation status of macrophage subsets in various diseases. This article combines peer-reviewed evidence from our own studies with results of an extensive literature search in the databases PubMed, EMBASE, and Scopus. IMPACT: We have reviewed the structure, differentiation, and classification of macrophages in the neonatal period. Neonatal macrophages are derived from embryonic, hepatic, and bone marrow precursors. Macrophages play major roles in tissue homeostasis, innate immunity, inflammation, tissue repair, angiogenesis, and apoptosis of various cellular lineages in various infectious and inflammatory disorders. Macrophages and related inflammatory mediators could be important therapeutic targets in several neonatal diseases.
Collapse
|
19
|
Nabai L, Pourghadiri A, Ghahary A. Hypertrophic Scarring: Current Knowledge of Predisposing Factors, Cellular and Molecular Mechanisms. J Burn Care Res 2021; 41:48-56. [PMID: 31999336 DOI: 10.1093/jbcr/irz158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypertrophic scarring (HSc) is an age-old problem that still affects millions of people physically, psychologically, and economically. Despite advances in surgical techniques and wound care, prevention and treatment of HSc remains a challenge. Elucidation of factors involved in the development of this common fibroproliferative disorder is crucial for further progress in preventive and/or therapeutic measures. Our knowledge about pathophysiology of HSc at the cellular and molecular level has grown considerably in recent decades. In this article, current knowledge of predisposing factors and the cellular and molecular mechanisms of HSc has been reviewed.
Collapse
Affiliation(s)
- Layla Nabai
- BC Professional Firefighters' Burn & Wound Healing Research Laboratory, Department of Surgery, Division of Plastic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amir Pourghadiri
- BC Professional Firefighters' Burn & Wound Healing Research Laboratory, Department of Surgery, Division of Plastic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- BC Professional Firefighters' Burn & Wound Healing Research Laboratory, Department of Surgery, Division of Plastic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Cavaillon JM. Once upon a time, inflammation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200147. [PMID: 33889184 PMCID: PMC8040910 DOI: 10.1590/1678-9199-jvatitd-2020-0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Inflammation has accompanied humans since their first ancestors appeared on Earth. Aulus Cornelius Celsus (25 BC-50 AD), a Roman encyclopedist, offered a still valid statement about inflammation: "Notae vero inflammationis sunt quatuor: rubor et tumor cum calore and dolore", defining the four cardinal signs of inflammation as redness and swelling with heat and pain. While inflammation has long been considered as a morbid phenomenon, John Hunter (18th century) and Elie Metchnikoff (19th century) understood that it was a natural and beneficial event that aims to address a sterile or an infectious insult. Many other famous scientists and some forgotten ones have identified the different cellular and molecular players, and deciphered the different mechanisms of inflammation. This review pays tribute to some of the giants who made major contributions, from Hippocrates to the late 19th and first half of the 20th century. We particularly address the discoveries related to phagocytes, diapedesis, chemotactism, and fever. We also mention the findings of the various inflammatory mediators and the different approaches designed to treat inflammatory disorders.
Collapse
|
21
|
Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:127. [PMID: 33767177 PMCID: PMC7994399 DOI: 10.1038/s41392-021-00506-6] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
De Maeyer RPH, Chambers ES. The impact of ageing on monocytes and macrophages. Immunol Lett 2020; 230:1-10. [PMID: 33309673 DOI: 10.1016/j.imlet.2020.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Ageing is a global burden. Increasing age is associated with increased incidence of infections and cancer and decreased vaccine efficacy. This increased morbidity observed with age, is believed to be due in part to a decline in adaptive immunity, termed immunosenescence. However not all aspects of immunity decrease with age as ageing presents with systemic low grade chronic inflammation, characterised by elevated concentrations of mediators such as IL-6, TNFα and C Reactive protein (CRP). Inflammation is a strong predictor of morbidity and mortality, and chronic inflammation is known to be detrimental to a functioning immune system. Although the source of the inflammation is much discussed, the key cells which are believed to facilitate the inflammageing phenomenon are the monocytes and macrophages. In this review we detail how macrophage and monocyte phenotype and function change with age. The impact of ageing on macrophages includes decreased phagocytosis and immune resolution, increased senescent-associated markers, increased inflammatory cytokine production, reduced autophagy, and a decrease in TLR expression. With monocytes there is an increase in circulating CD16+ monocytes, decreased type I IFN production, and decreased efferocytosis. In conclusion, we believe that monocytes and macrophages contribute to immunosenescence and inflammageing and as a result have an important role in defective immunity with age.
Collapse
Affiliation(s)
| | - Emma S Chambers
- Centre of Immunobiology, Blizard Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
23
|
Li M, Li S, Du C, Zhang Y, Li Y, Chu L, Han X, Galons H, Zhang Y, Sun H, Yu P. Exosomes from different cells: Characteristics, modifications, and therapeutic applications. Eur J Med Chem 2020; 207:112784. [PMID: 33007722 DOI: 10.1016/j.ejmech.2020.112784] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are cystic vesicles secreted by living cells with a phospholipid bilayer membrane. Importantly, these vesicles could serve to carry lipids, proteins, genetic materials, and transmit biological information in vivo. The cell-specific proteins and genetic materials in exosomes are capable of reflecting their cell origin and physiological status. Based on the different tissues and cells (macrophage, dendritic cells, tumor cells, mesenchymal stem cells, various body fluids, and so on), exosomes exhibit different characteristics and functions. Furthermore, owing to their high delivery efficiency, biocompatibility, and multifunctional properties, exosomes are expected to become a new means of drug delivery, disease diagnosis, immunotherapy, and precise treatment. At the same time, in order to supplement or enhance the therapeutic applicability of exosomes, chemical or biological modifications can be used to broaden, change or improve their therapeutic capabilities. This review focuses on three aspects: the characteristics and original functions of exosomes secreted by different cells, the modification and transformation of exosomes, and the application of exosomes in different diseases.
Collapse
Affiliation(s)
- Mingyuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Shuangshuang Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Chunyang Du
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yinan Zhang
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Liqiang Chu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiao Han
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hervé Galons
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 Place Jussieu, 75005, Paris, France
| | - Hua Sun
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China.
| | - Peng Yu
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China.
| |
Collapse
|
24
|
Cavaillon JM, Sansonetti P, Goldman M. Jules Bordet, un homme de conviction. Med Sci (Paris) 2020; 36:803-809. [DOI: 10.1051/medsci/2020135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Docteur en médecine, bénéficiant d’une bourse du gouvernement belge, Jules Bordet vint se former au sein du laboratoire du père de l’immunité cellulaire, Elie Metchnikoff, à l’Institut Pasteur. Paradoxalement, il va y déchiffrer certains des mécanismes clés de l’immunité humorale, initialement découverte par l’école allemande. Il y décrit notamment les mécanismes qui aboutissent à la bactériolyse et l’hémolyse par l’action d’immunsérums. Même s’il favorisa le terme d’alexine, créé par Hans Buchner, c’est bien le système du complément (terme inventé par Paul Ehrlich) dont il est un des pères fondateurs. C’est pour ces travaux qu’il se verra attribué en octobre 1920 le prix Nobel de physiologie ou médecine millésimé 1919. Il identifia aussi le bacille de la coqueluche, qui porte son nom Bordetella pertussis.
Collapse
|
25
|
Klinge U, Dievernich A, Tolba R, Klosterhalfen B, Davies L. CD68+ macrophages as crucial components of the foreign body reaction demonstrate an unconventional pattern of functional markers quantified by analysis with double fluorescence staining. J Biomed Mater Res B Appl Biomater 2020; 108:3134-3146. [PMID: 32475069 DOI: 10.1002/jbm.b.34639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/20/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
Implants like meshes for the reinforcement of tissues implement the formation of a persistent inflammation with an ambient fibrotic reaction. In the inflammatory infiltrate several distinct cell types have been identified, but CD68+ macrophages are supposed to be most important. To investigate the collaboration among the various cell types within the infiltrate we performed at explanted meshes from humans double fluorescence staining with CD68 as a constant marker and a variety of other antibodies as the second marker. The list of second markers includes lymphocytes (CD3, CD4, CD8, CD16, CD56, FoxP3, and CD11b) stem cells (CD34), leucocytes (CD45, CD15), macrophages (CD86, CD105, CD163, and CD206); deposition of EC matrix (collagen-I, collagen-III, MMP2, and MMP8); Ki67 as a marker for proliferation; and the tyrosine-protein kinase receptor AXL. The present study demonstrates within the inflammatory infiltrate the abundant capability of CD68+ cells to co-express a huge variety of other markers, including those of lymphocytes, varying between 5 and 83% of investigated cells. The observation of co-staining was not restricted to a specific polymer but was seen with polypropylene fibers as well as with fibers made of polyvinylidene fluoride, although with differences in co-expression rates. The persisting variability of these cells without the functional reduction toward differentiated mature cell types may favor the lack of healing at the interface of meshes.
Collapse
Affiliation(s)
- Uwe Klinge
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Axel Dievernich
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Luke Davies
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
26
|
Kim AJ, Xu N, Yutzey KE. Macrophage lineages in heart valve development and disease. Cardiovasc Res 2020; 117:663-673. [PMID: 32170926 DOI: 10.1093/cvr/cvaa062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/29/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Heterogeneous macrophage lineages are present in the aortic and mitral valves of the heart during development and disease. These populations include resident macrophages of embryonic origins and recruited monocyte-derived macrophages prevalent in disease. Soon after birth, macrophages from haematopoietic lineages are recruited to the heart valves, and bone marrow transplantation studies in mice demonstrate that haematopoietic-derived macrophages continue to invest adult valves. During myxomatous heart valve disease, monocyte-derived macrophages are recruited to the heart valves and they contribute to valve degeneration in a mouse model of Marfan syndrome. Here, we review recent studies of macrophage lineages in heart valve development and disease with discussion of clinical significance and therapeutic applications.
Collapse
Affiliation(s)
- Andrew J Kim
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Na Xu
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
Denholtz M, Zhu Y, He Z, Lu H, Isoda T, Döhrmann S, Nizet V, Murre C. Upon microbial challenge, human neutrophils undergo rapid changes in nuclear architecture and chromatin folding to orchestrate an immediate inflammatory gene program. Genes Dev 2020; 34:149-165. [PMID: 31919189 PMCID: PMC7000913 DOI: 10.1101/gad.333708.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Differentiating neutrophils undergo large-scale changes in nuclear morphology. How such alterations in structure are established and modulated upon exposure to microbial agents is largely unknown. Here, we found that prior to encounter with bacteria, an armamentarium of inflammatory genes was positioned in a transcriptionally passive environment suppressing premature transcriptional activation. Upon microbial exposure, however, human neutrophils rapidly (<3 h) repositioned the ensemble of proinflammatory genes toward the transcriptionally permissive compartment. We show that the repositioning of genes was closely associated with the swift recruitment of cohesin across the inflammatory enhancer landscape, permitting an immediate transcriptional response upon bacterial exposure. We found that activated enhancers, marked by increased deposition of H3K27Ac, were highly enriched for cistromic elements associated with PU.1, CEBPB, TFE3, JUN, and FOSL2 occupancy. These data reveal how upon microbial challenge the cohesin machinery is recruited to an activated enhancer repertoire to instruct changes in chromatin folding, nuclear architecture, and to activate an inflammatory gene program.
Collapse
Affiliation(s)
- Matthew Denholtz
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Yina Zhu
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Zhaoren He
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Hanbin Lu
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Takeshi Isoda
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Simon Döhrmann
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California 92093, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Cornelis Murre
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| |
Collapse
|
28
|
Cora MC, Janardhan KS, Jensen H, Clayton N, Travlos GS. Previously Diagnosed Reticulum Cell Hyperplasia in Decalcified Rat Bone Marrow Stain Positive for Ionized Calcium Binding Adapter Molecule 1 (Iba1): A Monocytic/Macrophage Cell Marker. Toxicol Pathol 2019; 48:317-322. [PMID: 31801420 DOI: 10.1177/0192623319890610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reticulum cell hyperplasia (RCH) was a term used for many years by the National Toxicology Program (NTP) to describe a certain non-neoplastic bone marrow lesion of rats. Retrospective microscopic evaluation of RCH lesions and immunohistochemistry analyses were performed to reassess and further characterize these lesions. The NTP database was searched to identify femoral bone marrow specimens diagnosed with RCH from 1981 to 2014 (n = 254). The diagnosis last occurred in 2003, after which the term "cellular infiltration" was used. Eighty-three RCH slides, spanning 22 years, representing 34 different chemicals, were selected for microscopic review, and a subset (23) was chosen for ionized calcium binding adapter molecule 1 (Iba1) immunohistochemical staining; initial investigations revealed Iba1 worked as a macrophage marker on decalcified tissue. The following diagnoses were made upon reevaluation: 36 were consistent with cellularity increased, macrophage, 22 with histiocytic sarcoma, 8 with increased myeloid cells, 4 with autolysis, and 13 were normal appearance. All 23 RCH lesions stained positive for Iba1. Fifty-eight of 83 bone marrows previously diagnosed with RCH are consistent morphologically and immunohistochemically with cells of histiocytic origin. These results will help with interpretation of historical data and demonstrates that Iba1 can be used in decalcified bone marrow sections.
Collapse
Affiliation(s)
- Michelle C Cora
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Heather Jensen
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Natasha Clayton
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Gregory S Travlos
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
29
|
Balistreri CR, Garagnani P, Madonna R, Vaiserman A, Melino G. Developmental programming of adult haematopoiesis system. Ageing Res Rev 2019; 54:100918. [PMID: 31226498 DOI: 10.1016/j.arr.2019.100918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The Barker hypothesis of 'foetal origin of adult diseases' has led to emphasize the concept of 'developmental programming', based on the crucial role of epigenetic factors. Accordingly, it has been demonstrated that parental adversity (before conception and during pregnancy) and foetal factors (i.e., hypoxia, malnutrition and placental insufficiency) permanently modify the physiological systems of the progeny, predisposing them to premature ageing and chronic disease during adulthood. Thus, an altered functionality of the endocrine, immune, nervous and cardiovascular systems is observed in the progeny. However, it remains to be understood whether the haematopoietic system itself also represents a portrait of foetal programming. Here, we provide evidence, reporting and discussing related theories, and results of studies described in the literature. In addition, we have outlined our opinions and suggest how it is possible to intervene to correct foetal mal-programming. Some pro-health interventions and recommendations are proposed, with the hope of guarantee the health of future generations and trying to combat the continuous increase in age-related diseases in human populations.
Collapse
|
30
|
Cavaillon JM, Legout S. Duclaux, Chamberland, Roux, Grancher, and Metchnikoff: the five musketeers of Louis Pasteur. Microbes Infect 2019; 21:192-201. [PMID: 31255675 DOI: 10.1016/j.micinf.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 10/26/2022]
Abstract
The Institut Pasteur was created thanks to worldwide generosity with the aim to welcome and treat rabies patients, to provide a place for scientific research and to offer new teaching programs in microbiology. Louis Pasteur invited his main collaborators, who had accompanied him during his previous investigations at École Normale Supérieure, to join him in his new institute. They contributed to the principle discoveries of Pasteur, such as the fight against spontaneous generation, the identification of the ferments of putrefaction, the fight against the silk worm disease, the research on wine and beer, and the set-up of the first vaccines against avian cholera, anthrax, swine erysipelas and rabies. There were two scientists, Émile Duclaux and Charles Chamberland, and two medical doctors, Émile Roux, and Joseph Grancher. In addition, two Russian scientists were invited to join the Institute and to head a research laboratory, Élie Metchnikoff and Nikolaï Gamaleïa, the later will finally never join the institute.
Collapse
Affiliation(s)
| | - Sandra Legout
- Centre de Ressources en Information Scientifique, Institut Pasteur, France
| |
Collapse
|
31
|
Theret M, Mounier R, Rossi F. The origins and non-canonical functions of macrophages in development and regeneration. Development 2019; 146:146/9/dev156000. [PMID: 31048317 DOI: 10.1242/dev.156000] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of new non-canonical (i.e. non-innate immune) functions of macrophages has been a recurring theme over the past 20 years. Indeed, it has emerged that macrophages can influence the development, homeostasis, maintenance and regeneration of many tissues and organs, including skeletal muscle, cardiac muscle, the brain and the liver, in part by acting directly on tissue-resident stem cells. In addition, macrophages play crucial roles in diseases such as obesity-associated diabetes or cancers. Increased knowledge of their regulatory roles within each tissue will therefore help us to better understand the full extent of their functions and could highlight new mechanisms modulating disease pathogenesis. In this Review, we discuss recent studies that have elucidated the developmental origins of various macrophage populations and summarize our knowledge of the non-canonical functions of macrophages in development, regeneration and tissue repair.
Collapse
Affiliation(s)
- Marine Theret
- Department of Medical Genetics, The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Remi Mounier
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Fabio Rossi
- Department of Medical Genetics, The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada .,Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
32
|
Duclaux, Chamberland, Roux, Grancher, and Metchnikoff: the five musketeers of Louis Pasteur. Genes Immun 2019; 20:344-356. [PMID: 30923360 DOI: 10.1038/s41435-019-0064-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
The Institut Pasteur was created, thanks to worldwide generosity with the aim to welcome and treat rabies patients, to provide a place for scientific research and to offer new teaching programs in microbiology. Louis Pasteur invited his main collaborators, who had accompanied him during his previous investigations at École Normale Supérieure, to join him in his new institute. They contributed to the principle discoveries of Pasteur, such as the fight against spontaneous generation, the identification of the ferments of putrefaction, the fight against the silk worm disease, the research on wine and beer, and the set-up of the first vaccines against avian cholera, anthrax, swine erysipelas, and rabies. There were two scientists, Émile Duclaux and Charles Chamberland, and two medical doctors, Émile Roux, and Joseph Grancher. In addition, two Russian scientists were invited to join the Institute and to head a research laboratory, Élie Metchnikoff and Nikolaï Gamaleïa; the later will finally never join the institute.
Collapse
|
33
|
Ahmed MS, Rodell CB, Hulsmans M, Kohler RH, Aguirre AD, Nahrendorf M, Weissleder R. A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjug Chem 2019; 30:733-740. [PMID: 30615425 DOI: 10.1021/acs.bioconjchem.8b00882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amiodarone is an effective antiarrhythmic drug used to treat and prevent different types of cardiac arrhythmias. However, amiodarone can have considerable side effects resulting from accumulation in off-target tissues. Cardiac macrophages are highly prevalent tissue-resident immune cells with importance in homeostatic functions, including immune response and modulation of cardiac conduction. We hypothesized that amiodarone could be more efficiently delivered to the heart via cardiac macrophages, an important step toward reducing overall dose and off-target tissue accumulation. Toward this goal, we synthesized a nanoparticle drug carrier composed of l-lysine cross-linked succinyl-β-cyclodextrin that demonstrates amiodarone binding through supramolecular host-guest interaction as well as a high macrophage affinity. Biodistribution analyses at the organ and single-cell level demonstrate accumulation of nanoparticles in the heart resulting from rapid uptake by cardiac macrophages. Nanoparticle assisted delivery of amiodarone resulted in a 250% enhancement in the selective delivery of the drug to cardiac tissue in part due to a concomitant decrease of pulmonary accumulation, the main source of off-target toxicity.
Collapse
Affiliation(s)
- Maaz S Ahmed
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Christopher B Rodell
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Maarten Hulsmans
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Rainer H Kohler
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Aaron D Aguirre
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Cardiology Division , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States
| | - Matthias Nahrendorf
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Department of Radiology , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States
| | - Ralph Weissleder
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Department of Radiology , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States.,Department of Systems Biology , Harvard Medical School , 200 Longwood Ave , Boston , Massachusetts 02115 , United States
| |
Collapse
|
34
|
Abstract
The immune system in a broad sense is a mechanism that allows a living organism to discriminate between "self" and "nonself." Examples of immune systems occur in multicellular organisms as simple and ancient as sea sponges. In fact, complex multicellular life would be impossible without the ability to exclude external life from the internal environment. This introduction to the immune system will explore the cell types and soluble factors involved in immune reactions, as well as their location in the body during development and maintenance. Additionally, a description of the immunological events during an innate and adaptive immune reaction to an infection will be discussed, as well as a brief introduction to autoimmunity, cancer immunity, vaccines, and immunotherapies.
Collapse
Affiliation(s)
- Scott McComb
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Aude Thiriot
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Lakshmi Krishnan
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Felicity Stark
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol 2018; 330:5-15. [DOI: 10.1016/j.cellimm.2018.01.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
|
36
|
Tu J, Hong W, Zhang P, Wang X, Körner H, Wei W. Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy? Front Immunol 2018; 9:1467. [PMID: 29997624 PMCID: PMC6028561 DOI: 10.3389/fimmu.2018.01467] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS) are the two main cellular components of the synovium. It has been widely reported that FLS and MLS play essential roles in the joint pathology of rheumatoid arthritis (RA). Although various studies have analyzed both human and animal tissues and have shown that both cell types are involved in different stages of RA, ontology, and specific functions of both cell populations and their interactions are not well understood. In this review, we will summarize recent research on FLS and MLS in RA and focus on the development and function of two predominant synovial cell types. In addition, we will discuss the communication between FLS or MLS and highlight potential treatments for RA that involve synoviocytes.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pengying Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Gao J, Scheenstra MR, van Dijk A, Veldhuizen EJA, Haagsman HP. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages. Vet Immunol Immunopathol 2018; 200:7-15. [PMID: 29776615 DOI: 10.1016/j.vetimm.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. METHODS Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM3CSK4 stimulation. Human monocyte-derived macrophages were used as control. RESULTS Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. CONCLUSION Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research.
Collapse
Affiliation(s)
- Jiye Gao
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Rongchang Campus, Southwest University, Chongqing, China
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 318:1-7. [PMID: 29606295 DOI: 10.1016/j.jneuroim.2018.02.015] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disorder characterized by chronic inflammation, demyelination, as well as axonal and neuronal loss in the central nervous system (CNS). Macrophages and microglia are important components of the innate immune system. They participate in the primary response to microorganisms and play a role in inflammatory responses, homeostasis, and tissue regeneration. In the initial phase of MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, macrophages from peripheral tissues infiltrate into the CNS and, together with residential microglia, contribute to the pathogenesis of MS. In the early stages, microglia and macrophages are expressed as the M1 phenotype, which can release proinflammatory cytokines, leading to tissue damage in the CNS. However, in the later stage, the M2 phenotype, which is the phenotype that is associated with resolving inflammation and tissue repair, becomes predominant in the CNS. Therefore, it is hypothesized that the M1/M2 phenotype balance plays an important role in disease progression and that the transition from the proinflammatory M1 phenotype to the regulatory or anti-inflammatory M2 phenotype can lead to restoration of homeostasis and improved functional outcomes. This review of recent literature focuses on the discussion of the M1/M2 phenotypes of microglia and macrophages as well as their relevance in the pathophysiology and treatment of MS and EAE. Furthermore, the possibility of directing the polarization of microglia and macrophages toward the M2 phenotype as a therapeutic and preventative strategy for MS is discussed.
Collapse
Affiliation(s)
- Fengna Chu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingchao Shi
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chao Zheng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Donghui Shen
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14157 Huddinge, Stockholm, Sweden.
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Li Cui
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
39
|
Xu S, Shinohara ML. Tissue-Resident Macrophages in Fungal Infections. Front Immunol 2017; 8:1798. [PMID: 29312319 PMCID: PMC5732976 DOI: 10.3389/fimmu.2017.01798] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022] Open
Abstract
Invasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
40
|
Rodrigues V, Ruffin N, San-Roman M, Benaroch P. Myeloid Cell Interaction with HIV: A Complex Relationship. Front Immunol 2017; 8:1698. [PMID: 29250073 PMCID: PMC5714857 DOI: 10.3389/fimmu.2017.01698] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
Cells of the myeloid lineage, particularly macrophages, serve as primary hosts for HIV in vivo, along with CD4 T lymphocytes. Macrophages are present in virtually every tissue of the organism, including locations with negligible T cell colonization, such as the brain, where HIV-mediated inflammation may lead to pathological sequelae. Moreover, infected macrophages are present in multiple other tissues. Recent evidence obtained in humanized mice and macaque models highlighted the capacity of macrophages to sustain HIV replication in vivo in the absence of T cells. Combined with the known resistance of the macrophage to the cytopathic effects of HIV infection, such data bring a renewed interest in this cell type both as a vehicle for viral spread as well as a viral reservoir. While our understanding of key processes of HIV infection of macrophages is far from complete, recent years have nevertheless brought important insight into the uniqueness of the macrophage infection. Productive infection of macrophages by HIV can occur by different routes including from phagocytosis of infected T cells. In macrophages, HIV assembles and buds into a peculiar plasma membrane-connected compartment that preexists to the infection. While the function of such compartment remains elusive, it supposedly allows for the persistence of infectious viral particles over extended periods of time and may play a role on viral transmission. As cells of the innate immune system, macrophages have the capacity to detect and respond to viral components. Recent data suggest that such sensing may occur at multiple steps of the viral cycle and impact subsequent viral spread. We aim to provide an overview of the HIV-macrophage interaction along the multiple stages of the viral life cycle, extending when pertinent such observations to additional myeloid cell types such as dendritic cells or blood monocytes.
Collapse
Affiliation(s)
- Vasco Rodrigues
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Nicolas Ruffin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mabel San-Roman
- Institut Curie, PSL Research University, UMR3216, Paris, France
| | | |
Collapse
|
41
|
Nakagawa T, Ohnishi K, Kosaki Y, Saito Y, Horlad H, Fujiwara Y, Takeya M, Komohara Y. Optimum immunohistochemical procedures for analysis of macrophages in human and mouse formalin fixed paraffin-embedded tissue samples. J Clin Exp Hematop 2017; 57:31-36. [PMID: 28679964 DOI: 10.3960/jslrt.17017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macrophages are closely related to various diseases and it is therefore important that the properties of macrophages are adequately evaluated in human diseases and mouse disease models. Immunohistochemistry (IHC) of formalin fixed paraffin-embedded (FFPE) samples is a very useful tool for examination of macrophages; however, an adequate IHC protocol is required for the examination of macrophage states. In this study, we assessed various antigen retrieval methods in order to devise the optimal protocols for staining of macrophages with a range of antibodies. Optimum combinations of primary antibodies and antigen retrieval protocols were determined; for example, heat treatment with ethylenediamine tetraacetic acid solution, pH 8.0, was the best procedure for IHC using mouse anti-Iba1 and human anti-CD11b, -CD163, -CD169, -CD204, and -CD206 antibodies. Moreover, we found that the immunoreactivity of sliced tissue sections decreased gradually over time in long term storage but that this immunoreactivity was preserved in storage at -80 °C in a deep freezer. The optimal IHC protocols and storage procedures that were determined in this study should be a useful tool for macrophage research.
Collapse
Affiliation(s)
- Takenobu Nakagawa
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yui Kosaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Hasita Horlad
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
42
|
Lin B, Yuejiao X, Dingyu D, Yi X. [Advances in macrophage function and its anti-inflammatory and proresolving activity and role in periodontitis development]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:427-432. [PMID: 28853512 PMCID: PMC7030234 DOI: 10.7518/hxkq.2017.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 05/15/2017] [Indexed: 02/05/2023]
Abstract
Macrophage plays an important role in human innate immune system. It has powerful functions, such as recognition, phagocytosis, and bacteria and foreign body removal. Periodontitis, which is a chronic infectious disease characterized by gum inflammation and bone loss, is a major cause of tooth loss in adults. Several studies demonstrated that periodontal tissue destruction is caused by the host immune response defending against infections. As an important part of host immune response, macrophage is also involved in periodontitis pathogenesis. Recently, anti-inflammatory and proresolving activities of macrophage was discovered. Thus, the complex function of macrophage in the occurrence, development, and resolution of inflammation and its potential role in periodontitis were reviewed.
Collapse
Affiliation(s)
- Bai Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Yuejiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Duan Dingyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Abstract
In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these "primitive" organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.
Collapse
|
44
|
|
45
|
Merien F. A Journey with Elie Metchnikoff: From Innate Cell Mechanisms in Infectious Diseases to Quantum Biology. Front Public Health 2016; 4:125. [PMID: 27379227 PMCID: PMC4909730 DOI: 10.3389/fpubh.2016.00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/02/2016] [Indexed: 01/03/2023] Open
Abstract
Many reviews of Elie Metchnikoff’s work have been published, all unanimously acknowledging the significant contributions of his cellular theory to the fields of immunology and infectious diseases. In 1883, he published a key paper describing phagocytic cells in frogs. His descriptions were not just about phagocytes involved in host defense, he also described how these specialized cells eliminated degenerating or dying cells of the host. This perspective focuses on key concepts developed by Metchnikoff by presenting relevant excerpts of his 1883 paper and matching these concepts with challenges of modern immunology. A new approach to macrophage polarization is included to introduce some creative thinking about the exciting emerging area of quantum biology.
Collapse
Affiliation(s)
- Fabrice Merien
- AUT-Roche Diagnostics Laboratory, Auckland University of Technology , Auckland , New Zealand
| |
Collapse
|
46
|
Centenary of the death of Elie Metchnikoff: a visionary and an outstanding team leader. Microbes Infect 2016; 18:577-594. [PMID: 27288152 DOI: 10.1016/j.micinf.2016.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/26/2022]
Abstract
Elie Metchnikoff passed away on July 15th, 1916. He is considered to be the father of phagocytes, cellular innate immunity, probiotics, and gerontology. In all of these fields, he was a visionary. To achieve such a notability and produce so many masterpieces, Metchnikoff used more than 30 animal species to support his findings, and his pasteurian laboratory published more than 200 papers in the Annales de l'Institut Pasteur. As a wonderful team leader and a great mentor, during his 28 years at Institut Pasteur, he welcomed and supervised more than 100 young trainees. Trained as an embryologist, he contributed to the birth of immunology and to the understanding of physiology and pathology. Indeed, Metchnikoff and his team investigated inflammation in guinea pigs, rats, frogs; studied infectious diseases in monkeys, caimans, geese; investigated aging in parrots, dogs, humans; proposed hypotheses to understand age-associated senility using rabbits and humans; developed germ free tadpoles, flies, chicks; studied the gut flora in bats, horses, birds, humans; and popularized the use of probiotics as a tool to delay the deleterious effects of toxic compounds derived from putrefactive gut bacteria. He was also a philosopher and penned essays on human disharmony and on pessimism and optimism.
Collapse
|
47
|
Abstract
ABSTRACT
Since the ability of some cells to engulf particulate material was observed before Metchnikoff, he did not “discover” phagocytosis, as is sometimes mentioned in textbooks. Rather, he assigned to particle internalization the role of defending the host against noxious stimuli, which represented a new function relative to the previously recognized task of intracellular digestion. With this proposal, Metchnikoff built the conceptual framework within which immunity could finally be seen as an active host function triggered by noxious stimuli. In this sense, Metchnikoff can be rightly regarded as the father of all immunological sciences and not only of innate immunity or myeloid cell biology. Moreover, the recognition properties of his phagocyte fit surprisingly well with recent discoveries and modern models of immune sensing. For example, rather than assigning to immune recognition exclusively the function of eliminating nonself components (as others did after him), Metchnikoff viewed phagocytes as homeostatic agents capable of monitoring the internal environment and promoting tissue remodeling, thereby continuously defining the identity of the organism. No doubt, Metchnikoff’s life and creativity can provide, still today, a rich source of inspiration.
Collapse
|
48
|
Franken L, Schiwon M, Kurts C. Macrophages: sentinels and regulators of the immune system. Cell Microbiol 2016; 18:475-87. [PMID: 26880038 DOI: 10.1111/cmi.12580] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022]
Abstract
The important role of macrophages in host defense against a variety of pathogens has long been recognized and has been documented and reviewed in numerous publications. Recently, it has become clear that tissue macrophages are not entirely derived from monocytes, as has been assumed for a long time, but rather show an ontogenetic dichotomy in most tissues: while part of the tissue macrophages are derived from monocytes, a major subset is prenatally seeded from the yolk sac. The latter subset shows a remarkable longevity and is maintained by self-renewal in the adult animal. This paradigm shift poses interesting questions: are these two macrophage subsets functionally equivalent cells that are recruited into the tissue at different development stages, or are both macrophage subsets discrete cell types with distinct functions, which have to exist side by side? Is the functional specialization that can be observed in most macrophages due to their lineage or due to their anatomical niche? This review will give an overview about what we know of macrophage ontogeny and will discuss the influence of the macrophage lineage and location on their functional specialization.
Collapse
Affiliation(s)
- Lars Franken
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Sigmund-Freud-Str. 25, Bonn, 53105, Germany
| | - Marzena Schiwon
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Sigmund-Freud-Str. 25, Bonn, 53105, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Sigmund-Freud-Str. 25, Bonn, 53105, Germany
| |
Collapse
|
49
|
Mills CD, Lenz LL, Harris RA. A Breakthrough: Macrophage-Directed Cancer Immunotherapy. Cancer Res 2016; 76:513-6. [PMID: 26772756 DOI: 10.1158/0008-5472.can-15-1737] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023]
Abstract
Successful immunotherapy of cancer is becoming a reality aided by the realization that macrophages play an important role in the growth or regression of tumors. Specifically, M2/repair-type macrophages predominate in human cancers and produce growth-promoting molecules that actively stimulate tumor growth in much the same way they help wounds heal. However, modulating M2/repair-type macrophages to M1/kill-type can slow or stop cancer growth. The effects involve direct activity of M1 kill-type as well as the ability of M1-type macrophages to stimulate Th1-type cytotoxic T cells and other effector cells. Macrophage responses can also predict cancer susceptibility; individuals with a high M1/kill to M2/repair ratio are less prone. That macrophages/innate immunity can be modulated to play a central role in directly or indirectly combating cancer is a breakthrough that seems likely to finally make successful immunotherapy of cancer a reality.
Collapse
Affiliation(s)
| | - Laurel L Lenz
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, Colorado
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
|