1
|
Lei Y, Meng J, Shi H, Shi C, Li C, Yang Z, Zhang W, Zuo D, Wang F, Wang M. Mannan-binding lectin inhibits oxidative stress-induced senescence via the NAD+/Sirt1 pathway. Int Immunopharmacol 2024; 137:112468. [PMID: 38906004 DOI: 10.1016/j.intimp.2024.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Prolonged or excessive oxidative stress can lead to premature cellular and body aging. Mannan-binding lectin (MBL) is synthesized by the liver and plays an important role in innate immunity, anti-inflammation, and anti-oxidation, and has a positive impact on health and longevity. To date, few studies investigated the role of MBL in attenuating oxidative stress-induced senescence. In this study, we evaluated the role of MBL in oxidative stress-induced premature aging and explored its underlying mechanism in C57BL/6 mice and mouse embryonic fibroblasts (NIH/3T3). First, we established an oxidative premature senescence model induced by D-galactose in C57BL/6 mice. We found that MBL-deficient mice had a marked aging-like appearance, reduced learning and spatial exploration abilities, severe liver pathological damage, and significantly upregulated expression of Senescence-associated proteins (p53 and p21), inflammatory kinesins (IL-1β and IL-6), and the senescence β-galactosidase (SA-β-Gal) positive rate as compared with WT mice. In the H2O2-induced oxidative senescence model of NIH/3T3 cells, consistent results were obtained after MBL intervention. In addition, MBL effectively inhibited G1 phase arrest, ROS levels, DNA damage, and mitochondrial dysfunction in premature senescent cells. Mechanistically, we found that oxidative stress inhibited the nicotinamide adenine dinucleotide (NAD+)/ silent information regulator 1 (Sirt1) signaling pathway, while MBL activated the NAD+/Sirt1 signaling pathway inhibited by oxidative stress. In addition, MBL could activate the NAD+/Sirt1 pathway by upregulating NAMPT, which in turn inhibited p38 phosphorylation by activating the NAD+/Sirt1 pathway. In conclusion, MBL inhibits oxidative aging, which may facilitate the development of therapeutics to delay oxidative aging.
Collapse
Affiliation(s)
- Yiming Lei
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Meng
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Haiqiang Shi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chenchen Shi
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chao Li
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziyi Yang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Fanping Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; School of Medical Technology, Shangqiu Medical College, Shangqiu 476100, China.
| |
Collapse
|
2
|
Zheng W, Zhou Z, Guo X, Zuo X, Zhang J, An Y, Zheng H, Yue Y, Wang G, Wang F. Efferocytosis and Respiratory Disease. Int J Mol Sci 2023; 24:14871. [PMID: 37834319 PMCID: PMC10573909 DOI: 10.3390/ijms241914871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cells are the smallest units that make up living organisms, which constantly undergo the processes of proliferation, differentiation, senescence and death. Dead cells need to be removed in time to maintain the homeostasis of the organism and keep it healthy. This process is called efferocytosis. If the process fails, this may cause different types of diseases. More and more evidence suggests that a faulty efferocytosis process is closely related to the pathological processes of respiratory diseases. In this review, we will first introduce the process and the related mechanisms of efferocytosis of the macrophage. Secondly, we will propose some methods that can regulate the function of efferocytosis at different stages of the process. Next, we will discuss the role of efferocytosis in different lung diseases and the related treatment approaches. Finally, we will summarize the drugs that have been applied in clinical practice that can act upon efferocytosis, in order to provide new ideas for the treatment of lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| | - Fang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| |
Collapse
|
3
|
Krishnan R, Stapledon CJM, Mostafavi H, Freitas JR, Liu X, Mahalingam S, Zaid A. Anti-inflammatory actions of Pentosan polysulfate sodium in a mouse model of influenza virus A/PR8/34-induced pulmonary inflammation. Front Immunol 2023; 14:1030879. [PMID: 36845136 PMCID: PMC9947849 DOI: 10.3389/fimmu.2023.1030879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction There is an unmet medical need for effective anti-inflammatory agents for the treatment of acute and post-acute lung inflammation caused by respiratory viruses. The semi-synthetic polysaccharide, Pentosan polysulfate sodium (PPS), an inhibitor of NF-kB activation, was investigated for its systemic and local anti-inflammatory effects in a mouse model of influenza virus A/PR8/1934 (PR8 strain) mediated infection. Methods Immunocompetent C57BL/6J mice were infected intranasally with a sublethal dose of PR8 and treated subcutaneously with 3 or 6 mg/kg PPS or vehicle. Disease was monitored and tissues were collected at the acute (8 days post-infection; dpi) or post-acute (21 dpi) phase of disease to assess the effect of PPS on PR8-induced pathology. Results In the acute phase of PR8 infection, PPS treatment was associated with a reduction in weight loss and improvement in oxygen saturation when compared to vehicle-treated mice. Associated with these clinical improvements, PPS treatment showed a significant retention in the numbers of protective SiglecF+ resident alveolar macrophages, despite uneventful changes in pulmonary leukocyte infiltrates assessed by flow cytometry. PPS treatment in PR8- infected mice showed significant reductions systemically but not locally of the inflammatory molecules, IL-6, IFN-g, TNF-a, IL-12p70 and CCL2. In the post-acute phase of infection, PPS demonstrated a reduction in the pulmonary fibrotic biomarkers, sICAM-1 and complement factor C5b9. Discussion The systemic and local anti-inflammatory actions of PPS may regulate acute and post-acute pulmonary inflammation and tissue remodeling mediated by PR8 infection, which warrants further investigation.
Collapse
Affiliation(s)
- Ravi Krishnan
- Research and Development, Paradigm Biopharmaceuticals Ltd., Melbourne, VIC, Australia
| | | | - Helen Mostafavi
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
4
|
Woods PS, Kimmig LM, Sun KA, Meliton AY, Shamaa OR, Tian Y, Cetin-Atalay R, Sharp WW, Hamanaka RB, Mutlu GM. HIF-1α induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury. eLife 2022; 11:e77457. [PMID: 35822617 PMCID: PMC9323005 DOI: 10.7554/elife.77457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/10/2022] [Indexed: 12/03/2022] Open
Abstract
Cellular metabolism is a critical regulator of macrophage effector function. Tissue-resident alveolar macrophages (TR-AMs) inhabit a unique niche marked by high oxygen and low glucose. We have recently shown that in contrast to bone marrow-derived macrophages (BMDMs), TR-AMs do not utilize glycolysis and instead predominantly rely on mitochondrial function for their effector response. It is not known how changes in local oxygen concentration that occur during conditions such as acute respiratory distress syndrome (ARDS) might affect TR-AM metabolism and function; however, ARDS is associated with progressive loss of TR-AMs, which correlates with the severity of disease and mortality. Here, we demonstrate that hypoxia robustly stabilizes HIF-1α in TR-AMs to promote a glycolytic phenotype. Hypoxia altered TR-AM metabolite signatures, cytokine production, and decreased their sensitivity to the inhibition of mitochondrial function. By contrast, hypoxia had minimal effects on BMDM metabolism. The effects of hypoxia on TR-AMs were mimicked by FG-4592, a HIF-1α stabilizer. Treatment with FG-4592 decreased TR-AM death and attenuated acute lung injury in mice. These findings reveal the importance of microenvironment in determining macrophage metabolic phenotype and highlight the therapeutic potential in targeting cellular metabolism to improve outcomes in diseases characterized by acute inflammation.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Lucas M Kimmig
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Willard W Sharp
- Department of Medicine, Section of Emergency Medicine, The University of ChicagoChicagoUnited States
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| |
Collapse
|
5
|
Choudhary ML, Chaudhary U, Salve M, Shinde P, Padbidri V, Sangle SA, Salvi S, Bavdekar AR, D'costa P, Alagarasu K. Functional Single-Nucleotide Polymorphisms in the MBL2 and TLR3 Genes Influence Disease Severity in Influenza A (H1N1)pdm09 Virus-Infected Patients from Maharashtra, India. Viral Immunol 2022; 35:303-309. [PMID: 35196173 DOI: 10.1089/vim.2021.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical outcome in influenza A (H1N1)pdm09 virus-infected subjects is determined by several factors, including host genetics. In the present study, single-nucleotide polymorphisms (SNPs) in the IFITM, MBL2, TLR3, TLR8, DDX58, IFIH1, CD55, and FCGR2, genes were investigated in influenza A (H1N1)pdm09 virus-infected subjects to find out their association with disease severity. Influenza A (H1N1)pdm09 virus-infected subjects with severe disease (n = 86) and mild disease (n = 293) from western India were included in the study. The SNPs were investigated by PCR-based methods. The results revealed a higher frequency of TLR3 rs5743313 T/T genotype [odds ratio (OR) with 95% confidence interval (CI) 2.55 (1.08-6.04) p = 0.039] and TLR3 two-locus haplotype rs3775291-rs3775290 T-A [OR with 95% CI 7.94 (2.05-30.68)] in severe cases. Lower frequency of the mutant allele of MBL2 rs1800450 [OR with 95% CI 0.51 (0.27-0.87), p = 0.01] and TLR3 two-locus haplotype rs3775291-rs3775290 T-G [OR with 95% CI 0.48 (0.27-0.85)] was observed in severe cases compared with cases with mild disease. Higher frequency of TLR3 two-locus haplotype rs3775291-rs3775290 T-A was observed in severe cases [OR with 95% CI 7.9 (2.0-30.7)]. The allele and genotype frequencies of other SNPs were not different between the study categories. The results suggest that the functional SNPs in MBL2 and TLR3 are associated with severe disease in influenza A (H1N1)pdm09 virus-infected subjects.
Collapse
Affiliation(s)
| | | | | | - Pooja Shinde
- ICMR-National Institute of Virology, Pune, India
| | | | | | - Sonali Salvi
- Department of Medicine, BJ Medical College, Pune, India
| | | | | | | |
Collapse
|
6
|
Hartshorn KL. Innate Immunity and Influenza A Virus Pathogenesis: Lessons for COVID-19. Front Cell Infect Microbiol 2020; 10:563850. [PMID: 33194802 PMCID: PMC7642997 DOI: 10.3389/fcimb.2020.563850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is abundant evidence that the innate immune response to influenza A virus (IAV) is highly complex and plays a key role in protection against IAV induced infection and illness. Unfortunately it also clear that aspects of innate immunity can lead to severe morbidity or mortality from IAV, including inflammatory lung injury, bacterial superinfection, and exacerbation of reactive airways disease. We review broadly the virus and host factors that result in adverse outcomes from IAV and show evidence that inflammatory responses can become damaging even apart from changes in viral replication per se, with special focus on the positive and adverse effects of neutrophils and monocytes. We then evaluate in detail the role of soluble innate inhibitors including surfactant protein D and antimicrobial peptides that have a potential dual capacity for down-regulating viral replication and also inhibiting excessive inflammatory responses and how these innate host factors could possibly be harnessed to treat IAV infection. Where appropriate we draw comparisons and contrasts the SARS-CoV viruses and IAV in an effort to point out where the extensive knowledge existing regarding severe IAV infection could help guide research into severe COVID 19 illness or vice versa.
Collapse
Affiliation(s)
- Kevan L Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Atkin-Smith GK, Duan M, Zanker DJ, Loh L, Nguyen THO, Koutsakos M, Nguyen T, Jiang X, Carrera J, Phan TK, Liu C, Paone S, Oveissi S, Hodge AL, Baxter AA, Kedzierska K, Mackenzie JM, Hulett MD, Bilsel P, Chen W, Poon IKH. Monocyte apoptotic bodies are vehicles for influenza A virus propagation. Commun Biol 2020; 3:223. [PMID: 32385344 PMCID: PMC7210108 DOI: 10.1038/s42003-020-0955-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
The disassembly of apoptotic cells into small membrane-bound vesicles termed apoptotic bodies (ApoBDs) is a hallmark of apoptosis; however, the functional significance of this process is not well defined. We recently discovered a new membrane protrusion (termed beaded apoptopodia) generated by apoptotic monocytes which fragments to release an abundance of ApoBDs. To investigate the function of apoptotic monocyte disassembly, we used influenza A virus (IAV) infection as a proof-of-concept model, as IAV commonly infects monocytes in physiological settings. We show that ApoBDs generated from IAV-infected monocytes contained IAV mRNA, protein and virions and consequently, could facilitate viral propagation in vitro and in vivo, and induce a robust antiviral immune response. We also identified an antipsychotic, Haloperidol, as an unexpected inhibitor of monocyte cell disassembly which could impair ApoBD-mediated viral propagation under in vitro conditions. Together, this study reveals a previously unrecognised function of apoptotic monocyte disassembly in the pathogenesis of IAV infections.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Damien J Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Tien Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xiangrui Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Julio Carrera
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Chuanxin Liu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy L Hodge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Pamuk Bilsel
- FluGen, 597 Science Drive, Madison, WI, 53711, USA
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
8
|
Dang Y, Meng X, Lu J, Liu L, Li J. Role of mannose-binding lectin in regulating monocytes/macrophages functions during Aeromonas hydrophila infection in grass carp, Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103408. [PMID: 31173786 DOI: 10.1016/j.dci.2019.103408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Mannose-binding lectin (MBL) is a vital component in host's innate immune system and the initiator of the lectin pathway of complement cascade. However, its opsonic role has rarely been reported. In this study, we revealed the biological function of Ctenopharyngodon idella MBL (CiMBL) in regulating monocytes/macrophages (MO/MФ) in the grass carp (C. idella). Flow cytometry results indicated that recombinant CiMBL (rCiMBL) significantly enhanced the phagocytotic activity of MO/MФ. Recombinant CiMBL also enhanced bactericidal activity and respiratory burst capacity in Aeromonas hydrophila-infected MO/MФ, regulated A. hydrophila-induced polarization of MO/MФ including down- and up-regulated pro- and anti-inflammatory cytokines, respectively, suppressed the inducible nitric oxide synthase activity, and enhanced the arginase activity. In addition, rCiMBL suppressed the bacteria burden in tissues and blood in vivo and enhanced the survival rate of juvenile A. hydrophila-infected grass carp. We provide evidence that CiMBL was synthesized by MO/MФ, regulating the biological function of MO/MФ against A. hydrophila infection.
Collapse
Affiliation(s)
- Yunfei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Xinzhan Meng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianfei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lei Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Kim BM, Lotter‐Stark HCT, Rybicki EP, Chikwamba RK, Palmer KE. Characterization of the hypersensitive response-like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1811-1821. [PMID: 29509998 PMCID: PMC6131415 DOI: 10.1111/pbi.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.
Collapse
Affiliation(s)
- Bo Min Kim
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | - Edward P. Rybicki
- Department of Molecular & Cell BiologyInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Rachel K. Chikwamba
- BiosciencesCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
| | - Kenneth E. Palmer
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
10
|
Atkin-Smith GK, Duan M, Chen W, Poon IKH. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis 2018; 9:1002. [PMID: 30254192 PMCID: PMC6156503 DOI: 10.1038/s41419-018-1035-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
Infection with Influenza A virus (IAV) causes significant cell death within the upper and lower respiratory tract and lung parenchyma. In severe infections, high levels of cell death can exacerbate inflammation and comprise the integrity of the epithelial cell barrier leading to respiratory failure. IAV infection of airway and alveolar epithelial cells promotes immune cell infiltration into the lung and therefore, immune cell types such as macrophages, monocytes and neutrophils are readily exposed to IAV and infection-induced death. Although the induction of cell death through apoptosis and necrosis following IAV infection is a well-known phenomenon, the molecular determinants responsible for inducing cell death is not fully understood. Here, we review the current understanding of IAV-induced cell death and critically evaluate the consequences of cell death in aiding either the restoration of lung homoeostasis or the progression of IAV-induced lung pathologies.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
11
|
Lejal N, Truchet S, Bechor E, Bouguyon E, Khedkar V, Bertho N, Vidic J, Adenot P, Solier S, Pick E, Slama-Schwok A. Turning off NADPH oxidase-2 by impeding p67 phox activation in infected mouse macrophages reduced viral entry and inflammation. Biochim Biophys Acta Gen Subj 2018. [PMID: 29524539 DOI: 10.1016/j.bbagen.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Targeting cells of the host immune system is a promising approach to fight against Influenza A virus (IAV) infection. Macrophage cells use the NADPH oxidase-2 (NOX2) enzymatic complex as a first line of defense against pathogens by generating superoxide ions O2- and releasing H2O2. Herein, we investigated whether targeting membrane -embedded NOX2 decreased IAV entry via raft domains and reduced inflammation in infected macrophages. METHODS Confocal microscopy and western blots monitored levels of the viral nucleoprotein NP and p67phox, NOX2 activator subunit, Elisa assays quantified TNF-α levels in LPS or IAV-activated mouse or porcine alveolar macrophages pretreated with a fluorescent NOX inhibitor, called nanoshutter NS1. RESULTS IAV infection in macrophages promoted p67phox translocation to the membrane, rafts clustering and activation of the NOX2 complex at early times. Disrupting rafts reduced intracellular viral NP. NS1 markedly reduced raft clustering and viral entry by binding to the C-terminal of NOX2 also characterized in vitro. NS1 decrease of TNF-α release depended on the cell type. CONCLUSION NOX2 participated in IAV entry and raft-mediated endocytosis. NOX2 inhibition by NS1 reduced viral entry. NS1 competition with p67phox for NOX2 binding shown by in silico models and cell-free assays was in agreement with NS1 inhibiting p67phox translocation to membrane-embedded NOX2 in mouse and porcine macrophages. GENERAL SIGNIFICANCE We introduce NS1 as a compound targeting NOX2, a critical enzyme controlling viral levels and inflammation in macrophages and discuss the therapeutic relevance of targeting the C-terminal of NADPH oxidases by probes like NS1 in viral infections.
Collapse
Affiliation(s)
- Nathalie Lejal
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | | | - Edna Bechor
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | - Vijay Khedkar
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | - Nicolas Bertho
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | - Jasmina Vidic
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | - Pierre Adenot
- Paris-Saclay University, UMR BDR, INRA, ENVA, Jouy en Josas, France; Paris-Saclay University, MIMA2 Plateform, INRA, Jouy en Josas, France
| | - Stéphanie Solier
- Paris Saclay University, Gustave Roussy Institute, U1170 INSERM, Villejuif, France
| | - Edgar Pick
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Anny Slama-Schwok
- Paris Saclay University, U892 INRA, Jouy en Josas, France; Paris Saclay University, Gustave Roussy Institute, UMR 8200 CNRS, Villejuif, France.
| |
Collapse
|
12
|
Wang L, Ding L, Xue C, Ma S, Du Z, Zhang T, Liu J. Corn gluten hydrolysate regulates the expressions of antioxidant defense and ROS metabolism relevant genes in H2O2-induced HepG2 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Wu BW, Metcalf JP. Editorial: Mannose-binding lectin in fighting influenza: promise or peril? J Leukoc Biol 2017; 95:702-704. [PMID: 27929378 DOI: 10.1189/jlb.0114003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- By Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, and
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, and .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
14
|
Cline TD, Beck D, Bianchini E. Influenza virus replication in macrophages: balancing protection and pathogenesis. J Gen Virol 2017; 98:2401-2412. [PMID: 28884667 DOI: 10.1099/jgv.0.000922] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.
Collapse
Affiliation(s)
- Troy D Cline
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Donald Beck
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Elizabeth Bianchini
- Department of Biological Sciences, California State University, Chico, California, USA
| |
Collapse
|
15
|
Monocyte differentiation and macrophage priming are regulated differentially by pentraxins and their ligands. BMC Immunol 2017; 18:30. [PMID: 28619036 PMCID: PMC5472910 DOI: 10.1186/s12865-017-0214-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023] Open
Abstract
Background Circulating bone marrow-derived monocytes can leave the blood, enter a tissue, and differentiate into M1 inflammatory, M2a remodeling/fibrotic, or M2c/Mreg resolving/immune-regulatory macrophages. Macrophages can also convert from one of the above types to another. Pentraxins are secreted proteins that bind to, and promote efficient clearance of, microbial pathogens and cellular debris during infection, inflammation, and tissue damage. The pentraxins C-reactive protein (CRP), serum amyloid P (SAP), and pentraxin-3 (PTX3) can also bind a variety of endogenous ligands. As monocytes and macrophages are exposed to differing concentrations of pentraxins and their ligands during infection, inflammation, and tissue damage, we assessed what effect pentraxins and their ligands have on these cells. Results We found that many polarization markers do not discriminate between the effects of pentraxins and their ligands on macrophages. However, pentraxins, their ligands, and cytokines differentially regulate the expression of the hemoglobin-haptoglobin complex receptor CD163, the sialic acid-binding lectin CD169, and the macrophage mannose receptor CD206. CRP, a pentraxin generally thought of as being pro-inflammatory, increases the extracellular accumulation of the anti-inflammatory cytokine IL-10, and this effect is attenuated by GM-CSF, mannose-binding lectin, and factor H. Conclusions These results suggest that the presence of pentraxins and their ligands regulate macrophage differentiation in the blood and tissues, and that CRP may be a potent inducer of the anti-inflammatory cytokine IL-10. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0214-z) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Yu L, Shang S, Tao R, Wang C, Zhang L, Peng H, Chen Y. High doses of recombinant mannan-binding lectin inhibit the binding of influenza A(H1N1)pdm09 virus with cells expressing DC-SIGN. APMIS 2017; 125:655-664. [PMID: 28493491 DOI: 10.1111/apm.12695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
The pandemic influenza A (H1N1)pdm09 virus continues to be a threat to human health. Low doses of mannan-binding lectin (MBL) (<1 μg/mL) were shown not to protect against influenza A(H1N1)pdm09 infection. However, the effect of high doses of MBL has not been investigated. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) has been proposed as an alternative receptor for influenza A(H1N1)pdm09 virus. In this study, we examined the expression of DC-SIGN on DCs as well as on acute monocytic leukemia cell line, THP-1. High doses of recombinant or human MBL inhibited binding of influenza A(H1N1)pdm09 to both these cell types in the presence of complement derived from bovine serum. Further, anti-DC-SIGN monoclonal antibody inhibited binding of influenza A(H1N1)pdm09 to both DC-SIGN-expressing DCs and THP-1 cells. This study demonstrates that high doses of MBL can inhibit binding of influenza A(H1N1)pdm09 virus to DC-SIGN-expressing cells in the presence of complement. Our results suggest that DC-SIGN may be an alternative receptor for influenza A(H1N1)pdm09 virus.
Collapse
Affiliation(s)
- Lei Yu
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Laboratory of Cancer Biology, Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqiang Shang
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Tao
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caiyun Wang
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Peng
- Department of Pediatrics, Pingxiang Maternal and Child Health Hospital, Pingxiang, China
| | - Yinghu Chen
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Meunier I, Kaufmann E, Downey J, Divangahi M. Unravelling the networks dictating host resistance versus tolerance during pulmonary infections. Cell Tissue Res 2017; 367:525-536. [PMID: 28168323 PMCID: PMC7088083 DOI: 10.1007/s00441-017-2572-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
The appearance of single cell microorganisms on earth dates back to more than 3.5 billion years ago, ultimately leading to the development of multicellular organisms approximately 3 billion years later. The evolutionary burst of species diversity and the “struggle for existence”, as proposed by Darwin, generated a complex host defense system. Host survival during infection in vital organs, such as the lung, requires a delicate balance between host defense, which is essential for the detection and elimination of pathogens and host tolerance, which is critical for minimizing collateral tissue damage. Whereas the cellular and molecular mechanisms of host defense against many invading pathogens have been extensively studied, our understanding of host tolerance as a key mechanism in maintaining host fitness is extremely limited. This may also explain why current therapeutic and preventive approaches targeting only host defense mechanisms have failed to provide full protection against severe infectious diseases, including pulmonary influenza virus and Mycobacterium tuberculosis infections. In this review, we aim to outline various host strategies of resistance and tolerance for effective protection against acute or chronic pulmonary infections.
Collapse
Affiliation(s)
- Isabelle Meunier
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada. .,RI-MUHC, Centre for Translational Biology, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Block E (EM3.2248), Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
18
|
Dias RDO, Machado LDS, Migliolo L, Franco OL. Insights into animal and plant lectins with antimicrobial activities. Molecules 2015; 20:519-41. [PMID: 25569512 PMCID: PMC6272381 DOI: 10.3390/molecules20010519] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.
Collapse
Affiliation(s)
- Renata de Oliveira Dias
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Leandro Dos Santos Machado
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Ludovico Migliolo
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Octavio Luiz Franco
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|