1
|
Alles M, Gunasena M, Isckarus C, De Silva I, Board S, Mulhern W, Collins PL, Demberg T, Liyanage NPM. Novel Oral Adjuvant to Enhance Cytotoxic Memory-Like NK Cell Responses in an HIV Vaccine Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593683. [PMID: 38798447 PMCID: PMC11118904 DOI: 10.1101/2024.05.11.593683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Antibody-dependent cell-mediated cytotoxicity, mediated by natural killer (NK) cells and antibodies, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model. We demonstrate the expansion of KLRG1-expressing NK cells induced by the vaccine together with I3C. This NK cell subset exhibited enhanced vaccine antigen-specific cytotoxic memory-like features. Our study underscores the potential of incorporating I3C as an oral adjuvant to HIV vaccine platforms to enhance antigen-specific (memory-like) cytotoxicity of NK cells against HIV-infected cells. This approach may contribute to enhancing the protective efficacy of HIV preventive vaccines against HIV acquisition.
Collapse
|
2
|
Qin D, Xu H, Chen Z, Deng X, Jiang S, Zhang X, Bao S. The peripheral and decidual immune cell profiles in women with recurrent pregnancy loss. Front Immunol 2022; 13:994240. [PMID: 36177021 PMCID: PMC9513186 DOI: 10.3389/fimmu.2022.994240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent pregnancy loss (RPL) affects 1-2% of couples of reproductive age. Immunological analysis of the immune status in RPL patients might contribute to the diagnosis and treatment of RPL. However, the exact immune cell composition in RPL patients is still unclear. Here, we used flow cytometry to investigate the immune cell profiles of peripheral blood and decidual tissue of women who experienced RPL. We divided peripheral immune cells into 14 major subgroups, and the percentages of T, natural killer T (NKT)-like and B cells in peripheral blood were increased in RPL patients. The decidual immune cells were classified into 14 major subpopulations and the percentages of decidual T, NKT-like cells and CD11chi Mφ were increased, while those of CD56hi decidual NK cells and CD11clo Mφ were decreased in RPL patients. The spearmen correlation analysis showed that the proportion of peripheral and decidual immune cells did not show significant correlations with occurrences of previous miscarriages. By using flow cytometry, we depicted the global peripheral and decidual immune landscape in RPL patients. The abnormalities of peripheral and decidual immune cells may be involved in RPL, but the correlations with the number of previous miscarriages need further verification.
Collapse
Affiliation(s)
- Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Shihua Bao, ; Xiaoming Zhang,
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Shihua Bao, ; Xiaoming Zhang,
| |
Collapse
|
3
|
Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8 + T cell responses following COVID-19. Nat Immunol 2021; 23:23-32. [PMID: 34937933 DOI: 10.1038/s41590-021-01095-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.
Collapse
|
4
|
Guo K, Xiao N, Liu Y, Wang Z, Tóth J, Gyenis J, Thakur VK, Oyane A, Shubhra QT. Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Cahill LA, Guo F, Nguyen J, Zhang F, Seshadri A, Keegan J, Hauser CJ, Otterbein LE, Robson S, Shaefi S, Yaffe MB, Lederer JA. Circulating Factors in Trauma Plasma Activate Specific Human Immune Cell Subsets. Injury 2020; 51:819-829. [PMID: 32171537 PMCID: PMC7441590 DOI: 10.1016/j.injury.2020.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Trauma causes tissue injury that results in the release of damage associated molecular patterns (DAMPs) and other mediators at the site of injury and systemically. Such mediators disrupt immune system homeostasis and may activate multicellular immune responses with downstream complications such as the development of infections and sepsis. To characterize these alterations, we used time-of-flight mass cytometry to determine how trauma plasma affects normal peripheral blood mononuclear cell (PBMC) activation to gain insights into the kinetics and nature of trauma-induced circulating factors on human immune cell populations. A better understanding of the components that activate cells in trauma may aid in the discovery of therapeutic targets. METHODS PBMCs from healthy volunteers were cultured with 5% plasma (healthy, trauma-1day, or trauma-3day) or known DAMPs for 24 h. Samples were stained with a broad immunophenotyping CyTOF antibody panel. Multiplex (Luminex) cytokine assays were used to measure differences in multiple cytokine levels in healthy and trauma plasma samples. RESULTS Plasma from day 1, but not day 3 trauma patients induced the acute expansion of CD11c+ NK cells and CD73+/CCR7+ CD8 T cell subpopulations. Additionally, trauma plasma did not induce CD4+ T cell expansion but did cause a phenotypic shift towards CD38+/CCR7+ expressing CD4+ T cells. Multiplex analysis of cytokines by Luminex showed increased levels of IL-1RA, IL-6 and IL-15 in trauma-1day plasma. Similar to trauma day 1 plasma, PBMC stimulation with known DAMPs showed activation and expansion of CD11c+ NK cells. CONCLUSIONS We hypothesized that circulating factors in trauma plasma would induce phenotypic activation of normal human immune cell subsets. Using an unbiased approach, we identified specific changes in immune cell subsets that respond to trauma plasma. Additionally, CD11c+ NK cells expanded in response to DAMPs and LPS, suggesting they may also be responding to similar components in trauma plasma. Collectively, our data demonstrate that the normal PBMC response to trauma plasma involves marked changes in specific subsets of NK and CD8+ T cell populations. Future studies will target the function of these trauma plasma reactive immune cell subsets. These findings have important implications for the field of acute traumatic injuries.
Collapse
Affiliation(s)
- Laura A Cahill
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fei Guo
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Jennifer Nguyen
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fan Zhang
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Anupamaa Seshadri
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Joshua Keegan
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Carl J Hauser
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Simon Robson
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Shahzad Shaefi
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Michael B Yaffe
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - James A Lederer
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| |
Collapse
|
6
|
Polychromic Reporter Mice Reveal Unappreciated Innate Lymphoid Cell Progenitor Heterogeneity and Elusive ILC3 Progenitors in Bone Marrow. Immunity 2019; 51:104-118.e7. [PMID: 31128961 PMCID: PMC6642165 DOI: 10.1016/j.immuni.2019.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
Innate lymphoid cells (ILCs) play strategic roles in tissue homeostasis and immunity. ILCs arise from lymphoid progenitors undergoing lineage restriction and the development of specialized ILC subsets. We generated “5x polychromILC” transcription factor reporter mice to delineate ILC precursor states by revealing the multifaceted expression of key ILC-associated transcription factors (Id2, Bcl11b, Gata3, RORγt, and RORα) during ILC development in the bone marrow. This approach allowed previously unattained enrichment of rare progenitor subsets and revealed hitherto unappreciated ILC precursor heterogeneity. In vivo and in vitro assays identified precursors with potential to generate all ILC subsets and natural killer (NK) cells, and also permitted discrimination of elusive ILC3 bone marrow antecedents. Single-cell gene expression analysis identified a discrete ILC2-committed population and delineated transition states between early progenitors and a highly heterogeneous ILC1, ILC3, and NK precursor cell cluster. This diversity might facilitate greater lineage potential upon progenitor recruitment to peripheral tissues. Five-color “polychromILC” transcription factor reporter mice define ILC precursors ILC precursors give rise to ILC1, ILC2, and ILC3 and retain NK potential A RorcKat allele allows resolution of extremely rare ILC3 progenitors Detection of divergent trajectories for ILC2 and common ILC1, ILC3, and NK development
Collapse
|
7
|
Isvoranu G, Surcel M, Huică RI, Munteanu AN, Pîrvu IR, Ciotaru D, Constantin C, Bratu O, Neagu M, Ursaciuc C. Natural killer cell monitoring in cutaneous melanoma - new dynamic biomarker. Oncol Lett 2019; 17:4197-4206. [PMID: 30944615 PMCID: PMC6444282 DOI: 10.3892/ol.2019.10069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Melanoma is responsible for most skin cancer deaths in humans. The immune system plays a major role in regulating tumor cell proliferation by initiating defence responses against tumor aggression. Research on murine cancer models allow for a better understanding of immune response in malignancies, revealing specific changes of the immune status in the presence of tumors. Melanoma resistance to conventional therapies and its high immunogenicity justify the development of new therapies. These features reinforce melanoma as a suitable model for studying antitumor immunity. Recent findings on NK cell activation in cancer patients indicate that several important parameters, such as tumor capacity to modulate the function and phenotype of NK cells, require consideration for the choice of an NK-based therapy. In this study, we investigated T-CD4+ and T-CD8+ lymphocytes, B lymphocytes and NK cells in peripheral blood and spleen cells suspension from melanoma-bearing mice compared to healthy controls in order to assess the potential for tumor growth-promoting immunosuppression. Our results indicate that in a melanoma-bearing mouse model the percentage of NK cells in spleen is reduced and that their phenotype is different compared to control mouse NK cells.
Collapse
Affiliation(s)
- Gheorghița Isvoranu
- Animal Husbandry, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Surcel
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Doctoral School of Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Radu-Ionuț Huică
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Division of Cellular and Molecular Biology and Histology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adriana Narcisa Munteanu
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Doctoral School of Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ioana Ruxandra Pîrvu
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| | - Dan Ciotaru
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Ovidiu Bratu
- Clinical Department 3, Central Military Hospital, 010825 Bucharest, Romania.,Academy of Romanian Scientists, 050085 Bucharest, Romania
| | - Monica Neagu
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Doctoral School of Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cornel Ursaciuc
- Immunobiology Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
8
|
Palgen JL, Tchitchek N, Huot N, Elhmouzi-Younes J, Lefebvre C, Rosenbaum P, Dereuddre-Bosquet N, Martinon F, Hocini H, Cosma A, Müller-Trutwin M, Lévy Y, Le Grand R, Beignon AS. NK cell immune responses differ after prime and boost vaccination. J Leukoc Biol 2019; 105:1055-1073. [PMID: 30794328 DOI: 10.1002/jlb.4a1018-391rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
A better understanding of innate responses induced by vaccination is critical for designing optimal vaccines. Here, we studied the diversity and dynamics of the NK cell compartment after prime-boost immunization with the modified vaccinia virus Ankara using cynomolgus macaques as a model. Mass cytometry was used to deeply characterize blood NK cells. The NK cell subphenotype composition was modified by the prime. Certain phenotypic changes induced by the prime were maintained over time and, as a result, the NK cell composition prior to boost differed from that before prime. The key phenotypic signature that distinguished NK cells responding to the boost from those responding to the prime included stronger expression of several cytotoxic, homing, and adhesion molecules, suggesting that NK cells at recall were functionally distinct. Our data reveal potential priming or imprinting of NK cells after the first vaccine injection. This study provides novel insights into prime-boost vaccination protocols that could be used to optimize future vaccines.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nicolas Tchitchek
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nicolas Huot
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Pasteur, Unit on HIV, Inflammation and Persistence, Paris, France
| | - Jamila Elhmouzi-Younes
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Pierre Rosenbaum
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Frédéric Martinon
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Antonio Cosma
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Michaela Müller-Trutwin
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Pasteur, Unit on HIV, Inflammation and Persistence, Paris, France
| | - Yves Lévy
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Roger Le Grand
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Anne-Sophie Beignon
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| |
Collapse
|
9
|
Non-identical twins: Different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men. Semin Cell Dev Biol 2017; 85:110-121. [PMID: 29174917 DOI: 10.1016/j.semcdb.2017.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
Integrins are cell membrane receptors that are involved in essential physiological and serious pathological processes. Their main role is to ensure a closely regulated link between the extracellular matrix and the intracellular cytoskeletal network enabling cells to react to environmental stimuli. Complement receptor type 3 (CR3, αMβ2, CD11b/CD18) and type 4 (CR4, αXβ2, CD11c/CD18) are members of the β2-integrin family expressed on most white blood cells. Both receptors bind multiple ligands like iC3b, ICAM, fibrinogen or LPS. β2-integrins are accepted to play important roles in cellular adhesion, migration, phagocytosis, ECM rearrangement and inflammation. Several pathological conditions are linked to the impaired functions of these receptors. CR3 and CR4 are generally thought to mediate overlapping functions in monocytes, macrophages and dendritic cells, therefore the potential distinctive role of these receptors has not been investigated so far in satisfactory details. Lately it has become clear that a functional segregation has evolved between the two receptors regarding phagocytosis, cellular adhesion and podosome formation. In addition to their tasks on myeloid cells, the expression and function of CR3 and CR4 on lymphocytes have also gained interest recently. The picture is further complicated by the fact that while these β2-integrins are expressed by immune cells both in mice and humans, there are significant differences in their expression level, functions and the pathological consequences of genetic defects. Here we aim to summarize our current knowledge on CR3 and CR4 and highlight the functional differences between these receptors, involving their expression in myeloid and lymphoid cells of both men and mice.
Collapse
|
10
|
Brown SM, Smith CE, Meuth AI, Khan M, Aroor AR, Cleeton HM, Meininger GA, Sowers JR, DeMarco VG, Chandrasekar B, Nistala R, Bender SB. Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II-Induced Cardiac Diastolic Dysfunction in Male Mice. Endocrinology 2017; 158:3592-3604. [PMID: 28977602 PMCID: PMC5659692 DOI: 10.1210/en.2017-00416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Scott M. Brown
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Cassandra E. Smith
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Alex I. Meuth
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Maloree Khan
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Annayya R. Aroor
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Hannah M. Cleeton
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - James R. Sowers
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Vincent G. DeMarco
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Bysani Chandrasekar
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Ravi Nistala
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Nephrology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Shawn B. Bender
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
11
|
Liao Y, Liu X, Huang Y, Huang H, Lu Y, Zhang Y, Shu S, Fang F. Expression pattern of CD11c on lung immune cells after disseminated murine cytomegalovirus infection. Virol J 2017; 14:132. [PMID: 28720115 PMCID: PMC5516330 DOI: 10.1186/s12985-017-0801-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/10/2017] [Indexed: 12/27/2022] Open
Abstract
Background Cytomegalovirus (CMV) infection occurs frequently and is widespread globally. Numerous studies have shown that various types of immune cells play roles in mediating the response to CMV infection. CD11c, a commonly used dendritic cell (DC) marker, is expressed by other immune cells as well, such as T cells. This study analyzed the immune cells that express CD11c and monitored the expression level of their specific cell surface markers in the lung following a disseminated murine (M)CMV infection. Methods Mouse models of disseminated MCMV infection were used; uninfected and lipopolysaccharide (LPS)-treated mice were used as controls. At 1, 3 and 7 days following infection, single cell suspensions prepared from freshly digested lung tissue were stained for CD11c, CD86 and MHC II. Stained cells were analyzed using flow cytometry. Peripheral blood and single cell suspensions from spleen were sorted as well. Then these cells were subjected to analyze the CD11c expression pattern on natural killer (NK) cells and T cells. Results This assay showed that after MCMV infection, the expression of CD86 on pulmonary CD11chiMHC-IIhi cells (encompassing conventional DCs) was higher at 3 days post-infection than at 1 or 7 days post-infection, accompanied by a downregulation of MHC II. In addition, expression of CD11c was greatly increased in the MCMV infection group at 7 days post infection. This study also detected a large population of cells displaying an intermediate level of expression of CD11c (CD11cint); these cells were in the MCMV groups exclusively, and were subsequently identified as CD8+ T cells. In lung, spleen and blood, different proportions of CD11cint cells among the NK cell and T cell populations were observed between the BALB/c and C57BL/6 mice with or without MCMV infection. The expression level of NKp46 in NK cells dropped to a lower level after MCMV infection. Conclusions The findings collectively indicate that CD11cintCD8+ T cells might play a key role in anti-MCMV adaptive immune response in lungs, as well as in spleen and blood. B220+CD11cint NK cells might be a more effective type of NK cell, participating in anti-MCMV infection. The downregulation of NKp46, in particular, might be linked with the immune evasion of MCMV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0801-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Liao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heyu Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuanyuan Lu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yanan Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
12
|
Early Differentiation of Human CD11c +NK Cells with γδ T Cell Activation Properties Is Promoted by Dialyzable Leukocyte Extracts. J Immunol Res 2016; 2016:4097642. [PMID: 27847830 PMCID: PMC5099461 DOI: 10.1155/2016/4097642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
Reconstitution of the hematopoietic system during immune responses and immunological and neoplastic diseases or upon transplantation depends on the emergent differentiation of hematopoietic stem/progenitor cells within the bone marrow. Although in the last decade the use of dialyzable leukocyte extracts (DLE) as supportive therapy in both infectious and malignant settings has increased, its activity on the earliest stages of human hematopoietic development remains poorly understood. Here, we have examined the ability of DLE to promote replenishment of functional lymphoid lineages from CD34+ cells. Our findings suggest that DLE increases their differentiation toward a conspicuous CD56+CD16+CD11c+ NK-like cell population endowed with properties such as IFNy production, tumor cell cytotoxicity, and the capability of inducing γδ T lymphocyte proliferation. Of note, long-term coculture controlled systems showed the bystander effect of DLE-stromal cells by providing NK progenitors with signals to overproduce this cell subset. Thus, by direct effect on progenitor cells and through activation and remodeling of the supporting hematopoietic microenvironment, DLE may contribute a robust innate immune response by promoting the emerging lymphopoiesis of functional CD11c+ NK cells in a partially TLR-related manner. Unraveling the identity and mechanisms of the involved DLE components may be fundamental to advance the NK cell-based therapy field.
Collapse
|
13
|
Dendritic cell SIRT1-HIF1α axis programs the differentiation of CD4+ T cells through IL-12 and TGF-β1. Proc Natl Acad Sci U S A 2015; 112:E957-65. [PMID: 25730867 DOI: 10.1073/pnas.1420419112] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The differentiation of naive CD4(+) T cells into distinct lineages plays critical roles in mediating adaptive immunity or maintaining immune tolerance. In addition to being a first line of defense, the innate immune system also actively instructs adaptive immunity through antigen presentation and immunoregulatory cytokine production. Here we found that sirtuin 1 (SIRT1), a type III histone deacetylase, plays an essential role in mediating proinflammatory signaling in dendritic cells (DCs), consequentially modulating the balance of proinflammatory T helper type 1 (TH1) cells and antiinflammatory Foxp3(+) regulatory T cells (T(reg) cells). Genetic deletion of SIRT1 in DCs restrained the generation of T(reg) cells while driving TH1 development, resulting in an enhanced T-cell-mediated inflammation against microbial responses. Beyond this finding, SIRT1 signaled through a hypoxia-inducible factor-1 alpha (HIF1α)-dependent pathway, orchestrating the reciprocal TH1 and T(reg) lineage commitment through DC-derived IL-12 and TGF-β1. Our studies implicates a DC-based SIRT1-HIF1α metabolic checkpoint in controlling T-cell lineage specification.
Collapse
|
14
|
Flow cytometric detection of p38 MAPK phosphorylation and intracellular cytokine expression in peripheral blood subpopulations from patients with autoimmune rheumatic diseases. J Immunol Res 2014; 2014:671431. [PMID: 24741615 PMCID: PMC3987974 DOI: 10.1155/2014/671431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022] Open
Abstract
Flow cytometric analysis of p38 mitogen-activated protein kinase (p38 MAPK) signaling cascade is optimally achieved by methanol permeabilization protocols. Such protocols suffer from the difficulties to accurately detect intracellular cytokines and surface epitopes of infrequent cell subpopulations, which are removed by methanol. To overcome these limitations, we have modified methanol-based phosphoflow protocols using several commercially available antibody clones suitable for surface antigens, intracellular cytokines, and p38 MAPK. These included markers of B cells (CD19, CD20, and CD22), T cells (CD3, CD4, and CD8), NK (CD56 and CD7), and dendritic cells (CD11c). We have also tested surface markers of costimulatory molecules, such as CD27. We have successfully determined simultaneous expression of IFN- γ , as well as IL-10, and phosphorylated p38 in cell subsets. The optimized phosphoflow protocol has also been successfully applied in peripheral blood mononuclear cells or purified cell subpopulations from patients with various autoimmune diseases. In conclusion, our refined phosphoflow cytometric approach allows simultaneous detection of p38 MAPK activity and intracellular cytokine expression and could be used as an important tool to study signaling cascades in autoimmunity.
Collapse
|
15
|
Jiang X, Chen Y, Peng H, Tian Z. Memory NK cells: why do they reside in the liver? Cell Mol Immunol 2013; 10:196-201. [PMID: 23563088 DOI: 10.1038/cmi.2013.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may generate both the initiation and the recall phase of memory. We propose that the liver may have unique precursors for memory NK cells, which are developmentally distinct from NK cells derived from bone marrow.
Collapse
Affiliation(s)
- Xiaojun Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | | | | | | |
Collapse
|
16
|
Peng H, Sun R, Tang L, Wei H, Tian Z. CD62L is critical for maturation and accumulation of murine hepatic NK cells in response to viral infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:4255-62. [PMID: 23509354 DOI: 10.4049/jimmunol.1202395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
NK cells play critical roles in the first line of defense against viruses and other pathogens. However, the factors that control NK cell recruitment into local sites to exert effector functions during viral infection remain poorly understood. In this study, we found that murine NK cells in various organs could be divided into CD62L(-) and CD62L(+) subsets, the latter of which were less abundant in the liver and exhibited a relatively mature NK cell phenotype and a stronger cytotoxic function. Moreover, NK cells acquired CD62L expression after birth, and the frequency of CD62L(+) NK cells gradually increased during postnatal development. In models of polyinosinic-polycytidylic acid administration and adenovirus infection in vivo, CD62L(+) NK cell frequency and absolute numbers in the liver rapidly and markedly increased as a result of the augmented differentiation of CD62L(-) to CD62L(+) NK cells and recruitment of peripheral mature NK cells to the liver. However, blocking CD62L prior to administering viral stimuli in vivo abolished viral stimulation-induced NK cell accumulation and maturation in the liver. Collectively, these data suggest that CD62L marks a mature NK cell subset, as well as affects the magnitude of the local NK cell response to viral infection.
Collapse
Affiliation(s)
- Hui Peng
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
17
|
Desbois M, Rusakiewicz S, Locher C, Zitvogel L, Chaput N. Natural killer cells in non-hematopoietic malignancies. Front Immunol 2012; 3:395. [PMID: 23269924 PMCID: PMC3529393 DOI: 10.3389/fimmu.2012.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/06/2012] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies.
Collapse
Affiliation(s)
- Mélanie Desbois
- Institut de Cancérologie Gustave Roussy Villejuif, France ; Centre d'Investigation Clinique Biothérapie 507, Institut de cancérologie Gustave Roussy Villejuif, France ; Faculté de Médecine, Université Paris-Sud Le Kremlin-Bicȴtre, France xs
| | | | | | | | | |
Collapse
|
18
|
Wu X, Chen Y, Sun R, Wei H, Tian Z. Impairment of hepatic NK cell development in IFN-γ deficient mice. Cytokine 2012; 60:616-25. [PMID: 22921904 DOI: 10.1016/j.cyto.2012.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 12/12/2022]
Abstract
It is already clearly demonstrated that IFN-γ plays important roles in differentiation and maturation of T cells, B cells and macrophages; however, it is not clear whether NK cell development is regulated by IFN-γ. In our study by using IFN-γ-deficient mice (GKO), we observed that the percentage and number of NK1.1(+)CD3(-) cells were declined significantly in the liver, but not in the spleen, bone marrow and lymph node, of adult IFN-γ(-/-) mice. However, Lin(-)CD122(+) NK progenitor cells developed normally both in liver and bone marrow in IFN-γ(-/-) mice. Moreover, more mature CD27(-)CD11b(+) NK cells accumulated in the liver of IFN-γ(-/-) mice. Deficiency of IFN-γ resulted in the lower expression of CD69, GranzymeB and TRAIL by hepatic NK1.1(+)CD3(-) cells and the phenotypes of IFN-γ(-/-) hepatic NK1.1(+)CD3(-) cells were altered from WT hepatic NK cells. When stimulated with Poly (I:C) in vivo, attenuated accumulating in the liver and weaker expression of GranzymeB, TRAIL and FasL of NK1.1(+)CD3(-) cells were observed of IFN-γ(-/-) mice. Accordingly, these results demonstrate that IFN-γ plays important role in mounting liver environment for development of hepatic NK cells.
Collapse
Affiliation(s)
- Xian Wu
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | |
Collapse
|
19
|
Tian Z, Gershwin ME, Zhang C. Regulatory NK cells in autoimmune disease. J Autoimmun 2012; 39:206-15. [PMID: 22704425 DOI: 10.1016/j.jaut.2012.05.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 12/26/2022]
Abstract
As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity against tumor cells or infected cells, but also act to regulate the function of other immune cells by secretion of cytokines and chemokines, thus providing surveillance in early defense against viruses, intracellular bacteria and cancer cells. However, the effector function of NK cells must be exquisitely controlled in order to prevent inadvertent attack against self normal cells. The activity of NK cells is defined by integration of signals coming from inhibitory and activation receptors. Inhibitory receptors not only distinguish healthy from diseased cells by recognize self-MHC class I molecules on cell surfaces with "missing-self" model, but also provide an educational signal that generates functional NK cells. NK cells enrich in immunotolerance organ and recent findings of different regulatory NK cell subsets have indicated the unique role of NK cells in maintenance of homeostasis. Once the self-tolerance is broken, autoimmune response may occur. Although data has demonstrated that NK cells play important role in autoimmune disorders, NK cells seemed to act as a two edged weapon and play opposite roles with both regulatory and inducer activity even in the same disease. The precise role and regulatory mechanisms need to be further determined. In this review, we focus on recent research on the association of NK cells and antoimmune diseases, particularly the genetic correlation, the immune tolerance and misrecognition of NK cells, the regulatory function of NK cells, and their potential role in autoimmunity.
Collapse
Affiliation(s)
- Zhigang Tian
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | | | | |
Collapse
|
20
|
Jiao J, Sastre D, Isabel Fiel M, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M, Aloman C. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 2012; 55:244-55. [PMID: 21898476 PMCID: PMC3245345 DOI: 10.1002/hep.24621] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Although hepatic fibrosis typically follows chronic inflammation, fibrosis will often regress after cessation of liver injury. In this study, we examined whether liver dendritic cells (DCs) play a role in liver fibrosis regression using carbon tetrachloride to induce liver injury. We examined DC dynamics during fibrosis regression and their capacity to modulate liver fibrosis regression upon cessation of injury. We show that conditional DC depletion soon after discontinuation of the liver insult leads to delayed fibrosis regression and reduced clearance of activated hepatic stellate cells, the key fibrogenic cell in the liver. Conversely, DC expansion induced either by Flt3L (fms-like tyrosine kinase-3 ligand) or adoptive transfer of purified DCs accelerates liver fibrosis regression. DC modulation of fibrosis was partially dependent on matrix metalloproteinase (MMP)-9, because MMP-9 inhibition abolished the Flt3L-mediated effect and the ability of transferred DCs to accelerate fibrosis regression. In contrast, transfer of DCs from MMP-9-deficient mice failed to improve fibrosis regression. CONCLUSION Taken together, these results suggest that DCs increase fibrosis regression and that the effect is correlated with their production of MMP-9. The results also suggest that Flt3L treatment during fibrosis resolution merits evaluation to accelerate regression of advanced liver fibrosis.
Collapse
Affiliation(s)
- JingJing Jiao
- Division of Liver Diseases, Dept of Medicine, Mount Sinai School of Medicine
| | - David Sastre
- Division of Liver Diseases, Dept of Medicine, Mount Sinai School of Medicine
| | | | - Ursula E. Lee
- Division of Liver Diseases, Dept of Medicine, Mount Sinai School of Medicine
| | - Zahra Ghiassi-Nejad
- Division of Liver Diseases, Dept of Medicine, Mount Sinai School of Medicine
| | - Florent Ginhoux
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine,ASTAR, Singapore Immunology Network, Singapore
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, U631, France
| | - Scott L. Friedman
- Division of Liver Diseases, Dept of Medicine, Mount Sinai School of Medicine
| | - Miriam Merad
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine
| | - Costica Aloman
- Division of Liver Diseases, Dept of Medicine, Mount Sinai School of Medicine
| |
Collapse
|
21
|
Development of murine hepatic NK cells during ontogeny: comparison with spleen NK cells. Clin Dev Immunol 2011; 2012:759765. [PMID: 22203859 PMCID: PMC3235455 DOI: 10.1155/2012/759765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/07/2011] [Accepted: 08/22/2011] [Indexed: 02/03/2023]
Abstract
The phenotype of developing liver NK cells (CD3(-)NK1.1(+)) was investigated during mouse ontogeny comparing with spleen NK cells. The highest percentage of hepatic CD27(-)CD11b(-) NK cells occurred at the fetal stage. After birth, the percentage of CD27(-)CD11b(-)NK cells in both the liver and spleen gradually decreased to their lowest level at 6 weeks. More CD27(+)CD11b(-)NK cells were detected in the liver than that in spleen from week 1 to 6. Expression of NKG2A on liver NK cells was decreased but still much higher than that of spleen NK cells after 1 week. The NKG2D expression on liver NK cells increased to its highest level and was significantly higher than on spleen NK cells till 4 weeks. During mouse ontogeny, weaker expression of NKp46 and CD2 and stronger expression of CD69, CD11c, 2B4, and CD73 were observed on liver NK cells. Furthermore, neonatal liver NK cells express higher IFN-γ and perforin than adult .These results suggest that the maturation process of NK cells is unique in the livers, and liver microenvironments might play critical roles to keep NK cells in an immature status.
Collapse
|
22
|
Cao Z, Dhupar R, Cai C, Li P, Billiar TR, Geller DA. A critical role for IFN regulatory factor 1 in NKT cell-mediated liver injury induced by alpha-galactosylceramide. THE JOURNAL OF IMMUNOLOGY 2010; 185:2536-43. [PMID: 20624945 DOI: 10.4049/jimmunol.1000092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NKT cells are remarkably abundant in mouse liver. Compelling experimental evidence has suggested that NKT cells are involved in the pathogenesis of many liver diseases. Activation of NKT cells with alpha-galactosylceramide (alpha-GalCer) causes liver injury through mechanisms that are not well understood. We undertook studies to characterize the key pathways involved in alpha-GalCer-induced liver injury. We found that expression of the transcription factor IFN regulatory factor 1 (IRF-1) in mouse liver was dramatically upregulated by alpha-GalCer treatment. Neutralization of either TNF-alpha or IFN-gamma inhibited alpha-GalCer-mediated IRF-1 upregulation. alpha-GalCer-induced liver injury was significantly suppressed in IRF-1 knockout mice or in wild-type C56BL/6 mice that received a microRNA specifically targeting IRF-1. In contrast, overexpression of IRF-1 greatly potentiated alpha-GalCer-induced liver injury. alpha-GalCer injection also induced a marked increase in hepatic inducible NO synthase expression in C56BL/6 mice, but not in IRF-1 knockout mice. Inducible NO synthase knockout mice exhibited significantly reduced liver injury following alpha-GalCer treatment. Finally, we demonstrated that both NKT cells and hepatocytes expressed IRF-1 in response to alpha-GalCer. However, it appeared that the hepatocyte-derived IRF-1 was mainly responsible for alpha-GalCer-induced liver injury, based on the observation that inhibition of IRF-1 by RNA interference did not affect alpha-GalCer-induced NKT cell activation. Our findings revealed a novel mechanism of NKT cell-mediated liver injury in mice, which has implications in the development of human liver diseases.
Collapse
Affiliation(s)
- Zongxian Cao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
23
|
Bosma BM, Metselaar HJ, Gerrits JH, van Besouw NM, Mancham S, Groothuismink ZMA, Boor PPC, van der Laan LJW, Tilanus HW, Kuipers EJ, Kwekkeboom J. Migration of allosensitizing donor myeloid dendritic cells into recipients after liver transplantation. Liver Transpl 2010; 16:12-22. [PMID: 19866483 DOI: 10.1002/lt.21961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is thought, but there is no evidence, that myeloid dendritic cells (MDCs) of donor origin migrate into the recipient after clinical organ transplantation and sensitize the recipient's immune system by the direct presentation of donor allo-antigens. Here we show prominent MDC chimerism in the recipient's circulation early after clinical liver transplantation (LTx) but not after renal transplantation (RTx). MDCs that detach from human liver grafts produce large amounts of pro-inflammatory [tumor necrosis factor alpha and interleukin 6 (IL-6)] and anti-inflammatory (IL-10) cytokines upon activation with various stimuli, express higher levels of toll-like receptor 4 than blood or splenic MDCs, and are sensitive to stimulation with a physiological concentration of lipopolysaccharide (LPS). Upon stimulation with LPS, MDCs detaching from liver grafts prime allogeneic T cell proliferation and production of interferon gamma but not of IL-10. Soluble factors secreted by liver graft MDCs amplify allogeneic T helper 1 responses. In conclusion, after clinical LTx, but not after RTx, prominent numbers of donor-derived MDCs migrate into the recipient's circulation. MDCs detaching from liver grafts produce pro-inflammatory and anti-inflammatory cytokines and are capable of stimulating allogeneic T helper 1 responses, and this suggests that MDC chimerism after clinical LTx may contribute to liver graft rejection rather than acceptance.
Collapse
Affiliation(s)
- Brenda M Bosma
- Department of Gastroenterology and Hepatology, University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 2009; 86:513-28. [PMID: 19542050 DOI: 10.1189/jlb.0309135] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic lymphocytes are enriched in NK and NKT cells that play important roles in antiviral and antitumor defenses and in the pathogenesis of chronic liver disease. In this review, we discuss the differential distribution of NK and NKT cells in mouse, rat, and human livers, the ultrastructural similarities and differences between liver NK and NKT cells, and the regulation of liver NK and NKT cells in a variety of murine liver injury models. We also summarize recent findings about the role of NK and NKT cells in liver injury, fibrosis, and repair. In general, NK and NKT cells accelerate liver injury by producing proinflammatory cytokines and killing hepatocytes. NK cells inhibit liver fibrosis via killing early-activated and senescent-activated stellate cells and producing IFN-gamma. In regulating liver fibrosis, NKT cells appear to be less important than NK cells as a result of hepatic NKT cell tolerance. NK cells inhibit liver regeneration by producing IFN-gamma and killing hepatocytes; however, the role of NK cells on the proliferation of liver progenitor cells and the role of NKT cells in liver regeneration have been controversial. The emerging roles of NK/NKT cells in chronic human liver disease will also be discussed.Understanding the role of NK and NKT cells in the pathogenesis of chronic liver disease may help us design better therapies to treat patients with this disease.
Collapse
Affiliation(s)
- Bin Gao
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
25
|
Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS, Bozzacco L, Trumpfheller C, Park CG, Steinman RM. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. ACTA ACUST UNITED AC 2009; 206:497-505. [PMID: 19221394 PMCID: PMC2699134 DOI: 10.1084/jem.20082129] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Presumptive dendritic cells (DCs) bearing the CD11c integrin and other markers have previously been identified in normal mouse and human aorta. We used CD11c promoter–enhanced yellow fluorescent protein (EYFP) transgenic mice to visualize aortic DCs and study their antigen-presenting capacity. Stellate EYFP+ cells were readily identified in the aorta and could be double labeled with antibodies to CD11c and antigen-presenting major histocompatability complex (MHC) II products. The DCs proved to be particularly abundant in the cardiac valves and aortic sinus. In all aortic locations, the CD11c+ cells localized to the subintimal space with occasional processes probing the vascular lumen. Aortic DCs expressed little CD40 but expressed low levels of CD1d, CD80, and CD86. In studies of antigen presentation, DCs selected on the basis of EYFP expression or binding of anti-CD11c antibody were as effective as DCs similarly selected from the spleen. In particular, the aortic DCs could cross-present two different protein antigens on MHC class I to CD8+ TCR transgenic T cells. In addition, after intravenous injection, aortic DCs could capture anti-CD11c antibody and cross-present ovalbumin to T cells. These results indicate that bona fide DCs are a constituent of the normal aorta and cardiac valves.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|