1
|
Blockade of the protease ADAM17 ameliorates experimental pancreatitis. Proc Natl Acad Sci U S A 2022; 119:e2213744119. [PMID: 36215509 PMCID: PMC9586293 DOI: 10.1073/pnas.2213744119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.
Collapse
|
2
|
Almishri W, Swain LA, D'Mello C, Le TS, Urbanski SJ, Nguyen HH. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol 2022; 12:779119. [PMID: 35095853 PMCID: PMC8793775 DOI: 10.3389/fimmu.2021.779119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a ubiquitously expressed membrane-bound enzyme that mediates shedding of a wide variety of important regulators in inflammation including cytokines and adhesion molecules. Hepatic expression of numerous cytokines and adhesion molecules are increased in cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), however, the pathophysiological role of ADAM17 in regulating these conditions remains unknown. Therefore, we evaluated the role of ADAM17 in a mouse model of cholestatic liver injury due to bile duct ligation (BDL). We found that BDL enhanced hepatic ADAM17 protein expression, paralleled by increased ADAM17 bioactivity. Moreover, inhibition of ADAM17 bioactivity with the specific inhibitor DPC 333 significantly improved both biochemical and histological evidence of liver damage in BDL mice. Patients with cholestatic liver disease commonly experience adverse behavioral symptoms, termed sickness behaviors. Similarly, BDL in mice induces reproducible sickness behavior development, driven by the upregulated expression of cytokines and adhesion molecules that are in turn regulated by ADAM17 activity. Indeed, inhibition of ADAM17 activity significantly ameliorated BDL-associated sickness behavior development. In translational studies, we evaluated changes in ADAM17 protein expression in liver biopsies obtained from patients with PBC and PSC, compared to normal control livers. PSC and PBC patients demonstrated increased hepatic ADAM17 expression in hepatocytes, cholangiocytes and in association with liver-infiltrating immune cells compared to normal controls. In summary, cholestatic liver injury in mice and humans is associated with increased hepatic ADAM17 expression. Furthermore, inhibition of ADAM17 activity improves both cholestatic liver injury and associated sickness behavior development, suggesting that ADAM17 inhibition may represent a novel therapeutic approach for treating patients with PBC/PSC.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam A Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyson S Le
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan J Urbanski
- Department of Pathology & Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henry H Nguyen
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Krautter F, Iqbal AJ. Glycans and Glycan-Binding Proteins as Regulators and Potential Targets in Leukocyte Recruitment. Front Cell Dev Biol 2021; 9:624082. [PMID: 33614653 PMCID: PMC7890243 DOI: 10.3389/fcell.2021.624082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Leukocyte recruitment is a highly controlled cascade of interactions between proteins expressed by the endothelium and circulating leukocytes. The involvement of glycans and glycan-binding proteins in the leukocyte recruitment cascade has been well-characterised. However, our understanding of these interactions and their regulation has expanded substantially in recent years to include novel lectins and regulatory pathways. In this review, we discuss the role of glycans and glycan-binding proteins, mediating the interactions between endothelium and leukocytes both directly and indirectly. We also highlight recent findings of key enzymes involved in glycosylation which affect leukocyte recruitment. Finally, we investigate the potential of glycans and glycan binding proteins as therapeutic targets to modulate leukocyte recruitment and transmigration in inflammation.
Collapse
Affiliation(s)
- Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Morsing SKH, Rademakers T, Brouns SLN, van Stalborch AMD, Donners MMPC, van Buul JD. ADAM10-Mediated Cleavage of ICAM-1 Is Involved in Neutrophil Transendothelial Migration. Cells 2021; 10:cells10020232. [PMID: 33504031 PMCID: PMC7911467 DOI: 10.3390/cells10020232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
To efficiently cross the endothelial barrier during inflammation, neutrophils first firmly adhere to the endothelial surface using the endothelial adhesion molecule ICAM-1. Upon actual transmigration, the release from ICAM-1 is required. While Integrin LFA1/Mac1 de-activation is one described mechanism that leads to this, direct cleavage of ICAM-1 from the endothelium represents a second option. We found that a disintegrin and metalloprotease 10 (ADAM10) cleaves the extracellular domain of ICAM-1 from the endothelial surface. Silencing or inhibiting endothelial ADAM10 impaired the efficiency of neutrophils to cross the endothelium, suggesting that neutrophils use endothelial ADAM10 to dissociate from ICAM-1. Indeed, when measuring transmigration kinetics, neutrophils took almost twice as much time to finish the diapedesis step when ADAM10 was silenced. Importantly, we found increased levels of ICAM-1 on the transmigrating neutrophils when crossing an endothelial monolayer where such increased levels were not detected when neutrophils crossed bare filters. Using ICAM-1-GFP-expressing endothelial cells, we show that ICAM-1 presence on the neutrophils can also occur by membrane transfer from the endothelium to the neutrophil. Based on these findings, we conclude that endothelial ADAM10 contributes in part to neutrophil transendothelial migration by cleaving ICAM-1, thereby supporting the release of neutrophils from the endothelium during the final diapedesis step.
Collapse
Affiliation(s)
- Sofia K. H. Morsing
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Timo Rademakers
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Sanne L. N. Brouns
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Anne-Marieke D. van Stalborch
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Marjo M. P. C. Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Correspondence: (M.M.P.C.D.); (J.D.v.B.); Tel.: +31-43-3877167 (M.M.P.C.D.); +31-20-5121219 (J.D.v.B.); Fax: +31-20-5123310 (J.D.v.B.)
| | - Jaap D. van Buul
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1066 CX Amsterdam, The Netherlands
- Correspondence: (M.M.P.C.D.); (J.D.v.B.); Tel.: +31-43-3877167 (M.M.P.C.D.); +31-20-5121219 (J.D.v.B.); Fax: +31-20-5123310 (J.D.v.B.)
| |
Collapse
|
6
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
7
|
Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol 2019; 10:1068. [PMID: 31139190 PMCID: PMC6527602 DOI: 10.3389/fimmu.2019.01068] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Hannah Louise Hoskins Green
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Samuel James Hart
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| |
Collapse
|
8
|
Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res 2018; 371:437-453. [PMID: 29353325 PMCID: PMC5820395 DOI: 10.1007/s00441-017-2774-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils. Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This review will cover aspects of L-selectin form and function and introduce the “triad of L-selectin regulation”, highlighting the inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will also be discussed.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- BHF Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, James Black Centre 125, Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
9
|
Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow. Blood 2017; 130:2101-2110. [PMID: 28811304 DOI: 10.1182/blood-2017-05-783027] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022] Open
Abstract
E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewisx (sLex), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity β2-integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLex expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of β2-integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLex, resulting in focal clusters that deliver a distinct signal to upshift β2-integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended β2-integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.
Collapse
|
10
|
Mishra HK, Ma J, Walcheck B. Ectodomain Shedding by ADAM17: Its Role in Neutrophil Recruitment and the Impairment of This Process during Sepsis. Front Cell Infect Microbiol 2017; 7:138. [PMID: 28487846 PMCID: PMC5403810 DOI: 10.3389/fcimb.2017.00138] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are specialized at killing bacteria and are recruited from the blood in a rapid and robust manner during infection. A cascade of adhesion events direct their attachment to the vascular endothelium and migration into the underlying tissue. A disintegrin and metalloproteinase 17 (ADAM17) functions in the cell membrane of neutrophils and endothelial cells by cleaving its substrates, typically in a cis manner, at an extracellular site proximal to the cell membrane. This process is referred to as ectodomain shedding and it results in the downregulation of various adhesion molecules and receptors, and the release of immune regulating factors. ADAM17 sheddase activity is induced upon cell activation and rapidly modulates intravascular adhesion events in response to diverse environmental stimuli. During sepsis, an excessive systemic inflammatory response against infection, neutrophil migration becomes severely impaired. This involves ADAM17 as indicated by increased levels of its cleaved substrates in the blood of septic patients, and that ADAM17 inactivation improves neutrophil recruitment and bacterial clearance in animal models of sepsis. Excessive ADAM17 sheddase activity during sepsis thus appears to undermine in a direct and indirect manner the necessary balance between intravascular adhesion and de-adhesion events that regulate neutrophil migration into sites of infection. This review provides an overview of ADAM17 function and regulation and its potential contribution to neutrophil dysfunction during sepsis.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| | - Jing Ma
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
11
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
12
|
Abstract
Whilst significant effort has been focused on development of tools and approaches to clinically modulate activation processes that consume platelets, the platelet receptors that initiate activation processes remain untargeted. The modulation of receptor levels is also linked to underlying platelet aging processes which influence normal platelet lifespan and also the functionality and survival of stored platelets that are used in transfusion. In this review, we will focus on platelet adhesion receptors initiating thrombus formation, and discuss how regulation of levels of these receptors impact platelet function and platelet survival.
Collapse
Affiliation(s)
- Robert K Andrews
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia
| | - Elizabeth E Gardiner
- b Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research , Australian National University , Canberra , Australia
| |
Collapse
|
13
|
Sommer A, Kordowski F, Büch J, Maretzky T, Evers A, Andrä J, Düsterhöft S, Michalek M, Lorenzen I, Somasundaram P, Tholey A, Sönnichsen FD, Kunzelmann K, Heinbockel L, Nehls C, Gutsmann T, Grötzinger J, Bhakdi S, Reiss K. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun 2016; 7:11523. [PMID: 27161080 PMCID: PMC4866515 DOI: 10.1038/ncomms11523] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 02/07/2023] Open
Abstract
ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.
Collapse
Affiliation(s)
- Anselm Sommer
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Felix Kordowski
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Joscha Büch
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Astrid Evers
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Jörg Andrä
- Hamburg University of Applied Science, Ulmenliet 20, Hamburg 21033, Germany
| | - Stefan Düsterhöft
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Matthias Michalek
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Inken Lorenzen
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Prasath Somasundaram
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, University of Kiel, Kiel 24118, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
| | - Lena Heinbockel
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Christian Nehls
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Sucharit Bhakdi
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Karina Reiss
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| |
Collapse
|
14
|
Sisto M, Lisi S. New Insights Into ADAMs Regulation of the GRO-α/CXCR2 System: Focus on Sjögren's Syndrome. Int Rev Immunol 2014; 34:486-99. [DOI: 10.3109/08830185.2014.975892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Tumor necrosis factor-alpha-converting enzyme activities and tumor-associated macrophages in breast cancer. Immunol Res 2014; 58:87-100. [PMID: 24072428 DOI: 10.1007/s12026-013-8434-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of the tumor microenvironment especially of tumor-associated macrophages (TAMs) in the progression and metastatic spread of breast cancer is well established. TAMs have primarily a M2 (wound-healing) phenotype with minimal cytotoxic activities. The mechanisms by which tumor cells influence TAMs to display a pro-tumor phenotype are still debated although the key roles of immunomodulatory cytokines released by tumor cells, including colony-stimulating factor 1, tumor necrosis factor (TNF) and soluble TNF receptors 1/2, soluble vascular cell adhesion molecule 1, soluble interleukin 6 receptor and amphiregulin, have been demonstrated. Importantly, these factors are released through ectodomain shedding by the activities of the tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17). The role of TACE activation leading to autocrine effects on tumor progression has been extensively studied. In contrast, limited information is available on the role of tumor cell TACE activities on TAMs in breast cancer. TACE inhibitors, currently in clinical trials, will certainly affect TAMs and subsequently treatment outcomes based on the substrates it releases. Furthermore, whether targeting a subset of the molecules shed by TACE, specifically those leading to TAMs with altered functions and phenotype, holds greater therapeutic promises than past clinical trials of TACE antagonists' remains to be determined. Here, the potential roles of TACE ectodomain shedding in the breast tumor microenvironment are reviewed with a focus on the release of tumor-derived immunomodulatory factors shed by TACE that directs TAM phenotypes and functions.
Collapse
|
16
|
Lisi S, D'Amore M, Sisto M. ADAM17 at the interface between inflammation and autoimmunity. Immunol Lett 2014; 162:159-69. [PMID: 25171914 DOI: 10.1016/j.imlet.2014.08.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
The discovery of the disintegrin and metalloproteinase 17 (ADAM17), originally identified as tumor necrosis factor-a converting enzyme (TACE) for its ability as sheddase of TNF-α inspired scientists to attempt to elucidate the molecular mechanisms underlying ADAM17 implication in diseased conditions. In recent years, it has become evident that this protease can modify many non matrix substrates, such as cytokines (e.g. TNF-α), cytokine receptors (e.g. IL-6R and TNF-R), ligands of ErbB (e.g. TGF-α and amphiregulin) and adhesion proteins (e.g. Lselectin and ICAM-1). Several recent studies have described experimental model system to better understand the role of specific signaling molecules, the interplay of different signals and tissue interactions in regulating ADAM17-dependent cleavage of most relevant substrates in inflammatory diseases. The central question is whether ADAM17 can influence the outcome of inflammation and if so, how it performs this regulation in autoimmunity, since inflammatory autoimmune diseases are often characterized by deregulated metalloproteinase activities. This review will explore the latest research on the influence of ADAM17 on the progression of inflammatory processes linked to autoimmunity and its role as modulator of inflammation.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| | - Massimo D'Amore
- Department of Interdisciplinary Medicine, Section of Rheumatology, University of Bari Medical School, Bari, Italy
| | - Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
17
|
Roychaudhuri R, Hergrueter AH, Polverino F, Laucho-Contreras ME, Gupta K, Borregaard N, Owen CA. ADAM9 is a novel product of polymorphonuclear neutrophils: regulation of expression and contributions to extracellular matrix protein degradation during acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 193:2469-82. [PMID: 25063875 DOI: 10.4049/jimmunol.1303370] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A disintegrin and a metalloproteinase domain (ADAM) 9 is known to be expressed by monocytes and macrophages. In this study, we report that ADAM9 is also a product of human and murine polymorphonuclear neutrophils (PMNs). ADAM9 is not synthesized de novo by circulating PMNs. Rather, ADAM9 protein is stored in the gelatinase and specific granules and the secretory vesicles of human PMNs. Unstimulated PMNs express minimal quantities of surface ADAM9, but activation of PMNs with degranulating agonists rapidly (within 15 min) increases PMN surface ADAM9 levels. Human PMNs produce small quantities of soluble forms of ADAM9. Surprisingly, ADAM9 degrades several extracellular matrix (ECM) proteins, including fibronectin, entactin, laminin, and insoluble elastin, as potently as matrix metalloproteinase-9. However, ADAM9 does not degrade types I, III, or IV collagen or denatured collagens in vitro. To determine whether Adam9 regulates PMN recruitment or ECM protein turnover during inflammatory responses, we compared wild-type and Adam9(-/-) mice in bacterial LPS- and bleomycin-mediated acute lung injury (ALI). Adam9 lung levels increase 10-fold during LPS-mediated ALI in wild-type mice (due to increases in leukocyte-derived Adam9), but Adam9 does not regulate lung PMN (or macrophage) counts during ALI. Adam9 increases mortality, promotes lung injury, reduces lung compliance, and increases degradation of lung elastin during LPS- and/or bleomycin-mediated ALI. Adam9 does not regulate collagen accumulation in the bleomycin-treated lung. Thus, ADAM9 is expressed in an inducible fashion on PMN surfaces where it degrades some ECM proteins, and it promotes alveolar-capillary barrier injury during ALI in mice.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Anja H Hergrueter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115; Lovelace Respiratory Research Institute, Albuquerque, NM 87108; Pulmonary Department, University of Parma, 43100 Parma, Italy; and
| | - Maria E Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Niels Borregaard
- Granulocyte Research Laboratory, Department of Hematology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115; Lovelace Respiratory Research Institute, Albuquerque, NM 87108;
| |
Collapse
|
18
|
Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH, Lok J. Neuregulin1-β decreases IL-1β-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res 2014; 6:116-24. [PMID: 24863743 DOI: 10.1007/s12975-014-0347-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/28/2022]
Abstract
Neuroinflammation contributes to the pathophysiology of diverse diseases including stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and multiple sclerosis, resulting in neurodegeneration and loss of neurological function. The response of the microvascular endothelium often contributes to neuroinflammation. One such response is the upregulation of endothelial adhesion molecules which facilitate neutrophil adhesion to the endothelium and their migration from blood to tissue. Neuregulin-1 (NRG1) is an endogenous growth factor which has been reported to have anti-inflammatory effects in experimental stroke models. We hypothesized that NRG1 would decrease the endothelial response to inflammation and result in a decrease in neutrophil adhesion to endothelial cells. We tested this hypothesis in an in vitro model of cytokine-induced endothelial injury, in which human brain microvascular endothelial cells (BMECs) were treated with IL-1β, along with co-incubation with vehicle or NRG1-β. Outcome measures included protein levels of endothelial ICAM-1, VCAM-1, and E-selectin, as well as the number of neutrophils that adhere to the endothelial monolayer. Our data show that NRG1-β decreased the levels of VCAM-1, E-selectin, and neutrophil adhesion to brain microvascular endothelial cells activated by IL1-β. These findings open new possibilities for investigating NRG1 in neuroprotective strategies in brain injury.
Collapse
Affiliation(s)
- Limin Wu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Chaturvedi S, Yuen DA, Bajwa A, Huang YW, Sokollik C, Huang L, Lam GY, Tole S, Liu GY, Pan J, Chan L, Sokolskyy Y, Puthia M, Godaly G, John R, Wang C, Lee WL, Brumell JH, Okusa MD, Robinson LA. Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. J Am Soc Nephrol 2013; 24:1274-87. [PMID: 23766538 DOI: 10.1681/asn.2012090890] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.
Collapse
Affiliation(s)
- Swasti Chaturvedi
- Division of Nephrology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tadzic R, Mihalj M, Vcev A, Ennen J, Tadzic A, Drenjancevic I. The Effects of Arterial Blood Pressure Reduction on Endocan and Soluble Endothelial Cell Adhesion Molecules (CAMs) and CAMs Ligands Expression in Hypertensive Patients on Ca-Channel Blocker Therapy. ACTA ACUST UNITED AC 2013; 37:103-15. [DOI: 10.1159/000350064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/19/2022]
|
21
|
Gifford JL, Ishida H, Vogel HJ. Structural insights into calmodulin-regulated L-selectin ectodomain shedding. J Biol Chem 2012; 287:26513-27. [PMID: 22711531 DOI: 10.1074/jbc.m112.373373] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The L-selectin glycoprotein receptor mediates the initial steps of leukocyte migration into secondary lymphoid organs and sites of inflammation. Following cell activation through the engagement of G-protein-coupled receptors or immunoreceptors, the extracellular domains of L-selectin are rapidly shed, a process negatively controlled via the binding of the ubiquitous eukaryotic calcium-binding protein calmodulin to the cytoplasmic tail of L-selectin. Here we present the solution structure of calcium-calmodulin bound to a peptide encompassing the cytoplasmic tail and part of the transmembrane domain of L-selectin. The structure and accompanying biophysical study highlight the importance of both calcium and the transmembrane segment of L-selectin in the interaction between these two proteins, suggesting that by binding this region, calmodulin regulates in an "inside-out" fashion the ectodomain shedding of the receptor. Our structure provides the first molecular insight into the emerging new role for calmodulin as a transmembrane signaling partner.
Collapse
Affiliation(s)
- Jessica L Gifford
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
22
|
Pathologic shear triggers shedding of vascular receptors: a novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood 2012; 119:4311-20. [PMID: 22431567 DOI: 10.1182/blood-2011-10-386607] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ligand-induced ectodomain shedding of glycoprotein VI (GPVI) is a metalloproteinase-dependent event. We examined whether shear force, in the absence of GPVI ligand, was sufficient to induce shedding of GPVI. Human-citrated platelet-rich plasma or washed platelets were subjected to increasing shear rates in a cone-plate viscometer, and levels of intact and cleaved GPVI were examined by Western blot and ELISA. Pathophysiologic shear rates (3000-10 000 seconds(-1)) induced platelet aggregation and metalloproteinase-dependent appearance of soluble GPVI ectodomain, and GPVI platelet remnant. Shedding of GPVI continued after transient exposure to shear. Blockade of α(IIb)β(3), GPIbα, or intracellular signaling inhibited shear-induced platelet aggregation but minimally affected shear-induced shedding of GPVI. Shear-induced GPVI shedding also occurred in platelet-rich plasma or washed platelets isolated from a von Willebrand disease type 3 patient with no detectable VWF, implying that shear-induced activation of platelet metalloproteinases can occur in the absence of GPVI and GPIbα ligands. Significantly elevated levels of sGPVI were observed in 10 patients with stable angina pectoris, with well-defined single vessel coronary artery disease and mean intracoronary shear estimates at 2935 seconds(-1) (peak shear, 19 224 seconds(-1)). Loss of GPVI in platelets exposed to shear has potential implications for the stability of a forming thrombus at arterial shear rates.
Collapse
|
23
|
Chase SD, Magnani JL, Simon SI. E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease. Ann Biomed Eng 2012; 40:849-59. [PMID: 22271244 DOI: 10.1007/s10439-011-0507-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/29/2011] [Indexed: 11/30/2022]
Abstract
Application of mechanical force to bonds between selectins and their ligands is a requirement for these adhesion receptors to optimally perform functions that include leukocyte tethering and activation of stable adhesion. Although all three selectins are reported to signal from the outside-in subsequent to ligand binding, E-selectin is unique in its capacity to bind multiple sialyl Lewis x presenting ligands and mediate slow rolling on the order of a micron per second. A diverse set of ligands are recognized by E-selectin in the mouse, including ESL-1, CD44 (HCELL), and PSGL-1 which are critical in transition from slow rolling to arrest and for efficient transendothelial migration. The molecular recognition process is different in humans as L-selectin is a major ligand, which along with glycolipids constitute more than half of the E-selectin receptors on human polymorphonuclear neutrophils (PMN). In addition, E-selectin is most efficient at raising the affinity and avidity of CD18 integrins that supports PMN deceleration and trafficking to sites of acute inflammation. The mechanism is only partially understood but known to involve a rise in cytosolic calcium and tyrosine phosphorylation that activates p38 MAP kinase and Syk kinase, both of which transduce signals from clustered E-selectin ligands. In this review we highlight the molecular recognition and mechanical requirements of this process to reveal how E-selectin confers selectivity and efficiency of signaling for extravasation at sites of inflammation and the mechanism of action of a new glycomimetic antagonist targeted to the lectin domain that has shown efficacy in blocking neutrophil activation and adhesion on inflamed endothelium.
Collapse
Affiliation(s)
- S D Chase
- University of California Davis, Davis, CA, USA
| | | | | |
Collapse
|
24
|
The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2011; 91:472-85. [PMID: 22138087 DOI: 10.1016/j.ejcb.2011.09.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.
Collapse
|
25
|
Geng Y, Marshall JR, King MR. Glycomechanics of the metastatic cascade: tumor cell-endothelial cell interactions in the circulation. Ann Biomed Eng 2011; 40:790-805. [PMID: 22101756 DOI: 10.1007/s10439-011-0463-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023]
Abstract
Hydrodynamic shear force plays an important role in the leukocyte adhesion cascade that involves the tethering and rolling of cells along the endothelial layer, their firm adhesion or arrest, and their extravasation or escape from the circulatory system by inducing passive deformation, or cell flattening, and microvilli stretching, as well as regulating the expression, distribution, and conformation of adhesion molecules on leukocytes and the endothelial layer. Similarly, the dissemination of circulating tumor cells (CTCs) from the primary tumor sites is believed to involve tethering, rolling, and firm adhesion steps before their eventual extravasation which leads to secondary tumor sites (metastasis). Of particular importance to both the leukocyte adhesion cascade and the extravasation of CTCs, glycoproteins are involved in all three steps (capture, rolling, and firm adhesion) and consist of a variety of important selectin ligands. This review article provides an overview of glycoprotein glycosylation associated with the abnormal glycan expression on cancer cell surfaces, where well-established and novel selectin ligands that are cancer related are discussed. An overview of computational approaches on the effects of fluid mechanical force on glycoprotein mediated cancer cell rolling and adhesion is presented with a highlight of recent flow-based and selectin-mediated cell capturing/enriching devices. Finally, as an important branch of the glycoprotein family, mucins, specifically MUC1, are discussed in the context of their aberrant expression on cancer cells and their role as cancer cell adhesion molecules. Since metastasis relies heavily on glycoprotein interactions in the bloodstream where the fluid shear stress highly regulates cell adhesion forces, it is important to study and understand the glycomechanics of all relevant glycoproteins (well-established and novel) as they relate to the metastatic cascade.
Collapse
Affiliation(s)
- Yue Geng
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
26
|
Herman CT, Potts GK, Michael MC, Tolan NV, Bailey RC. Probing dynamic cell-substrate interactions using photochemically generated surface-immobilized gradients: application to selectin-mediated leukocyte rolling. Integr Biol (Camb) 2011; 3:779-91. [PMID: 21614364 PMCID: PMC3960975 DOI: 10.1039/c0ib00151a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Model substrates presenting biochemical cues immobilized in a controlled and well-defined manner are of great interest for their applications in biointerface studies that elucidate the molecular basis of cell receptor-ligand interactions. Herein, we describe a direct, photochemical method to generate surface-immobilized biomolecular gradients that are applied to the study of selectin-mediated leukocyte rolling. The technique employs benzophenone-modified glass substrates, which upon controlled exposure to UV light (350-365 nm) in the presence of protein-containing solutions facilitate the generation of covalently immobilized protein gradients. Conditions were optimized to generate gradient substrates presenting P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1) immobilized at site densities over a 5- to 10-fold range (from as low as ∼200 molecules μm(-2) to as high as 6000 molecules μm(-2)). The resulting substrates were quantitatively characterized via fluorescence analysis and radioimmunoassays before their use in the leukocyte rolling assays. HL-60 promyelocytes and Jurkat T lymphocytes were assessed for their ability to tether to and roll on substrates presenting immobilized P-selectin and PSGL-1 under conditions of physiologically relevant shear stress. The results of these flow assays reveal the combined effect of immobilized protein site density and applied wall shear stress on cell rolling behavior. Two-component substrates presenting P-selectin and ICAM-1 (intercellular adhesion molecule-1) were also generated to assess the interplay between these two proteins and their effect on cell rolling and adhesion. These proof-of-principle studies verify that the described gradient generation approach yields well-defined gradient substrates that present immobilized proteins over a large range of site densities that are applicable for investigation of cell-materials interactions, including multi-parameter leukocyte flow studies. Future applications of this enabling methodology may lead to new insights into the biophysical phenomena and molecular mechanism underlying complex biological processes such as leukocyte recruitment and the inflammatory response.
Collapse
Affiliation(s)
- Christine T. Herman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Gregory K. Potts
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Madeline C. Michael
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Nicole V. Tolan
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| |
Collapse
|
27
|
Adam17-dependent shedding limits early neutrophil influx but does not alter early monocyte recruitment to inflammatory sites. Blood 2011; 118:786-94. [PMID: 21628404 DOI: 10.1182/blood-2010-11-321406] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
TNF-α-converting enzyme (TACE, herein denoted as Adam17) proteolytically sheds several cell-surface inflammatory proteins, but the physiologic importance of the cleavage of these substrates from leukocyte subsets during inflammation is incompletely understood. In this study, we show that Adam17-null neutrophils have a 2-fold advantage in their initial recruitment during thioglycollate-induced peritonitis, and they roll slower and adhere more readily in the cremaster model than wild-type neutrophils. Although CD44 and ICAM-1 are both in vitro substrates of Adam17, their surface levels are not altered on Adam17-null neutrophils. In contrast, L-selectin levels are elevated up to 10-fold in Adam17-null circulating neutrophils, and their accelerated peritoneal influx, slower rolling, and increased adhesion in the cremaster muscle are dependent on L-selectin. Analysis of mixed chimeras shows that enhanced L-selectin levels and accelerated influx were both cell-intrinsic properties of neutrophils lacking Adam17. In contrast, Adam17-null monocytes display no acceleration of infiltration into the peritoneum in spite of elevated L-selectin surface levels, and their peritoneal influx was independent of L-selectin. Therefore, our data demonstrate substrate and myeloid cell-type specificity of Adam17-mediated cleavage of its substrates, and show that neutrophils and monocytes use distinct mechanisms for infiltration of tissues.
Collapse
|
28
|
Bergin DA, Reeves EP, Meleady P, Henry M, McElvaney OJ, Carroll TP, Condron C, Chotirmall SH, Clynes M, O'Neill SJ, McElvaney NG. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin Invest 2010; 120:4236-50. [PMID: 21060150 DOI: 10.1172/jci41196] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 09/15/2010] [Indexed: 12/19/2022] Open
Abstract
Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.
Collapse
Affiliation(s)
- David A Bergin
- 1Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schaff UY, Trott KA, Chase S, Tam K, Johns JL, Carlyon JA, Genetos DC, Walker NJ, Simon SI, Borjesson DL. Neutrophils exposed to A. phagocytophilum under shear stress fail to fully activate, polarize, and transmigrate across inflamed endothelium. Am J Physiol Cell Physiol 2010; 299:C87-96. [PMID: 20392928 PMCID: PMC2904253 DOI: 10.1152/ajpcell.00165.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/02/2010] [Indexed: 11/22/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that has evolved mechanisms to hijack polymorphonuclear neutrophil (PMN) receptors and signaling pathways to bind, infect, and multiply within the host cell. E-selectin is upregulated during inflammation and is a requisite endothelial receptor that supports PMN capture, rolling, and activation of integrin-mediated arrest. Ligands expressed by PMN that mediate binding to endothelium via E-selectin include sialyl Lewis x (sLe(x))-expressing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1) and other glycolipids and glycoproteins. As A. phagocytophilum is capable of binding to sLe(x)-expressing ligands expressed on PMN, we hypothesized that acute bacterial adhesion to PMN would subsequently attenuate PMN recruitment during inflammation. We assessed the dynamics of PMN recruitment and migration under shear flow in the presence of a wild-type strain of A. phagocytophilum and compared it with a strain of bacteria that binds to PMN independent of PSGL-1. Acute bacterial engagement with PMN resulted in transient PMN arrest and minimal PMN polarization. Although the wild-type pathogen also signaled activation of beta2 integrins and elicited a mild intracellular calcium flux, downstream signals including PMN transmigration and phosphorylation of p38 mitogen-activated protein kinase (MAPK) were inhibited. The mutant strain bound less well to PMN and failed to activate beta2 integrins and induce a calcium flux but did result in decreased PMN arrest and polarization that may have been partially mediated by a suppression of p38 MAPK activation. This model suggests that A. phagocytophilum binding to PMN under shear flow during recruitment to inflamed endothelium interferes with normal tethering via E-selectin and navigational signaling of transendothelial migration.
Collapse
Affiliation(s)
- U Y Schaff
- Department of Biomedical Engineering, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer's disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
31
|
Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways. Blood 2010; 115:3118-27. [PMID: 20167705 DOI: 10.1182/blood-2009-11-254185] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selectins mediate leukocyte rolling, trigger beta(2)-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) gamma2- and phosphoinositide 3-kinase (PI3K) gamma-dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP(3)), and inducing E-selectin-mediated slow rolling. Inhibition of this signal-transduction pathway diminished Galpha(i)-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Galpha(i)-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk(-/-) and Plcg2(-/-) mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement.
Collapse
|
32
|
Shimizu M, Hasegawa N, Nishimura T, Endo Y, Shiraishi Y, Yamasawa W, Koh H, Tasaka S, Shimada H, Nakano Y, Fujishima S, Yamaguchi K, Ishizaka A. Effects of TNF-alpha-converting enzyme inhibition on acute lung injury induced by endotoxin in the rat. Shock 2009; 32:535-40. [PMID: 19295482 DOI: 10.1097/shk.0b013e3181a2adb7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the effects of TNF-converting enzyme inhibition with Y-41654, which down-regulates the production of soluble TNF-alpha (sTNF-alpha), on acute lung injury induced by intratracheal administration of LPS. We first verified in vitro that pretreatment of isolated alveolar macrophages from Sprague-Dawley male rats with 20 microL of 0.1-mM Y-41654, decreased significantly (P < 0.05) the concentration of sTNF-alpha in cell supernatants induced by 10 microg/mL of LPS. We then studied four groups of rats (each n = 10) including 1) a control group, 2) an LPS group (300 microg /kg, instilled intratracheally), 3) a Y-41654 group, and 4) a treatment group treated with Y-41654 after LPS instillation. Y-41654, 10 mg/kg in 0.7 mL of phosphate-buffered saline, was administered (i.v.), 15 min before and 0.5, 1.5, 2.5, and 3.5 h after saline or LPS instillation. The animals were observed for 4 h. In the animals treated with Y-41654, the concentrations of sTNF-alpha and protein in bronchoalveolar lavage fluid, and the number of neutrophils in lung tissue and bronchoalveolar lavage fluid were significantly lower at 4 h than in the LPS group (P < 0.05). In conclusion, sTNF-alpha plays an important role in the development of acute lung injury induced by intratracheal administration of LPS, in part modulating neutrophil kinetics.
Collapse
Affiliation(s)
- Mie Shimizu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Adhesive dynamics simulations of the mechanical shedding of L-selectin from the neutrophil surface. J Theor Biol 2009; 260:27-30. [PMID: 19486904 DOI: 10.1016/j.jtbi.2009.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/13/2009] [Accepted: 05/18/2009] [Indexed: 12/12/2022]
Abstract
Here we accurately recreate the mechanical shedding of L-selectin and its effect on the rolling behavior of neutrophils in vitro using the adhesive dynamics simulation by incorporating the shear-dependent shedding of L-selectin. We have previously shown that constitutively expressed L-selectin is cleaved from the neutrophil surface during rolling on a sialyl Lewis x-coated planar surface at physiological shear rates without the addition of exogenous stimuli. Utilizing a Bell-like model to describe a shedding rate which presumably increases exponentially with force, we were able to reconstruct the characteristics of L-selectin-mediated neutrophil rolling observed in the experiments. First, the rolling velocity was found to increase during rolling due to the mechanical shedding of L-selectin. When most of the L-selectin concentrated on the tips of deformable microvilli was cleaved by force exerted on the L-selectin bonds, the cell detached from the reactive plane to join the free stream as observed in the experiments. In summary, we show through detailed computational modeling that the force-dependent shedding of L-selectin can explain the rolling behavior of neutrophils mediated by L-selectin in vitro.
Collapse
|
34
|
Abstract
Renewed interest in cell shape has been prompted by a recent flood of evidence that indicates that cell polarity is essential for the biology of motile cells. The uropod, a protrusion at the rear of amoeboid motile cells such as leukocytes, exemplifies the importance of morphology in cell motility. Remodelling of cell shape by uropod-interfering agents disturbs cell migration. But even though the mechanisms by which uropods regulate cell migration are beginning to emerge, their functional significance remains enigmatic.
Collapse
|
35
|
Abstract
Neutrophil recruitment into inflamed tissue in response to injury or infection is tightly regulated. Reduced neutrophil recruitment can result in a reduced ability to fight invading microorganisms. During inflammation, neutrophils roll along the endothelial wall of postcapillary venules and integrate inflammatory signals. Neutrophil activation by selectins and chemokines regulates integrin adhesiveness. Binding of activated integrins to their counter-receptors on endothelial cells induces neutrophil arrest and firm adhesion. Adherent neutrophils can be further activated to undergo cytoskeletal rearrangement, crawling, transmigration, superoxide production, and respiratory burst. Signaling through G-protein-coupled receptors, selectin ligands, Fc receptors and outside-in signaling through integrins are all involved in neutrophil activation, but their interplay in the multistep process of recruitment is only beginning to emerge. This review provides an overview of signaling in rolling and adherent neutrophils.
Collapse
Affiliation(s)
- Alexander Zarbock
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Murphy G. Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 2009; 20:138-45. [DOI: 10.1016/j.semcdb.2008.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
37
|
Wang Y, Herrera AH, Li Y, Belani KK, Walcheck B. Regulation of mature ADAM17 by redox agents for L-selectin shedding. THE JOURNAL OF IMMUNOLOGY 2009; 182:2449-57. [PMID: 19201900 DOI: 10.4049/jimmunol.0802770] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
L-selectin is constitutively expressed by neutrophils and plays a key role in directing these cells to sites of inflammation. Upon neutrophil activation, L-selectin is rapidly and efficiently down-regulated from the cell surface by ectodomain shedding. We have directly shown that A disintegrin and metalloprotease 17 (ADAM17) is a primary and nonredundant sheddase of L-selection by activated neutrophils in vivo. Following cell activation, intracellular signals lead to the induction of ADAM17's enzymatic activity; however, the target of this inducer mechanism remains unclear. Our study provides evidence of an activation mechanism that involves the extracellular region of the mature form of cell surface ADAM17 and not its intracellular region. We demonstrate that the catalytic activity of purified ADAM17 lacking a prodomain and its intracellular region is diminished under mild reducing conditions by DTT and enhanced by H(2)O(2) oxidation. Moreover, H(2)O(2) reversed ADAM17 inhibition by DTT. The treatment of neutrophils with H(2)O(2) also induced L-selectin shedding in an ADAM17-dependent manner. These findings suggest that thiol-disulfide conversion occurring in the extracellular region of ADAM17 may be involved in its activation. An analysis of ADAM17 revealed that within its disintegrin/cysteine-rich region are two highly conserved, vicinal cysteine sulfhydryl motifs (cysteine-X-X-cysteine), which are well-characterized targets for thiol-disulfide exchange in various other proteins. Using a cell-based ADAM17 reconstitution assay, we demonstrate that the cysteine-X-X-cysteine motifs are critical for L-selectin cleavage. Taken together, our findings suggest that reduction-oxidation modifications of cysteinyl sulfhydryl groups in mature ADAM17 may serve as a mechanism for regulating the shedding of L-selectin following neutrophil stimulation.
Collapse
Affiliation(s)
- Yue Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|