1
|
Zhu B, Zhu J, Liu A, Yao B, Liao F, Yang S. Transcriptomic and metabolomic analysis based on different aggressive pecking phenotype in duck. Sci Rep 2024; 14:22321. [PMID: 39333746 PMCID: PMC11436778 DOI: 10.1038/s41598-024-73726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Aggressive pecking is an important welfare and production efficiency issue in poultry farming. The precise mechanisms underlying the occurrence of aggressive pecking remain poorly understood. In this study, we selected Sansui ducks that performed aggressive pecking and ducks that did not perform aggressive pecking from video recordings. Transcriptomic and metabolomic analyses of the whole brains of aggressive pecking ducks and normal ducks revealed 504 differentially expressed genes and 5 differentially altered metabolites (adenosine, guanidinopropionic acid, Met-Leu, Glu-Ile and 5,6,8-trihydroxy-2-methylbenzo[g]chromen-4-one). By jointly analysing the transcriptomics and metabolomics results, we discovered 8 candidate genes (ADCYAP1, GAL, EDN2, EDN1, MC5R, S1PR4, LOC113843450, and IAPP) and one candidate metabolite (adenosine) that regulates aggressive pecking behaviour in ducks. The candidate genes and metabolites may be involved in regulating aggressive pecking behaviour by inducing neurodegeneration and disrupting neural excitatory-inhibitory homeostasis, which in turn affects central nervous system function in aggressive pecking and normal ducks. Our findings provide a new reference for revealing the underlying mechanism of aggressive pecking behaviour in ducks.
Collapse
Affiliation(s)
- Baoguo Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jinjin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bingnong Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fuyou Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shenglin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Goksu AY, Kocanci FG, Akinci E, Demir-Dora D, Erendor F, Sanlioglu S, Uysal H. Microglia cells treated with synthetic vasoactive intestinal peptide or transduced with LentiVIP protect neuronal cells against degeneration. Eur J Neurosci 2024; 59:1993-2015. [PMID: 38382910 DOI: 10.1111/ejn.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
A common pathological hallmark of neurodegenerative disorders is neuronal cell death, accompanied by neuroinflammation and oxidative stress. The vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neuroprotective and immunomodulatory actions. The gene therapy field shows long-term promise for treating a wide range of neurodegenerative diseases (ND). In this study, we aimed to investigate the in vitro efficacy of transduction of microglia using lentiviral gene therapy vectors encoding VIP (LentiVIP). Additionally, we tested the protective effects of the secretome derived from LentiVIP-infected "immortalized human" microglia HMC3 cells, and cells treated with Synthetic VIP (SynVIP), against toxin-induced neurodegeneration. First, LentiVIP, which stably expresses VIP, was generated and purified. VIP secretion in microglial conditioned media (MG CM) for LentiVIP-infected HMC3 microglia cells was confirmed. Microglia cells were activated with lipopolysaccharide, and groups were formed as follows: 1) Control, 2) SynVIP-treated, or 3) LentiVIP-transduced. These MG CM were applied on an in vitro neurodegenerative model formed by differentiated (d)-SH-SY5Y cells. Then, cell survival analysis and apoptotic nuclear staining, besides measurement of oxidative/inflammatory parameters in CM of cells were performed. Activated MG CM reduced survival rates of both control and toxin-applied (d)-SH-SY5Y cells, whereas LentiVIP-infected MG CM and SynVIP-treated ones exhibited better survival rates. These findings were supported by apoptotic nuclear evaluations of (d)-SH-SY5Y cells, alongside oxidative/inflammatory parameters in their CM. LentiVIP seems worthy of further studies for the treatment of ND because of the potential of gene therapy to treat diseases effectively with a single injection.
Collapse
Affiliation(s)
- Azize Yasemin Goksu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fatma Gonca Kocanci
- Department of Medical Laboratory Techniques, Vocational High School of Health Services, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Ersin Akinci
- Brigham and Women's Hospital, Division of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Withana M, Castorina A. Potential Crosstalk between the PACAP/VIP Neuropeptide System and Endoplasmic Reticulum Stress-Relevance to Multiple Sclerosis Pathophysiology. Cells 2023; 12:2633. [PMID: 37998368 PMCID: PMC10670126 DOI: 10.3390/cells12222633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.
Collapse
Affiliation(s)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
4
|
Ho E, Deng Y, Akbar D, Da K, Létourneau M, Morshead CM, Chatenet D, Shoichet MS. Tunable Surface Charge Enables the Electrostatic Adsorption-Controlled Release of Neuroprotective Peptides from a Hydrogel-Nanoparticle Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:91-105. [PMID: 36520607 DOI: 10.1021/acsami.2c17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We exploit the electrostatic interactions between the positively charged neuroprotective peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), and negatively charged poly(lactic-co-glycolic acid) (PLGA) nanoparticles to control PACAP release from the surface of nanoparticles dispersed in a hyaluronan-methylcellulose (HAMC) hydrogel composite. PACAP is a promising therapeutic for the treatment of neurological disorders, yet it has been difficult to deliver in vivo. Herein, the PACAP release rate was tuned by manipulating peptide adsorption onto the surface of blank nanoparticles by modifying either nanoparticle loading in the hydrogel or nanoparticle surface charge. This peptide-nanoparticle interaction was controlled by the pH-responsive carboxylic acid end terminal groups of PLGA. We further validated this system with the controlled release of a novel stabilized PACAP analog: Ac-[Ala15, Ala20]PACAP-propylamide, which masks its recognition to peptidases in circulation. Both wild-type and stabilized PACAP released from the vehicle increased the production of neuroprotective Interleukin-6 from cultured primary astrocytes. Using computational fluid dynamics methods, PACAP release from the composite was predicted based on experimentally derived adsorption isotherms, which exhibited similar release profiles to experimental data. This versatile adsorption-based system was used to deliver PACAP locally to the brains of stroke-injured mice over a 10 day period in vivo, highlighting its effectiveness for the controlled release of PACAP to the central nervous system.
Collapse
Affiliation(s)
- Eric Ho
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Yaoqi Deng
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Dania Akbar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Kevin Da
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Myriam Létourneau
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QuebecH7 V 1B7, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, OntarioM5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - David Chatenet
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QuebecH7 V 1B7, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| |
Collapse
|
5
|
Barra T, Falanga A, Bellavita R, Pisano J, Laforgia V, Prisco M, Galdiero S, Valiante S. Neuroprotective Effects of gH625-lipoPACAP in an In Vitro Fluid Dynamic Model of Parkinson’s Disease. Biomedicines 2022; 10:biomedicines10102644. [PMID: 36289905 PMCID: PMC9599564 DOI: 10.3390/biomedicines10102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is an aggressive and devastating age-related disorder. Although the causes are still unclear, several factors, including genetic and environmental, are involved. Except for symptomatic drugs, there are not, to date, any real cures for PD. For this purpose, it is necessary develop a model to better study this disease. Neuroblastoma cell line, SH-SY5Y, differentiated with retinoic acid represents a good in vitro model to explore PD, since it maintains growth cells to differentiated neurons. In the present study, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that induces Parkinsonism, and the neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP), delivered by functionalized liposomes in a blood–brain barrier fluid dynamic model, were evaluated. We demonstrated PACAP neuroprotective effects when delivered by gH625-liposome on MPP+-damaged SH-SY5Y spheroids.
Collapse
Affiliation(s)
- Teresa Barra
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Jessica Pisano
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-081-2535169
| |
Collapse
|
6
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
7
|
Jansen MI, Thomas Broome S, Castorina A. Exploring the Pro-Phagocytic and Anti-Inflammatory Functions of PACAP and VIP in Microglia: Implications for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23094788. [PMID: 35563181 PMCID: PMC9104531 DOI: 10.3390/ijms23094788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and demyelinating disease of the central nervous system (CNS), characterised by the infiltration of peripheral immune cells, multifocal white-matter lesions, and neurodegeneration. In recent years, microglia have emerged as key contributors to MS pathology, acting as scavengers of toxic myelin/cell debris and modulating the inflammatory microenvironment to promote myelin repair. In this review, we explore the role of two neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), as important regulators of microglial functioning during demyelination, myelin phagocytosis, and remyelination, emphasising the potential of these neuropeptides as therapeutic targets for the treatment of MS.
Collapse
|
8
|
Ferrara M, Bertozzi G, Zanza C, Longhitano Y, Piccolella F, Lauritano CE, Volonnino G, Manetti AC, Maiese A, La Russa R. Traumatic Brain Injury and Gut Brain Axis: The Disruption of an Alliance. Rev Recent Clin Trials 2022; 17:268-279. [PMID: 35733301 DOI: 10.2174/1574887117666220622143423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/13/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can be considered a "silent epidemic", causing morbidity, disability, and mortality in all age cohorts. Therefore, a greater understanding of the underlying pathophysiological intricate mechanisms and interactions with other organs and systems is necessary to intervene not only in the treatment but also in the prevention of complications. In this complex of reciprocal interactions, the complex brain-gut axis has captured a growing interest. SCOPE The purpose of this manuscript is to examine and systematize existing evidence regarding the pathophysiological processes that occur following TBI and the influences exerted on these by the brain-gut axis. LITERATURE REVIEW A systematic review of the literature was conducted according to the PRISMA methodology. On the 8th of October 2021, two independent databases were searched: PubMed and Scopus. Following the inclusion and exclusion criteria selected, 24 (12 from PubMed and 12 from Scopus) eligible manuscripts were included in the present review. Moreover, references from the selected articles were also updated following the criteria mentioned above, yielding 91 included manuscripts. DISCUSSION Published evidence suggests that the brain and gut are mutually influenced through four main pathways: microbiota, inflammatory, nervous, and endocrine. CONCLUSION These pathways are bidirectional and interact with each other. However, the studies conducted so far mainly involve animals. An autopsy methodological approach to corpses affected by traumatic brain injury or intestinal pathology could represent the keystone for future studies to clarify the complex pathophysiological processes underlying the interaction between these two main systems.
Collapse
Affiliation(s)
- Michela Ferrara
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Giuseppe Bertozzi
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Christian Zanza
- Foundation of "Ospedale Alba-Bra Onlus and Department of Anesthesia and Critical Care and Emergency Medicine- "Michele and Pietro Ferrero Hospital" Verduno, Cuneo, Italy
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital- Alessandria, Italy
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital- Alessandria, Italy
| | - Cristiano Ernesto Lauritano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital- Alessandria, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Raffaele La Russa
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Italy
| |
Collapse
|
9
|
Karunia J, Niaz A, Mandwie M, Thomas Broome S, Keay KA, Waschek JA, Al-Badri G, Castorina A. PACAP and VIP Modulate LPS-Induced Microglial Activation and Trigger Distinct Phenotypic Changes in Murine BV2 Microglial Cells. Int J Mol Sci 2021; 22:ijms222010947. [PMID: 34681607 PMCID: PMC8535941 DOI: 10.3390/ijms222010947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related immunosuppressive peptides. However, the underlying mechanisms through which these peptides regulate microglial activity are not fully understood. Using lipopolysaccharide (LPS) to induce an inflammatory challenge, we tested whether PACAP or VIP differentially affected microglial activation, morphology and cell migration. We found that both peptides attenuated LPS-induced expression of the microglial activation markers Iba1 and iNOS (### p < 0.001), as well as the pro-inflammatory mediators IL-1β, IL-6, Itgam and CD68 (### p < 0.001). In contrast, treatment with PACAP or VIP exerted distinct effects on microglial morphology and migration. PACAP reversed LPS-induced soma enlargement and increased the percentage of small-sized, rounded cells (54.09% vs. 12.05% in LPS-treated cells), whereas VIP promoted a phenotypic shift towards cell subpopulations with mid-sized, spindle-shaped somata (48.41% vs. 31.36% in LPS-treated cells). Additionally, PACAP was more efficient than VIP in restoring LPS-induced impairment of cell migration and the expression of urokinase plasminogen activator (uPA) in BV2 cells compared with VIP. These results suggest that whilst both PACAP and VIP exert similar immunosuppressive effects in activated BV2 microglia, each peptide triggers distinctive shifts towards phenotypes of differing morphologies and with differing migration capacities.
Collapse
Affiliation(s)
- Jocelyn Karunia
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Aram Niaz
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Kevin A. Keay
- School of Medical Science, [Neuroscience] and Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - James A. Waschek
- Intellectual Development and Disabilities Research Centre, Semel Institute for Neuroscience and Human Behaviour/Neuropsychiatric Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA;
| | - Ghaith Al-Badri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
- School of Medical Science, [Neuroscience] and Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
10
|
Soares NL, Vieira HLA. Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochem Res 2021; 47:218-233. [PMID: 34586585 DOI: 10.1007/s11064-021-03456-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.
Collapse
Affiliation(s)
- Nuno L Soares
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.,Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Lisboa, Portugal
| |
Collapse
|
11
|
de Souza FRO, Ribeiro FM, Lima PMD. Implications of VIP and PACAP in Parkinson's Disease: What do we Know So Far? Curr Med Chem 2021; 28:1703-1715. [PMID: 32196442 DOI: 10.2174/0929867327666200320162436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease is one of the most common neurodegenerative disorders and although its aetiology is not yet fully understood, neuroinflammation has been identified as a key factor in the progression of the disease. Vasoactive intestinal peptide and pituitary adenylate-cyclase activating polypeptide are two neuropeptides that exhibit anti-inflammatory and neuroprotective properties, modulating the production of cytokines and chemokines and the behaviour of immune cells. However, the role of chemokines and cytokines modulated by the endogenous receptors of the peptides varies according to the stage of the disease. METHODS We present an overview of the relationship between some cytokines and chemokines with vasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide and their endogenous receptors in the context of Parkinson's disease neuroinflammation and oxidative stress, as well as the modulation of microglial cells by the peptides in this context. RESULTS The two peptides exhibit neuroprotective and anti-inflammatory properties in models of Parkinson's disease, as they ameliorate cognitive functions, decrease the level of neuroinflammation and promote dopaminergic neuronal survival. The peptides have been tested in a variety of in vivo and in vitro models of Parkinson's disease, demonstrating the potential for therapeutic application. CONCLUSION More studies are needed to establish the clinical use of vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide as safe candidates for treating Parkinson's disease, as the use of the peptides in different stages of the disease could produce different results concerning effectiveness.
Collapse
Affiliation(s)
- Filipe Resende Oliveira de Souza
- Laboratory of Immunology and Microbiology, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Praca Dom Helvecio, n. 74, Fabricas, 36301160, Sao Joao Del Rei, MG, Brazil
| | - Fabiola Mara Ribeiro
- Laboratory of Neurobiochemistry, Department of Biochemistry and Immunology, Federal University of Minas Gerais, MG, Brazil
| | - Patrícia Maria d'Almeida Lima
- Laboratory of Immunology and Microbiology, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Praca Dom Helvecio, n. 74, Fabricas, 36301160, Sao Joao Del Rei, MG, Brazil
| |
Collapse
|
12
|
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells. Cells 2021; 10:1124. [PMID: 34066933 PMCID: PMC8148598 DOI: 10.3390/cells10051124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal survival depends on the glia, that is, on the astroglial and microglial support. Neurons die and microglia are activated not only in neurodegenerative diseases but also in physiological aging. Activated microglia, once considered harmful, express two main phenotypes: the pro-inflammatory or M1, and the neuroprotective or M2. When neuroinflammation, i.e., microglial activation occurs, it is important to achieve a good M1/M2 balance, i.e., at some point M1 microglia must be skewed into M2 cells to impede chronic inflammation and to afford neuronal survival. G protein-coupled receptors in general and adenosine receptors in particular are potential targets for increasing the number of M2 cells. This article describes the mechanisms underlying microglial activation and analyzes whether these cells exposed to a first damaging event may be ready to be preconditioned to better react to exposure to more damaging events. Adenosine receptors are relevant due to their participation in preconditioning. They can also be overexpressed in activated microglial cells. The potential of adenosine receptors and complexes formed by adenosine receptors and cannabinoids as therapeutic targets to provide microglia-mediated neuroprotection is here discussed.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Rafael Rivas-Santisteban
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
13
|
Cunha-Reis D, Caulino-Rocha A, Correia-de-Sá P. VIPergic neuroprotection in epileptogenesis: challenges and opportunities. Pharmacol Res 2021; 164:105356. [DOI: 10.1016/j.phrs.2020.105356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
|
14
|
Weaver JL. The brain-gut axis: A prime therapeutic target in traumatic brain injury. Brain Res 2020; 1753:147225. [PMID: 33359374 DOI: 10.1016/j.brainres.2020.147225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023]
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in trauma patients. The primary focus of treating TBI is to prevent additional injury to the damaged brain tissue, known as secondary brain injury. This treatment can include treating the body's inflammatory response. Despite promise in animal models, anti-inflammatory therapy has failed to improve outcomes in human patients, suggesting a more targeted and precise approach may be needed. There is a bidirectional axis between the intestine and the brain that contributes to this inflammation in acute and chronic injury. The mechanisms for this interaction are not completely understood, but there is evidence that neural, inflammatory, endocrine, and microbiome signals all participate in this process. Therapies that target the intestine as a source of inflammation have potential to lessen secondary brain injury and improve outcomes in TBI patients, but to develop these treatments we need to better understand the mechanisms behind this intestinal inflammatory response.
Collapse
Affiliation(s)
- Jessica L Weaver
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego School of Medicine, 200 W Arbor Drive #8896, San Diego, CA 92103-8896, United States.
| |
Collapse
|
15
|
Fang Y, Ren R, Shi H, Huang L, Lenahan C, Lu Q, Tang L, Huang Y, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke. Aging Dis 2020; 11:1496-1512. [PMID: 33269103 PMCID: PMC7673855 DOI: 10.14336/ad.2020.0626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
The search for viable, effective treatments for acute stroke continues to be a global priority due to the high mortality and morbidity. Current therapeutic treatments have limited effects, making the search for new treatments imperative. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-established cytoprotective neuropeptide that participates in diverse neural physiological and pathological activities, such as neuronal proliferation, differentiation, and migration, as well as neuroprotection. It is considered a promising treatment in numerous neurological diseases. Thus, PACAP bears potential as a new therapeutic strategy for stroke treatment. Herein, we provide an overview pertaining to the current knowledge of PACAP, its receptors, and its potential neuroprotective role in the setting of stroke, as well as various mechanisms of neuroprotection involving ionic homeostasis, excitotoxicity, cell edema, oxidative stress, inflammation, and cell death, as well as the route of PACAP administration.
Collapse
Affiliation(s)
- Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reng Ren
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- 2Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,5Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Qin Lu
- 6Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Lihui Tang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Huang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
16
|
Czajkowska M, Całka J. Neurochemistry of Enteric Neurons Following Prolonged Indomethacin Administration in the Porcine Duodenum. Front Pharmacol 2020; 11:564457. [PMID: 33013401 PMCID: PMC7506041 DOI: 10.3389/fphar.2020.564457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal inflammation resulting from prolonged NSAID drugs treatment constitutes a worldwide medical problem. The role of enteric neuroactive substances involved in this process has recently gained attention and neuropeptides produced by the enteric nervous system may play an important role in the modulation of gastrointestinal inflammation. Therefore, the aim of this study was to determine the effect of inflammation caused by indomethacin supplementation on vasoactive intestinal polypeptide (VIP), substance P (SP), neuronal nitric oxide synthase (nNOS), galanin (GAL), pituitary adenylate cyclase-activating polypeptide (PACAP), and cocaine- and amphetamine-regulated transcript peptide (CART) expression in enteric duodenal neurons in domestic pigs. Eight immature pigs of the Pietrain × Duroc race (20 kg of body weight) were used. Control animals (n=4) received empty gelatine capsules. Experimental pigs (n=4) were given indomethacin for 4 weeks, orally 10 mg/kg daily, approximately 1 h before feeding. The animals from both groups were then euthanized. Frozen sections were prepared from the collected duodenum and subjected to double immunofluorescence staining. Primary antibodies against neuronal marker PGP 9.5 and VIP, nNOS, SP, GAL, CART, and PACAP were visualized with Alexa Fluor 488 and 546. Sections were analyzed under an Olympus BX51 fluorescence microscope. Microscopic analysis showed significant increases in the number of nNOS-, VIP-, SP-, GAL-, PACAP-, and CART-immunoreactive ganglionic neurons, in both the myenteric and submucous plexuses of the porcine duodenum. The obtained results show the participation of enteric neurotransmitters in the neuronal duodenal response to indomethacin-induced inflammation.
Collapse
Affiliation(s)
- Marta Czajkowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | | |
Collapse
|
17
|
Association of Brain-Gut Peptides with Inflammatory Cytokines in Moyamoya Disease. Mediators Inflamm 2020; 2020:5847478. [PMID: 32410857 PMCID: PMC7204157 DOI: 10.1155/2020/5847478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Systemic inflammation has been shown to play a pivotal role in the pathogenesis of moyamoya disease (MMD). Brain-gut peptides exhibit regulatory effects in the secretion of proinflammatory cytokines. To investigate the association between brain-gut peptides and inflammation in the occurrence of MMD, 41 patients with MMD, as well as 74 age- and sex-matched healthy individuals were enrolled. The levels of four brain-gut peptides (vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), somatostatin (SST), substance P (SP)) and three proinflammatory cytokines (interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-12) in the serum and cerebrospinal fluid (CSF) were measured using the enzyme-linked immunosorbent assay. The associations between brain-gut peptides and proinflammatory cytokines were estimated according to the multiple linear regression and correlation analyses. MMD patients exhibited significantly lower levels of VIP, CCK, and SST and higher levels of IL-1β, TNF-α, and IL-12 in the serum compared with healthy controls. Multiple logistic regression analysis showed that decreased VIP, CCK, and SST levels were independent predictors of the occurrence of MMD. Negative correlations were observed between the VIP and proinflammatory cytokines, including IL-1β, TNF-α, and IL-12 (serum vs. CSF). Significant negative correlations were also found between CCK and IL-1β, as well as IL-12 (serum vs. CSF). SST was negatively correlated with IL-1β and TNF-α in the serum and IL-1β only in the CSF. In addition, the levels of VIP, CCK, SST, and proinflammatory cytokines IL-1β and TNF-α in the serum were correlated with those measured in the CSF. Collectively, lower levels of VIP, CCK, and SST may be associated with the pathogenesis of MMD and act as clinically useful biomarkers along with the levels of proinflammatory cytokines.
Collapse
|
18
|
Jiang MN, Zhou YY, Hua DH, Yang JY, Hu ML, Xing YQ. Vagal Nerve Stimulation Attenuates Ischemia-Reperfusion Induced Retina Dysfunction in Acute Ocular Hypertension. Front Neurosci 2019; 13:87. [PMID: 30804746 PMCID: PMC6378858 DOI: 10.3389/fnins.2019.00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: The present study aimed to investigate whether cervical vagal nerve stimulation (VNS) could prevent retinal ganglion cell (RGC) loss and retinal dysfunction after ischemia/reperfusion (I/R) injury. Methods: First, rats were randomly divided into sham group (n = 4) and VNS group (n = 12). Activation of the nodose ganglia (NOG), nucleus of the solitary tract (NTS), superior salivatory nucleus (SSN), and pterygopalatine ganglion (PPG) neural circuit were evaluated by c-fos expression at 0 h after sham VNS and at 0 h (n = 4), 6 h (n = 4), 72 h (n = 4) after VNS. Secondly, rats were randomly assigned to I/R group (pressure-induced retinal ischemia for 1 h and reperfusion for 1 h in the right eye, n = 16) and I/R+VNS group (right cervical VNS for 2 h during the I/R period, n = 16). The left eye of each rat served as a control. Electroretinogram (ERG), RGC numbers, tumor necrosis factor-α (TNF-α) and vasoactive intestinal polypeptide (VIP) levels in retina were determined. Additionally, the level of VIP in PPG was evaluated. Results: In the first part of the study, compared with the sham group, the VNS group exhibited significantly increased expression of c-fos in NOG, NTS, SSN, and PPG tissues at 0, 6, and 72 h. In the second part of the study, compared with left eyes, retinal function in right eyes (as assessed by the a-wave, b-wave and the oscillatory potential amplitudes of ERG and RGC data) was significantly decreased by I/R. The decreased retinal function was attenuated by VNS. In addition, I/R induced an increase in inflammation, which was reflected by elevated TNF-α expression in the retina. VNS significantly attenuated the increase in I/R-induced inflammation. Moreover, VIP expression in the retina and PPG, which may contribute to the inhibition of the inflammatory response, was significantly increased after VNS. Conclusion: VNS could protect against retinal I/R injury by downregulating TNF-α. Upregulation of VIP expression due to activation of the NOG-NTS-SSN-PPG neural circuit may underlie to the protective effects of VNS.
Collapse
Affiliation(s)
- Meng-Nan Jiang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Yang Zhou
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di-Hao Hua
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia-Yi Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man-Li Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
20
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
21
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|
22
|
Wang X, Li M, Cao Y, Wang J, Zhang H, Zhou X, Li Q, Wang L. Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway. Eur J Pharmacol 2017; 809:196-202. [DOI: 10.1016/j.ejphar.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
23
|
Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2017; 155:120-148. [DOI: 10.1016/j.pneurobio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
|
24
|
Bilateral tactile hypersensitivity and neuroimmune responses after spared nerve injury in mice lacking vasoactive intestinal peptide. Exp Neurol 2017; 293:62-73. [DOI: 10.1016/j.expneurol.2017.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/30/2022]
|
25
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
26
|
Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M. Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 2016; 73:1365-79. [PMID: 26616211 PMCID: PMC11108524 DOI: 10.1007/s00018-015-2101-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Johanna Mäkelä
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Valentina Di Liberto
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Natale Belluardo
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, P.O.Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
27
|
Delgado M. Immunobiology of the Pituitary Adenylate Cyclase-Activating Peptide. CURRENT TOPICS IN NEUROTOXICITY 2016:691-708. [DOI: 10.1007/978-3-319-35135-3_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Shioda S, Nakamachi T. PACAP as a neuroprotective factor in ischemic neuronal injuries. Peptides 2015; 72:202-7. [PMID: 26275482 DOI: 10.1016/j.peptides.2015.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert pleiotropic effects on the nervous system. This review provides an overview of current knowledge regarding the neuroprotective effects, mechanisms of action, and therapeutic potential of PACAP in response to ischemic brain injuries.
Collapse
Affiliation(s)
- Seiji Shioda
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
29
|
Morara S, Colangelo AM, Provini L. Microglia-Induced Maladaptive Plasticity Can Be Modulated by Neuropeptides In Vivo. Neural Plast 2015; 2015:135342. [PMID: 26273481 PMCID: PMC4529944 DOI: 10.1155/2015/135342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023] Open
Abstract
Microglia-induced maladaptive plasticity is being recognized as a major cause of deleterious self-sustaining pathological processes that occur in neurodegenerative and neuroinflammatory diseases. Microglia, the primary homeostatic guardian of the central nervous system, exert critical functions both during development, in neural circuit reshaping, and during adult life, in the brain physiological and pathological surveillance. This delicate critical role can be disrupted by neural, but also peripheral, noxious stimuli that can prime microglia to become overreactive to a second noxious stimulus or worsen underlying pathological processes. Among regulators of microglia, neuropeptides can play a major role. Their receptors are widely expressed in microglial cells and neuropeptide challenge can potently influence microglial activity in vitro. More relevantly, this regulator activity has been assessed also in vivo, in experimental models of brain diseases. Neuropeptide action in the central nervous system has been associated with beneficial effects in neurodegenerative and neuroinflammatory pathological experimental models. This review describes some of the mechanisms of the microglia maladaptive plasticity in vivo and how neuropeptide activity can represent a useful therapeutical target in a variety of human brain pathologies.
Collapse
Affiliation(s)
- Stefano Morara
- Neuroscience Institute (CNR), Via Vanvitelli 32, 20129 Milano, Italy
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Luciano Provini
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
30
|
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131:65-86. [PMID: 26067058 DOI: 10.1016/j.pneurobio.2015.05.003] [Citation(s) in RCA: 495] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Macrophages are important players in the fight against viral, bacterial, fungal and parasitic infections. From a resting state they may undertake two activation pathways, the classical known as M1, or the alternative known as M2. M1 markers are mostly mediators of pro-inflammatory responses whereas M2 markers emerge for resolution and cleanup. Microglia exerts in the central nervous system (CNS) a function similar to that of macrophages in the periphery. Microglia activation and proliferation occurs in almost any single pathology affecting the CNS. Often microglia activation has been considered detrimental and drugs able to stop microglia activation were considered for the treatment of a variety of diseases. Cumulative evidence shows that microglia may undergo the alternative activation pathway, express M2-type markers and contribute to neuroprotection. This review focuses on details about the role of M2 microglia and in the approaches available for its identification. Approaches to drive the M2 phenotype and data on its potential in CNS diseases are also reviewed.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Diana Fernández-Suárez
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
31
|
Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 2014; 71:3969-85. [PMID: 25008043 PMCID: PMC11113719 DOI: 10.1007/s00018-014-1670-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/28/2022]
Abstract
Microglial cells contribute to normal function of the central nervous system (CNS). Besides playing a role in the innate immunity, they are also involved in neuronal plasticity and homeostasis of the CNS. While microglial cells get activated and undergo phenotypic changes in different disease contexts, they are far from being the "villains" in the CNS. Mounting evidence indicates that microglial dysfunction can exacerbate the pathogenesis of several diseases in the CNS. Several molecular mechanisms tightly regulate the production of inflammatory and toxic factors released by microglia. These mechanisms involve the interaction with other glial cells and neurons and the fine regulation of signaling and transcription activation pathways. The purpose of this review is to discuss microglia activation and to highlight the molecular pathways that can counteract the detrimental role of microglia in several neurologic diseases. Recent work presented in this review support that the understanding of microglial responses can pave the way to design new therapies for inflammatory diseases of the CNS.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Leonor Miller-Fleming
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- Present Address: Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, CB21GA Cambridge, UK
| | - Teresa F. Pais
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
32
|
Nunan R, Sivasathiaseelan H, Khan D, Zaben M, Gray W. Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release. Glia 2014; 62:1313-27. [PMID: 24801739 PMCID: PMC4336555 DOI: 10.1002/glia.22682] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 01/23/2023]
Abstract
Neurogenesis, the production of new neurons from neural stem/progenitor cells (NSPCs), occurs throughout adulthood in the dentate gyrus of the hippocampus, where it supports learning and memory. The innate and adaptive immune systems are increasingly recognized as important modulators of hippocampal neurogenesis under both physiological and pathological conditions. However, the mechanisms by which the immune system regulates hippocampal neurogenesis are incompletely understood. In particular, the role of microglia, the brains resident immune cell is complex, as they have been reported to both positively and negatively regulate neurogenesis. Interestingly, neuronal activity can also regulate the function of the immune system. Here, we show that depleting microglia from hippocampal cultures reduces NSPC survival and proliferation. Furthermore, addition of purified hippocampal microglia, or their conditioned media, is trophic and proliferative to NSPCs. VIP, a neuropeptide released by dentate gyrus interneurons, enhances the proliferative and pro-neurogenic effect of microglia via the VPAC1 receptor. This VIP-induced enhancement is mediated by IL-4 release, which directly targets NSPCs. This demonstrates a potential neuro-immuno-neurogenic pathway, disruption of which may have significant implications in conditions where combined cognitive impairments, interneuron loss, and immune system activation occurs, such as temporal lobe epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Nunan
- Division of Clinical Neurosciences, University of Southampton, Southampton, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Morphological Analyses on Retinal Glial Responses to Glaucomatous Injury Evoked by Venous Cauterization. Appl Microsc 2014. [DOI: 10.9729/am.2014.44.1.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013; 2013:285246. [PMID: 23983766 PMCID: PMC3741958 DOI: 10.1155/2013/285246] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023]
Abstract
Malignant gliomas contain stroma and a variety of immune cells including abundant activated microglia/macrophages. Mounting evidence indicates that the glioma microenvironment converts the glioma-associated microglia/macrophages (GAMs) into glioma-supportive, immunosuppressive cells; however, GAMs can retain intrinsic anti-tumor properties. Here, we review and discuss this duality and the potential therapeutic strategies that may inhibit their glioma-supportive and propagating functions.
Collapse
|
35
|
Chandrasekharan B, Nezami BG, Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol 2013; 304:G949-57. [PMID: 23538492 PMCID: PMC3680683 DOI: 10.1152/ajpgi.00493.2012] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS), referred to as the "second brain," comprises a vast number of neurons that form an elegant network throughout the gastrointestinal tract. Neuropeptides produced by the ENS play a crucial role in the regulation of inflammatory processes via cross talk with the enteric immune system. In addition, neuropeptides have paracrine effects on epithelial secretion, thus regulating epithelial barrier functions and thereby susceptibility to inflammation. Ultimately the inflammatory response damages the enteric neurons themselves, resulting in deregulations in circuitry and gut motility. In this review, we have emphasized the concept of neurogenic inflammation and the interaction between the enteric immune system and enteric nervous system, focusing on neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP). The alterations in the expression of NPY and VIP in inflammation and their significant roles in immunomodulation are discussed. We highlight the mechanism of action of these neuropeptides on immune cells, focusing on the key receptors as well as the intracellular signaling pathways that are activated to regulate the release of cytokines. In addition, we also examine the direct and indirect mechanisms of neuropeptide regulation of epithelial tight junctions and permeability, which are a crucial determinant of susceptibility to inflammation. Finally, we also discuss the potential of emerging neuropeptide-based therapies that utilize peptide agonists, antagonists, siRNA, oligonucleotides, and lentiviral vectors.
Collapse
Affiliation(s)
- Bindu Chandrasekharan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
36
|
Wada Y, Nakamachi T, Endo K, Seki T, Ohtaki H, Tsuchikawa D, Hori M, Tsuchida M, Yoshikawa A, Matkovits A, Kagami N, Imai N, Fujisaka S, Usui I, Tobe K, Koide R, Takahashi H, Shioda S. PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci 2013; 51:493-502. [PMID: 23720065 DOI: 10.1007/s12031-013-0017-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/18/2013] [Indexed: 12/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been known as a neuroprotectant agent in several retinal injury models. However, a detailed mechanism of this effect is still not well understood. In this study, we examined the retinoprotective effects and associated underlying mechanisms of action of PACAP in the mouse N-methyl-D-aspartic acid (NMDA)-induced retinal injury model, focusing on the relationship between PACAP and retinal microglia/macrophage (MG/MΦ) status. Adult male C57BL/6 mice received an intravitreal injection of NMDA to induce retinal injury. Three days after NMDA injection, the number of MG/MΦ increased significantly in the retinas. The concomitant intravitreal injection of PACAP suppressed NMDA-induced cell loss in the ganglion cell layer (GCL) and significantly increased the number of MG/MΦ. These outcomes associated with PACAP were attenuated by cotreatment with PACAP6-38, while the beneficial effects of PACAP were not seen in interleukin-10 (IL-10) knockout mice. PACAP significantly elevated the messenger RNA levels of anti-inflammatory cytokines such as transforming growth factor beta 1 and IL-10 in the injured retina, with the immunoreactivities seen to overlap with markers of MG/MΦ. These results suggest that PACAP enhances the proliferation and/or infiltration of retinal MG/MΦ and modulates their status into an acquired deactivation subtype to favor conditions for neuroprotection.
Collapse
Affiliation(s)
- Yoshihiro Wada
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tan YV, Abad C, Wang Y, Lopez R, Waschek JA. Pituitary adenylate cyclase activating peptide deficient mice exhibit impaired thymic and extrathymic regulatory T cell proliferation during EAE. PLoS One 2013; 8:e61200. [PMID: 23613811 PMCID: PMC3628797 DOI: 10.1371/journal.pone.0061200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 03/07/2013] [Indexed: 12/21/2022] Open
Abstract
We have shown that mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) manifest enhanced sensitivity to experimental autoimmune encephalomyelitis (EAE), supporting the anti-inflammatory actions described for this neuropeptide. In addition to an increased proinflammatory cytokine response in these mice, a reduction in regulatory T cell (Treg) abundance in the lymph nodes (LN) was observed, suggesting altered Treg kinetics. In the present study, we compared in PACAP deficient (KO) vs. wild type mice the abundances and rates of proliferation FoxP3+ Tregs in three sites, the LN, central nervous system (CNS) and thymus and the relative proportions of Th1, Th2, and Th17 effector subsets in the LN and CNS. Flow cytometry analyses revealed a decrease in Treg proliferation and an increased T effector/Tregs ratio in the LN and CNS of PACAP KO mice. In the thymus, the primary site of do novo natural Treg production, the total numbers and proliferative rates of FoxP3+ Tregs were significantly reduced. Moreover, the expression of IL-7, a cytokine implicated in thymic Treg expansion during EAE, failed to increase at the peak of the disease in the thymus and LN of PACAP KO mice. In addition to these Treg alterations, a specific reduction of Th2 cells (about 4-fold) was observed in the lymph nodes in PACAP KO mice, with no effects on Th1 and Th17 subsets, whereas in the CNS, Th1 and Th17 cells were increased and Th2 decreased. Our results suggest that endogenous production of the neuropeptide PACAP protects against EAE by modulating Treg expansion and Th subsets at multiple sites.
Collapse
Affiliation(s)
- Yossan-Var Tan
- Semel Institute/Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catalina Abad
- Semel Institute/Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yuqi Wang
- Semel Institute/Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Lopez
- Semel Institute/Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James A. Waschek
- Semel Institute/Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
PACAP deficiency sensitizes nigrostriatal dopaminergic neurons to paraquat-induced damage and modulates central and peripheral inflammatory activation in mice. Neuroscience 2013; 240:277-86. [PMID: 23500093 DOI: 10.1016/j.neuroscience.2013.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 12/27/2022]
Abstract
Exposure to the pesticide paraquat (PQ) increases the risk of Parkinson's disease (PD), and its effect may be modulated by genetic or other environmental factors. The neuropeptide PACAP (pituitary adenylyl cyclase-activating polypeptide, Adcyap1) has been shown to enhance tyrosine hydroxylase (TH) and VMAT2 expression, protect dopaminergic (DA) neurons against the neurotoxin 6-hydroxydopamine, regulate neuronal mitochondria, and inhibit inflammation. Decreased expression of PACAP may thus interact with environmental factors such as PQ to increase the risk of PD. To mimic a low level environmental exposure to PQ, wild type (WT) and PACAP knockout (KO) mice were given a single [10 mg/kg] dose of PQ, a regimen that did not induce the loss of TH expression or DA neurons in WT mice. This treatment selectively reduced the number of TH-positive cell bodies in the substantia nigra pars compacta (SNpc) selectively in PACAP KO mice. Because inflammation is also a risk factor for PD, we performed a quantitative analysis of SNpc Iba⁺ microglia. As expected, PQ increased the number of larger microglial profiles, indicative of activation, in WT mice. Strikingly, microglial activation was already evident in PACAP KO mice in the basal state. PQ caused no further activation in these mice, although tumor necrosis factor-α gene expression was enhanced. In the periphery, PQ had no effects on the abundance of proinflammatory Th1 or Th17 cells in WT mice, but increased the numbers of anti-inflammatory regulatory T cells (Tregs). PACAP KO mice, in contrast, had elevated numbers of Th17 cells after PQ, and the induction of Tregs was impaired. The results indicate that endogenous PACAP acts to maintain the integrity of DA neurons during exposure to PQ, an action that may be linked to its ability to regulate microglia and/or other immune cells.
Collapse
|
39
|
PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2013; 54:32-42. [PMID: 23466699 DOI: 10.1016/j.nbd.2013.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide with autocrine neuroprotective and paracrine anti-inflammatory properties in various models of acute neuronal damage and neurodegenerative diseases. Therefore, we examined a possible beneficial role of endogenous PACAP in the superoxide dismutase 1, SOD1(G93A), mouse model of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease particularly affecting somatomotor neurons. In wild-type mice, somatomotor and visceromotor neurons in brain stem and spinal cord were found to express the PACAP specific receptor PAC1, but only visceromotor neurons expressed PACAP as a potential autocrine source of regulation of these receptors. In SOD1(G93A) mice, only a small subset of the surviving somatomotor neurons showed induction of PACAP mRNA, and somatomotor neuron degeneration was unchanged in PACAP-deficient SOD1(G93A) mice. Pre-ganglionic sympathetic visceromotor neurons were found to be resistant in SOD1(G93A) mice, while pre-ganglionic parasympathetic neurons degenerated during ALS disease progression in this mouse model. PACAP-deficient SOD1(G93A) mice showed even greater pre-ganglionic parasympathetic neuron loss compared to SOD1(G93A) mice, and additional degeneration of pre-ganglionic sympathetic neurons. Thus, constitutive expression of PACAP and PAC1 may confer neuroprotection to central visceromotor neurons in SOD1(G93A) mice via autocrine pathways. Regarding the progression of neuroinflammation, the switch from amoeboid to hypertrophic microglial phenotype observed in SOD1(G93A) mice was absent in PACAP-deficient SOD1(G93A) mice. Thus, endogenous PACAP may promote microglial cytodestructive functions thought to drive ALS disease progression. This hypothesis was consistent with prolongation of life expectancy and preserved tongue motor function in PACAP-deficient SOD1(G93A) mice, compared to SOD1(G93A) mice. Given the protective role of PACAP expression in visceromotor neurons and the opposing effect on microglial function in SOD1(G93A) mice, both PACAP agonism and antagonism may be promising therapeutic tools for ALS treatment, if stage of disease progression and targeting the specific auto- and paracrine signaling pathways are carefully considered.
Collapse
|
40
|
STC1 induction by PACAP is mediated through cAMP and ERK1/2 but not PKA in cultured cortical neurons. J Mol Neurosci 2013; 46:75-87. [PMID: 21975601 DOI: 10.1007/s12031-011-9653-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
The neuroprotective actions of PACAP (pituitary adenylate cyclase-activating polypeptide) in vitro and in vivo suggest that activation of its cognate G protein coupled receptor PAC1 or downstream signaling molecules,and thus activation of PACAP target genes, could be of therapeutic benefit. Here, we show that cultured rat cortical neurons predominantly expressed the PAC1hop and null variants. PACAP receptor activation resulted in the elevation of the two second messengers cAMP and Ca(2+) and expression of the putative neuroprotectant stanniocalcin 1(STC1). PACAP signaling to the STC1 gene proceeded through the extracellular signal-regulated kinases 1 and 2(ERK1/2), but not through the cAMP-dependent protein kinase (PKA), and was mimicked by the adenylate cyclase activator forskolin. PACAP- and forskolin-mediated activation of ERK1/2 occurred through cAMP, but not PKA.These results suggest that STC1 gene induction proceeds through cAMP and ERK1/2, independently of PKA, the canonical cAMP effector. In contrast, PACAP signaling to the BDNF gene proceeded through PKA, suggesting that two different neuroprotective cAMP pathways co-exist in differentiated cortical neurons. The selective activation of a potentially neuroprotective cAMP-dependent pathway different from the canonical cAMP pathway used in many physiological processes, such as memory storage, has implications for pharmacological activation of neuroprotection in vivo.
Collapse
|
41
|
Krishnan J, Choi S. Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling. Genomics Inform 2012; 10:153-66. [PMID: 23166526 PMCID: PMC3492651 DOI: 10.5808/gi.2012.10.3.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/14/2012] [Accepted: 07/20/2012] [Indexed: 12/30/2022] Open
Abstract
A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-β, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.
Collapse
Affiliation(s)
- Jayalakshmi Krishnan
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | | |
Collapse
|
42
|
He F, Balling R. The role of regulatory T cells in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 5:153-80. [PMID: 22899644 DOI: 10.1002/wsbm.1187] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A sustained neuroinflammatory response is the hallmark of many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, and HIV-associated neurodegeneration. A specific subset of T cells, currently recognized as FOXP3(+) CD25(+) CD4(+) regulatory T cells (Tregs), are pivotal in suppressing autoimmunity and maintaining immune homeostasis by mediating self-tolerance at the periphery as shown in autoimmune diseases and cancers. A growing body of evidence shows that Tregs are not only important for maintaining immune balance at the periphery but also contribute to self-tolerance and immune privilege in the central nervous system. In this article, we first review the current status of knowledge concerning the development and the suppressive function of Tregs. We then discuss the evidence supporting a dysfunction of Tregs in several neurodegenerative diseases. Interestingly, a dysfunction of Tregs is mainly observed in the early stages of several neurodegenerative diseases, but not in their chronic stages, pointing to a causative role of inflammation in the pathogenesis of neurodegenerative diseases. Furthermore, we provide an overview of a number of molecules, such as hormones, neuropeptides, neurotransmitters, or ion channels, that affect the dysfunction of Tregs in neurodegenerative diseases. We also emphasize the effects of the intestinal microbiome on the induction and function of Tregs and the need to study the crosstalk between the enteric nervous system and Tregs in neurodegenerative diseases. Finally, we point out the need for a systems biology approach in the analysis of the enormous complexity regulating the function of Tregs and their potential role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng He
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Luxembourg
| | | |
Collapse
|
43
|
Szabo A, Danyadi B, Bognar E, Szabadfi K, Fabian E, Kiss P, Mester L, Manavalan S, Atlasz T, Gabriel R, Toth G, Tamas A, Reglodi D, Kovacs K. Effect of PACAP on MAP kinases, Akt and cytokine expressions in rat retinal hypoperfusion. Neurosci Lett 2012; 523:93-8. [DOI: 10.1016/j.neulet.2012.06.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
|
44
|
Mesnard NA, Sanders VM, Jones KJ. Differential gene expression in the axotomized facial motor nucleus of presymptomatic SOD1 mice. J Comp Neurol 2012; 519:3488-506. [PMID: 21800301 DOI: 10.1002/cne.22718] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously, we compared molecular profiles of one population of wild-type (WT) mouse facial motoneurons (FMNs) surviving with FMNs undergoing significant cell death after axotomy. Regardless of their ultimate fate, injured FMNs respond with a vigorous pro-survival/regenerative molecular response. In contrast, the neuropil surrounding the two different injured FMN populations contained distinct molecular differences that support a causative role for glial and/or immune-derived molecules in directing contrasting responses of the same cell types to the same injury. In the current investigation, we utilized the facial nerve axotomy model and a presymptomatic amyotrophic lateral sclerosis (ALS) mouse (SOD1) model to experimentally mimic the axonal die-back process observed in ALS pathogenesis without the confounding variable of disease onset. Presymptomatic SOD1 mice had a significant decrease in FMN survival compared with WT, which suggests an increased susceptibility to axotomy. Laser microdissection was used to accurately collect uninjured and axotomized facial motor nuclei of WT and presymptomatic SOD1 mice for mRNA expression pattern analyses of pro-survival/pro-regeneration genes, neuropil-specific genes, and genes involved in or responsive to the interaction of FMNs and non-neuronal cells. Axotomized presymptomatic SOD1 FMNs displayed a dynamic pro-survival/regenerative response to axotomy, similar to WT, despite increased cell death. However, significant differences were revealed when the axotomy-induced gene expression response of presymptomatic SOD1 neuropil was compared with WT. We propose that the increased susceptibility of presymptomatic SOD1 FMNs to axotomy-induced cell death and, by extrapolation, disease progression, is not intrinsic to the motoneuron, but rather involves a dysregulated response by non-neuronal cells in the surrounding neuropil.
Collapse
Affiliation(s)
- Nichole A Mesnard
- Neuroscience Program, Loyola University Medical Center, Maywood, Illinois, 60153, USA.
| | | | | |
Collapse
|
45
|
Superoxide anion contributes to the induction of tumor necrosis factor alpha (TNFα) through activation of the MKK3/6-p38 MAPK cascade in rat microglia. Brain Res 2011; 1422:1-12. [PMID: 21981804 DOI: 10.1016/j.brainres.2011.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/28/2011] [Accepted: 09/07/2011] [Indexed: 11/23/2022]
Abstract
Stimulation of rat microglia with lipopolysaccharide (LPS) in vitro induces production of the inflammatory/cytotoxic cytokine tumor necrosis factor alpha (TNFα) along with superoxide anion (O(2)(-)) and nitric oxide (NO). In this study, we investigated the role of O(2)(-) and NO in the induction of TNFα in microglia. The LPS-inducible TNFα was significantly suppressed by pretreatment with the O(2)(-) scavenger N-acetyl cysteine (NAC), but not by the NO scavenger 2-(4-Carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide, suggesting the close association of O(2)(-) with TNFα induction. NAC strongly depressed phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which is necessary for inducing TNFα in microglia. On the other hand, an O(2)(-) donor, 3-(4-Morpholinyl)sydnonimine (SIN-1), induced TNFα in microglia, and the effects of SIN-1 were completely abolished in the presence of superoxide dismutase. There is little likelihood that the NO produced in SIN-1 degradation induces TNFα in microglia, because TNFα was not induced in microglia exposed to the NO-donor S-nitroso-N-acetyl-dl-penicillamine. Moreover, the addition of SIN-1 to microglia resulted in activation of p38 MAPK and its upstream kinase MKK3/6. Taken together, these results showed that O(2)(-) is an important signaling molecule for activating the MKK3/6-p38 cascade, which is requisite for inducing TNFα in microglia.
Collapse
|
46
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
47
|
Dejda A, Seaborn T, Bourgault S, Touzani O, Fournier A, Vaudry H, Vaudry D. PACAP and a novel stable analog protect rat brain from ischemia: Insight into the mechanisms of action. Peptides 2011; 32:1207-16. [PMID: 21514338 DOI: 10.1016/j.peptides.2011.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) shows potent protective effects in numerous models of neurological insults. However, the use of PACAP as a clinically efficient drug is limited by its poor metabolic stability. By combining identification of enzymatic cleavage sites with targeted chemical modifications, a metabolically stable and potent PACAP38 analog was recently developed. The neuroprotective activity of this novel compound was for the first time evaluated and compared to the native peptide using a rat model of middle cerebral artery occlusion (MCAO). Our results show that as low as picomolar doses of PACAP38 and its analog strongly reduce infarct volume and improve neurological impairment induced by stroke. In particular, these peptides inhibit the expression of Bcl-2-associated death promoter, caspase 3, macrophage inflammatory protein-1α, inducible nitric oxide synthase 2, tumor necrosis factor-α mRNAs, and increase extracellular signal-regulated kinase 2, B-cell CLL/lymphoma 2 and interleukin 6 mRNA levels. These results indicate that the neuroprotective effect of PACAP after MCAO is not only due to its ability to inhibit apoptosis but also to modulate the inflammatory response. The present study highlights the potential therapeutic efficacy of very low concentrations of PACAP or its metabolically stable derivative for the treatment of stroke.
Collapse
|
48
|
Nishimoto M, Miyakawa H, Wada K, Furuta A. Activation of the VIP/VPAC2 system induces reactive astrocytosis associated with increased expression of glutamate transporters. Brain Res 2011; 1383:43-53. [DOI: 10.1016/j.brainres.2011.01.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 11/28/2022]
|
49
|
da Silva L, Carvalho E, Cruz MT. Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther 2011; 10:1427-39. [PMID: 20738210 DOI: 10.1517/14712598.2010.515207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE OF THE FIELD In 2010, the world prevalence of diabetes is 6.4%, affecting 285 million adults. Diabetic patients are at risk of developing neuropathy and delayed wound healing that can culminate in incurable diabetic foot ulcerations (DFUs) or even foot amputation. AREAS COVERED IN THIS REVIEW The contrast between cellular and molecular events of wound healing and diabetic wound healing processes is characterized. Neuropeptides released from the autonomous nervous system and skin cells reveal a major role in the immunity of wound healing. Therefore, the signaling pathways that induce pro/anti-inflammatory cytokines expression and its involvement in diabetic wound healing are discussed. The involvement of neuropeptides in the activation, growth, migration and maturation of skin cells, like keratinocytes, Langerhans cells, macrophages and mast cells, are described. WHAT THE READER WILL GAIN This review attempts to address the role of neuropeptides in skin inflammation, focusing on signal transduction, inflammatory mediators and pro/anti-inflammatory function, occurring in each cell type, as well as, its connection with diabetic wound healing. TAKE HOME MESSAGE Understanding the role of neuropeptides in the skin, their application on skin wounds could be a potential therapy for skin pathologies, like the problematic and prevalent DFUs.
Collapse
Affiliation(s)
- Lucília da Silva
- Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
50
|
PACAP protects against TNFα-induced cell death in olfactory epithelium and olfactory placodal cell lines. Mol Cell Neurosci 2010; 45:345-54. [PMID: 20654718 DOI: 10.1016/j.mcn.2010.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022] Open
Abstract
In mouse olfactory epithelium (OE), pituitary adenylate cyclase-activating peptide (PACAP) protects against axotomy-induced apoptosis. We used mouse OE to determine whether PACAP protects neurons during exposure to the inflammatory cytokine TNFα. Live slices of neonatal mouse OE were treated with 40 ng/ml TNFα ± 40nM PACAP for 6h and dying cells were live-labeled with 0.5% propidium iodide. TNFα significantly increased the percentage of dying cells while co-incubation with PACAP prevented cell death. PACAP also prevented TNFα-mediated cell death in the olfactory placodal (OP) cell lines, OP6 and OP27. Although OP cell lines express all three PACAP receptors (PAC1, VPAC1,VPAC2), PACAP's protection of these cells from TNFα was mimicked by the specific PAC1 receptor agonist maxadilan and abolished by the PAC1 antagonist PACAP6-38. Treatment of OP cell lines with blockers or activators of the PLC and AC/MAPKK pathways revealed that PACAP-mediated protection from TNFα involved both pathways. PACAP may therefore function through PAC1 receptors to protect neurons from cell death during inflammatory cytokine release in vivo as would occur upon viral infection or allergic rhinitis-associated injury.
Collapse
|