1
|
Xie Z, Tong S, Chu X, Feng T, Geng M. Chronic Kidney Disease and Cognitive Impairment: The Kidney-Brain Axis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:275-285. [PMID: 36157262 PMCID: PMC9386403 DOI: 10.1159/000524475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/30/2022] [Indexed: 11/19/2022]
Abstract
Background Cognitive impairment, increasingly recognized as a major social burden, is commonly found in chronic kidney disease (CKD) patients. Summary Vascular damage, uremic toxicity, oxidative stress, and peripheral/central inflammation induced by CKD might be involved in brain lesions and ultimately result in cognitive decline. Uncovering the pathophysiology of CKD-associated cognitive impairment is important for early diagnosis and prevention, which undoubtedly prompts innovative pharmacological treatments. Key Messages Here, we sequentially review the current understanding and advances in the epidemiology, risk factors, and pathological mechanisms of cognitive impairment in CKD. Furthermore, we summarize the currently available therapeutic strategies for cognitive impairment in CKD.
Collapse
Affiliation(s)
- Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Tong
- Green Valley (Shanghai) Pharmaceuticals Co. Ltd., Shanghai, China
| | - Xingkun Chu
- Green Valley (Shanghai) Pharmaceuticals Co. Ltd., Shanghai, China
| | - Teng Feng
- Green Valley (Shanghai) Pharmaceuticals Co. Ltd., Shanghai, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
CgHMGB1 functions as a broad-spectrum recognition molecule to induce the expressions of CgIL17-5 and Cgdefh2 via MAPK or NF-κB signaling pathway in Crassostrea gigas. Int J Biol Macromol 2022; 211:289-300. [PMID: 35525493 DOI: 10.1016/j.ijbiomac.2022.04.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved nucleoprotein, functions in immune recognition, inflammation and antibacterial immunization in vertebrates. In the present study, the mediation mechanism of CgHMGB1 in activating MAPK and NF-κB/Rel signaling pathways to induce the expressions of immune effectors was investigated. CgHMGB1 mRNA was detected in all tested developmental stages from fertilized egg to D-larvae, with the higher expressions in 4-cell and 8-cell stages. CgHMGB1 proteins were mainly distributed in haemocyte granulocytes. The expressions of CgHMGB1 mRNA in haemocytes increased significantly after Vibrio splendidus stimulation, and CgHMGB1 protein translocated into the haemocyte cytoplasm and release into cell-free haemolymph. The phosphorylation of CgERK and CgP38 were induced, the nuclear translocation of CgRel were promoted, and the mRNA expressions of CgIL17-5 and Cgdefh2 increased significantly after rCgHMGB1 treatment. Obvious branchial swelling and cilium shedding were observed after rCgHMGB1 treatment. rCgHMGB1 exhibited binding activity to different polysaccharides, bacteria, and fungi. rCgHMGB1 also displayed obvious antibacterial activity to V. splendidus and E. coli. These results indicated that CgHMGB1 functioned as an immune recognition molecule to recognize various PAMPs and bacteria to induce the mRNA expressions of CgIL17-5 and Cgdefh2 via the activation of MAPK and NF-κB signaling pathways in oysters.
Collapse
|
3
|
Yanai H, Hangai S, Taniguchi T. Damage-associated molecular patterns and Toll-like receptors in the tumor immune microenvironment. Int Immunol 2021; 33:841-846. [PMID: 34357403 DOI: 10.1093/intimm/dxab050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 11/14/2022] Open
Abstract
As clinically demonstrated by the success of immunotherapies to improve survival outcomes, tumors are known to gain a survival advantage by circumventing immune surveillance. A defining feature of this is the creation and maintenance of a tumor immune microenvironment (TIME) that directly and indirectly alters the host's immunologic signaling pathways through a variety of mechanisms. Tumor-intrinsic mechanisms that instruct the formation and maintenance of the TIME have been an area of intensive study, such as the identification and characterization of soluble factors actively and passively released by tumor cells that modulate immune cell function. In particular, damage-associated molecular pattern molecules (DAMPs) typically released by necrotic tumor cells are recognized by innate immune receptors such as Toll-like receptors (TLRs) and stimulate immune cells within TIME. Given their broad and potent effects on the immune system, a better understanding for how DAMP and TLR interactions sculpt the TIME to favor tumor growth would identify new strategies and approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
4
|
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 2019; 26:99-114. [PMID: 30341423 PMCID: PMC6294779 DOI: 10.1038/s41418-018-0212-6] [Citation(s) in RCA: 684] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis and necroptosis represent two pathways of genetically encoded necrotic cell death. Although these cell death programmes can protect the host against microbial pathogens, their dysregulation has been implicated in a variety of autoimmune and auto-inflammatory conditions. The disease-promoting potential of necroptosis and pyroptosis is likely a consequence of their ability to induce a lytic cell death. This cell suicide mechanism, distinct from apoptosis, allows the release of immunogenic cellular content, including damage-associated molecular patterns (DAMPs), and inflammatory cytokines such as interleukin-1β (IL-1β), to trigger inflammation. In this Review, we discuss recent discoveries that have advanced our understanding on the primary functions of pyroptosis and necroptosis, including evidence for the specific cytokines and DAMPs responsible for driving inflammation. We compare the similar and unique aspects of pyroptotic- and necroptotic-induced membrane damage, and explore how these may functionally impact distinct intracellular organelles and signalling pathways. We also examine studies highlighting the crosstalk that can occur between necroptosis and pyroptosis signalling, and evidence supporting the physiological significance of this convergence. Ultimately, a better understanding of the similarities, unique aspects and crosstalk of pyroptosis and necroptosis will inform as to how these cell death pathways might be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
5
|
Welcome MO. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review. Dement Geriatr Cogn Dis Extra 2018; 8:360-381. [PMID: 30483303 PMCID: PMC6244112 DOI: 10.1159/000492491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Accumulating data suggest a crucial role of the intestinal microbiota in the development and progression of neurodegenerative diseases. More recently, emerging reports have revealed an association between intestinal microbiota dysfunctions and dementia, a debilitating multifactorial disorder, characterized by progressive deterioration of cognition and behavior that interferes with the social and professional life of the sufferer. However, the mechanisms of this association are not fully understood. SUMMARY In this review, I discuss recent data that suggest mechanisms of cross-talk between intestinal microbiota dysfunction and the brain that underlie the development of dementia. Potential therapeutic options for dementia are also discussed. The pleiotropic signaling of the metabolic products of the intestinal microbiota together with their specific roles in the maintenance of both the intestinal and blood-brain barriers as well as regulation of local, distant, and circulating immunocytes, and enteric, visceral, and central neural functions are integral to a healthy gut and brain. KEY MESSAGES Research investigating the effect of intestinal microbiota dysfunctions on brain health should focus on multiple interrelated systems involving local and central neuroendocrine, immunocyte, and neural signaling of microbial products and transmitters and neurohumoral cells that not only maintain intestinal, but also blood brain-barrier integrity. The change in intestinal microbiome/dysbiome repertoire is crucial to the development of dementia.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
6
|
Zhang Y, Liu Z, Hao X, Li A, Zhang J, Carey CD, Falo LD, You Z. Tumor-derived high-mobility group box 1 and thymic stromal lymphopoietin are involved in modulating dendritic cells to activate T regulatory cells in a mouse model. Cancer Immunol Immunother 2018; 67:353-366. [PMID: 29116372 PMCID: PMC11028122 DOI: 10.1007/s00262-017-2087-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/27/2017] [Indexed: 12/14/2022]
Abstract
High-mobility group box 1 (HMGB1) is involved in the tumor-associated activation of regulatory T cells (Treg), but the mechanisms remain unknown. In a mouse tumor model, silencing HMGB1 in tumor cells or inhibiting tumor-derived HMGB1 not only dampened the capacity of tumor cells to produce thymic stromal lymphopoietin (TSLP), but also aborted the tumor-associated modulation of Treg-activating DC. Tumor-derived HMGB1 triggered the production of TSLP by tumor cells. Importantly, both tumor-derived HMGB1 and TSLP were necessary for modulating DC to activate Treg in a TSLP receptor (TSLPR)-dependent manner. In the therapeutic model, intratumorally inhibiting tumor-derived HMGB1 (causing downstream loss of TSLP production) attenuated Treg activation, unleashed tumor-specific CD8 T cell responses, and elicited CD8α+/CD103+DC- and T cell-dependent antitumor activity. These results suggest a new pathway for the activation of Treg involving in tumor-derived HMGB1 and TSLP, and have important implications for incorporating HMGB1 inhibitors into cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- The 3rd Affiliated Hospital of Jianghan University, Wuhan, China
| | - Zuqiang Liu
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ang Li
- Cleveland Clinic, Cole Eye Institute, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Zhaoyang You
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.
- W1154 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Tsuchiya T, Shiraishi K, Nakagawa K, Kim JR, Kanegasaki S. Identification of the active portion of the CCL3 derivative reported to induce antitumor abscopal effect. Clin Transl Radiat Oncol 2018; 10:7-12. [PMID: 29928700 PMCID: PMC6008634 DOI: 10.1016/j.ctro.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/04/2023] Open
Abstract
Injected HSP70 and a partial peptide of a CCL3 variant elicit tumor growth inhibition. The peptide also enhances tumor growth inhibition after local irradiation. The sequence of the peptide corresponds to the beta sheet region of the valiant. Chemotactic-inducing activity and tumor grow inhibition are independent phenomena. The results will help to open the way for therapeutic application of like peptides.
Background and purpose Intravenous administration of a single amino acid-substituted chemokine CCL3 derivative named eMIP elicits the abscopal effect (an effect distal to the target), after local irradiation at a tumor-bearing site. To distinguish the active portion of eMIP, we tested the antitumor activity of chemically synthesized partial peptides of eMIP. Synthetic peptide has various advantages in its clinical application. Material and methods Colon26 adenocarcinoma cells were implanted subcutaneously in the right and left flanks of mice. eMIP, CCL3 or any of synthesized peptides was administered intravenously, either after irradiating the right flank. The effect was evaluated by tumor-growth inhibition. Results Q/C peptide, a synthetic peptide of amino acids 22–51 of eMIP has no chemotaxis-inducing ability but yet enhanced tumor growth inhibition at the non-irradiated sites, recapitulating the effect of eMIP with local irradiation. Co-administration of this peptide and HSP70 also inhibited tumor growth. Conclusions Q/C peptide maps to the eMIP β-sheet: 3 adjacent anti-parallel strands connected by the β-hairpins, is the active portion of eMIP necessary for an immunomodulatory antitumor effect. This experimental reduction furthers our understanding of the underlying mechanism of the abscopal effect. The data will open the way for therapeutic application of like peptides.
Collapse
Affiliation(s)
- Tomoko Tsuchiya
- Research Center for Medical Science, Yeungnam University, Republic of Korea.,Central Lab, Effector Cell Institute Inc., Japan.,College of Medicine, Yeungnam University, Republic of Korea
| | - Kenshiro Shiraishi
- Department of Radiology, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Keiichi Nakagawa
- Department of Radiology, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Jae-Ryong Kim
- Research Center for Medical Science, Yeungnam University, Republic of Korea.,College of Medicine, Yeungnam University, Republic of Korea
| | - Shiro Kanegasaki
- Research Center for Medical Science, Yeungnam University, Republic of Korea.,Central Lab, Effector Cell Institute Inc., Japan.,College of Medicine, Yeungnam University, Republic of Korea
| |
Collapse
|
8
|
Wang H, Mei X, Cao Y, Liu C, Zhao Z, Guo Z, Bi Y, Shen Z, Yuan Y, Guo Y, Song C, Bai L, Wang Y, Yu D. HMGB1/Advanced Glycation End Products (RAGE) does not aggravate inflammation but promote endogenous neural stem cells differentiation in spinal cord injury. Sci Rep 2017; 7:10332. [PMID: 28871209 PMCID: PMC5583351 DOI: 10.1038/s41598-017-10611-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) signaling is involved in a series of cell functions after spinal cord injury (SCI). Our study aimed to elucidate the effects of RAGE signaling on the neuronal recovery after SCI. In vivo, rats were subjected to SCI with or without anti-RAGE antibodies micro-injected into the lesion epicenter. We detected Nestin/RAGE, SOX-2/RAGE and Nestin/MAP-2 after SCI by Western blot or immunofluorescence (IF). We found that neural stem cells (NSCs) co-expressed with RAGE were significantly activated after SCI, while stem cell markers Nestin and SOX-2 were reduced by RAGE blockade. We found that RAGE inhibition reduced nestin-positive NSCs expressing MAP-2, a mature neuron marker. RAGE blockade does not improve neurobehavior Basso, Beattie and Bresnahan (BBB) scores; however, it damaged survival of ventral neurons via Nissl staining. Through in vitro study, we found that recombinant HMGB1 administration does not lead to increased cytokines of TNF-α and IL-1β, while anti-RAGE treatment reduced cytokines of TNF-α and IL-1β induced by LPS via ELISA. Meanwhile, HMGB1 increased MAP-2 expression, which was blocked after anti-RAGE treatment. Hence, HMGB1/RAGE does not exacerbate neuronal inflammation but plays a role in promoting NSCs differentiating into mature neurons in the pathological process of SCI.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Xifan Mei
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China.
| | - Yang Cao
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhanpeng Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yunlong Bi
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhaoliang Shen
- Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou City, PR China
| | - Yajiang Yuan
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yue Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Cangwei Song
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Liangjie Bai
- Department of Orthopedics, China Medical University, Shenyang City, PR China
| | - Yansong Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Deshui Yu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| |
Collapse
|
9
|
Sun G, Yang W, Zhang Y, Zhao M. Esculentoside A ameliorates cecal ligation and puncture-induced acute kidney injury in rats. Exp Anim 2017. [PMID: 28637971 PMCID: PMC5682342 DOI: 10.1538/expanim.16-0102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Esculentoside A (EsA), a saponin isolated from Phytolacca esculenta, can attenuate acute liver and lung injury. However, whether EsA has a protective effect against sepsis-induced acute kidney injury (AKI) has not been reported. In this study, EsA (2.5, 5, or 10 mg/kg) was given to rats with sepsis induced by cecal ligation and puncture (CLP). We found that EsA improved the survival of septic rats in a dose-dependent manner. In addition, EsA lowered the kidney tubular damage score and decreased blood urea nitrogen and creatinine. Moreover, EsA inhibited excessive generation of pro-inflammatory tumor necrosis factor-α, IL-1β, and IL-6 in the serum and downregulated cyclooxygenase-2 and inducible nitric oxide synthase in the renal tissues of septic rats. EsA also suppressed the production of malonaldehyde and the activity of myeloperoxidase in the septic kidney and enhanced the activity of superoxide dismutase and glutathione. The anti-inflammatory and antioxidative effects of a high dose of EsA were comparable to those of dexamethasone. Mechanically, EsA inhibited CLP-induced increases in high-mobility group box 1, Toll-like receptor-4, and myeloid differentiation primary response 88 and nuclear accumulation of nuclear factor kappa B p65 in renal tissues. In vitro, lipopolysaccharide-induced alteration of AKI-related factors in HK-2 cells, which had been evaluated in vivo, was inhibited after EsA administration. Taken together, our study suggests that EsA effectively protects rats against septic AKI caused by CLP.
Collapse
Affiliation(s)
- Guodong Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, P.R. China
| | - Wei Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, P.R. China
| | - Yang Zhang
- Department of Nursing, Central Hospital of Heilongjiang Province Prison, No. 85, Qi Zheng Street, Nangang District, Harbin, Heilongjiang Province 150805, P.R. China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, P.R. China
| |
Collapse
|
10
|
Szatmári T, Kis D, Bogdándi EN, Benedek A, Bright S, Bowler D, Persa E, Kis E, Balogh A, Naszályi LN, Kadhim M, Sáfrány G, Lumniczky K. Extracellular Vesicles Mediate Radiation-Induced Systemic Bystander Signals in the Bone Marrow and Spleen. Front Immunol 2017; 8:347. [PMID: 28396668 PMCID: PMC5366932 DOI: 10.3389/fimmu.2017.00347] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 12/02/2022] Open
Abstract
Radiation-induced bystander effects refer to the induction of biological changes in cells not directly hit by radiation implying that the number of cells affected by radiation is larger than the actual number of irradiated cells. Recent in vitro studies suggest the role of extracellular vesicles (EVs) in mediating radiation-induced bystander signals, but in vivo investigations are still lacking. Here, we report an in vivo study investigating the role of EVs in mediating radiation effects. C57BL/6 mice were total-body irradiated with X-rays (0.1, 0.25, 2 Gy), and 24 h later, EVs were isolated from the bone marrow (BM) and were intravenously injected into unirradiated (so-called bystander) animals. EV-induced systemic effects were compared to radiation effects in the directly irradiated animals. Similar to direct radiation, EVs from irradiated mice induced complex DNA damage in EV-recipient animals, manifested in an increased level of chromosomal aberrations and the activation of the DNA damage response. However, while DNA damage after direct irradiation increased with the dose, EV-induced effects peaked at lower doses. A significantly reduced hematopoietic stem cell pool in the BM as well as CD4+ and CD8+ lymphocyte pool in the spleen was detected in mice injected with EVs isolated from animals irradiated with 2 Gy. These EV-induced alterations were comparable to changes present in the directly irradiated mice. The pool of TLR4-expressing dendritic cells was different in the directly irradiated mice, where it increased after 2 Gy and in the EV-recipient animals, where it strongly decreased in a dose-independent manner. A panel of eight differentially expressed microRNAs (miRNA) was identified in the EVs originating from both low- and high-dose-irradiated mice, with a predicted involvement in pathways related to DNA damage repair, hematopoietic, and immune system regulation, suggesting a direct involvement of these pathways in mediating radiation-induced systemic effects. In conclusion, we proved the role of EVs in transmitting certain radiation effects, identified miRNAs carried by EVs potentially responsible for these effects, and showed that the pattern of changes was often different in the directly irradiated and EV-recipient bystander mice, suggesting different mechanisms.
Collapse
Affiliation(s)
- Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Dávid Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Noémi Bogdándi
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Anett Benedek
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Scott Bright
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Deborah Bowler
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Eszter Persa
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Andrea Balogh
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Lívia N Naszályi
- Research Group for Molecular Biophysics, Hungarian Academy of Sciences, Semmelweis University , Budapest , Hungary
| | - Munira Kadhim
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| |
Collapse
|
11
|
Omics analysis of mouse brain models of human diseases. Gene 2017; 600:90-100. [DOI: 10.1016/j.gene.2016.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023]
|
12
|
Máca J, Burša F, Ševčík P, Sklienka P, Burda M, Holub M. Alarmins and Clinical Outcomes After Major Abdominal Surgery-A Prospective Study. J INVEST SURG 2016; 30:152-161. [PMID: 27689623 DOI: 10.1080/08941939.2016.1231855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Tissue injury causing immune response is an integral part of surgical procedure. Evaluation of the degree of surgical trauma could help to improve postoperative management and determine the clinical outcomes. MATERIALS AND METHODS We analyzed serum levels of alarmins, including S100A5, S100A6, S100A8, S100A9, S100A11, and S100A12; high-mobility group box 1; and heat-shock protein 70, after elective major abdominal surgery (n = 82). Blood samples were collected for three consecutive days after surgery. The goals were to evaluate the relationships among the serum levels of alarmins and selected surgical characteristics and to test potential of alarmins to predict the clinical outcomes. RESULTS Significant, positive correlations were found for high-mobility group box 1 with the length of surgery, blood loss, and intraoperative fluid intake for all three days of blood sampling. The protein S100A8 serum levels showed positive correlations with intensive care unit length of stay, 28-day and in-hospital mortality. The protein S100A12 serum levels had significant, positive correlations with intensive care unit length of stay, 28-day mortality, and in-hospital mortality. We did not find significant differences in alarmin levels between cancer and noncancer subjects. CONCLUSION The high-mobility group box 1 serum levels reflect the degree of surgical injury, whereas proteins S100A8 and S100A12 might be considered good predictors of major abdominal surgery morbidity and mortality.
Collapse
Affiliation(s)
- Jan Máca
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Filip Burša
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Pavel Ševčík
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Peter Sklienka
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Michal Burda
- c University of Ostrava , Institute for Research and Applications of Fuzzy Modeling , Ostrava , Czech Republic
| | - Michal Holub
- d Univerzita Karlova v Praze , First Faculty Of Medicine , Praha , Czech Republic.,e Military Hospital of Prague , Prague , Czech Republic
| |
Collapse
|
13
|
Akbarzadeh A, Leder EH. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:89-97. [DOI: 10.1016/j.cbpa.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
|
14
|
Weber DJ, Allette YM, Wilkes DS, White FA. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction. Antioxid Redox Signal 2015; 23:1316-28. [PMID: 25751601 PMCID: PMC4685484 DOI: 10.1089/ars.2015.6299] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼ 20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. RECENT ADVANCES Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). CRITICAL ISSUES Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. FUTURE DIRECTIONS Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes.
Collapse
Affiliation(s)
- Daniel J Weber
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yohance M Allette
- 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - David S Wilkes
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,4 Department of Medicine, Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Fletcher A White
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,5 Department of Anesthesia, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
15
|
Planesse C, Nativel B, Iwema T, Gasque P, Robert-Da Silva C, Viranaïcken W. Recombinant human HSP60 produced in ClearColi™ BL21(DE3) does not activate the NFκB pathway. Cytokine 2015; 73:190-5. [PMID: 25771243 DOI: 10.1016/j.cyto.2015.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 12/29/2022]
Abstract
HSP60, an intracellular molecular chaperone has been largely described as an alarmin or damage-associated molecular pattern when released outside the cell. HSP60 has been reported as a possible ligand of TLR2 or TLR4 inducing NFκB-dependant signaling pathway leading to cytokine secretion. However, recent publications suggested that HSP60 could not act as an activator of TLR4 by itself. The observed effect could be due to the presence of endotoxin in HSP60 preparation especially LPS. In order to clarify the controversy, we produced recombinant human HSP60 in two different strains of Escherichia coli, standard strain for protein overproduction, BL21(DE3), and the new ClearColi BL21(DE3) strain which lacks LPS-activity through TLR4. Undoubtedly, we have shown that recombinant HSP60 by itself was not able to induce NFκB-dependant signaling pathway in a model of THP1 monocyte cell line. Our data suggest that HSP60 needs either pathogen-associated molecules, specific post-translational modification and/or other host factors to activate immune cells via NFκB activation.
Collapse
Affiliation(s)
- Cynthia Planesse
- GEICO, EA4516, Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, Université de La Réunion et plateforme CYROI, 15, Avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, Reunion
| | - Brice Nativel
- GEICO, EA4516, Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, Université de La Réunion et plateforme CYROI, 15, Avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, Reunion; GRI, EA4517, Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion et plateforme CYROI, 15, Avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, Reunion
| | - Thomas Iwema
- GRI, EA4517, Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion et plateforme CYROI, 15, Avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, Reunion
| | - Philippe Gasque
- GRI, EA4517, Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion et plateforme CYROI, 15, Avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, Reunion
| | - Christine Robert-Da Silva
- GEICO, EA4516, Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, Université de La Réunion et plateforme CYROI, 15, Avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, Reunion
| | - Wildriss Viranaïcken
- GRI, EA4517, Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion et plateforme CYROI, 15, Avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, Reunion.
| |
Collapse
|
16
|
Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci 2015; 16:5028-46. [PMID: 25751721 PMCID: PMC4394463 DOI: 10.3390/ijms16035028] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is a well-recognized consequence of subarachnoid hemorrhage (SAH), and may be responsible for important complications of SAH. Signaling by Toll-like receptor 4 (TLR4)-mediated nuclear factor κB (NFκB) in microglia plays a critical role in neuronal damage after SAH. Three molecules derived from erythrocyte breakdown have been postulated to be endogenous TLR4 ligands: methemoglobin (metHgb), heme and hemin. However, poor water solubility of heme and hemin, and lipopolysaccharide (LPS) contamination have confounded our understanding of these molecules as endogenous TLR4 ligands. We used a 5-step process to obtain highly purified LPS-free metHgb, as confirmed by Fourier Transform Ion Cyclotron Resonance mass spectrometry and by the Limulus amebocyte lysate assay. Using this preparation, we show that metHgb is a TLR4 ligand at physiologically relevant concentrations. metHgb caused time- and dose-dependent secretion of the proinflammatory cytokine, tumor necrosis factor α (TNFα), from microglial and macrophage cell lines, with secretion inhibited by siRNA directed against TLR4, by the TLR4-specific inhibitors, Rs-LPS and TAK-242, and by anti-CD14 antibodies. Injection of purified LPS-free metHgb into the rat subarachnoid space induced microglial activation and TNFα upregulation. Together, our findings support the hypothesis that, following SAH, metHgb in the subarachnoid space can promote widespread TLR4-mediated neuroinflammation.
Collapse
|
17
|
Tumurkhuu G, Dagvadorj J, Jones HD, Chen S, Shimada K, Crother TR, Arditi M. Alternatively spliced myeloid differentiation protein-2 inhibits TLR4-mediated lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1686-94. [PMID: 25576596 PMCID: PMC4323992 DOI: 10.4049/jimmunol.1402123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We previously identified a novel alternatively spliced isoform of human myeloid differentiation protein-2 (MD-2s) that competitively inhibits binding of MD-2 to TLR4 in vitro. In this study, we investigated the protective role of MD-2s in LPS-induced acute lung injury by delivering intratracheally an adenovirus construct that expressed MD-2s (Ad-MD-2s). After adenovirus-mediated gene transfer, MD-2s was strongly expressed in lung epithelial cells and readily detected in bronchoalveolar lavage fluid. Compared to adenovirus serotype 5 containing an empty vector lacking a transgene control mice, Ad-MD-2s delivery resulted in significantly less LPS-induced inflammation in the lungs, including less protein leakage, cell recruitment, and expression of proinflammatory cytokines and chemokines, such as IL-6, keratinocyte chemoattractant, and MIP-2. Bronchoalveolar lavage fluid from Ad-MD-2s mice transferred into lungs of naive mice before intratracheal LPS challenge diminished proinflammatory cytokine levels. As house dust mite (HDM) sensitization is dependent on TLR4 and HDM Der p 2, a structural homolog of MD-2, we also investigated the effect of MD-2s on HDM-induced allergic airway inflammation. Ad-MD-2s given before HDM sensitization significantly inhibited subsequent allergic airway inflammation after HDM challenge, including reductions in eosinophils, goblet cell hyperplasia, and IL-5 levels. Our study indicates that the alternatively spliced short isoform of human MD-2 could be a potential therapeutic candidate to treat human diseases induced or exacerbated by TLR4 signaling, such as Gram-negative bacterial endotoxin-induced lung injury and HDM-triggered allergic lung inflammation.
Collapse
Affiliation(s)
- Gantsetseg Tumurkhuu
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Jargalsaikhan Dagvadorj
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Heather D Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shuang Chen
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Timothy R Crother
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| |
Collapse
|
18
|
Norouzitallab P, Baruah K, Muthappa DM, Bossier P. Non-lethal heat shock induces HSP70 and HMGB1 protein production sequentially to protect Artemia franciscana against Vibrio campbellii. FISH & SHELLFISH IMMUNOLOGY 2015; 42:395-399. [PMID: 25463291 DOI: 10.1016/j.fsi.2014.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Parisa Norouzitallab
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium
| | - Kartik Baruah
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium
| | - Dechamma M Muthappa
- Department of Fisheries Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, Karnataka, India
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium.
| |
Collapse
|
19
|
Anti-HMGB1 monoclonal antibody ameliorates immunosuppression after peripheral tissue trauma: attenuated T-lymphocyte response and increased splenic CD11b (+) Gr-1 (+) myeloid-derived suppressor cells require HMGB1. Mediators Inflamm 2015; 2015:458626. [PMID: 25709155 PMCID: PMC4325468 DOI: 10.1155/2015/458626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/10/2014] [Indexed: 01/13/2023] Open
Abstract
Although tissue-derived high mobility group box 1 (HMGB1) is involved in many aspects of inflammation and tissue injury after trauma, its role in trauma-induced immune suppression remains elusive. Using an established mouse model of peripheral tissue trauma, which includes soft tissue and fracture components, we report here that treatment with anti-HMGB1 monoclonal antibody ameliorated the trauma-induced attenuated T-cell responses and accumulation of CD11b+Gr-1+ myeloid-derived suppressor cells in the spleens seen two days after injury. Our data suggest that HMGB1 released after tissue trauma contributes to signaling pathways that lead to attenuation of T-lymphocyte responses and enhancement of myeloid-derived suppressor cell expansion.
Collapse
|
20
|
Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X, Loike JD, Schwabe RF. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest 2014; 125:539-50. [PMID: 25562324 DOI: 10.1172/jci76887] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022] Open
Abstract
In contrast to microbially triggered inflammation, mechanisms promoting sterile inflammation remain poorly understood. Damage-associated molecular patterns (DAMPs) are considered key inducers of sterile inflammation following cell death, but the relative contribution of specific DAMPs, including high-mobility group box 1 (HMGB1), is ill defined. Due to the postnatal lethality of Hmgb1-knockout mice, the role of HMGB1 in sterile inflammation and disease processes in vivo remains controversial. Here, using conditional ablation strategies, we have demonstrated that epithelial, but not bone marrow-derived, HMGB1 is required for sterile inflammation following injury. Epithelial HMGB1, through its receptor RAGE, triggered recruitment of neutrophils, but not macrophages, toward necrosis. In clinically relevant models of necrosis, HMGB1/RAGE-induced neutrophil recruitment mediated subsequent amplification of injury, depending on the presence of neutrophil elastase. Notably, hepatocyte-specific HMGB1 ablation resulted in 100% survival following lethal acetaminophen intoxication. In contrast to necrosis, HMGB1 ablation did not alter inflammation or mortality in response to TNF- or FAS-mediated apoptosis. In LPS-induced shock, in which HMGB1 was considered a key mediator, HMGB1 ablation did not ameliorate inflammation or lethality, despite efficient reduction of HMGB1 serum levels. Our study establishes HMGB1 as a bona fide and targetable DAMP that selectively triggers a neutrophil-mediated injury amplification loop in the setting of necrosis.
Collapse
|
21
|
Kao RL, Xu X, Xenocostas A, Parry N, Mele T, Martin CM, Rui T. Induction of acute lung inflammation in mice with hemorrhagic shock and resuscitation: role of HMGB1. JOURNAL OF INFLAMMATION-LONDON 2014; 11:30. [PMID: 25309129 PMCID: PMC4193406 DOI: 10.1186/s12950-014-0030-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/29/2014] [Indexed: 01/08/2023]
Abstract
Background Hemorrhagic shock and resuscitation (HS/R) can induce multiple organ failure which is associated with high mortality. The lung is an organ commonly affected by the HS/R. Acute lung injury is a major cause of dysfunction in other organ systems. The objective of this study is to test the hypothesis that HS/R causes increased gut permeability which results in induction of high mobility group box1 protein (HMGB1) and further leads to the development of acute lung inflammation. Materials and methods A mouse model of HS/R was employed in this study. Gut permeability and bacterial translocation were assessed with circulating FD4 and lipopolysaccharide (LPS). Circulating HMGB1 was determined with ELISA. Acute lung inflammation (ALI) was determined with lung myeloperoxidase (MPO) activity and pulmonary protein leakage. Results HS/R induced intestinal barrier dysfunction as evidenced by increased circulating FD4 and LPS at 30 min and 2 hrs after resuscitation, respectively. In addition, circulating HMGB1 levels were increased in mice with HS/R as compared with sham animals (p < 0.05). HS/R resulted in ALI (increased lung MPO activity and pulmonary protein leakage in mice with HS/R compared with sham mice, p < 0.05). Inhibition of HMGB1 (A-box and TLR4−/−) attenuated the ALI in mice with HS/R. However, inhibition of HMGB1 did not show protective effect on gut injury in early phase of HS/R in mice. Conclusions Our results suggest that induction of HMGB1 is important in hemorrhagic shock and resuscitation-induced acute lung inflammation.
Collapse
Affiliation(s)
- Raymond Lc Kao
- Department of National Defense, Canadian Forces Health Services, Ottawa, ON Canada ; Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada ; Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| | - Xuemei Xu
- Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Neil Parry
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Tina Mele
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Claudio M Martin
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada ; Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| | - Tao Rui
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada ; Center for Critical Illness Research, Lawson Health Research Institute, 800 Commissioner's Rd E, N6A 5 W9 London, ON Canada
| |
Collapse
|
22
|
Kanegasaki S, Matsushima K, Shiraishi K, Nakagawa K, Tsuchiya T. Macrophage inflammatory protein derivative ECI301 enhances the alarmin-associated abscopal benefits of tumor radiotherapy. Cancer Res 2014; 74:5070-8. [PMID: 25038226 DOI: 10.1158/0008-5472.can-14-0551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy can produce antitumor benefits beyond the local site of irradiation, an immune-based phenomenon known as the abscopal effect, but the mechanisms underlying these benefits are poorly understood. Preclinical studies of ECI301, a mutant derivative of macrophage inhibitory protein-1α, have shown that its administration can improve the antitumor effects of radiotherapy in a manner associated with a tumor-independent abscopal effect. In this article, we report that i.v. administration of ECI301 after intratumoral injection of tumor cell lysates can inhibit tumor growth, not only at the site of injection but also at nontreated sites. Effects of the tumor lysate were further recapitulated by intratumoral injection [corrected] of the alarmins HSP70 or HMGB1, but not HSP60, and i.v. administration [corrected] of ECI301 + HSP70 were sufficient to inhibit tumor growth. Although i.v. administration [corrected] of ECI301 + HMGB1 did not inhibit tumor growth, we found that administration of a neutralizing HMGB1 antibody neutralized the cooperative effects of ECI301 on tumor irradiation. Moreover, mice genetically deficient in TLR4, an immune pattern receptor that binds alarmins, including HMGB1 and HSP70, did not exhibit antitumor responses to irradiation with ECI301 administration. Although ECI301 was cleared rapidly from peripheral blood, it was found to bind avidly to HSP70 and HMGB1 in vitro. Our results suggest a model in which sequential release of the alarmins HSP70 and HMGB1 from a tumor by irradiation may trap circulating ECI301, thereby licensing or restoring tumor immunosurveillance capabilities of natural killer cells or CD4(+) and CD8(+) T cells against tumor cells that may evade irradiation. Cancer Res; 74(18); 5070-8. ©2014 AACR.
Collapse
Affiliation(s)
- Shiro Kanegasaki
- Central Laboratory, Effector Cell Institute (ECI) Inc., Meguro-ku, Tokyo, Japan. YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan, Gyongbuk, Republic of Korea
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenshiro Shiraishi
- Department of Radiology, University Hospital, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keiichi Nakagawa
- Department of Radiology, University Hospital, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Tsuchiya
- Central Laboratory, Effector Cell Institute (ECI) Inc., Meguro-ku, Tokyo, Japan. YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan, Gyongbuk, Republic of Korea.
| |
Collapse
|
23
|
Phelps DS, Umstead TM, Floros J. Sex differences in the acute in vivo effects of different human SP-A variants on the mouse alveolar macrophage proteome. J Proteomics 2014; 108:427-44. [PMID: 24954098 DOI: 10.1016/j.jprot.2014.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/28/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Surfactant protein A (SP-A) is involved in lung innate immunity. Humans have two SP-A genes, SFTPA1 and SFTPA2, each with several variants. We examined the in vivo effects of treatment with specific SP-A variants on the alveolar macrophage (AM) proteome from SP-A knockout (KO) mice. KO mice received either SP-A1, SP-A2, or both. AM were collected and their proteomes examined with 2D-DIGE. We identified 90 proteins and categorized them as related to actin/cytoskeleton, oxidative stress, protease balance/chaperones, regulation of inflammation, and regulatory/developmental processes. SP-A1 and SP-A2 had different effects on the AM proteome and these effects differed between sexes. In males more changes occurred in the oxidative stress, protease/chaperones, and inflammation groups with SP-A2 treatment than with SP-A1. In females most SP-A1-induced changes were in the actin/cytoskeletal and oxidative stress groups. We conclude that after acute SP-A1 and SP-A2 treatment, sex-specific differences were observed in the AM proteomes from KO mice, and that these sex differences differ in response to SP-A1 and SP-A2. Females are more responsive to SP-A1, whereas the gene-specific differences in males were minimal. These observations not only demonstrate the therapeutic potential of exogenous SP-A, but also illustrate sex- and gene-specific differences in the response to it. BIOLOGICAL SIGNIFICANCE This study shows that changes occur in the alveolar macrophage proteome in response to a single in vivo treatment with exogenous SP-A1 and/or SP-A2. We demonstrate that SP-A1 and SP-A2 have different effects on the AM proteome and that sex differences exist in the response to each SP-A1 and SP-A2 gene product. This study illustrates the potential of exogenous SP-A1 and SP-A2 treatment for the manipulation of macrophage function and indicates that the specific SP-A variant used for treatment may vary with sex and with the cellular functions being modified. The observed changes may contribute to sex differences in the incidence of some lung diseases.
Collapse
Affiliation(s)
- David S Phelps
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Joanna Floros
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
24
|
Functional annotation of proteomic data from chicken heterophils and macrophages induced by carbon nanotube exposure. Int J Mol Sci 2014; 15:8372-92. [PMID: 24823882 PMCID: PMC4057737 DOI: 10.3390/ijms15058372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 01/28/2023] Open
Abstract
With the expanding applications of carbon nanotubes (CNT) in biomedicine and agriculture, questions about the toxicity and biocompatibility of CNT in humans and domestic animals are becoming matters of serious concern. This study used proteomic methods to profile gene expression in chicken macrophages and heterophils in response to CNT exposure. Two-dimensional gel electrophoresis identified 12 proteins in macrophages and 15 in heterophils, with differential expression patterns in response to CNT co-incubation (0, 1, 10, and 100 μg/mL of CNT for 6 h) (p < 0.05). Gene ontology analysis showed that most of the differentially expressed proteins are associated with protein interactions, cellular metabolic processes, and cell mobility, suggesting activation of innate immune functions. Western blot analysis with heat shock protein 70, high mobility group protein, and peptidylprolyl isomerase A confirmed the alterations of the profiled proteins. The functional annotations were further confirmed by effective cell migration, promoted interleukin-1β secretion, and more cell death in both macrophages and heterophils exposed to CNT (p < 0.05). In conclusion, results of this study suggest that CNT exposure affects protein expression, leading to activation of macrophages and heterophils, resulting in altered cytoskeleton remodeling, cell migration, and cytokine production, and thereby mediates tissue immune responses.
Collapse
|
25
|
Jaso-Friedmann L, Leary JH, Camus AC, Evans DL. The teleost acute-phase inflammatory response and caspase activation by a novel alarmin-like ligand. J Leukoc Biol 2014; 95:785-796. [PMID: 24399841 DOI: 10.1189/jlb.0313171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/23/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022] Open
Abstract
This study tested the hypothesis that NCAMP-1 has alarmin-like properties and activates the caspase-1-binding site in cells of the teleost bone marrow (equivalent). In mammals, alarmins have been studied extensively; however, in teleosts, little is known about their identity and functions. Similar to alarmins, NCAMP-1 has a broad spectrum of bacteriolytic activity. NCAMP-1 is constitutively present in CF serum, and levels were increased following infection with Edwardsiella ictaluri Binding to AK cells was determined with rNCAMP-1 and an anti-His-tag antibody. In vitro treatment of AK (bone marrow equivalent) or spleen cells with rNCAMP-1 increased the IL-1β message three- to fivefold at 3 h, 6 h, and 9 h post-treatment. The association of NCAMP-1 with the activities of alarmin ATP and the acute inflammatory response was demonstrated by NCAMP-1-induced P2X7R pore opening and YO-PRO-1 cellular influx. The association of NCAMP-1 binding with inflammasome activation was demonstrated by NCAMP-1 activation of the caspase-1-binding site for tetrapeptide Z-YVAD-FMK. In competition assays, this tetrapeptide competitively inhibited subsequent binding by the pan-caspase substrate tripeptide FAM-VAD-FMK. Lymphocyte-like cells from the spleen were 16%+, and epithelial cells were also positive for NCAMP-1. IHC staining and confocal microscopy confirmed the cytosolic existence of NCAMP-1 in lymphoreticular tissue and IL-1β in AK cells. CF T cell lines G14D and 28S.3 expressed NCAMP-1 in the cytosol and in storage granules. These studies strongly suggested that NCAMP-1 is an alarmin-like ligand with similar but distinct activities to those of ATP and HMGB-1.
Collapse
Affiliation(s)
| | | | - A C Camus
- Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
26
|
Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediators Inflamm 2013; 2013:174168. [PMID: 24371373 PMCID: PMC3859028 DOI: 10.1155/2013/174168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 11/17/2022] Open
Abstract
Genetic or pharmacological ablation of toll-like receptor 2 (TLR2) protects against myocardial ischemia/reperfusion injury (MI/R). However, the endogenous ligand responsible for TLR2 activation has not yet been detected. The objective of this study was to identify HMGB1 as an activator of TLR2 signalling during MI/R. C57BL/6 wild-type (WT) or TLR2(-/-)-mice were injected with vehicle, HMGB1, or HMGB1 BoxA one hour before myocardial ischemia (30 min) and reperfusion (24 hrs). Infarct size, cardiac troponin T, leukocyte infiltration, HMGB1 release, TLR4-, TLR9-, and RAGE-expression were quantified. HMGB1 plasma levels were measured in patients undergoing coronary artery bypass graft (CABG) surgery. HMGB1 antagonist BoxA reduced cardiomyocyte necrosis during MI/R in WT mice, accompanied by reduced leukocyte infiltration. Injection of HMGB1 did, however, not increase infarct size in WT animals. In TLR2(-/-)-hearts, neither BoxA nor HMGB1 affected infarct size. No differences in RAGE and TLR9 expression could be detected, while TLR2(-/-)-mice display increased TLR4 and HMGB1 expression. Plasma levels of HMGB1 were increased MI/R in TLR2(-/-)-mice after CABG surgery in patients carrying a TLR2 polymorphism (Arg753Gln). We here provide evidence that absence of TLR2 signalling abrogates infarct-sparing effects of HMGB1 blockade.
Collapse
|
27
|
Dubaniewicz A. Microbial and human heat shock proteins as 'danger signals' in sarcoidosis. Hum Immunol 2013; 74:1550-8. [PMID: 23993988 DOI: 10.1016/j.humimm.2013.08.275] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
In the light of the Matzinger's model of immune response, human heat shock proteins (HSPs) as main 'danger signals' (tissue damage-associated molecular patterns-DAMPs) or/and microbial HSPs as pathogen-associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRR), may induce sarcoid granuloma by both infectious and non-infectious factors in genetically different predisposed host. Regarding infectious causes of sarcoid models, low-virulence strains of, e.g. mycobacteria and propionibacteria recognized through changed PRR and persisting in altered host phagocytes, generate increased release of both human and microbial HSPs with their molecular and functional homology. High chronic spread of human and microbial HSPs altering cytokines, co-stimulatory molecules, and Tregs expression, apoptosis, oxidative stress, induces the autoimmunity, considered in sarcoidosis. Regarding non-infectious causes of sarcoidosis, human HSPs may be released at high levels during chronic low-grade exposure to misfolding amyloid precursor protein in stressed cells, phagocyted metal fumes, pigments with/without aluminum in tattoos, and due to heat shock in firefighters. Therefore, human HSPs as DAMPs and/or microbial HSPs as PAMPs produced as a result of non-infectious and infectious factors may induce different models of sarcoidosis, depending on the genetic background of the host. The number/expression of PRRs/ligands may influence the occurrence of sarcoidosis in particular organs.
Collapse
Affiliation(s)
- Anna Dubaniewicz
- Department of Pneumology, Medical University of Gdansk, Debinki 7 St., 80-211 Gdansk, Poland.
| |
Collapse
|
28
|
Hwang CS, Liu GT, Chang MDT, Liao IL, Chang HT. Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol Dis 2013; 58:13-8. [PMID: 23639787 DOI: 10.1016/j.nbd.2013.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complicate and progressive onset devastating neurodegenerative disease. Its pathogenic mechanisms remain unclear and there is no specific test for diagnosis. For years, researchers have been vigorously searching for biomarkers associated with ALS to assist clinical diagnosis and monitor disease progression. Some specific inflammatory processes in the central nervous system have been reported to participate in the pathogenesis of ALS. As high mobility group box 1 (HMGB1) is elevated in spinal cord tissues of patients with ALS, we hypothesized, therefore, that serum autoantibody against HMGB1 (HMGB1 autoAb) might represent an effective biomarker for ALS. Patients with ALS, Alzheimer's disease, Parkinson's disease, and healthy age-matched control subjects were recruited for this study. ALS group consisted of 61 subjects, the other groups each consisted of forty subjects. We generated a polyclonal antibody against HMGB1 and developed an ELISA-based methodology for screening serum samples of these subjects. All samples were coded for masked comparison. For statistic analyses, two-tailed Student's t-test, ANOVA, Bonferroni multiple comparison test, Spearman correlation, and receiver operating characteristic curve were applied. We discovered that the level of HMGB1 autoAb significantly increased in patients with ALS as compared with that of patients with Alzheimer's disease, Parkinson's disease, and healthy control subjects. The differences between all groups were robust even at the early stages of ALS progression. More importantly, higher HMGB1 autoAb level was found in more severe disease status with significant correlation. Our study demonstrates that serum HMGB1 autoAb may serve as a biomarker for the diagnosis of ALS and can be used to monitor disease progression.
Collapse
Affiliation(s)
- Chi-Shin Hwang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
29
|
Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol 2013. [PMID: 23199319 DOI: 10.1111/j.1365-2249.2012.04627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucosal administration of an antigen eliciting bystander suppression at the site of inflammation results in effective antigen-specific immunotherapy for autoimmune diseases. Heat shock proteins are bystander antigens that are effective in peptide-specific immunotherapy in both experimental and human autoimmune disease. The efficacy of preventive peptide immunotherapy is increased by enhancing peptide-specific immune responses with proinflammatory agents. Combining peptide-specific immunotherapy with general suppression of inflammation may improve its therapeutic effect.
Collapse
Affiliation(s)
- E Zonneveld-Huijssoon
- Department of Pediatric Immunology, Centre for Cellular and Molecular Intervention, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
30
|
Yamamoto Y, Yamamoto H. RAGE-Mediated Inflammation, Type 2 Diabetes, and Diabetic Vascular Complication. Front Endocrinol (Lausanne) 2013; 4:105. [PMID: 23970880 PMCID: PMC3748367 DOI: 10.3389/fendo.2013.00105] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with inflammation and type 2 diabetes. Innate immune system comprised of cellular and molecular components plays an important role in the inflammatory reactions. Immune cells like macrophages and their cell surface pattern-recognition receptors (PRRs) are representative for innate immunity promoting inflammatory reactions. The receptor for advanced glycation end-products (RAGE) is a member of PRRs and a proinflammatory molecular device that mediates danger signals to the body. The expression of RAGE is observed in adipocytes as well as immune cells, endothelial cells, and pancreatic β cells under certain conditions. It has been reported that RAGE is implicated in adipocyte hypertrophy and insulin resistance. RAGE-mediated regulation of adiposity and inflammation may attribute to type 2 diabetes and diabetic vascular complications.
Collapse
Affiliation(s)
- Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- *Correspondence: Yasuhiko Yamamoto, Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa 920-8640, Japan e-mail:
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
31
|
Yanai H, Ban T, Taniguchi T. High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol 2012; 33:633-40. [PMID: 23116548 DOI: 10.1016/j.it.2012.10.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022]
Abstract
Recent discoveries in signal-transducing innate receptors have illustrated the close link between innate and adaptive immunity. These advances revisit a fundamental issue of immunology, the recognition of self and non-self molecules by the immune system. Indeed, mounting evidence has been provided that the sensing of self-derived molecules by the immune system is important for health and disease. The high-mobility group box (HMGB) proteins, particularly HMGB1, are self-derived immune activators that have multiple functions in the regulation of immunity and inflammation. In this review, we summarize current knowledge of the function of HMGB proteins, as a ligand that can evoke inflammatory responses, and as a sensor for nucleic-acid-mediated immune responses.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | | | | |
Collapse
|
32
|
Cox KH, Cox ME, Woo-Rasberry V, Hasty DL. Pathways involved in the synergistic activation of macrophages by lipoteichoic acid and hemoglobin. PLoS One 2012; 7:e47333. [PMID: 23071790 PMCID: PMC3468568 DOI: 10.1371/journal.pone.0047333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
Lipoteichoic acid (LTA) is a Gram-positive cell surface molecule that is found in both a cell-bound form and cell-free form in the host during an infection. Hemoglobin (Hb) can synergize with LTA, a TLR2 ligand, to potently activate macrophage innate immune responses in a TLR2- and TLR4-dependent way. At low levels of LTA, the presence of Hb can result in a 200-fold increase in the secretion of IL-6 following macrophage activation. Six hours after activation, the macrophage genes that are most highly up-regulated by LTA plus Hb activation compared to LTA alone are cytokines, chemokines, receptors and interferon-regulated genes. Several of these genes exhibit a unique TLR4-dependent increase in mRNA levels that continued to rise more than eight hours after stimulation. This prolonged increase in mRNA levels could be the result of an extended period of NF-κB nuclear localization and the concurrent absence of the NF-κB inhibitor, IκBα, after stimulation with LTA plus Hb. Dynasore inhibition experiments indicate that an endocytosis-dependent pathway is required for the TLR4-dependent up-regulation of IL-6 secretion following activation with LTA plus Hb. In addition, interferon-β mRNA is present after activation with LTA plus Hb, suggesting that the TRIF/TRAM-dependent pathway may be involved. Hb alone can elicit the TLR4-dependent secretion of TNF-α from macrophages, so it may be the TLR4 ligand. Hb also led to secretion of high mobility group box 1 protein (HMGB1), which synergized with LTA to increase secretion of IL-6. The activation of both the TLR2 and TLR4 pathways by LTA plus Hb leads to an enhanced innate immune response.
Collapse
Affiliation(s)
- Kathleen H. Cox
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michelle E. Cox
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Virginia Woo-Rasberry
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David L. Hasty
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lewis EC. Expanding the clinical indications for α(1)-antitrypsin therapy. Mol Med 2012; 18:957-70. [PMID: 22634722 DOI: 10.2119/molmed.2011.00196] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 05/16/2012] [Indexed: 12/13/2022] Open
Abstract
α(1)-Antitrypsin (AAT) is a 52-kDa circulating serine protease inhibitor. Production of AAT by the liver maintains 0.9-1.75 mg/mL circulating levels. During acute-phase responses, circulating AAT levels increase more than fourfold. In individuals with one of several inherited mutations in AAT, low circulating levels increase the risk for lung, liver and pancreatic destructive diseases, particularly emphysema. These individuals are treated with lifelong weekly infusions of human plasma-derived AAT. An increasing amount of evidence appears to suggest that AAT possesses not only the ability to inhibit serine proteases, such as elastase and proteinase-3 (PR-3), but also to exert antiinflammatory and tissue-protective effects independent of protease inhibition. AAT modifies dendritic cell maturation and promotes T regulatory cell differentiation, induces interleukin (IL)-1 receptor antagonist and IL-10 release, protects various cell types from cell death, inhibits caspases-1 and -3 activity and inhibits IL-1 production and activity. Importantly, unlike classic immunosuppressants, AAT allows undeterred isolated T-lymphocyte responses. On the basis of preclinical and clinical studies, AAT therapy for nondeficient individuals may interfere with disease progression in type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, cystic fibrosis, transplant rejection, graft versus host disease and multiple sclerosis. AAT also appears to be antibacterial and an inhibitor of viral infections, such as influenza and human immunodeficiency virus (HIV), and is currently evaluated in clinical trials for type 1 diabetes, cystic fibrosis and graft versus host disease. Thus, AAT therapy appears to have advanced from replacement therapy, to a safe and potential treatment for a broad spectrum of inflammatory and immune-mediated diseases.
Collapse
Affiliation(s)
- Eli C Lewis
- Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
34
|
Huang LF, Yao YM, Li JF, Zhang SW, Li WX, Dong N, Yu Y, Sheng ZY. The effect of Astragaloside IV on immune function of regulatory T cell mediated by high mobility group box 1 protein in vitro. Fitoterapia 2012; 83:1514-22. [PMID: 22981502 DOI: 10.1016/j.fitote.2012.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 01/27/2023]
Abstract
High mobility group box 1 protein (HMGB1), a potent pro-inflammatory cytokine, contributes to the pathogenesis of diverse inflammatory and infectious disorders. Some studies have illustrated the potential effect of HMGB1 on regulatory T cells (Tregs). Astragaloside IV (AST IV) isolated from a Chinese herb, Astragalus mongholicus, is known to have a variety of immunomodulatory activities. However, it is not yet clear whether AST IV possesses potential regulatory effect on the pro-inflammatory ability of HMGB1 with subsequent activation of Tregs. This study was carried out to investigate the antagonistic effects of different doses of AST IV on the immune function of Tregs mediated by HMGB1 in vitro. Tregs isolated from the spleens of mice were co-cultured with HMGB1 and/or AST IV. Cell phenotypes of Tregs were analyzed, and the contents of various cytokines in the cell supernatants as a result of co-culture and the proliferation of CD4(+)CD25(-) T cells were determined. Results showed that HMGB1 stimulation resulted in significantly down-regulation of expressions of Tregs cell phenotypes. However, AST IV can rival the suppressing effect of HMGB1 on immune function of Tregs with a dose-dependent in vitro. These results indicate that AST IV has the potential therapeutic action on inflammation augmented by HMGB1.
Collapse
Affiliation(s)
- Li-feng Huang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Phelps DS, Umstead TM, Floros J. Sex differences in the response of the alveolar macrophage proteome to treatment with exogenous surfactant protein-A. Proteome Sci 2012; 10:44. [PMID: 22824420 PMCID: PMC3570446 DOI: 10.1186/1477-5956-10-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/29/2012] [Indexed: 01/12/2023] Open
Abstract
Background Male wild type (WT) C57BL/6 mice are less capable of clearing bacteria and surviving from bacterial pneumonia than females. However, if an oxidative stress (acute ozone exposure) occurs before infection, the advantage shifts to males who then survive at higher rates than females. We have previously demonstrated that survival in surfactant protein-A (SP-A) knockout (KO) mice compared to WT was significantly reduced. Because the alveolar macrophage (AM) is pivotal in host defense we hypothesized that SP-A and circulating sex hormones are responsible for these sex differences. We used 2D-DIGE to examine the relationship of sex and SP-A on the AM proteome. The role of SP-A was investigated by treating SP-A KO mice with exogenous SP-A for 6 and 18 hr and studying its effects on the AM proteome. Results We found: 1) less variance between KO males and females than between the WT counterparts by principal component analysis, indicating that SP-A plays a role in sex differences; 2) fewer changes in females when the total numbers of significantly changing protein spots or identified whole proteins in WT or 18 hr SP-A-treated males or females were compared to their respective KO groups; 3) more proteins with functions related to chaperones or protease balance and Nrf2-regulated proteins changed in response to SP-A in females than in males; and 4) the overall pattern of SP-A induced changes in actin-related proteins were similar in both sexes, although males had more significant changes. Conclusions Although there seems to be an interaction between sex and the effect of SP-A, it is unclear what the responsible mechanisms are. However, we found that several of the proteins that were expressed at significantly higher levels in females than in males in WT and/or in KO mice are known to interact with the estrogen receptor and may thus play a role in the SP-A/sex interaction. These include major vault protein, chaperonin subunit 2 (beta) (CCT2), and Rho GDP alpha dissociation inhibitor. We conclude that sex differences exist in the proteome of AM derived from male and female mice and that SP-A contributes to these sex differences.
Collapse
Affiliation(s)
- David S Phelps
- Center for Host defense, Inflammation, and Lung Disease(CHILD) Research and Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | | | | |
Collapse
|
36
|
Andersen BM, Ohlfest JR. Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett 2012; 325:155-64. [PMID: 22809568 DOI: 10.1016/j.canlet.2012.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/07/2012] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy has been attempted for more than a century, and investment has intensified in the last 20 years. The complexity of the immune system is exemplified by the myriad of immunotherapeutic approaches under investigation. While anti-tumor immunity has been achieved experimentally with multiple effector cells and molecules, particular promise is shown for harnessing the CD8 T cell response. Tumor cell-based vaccines have been employed in hundreds of clinical trials to date and offer several advantages over subunit and peptide vaccines. However, tumor cell-based vaccines, often aimed at cross priming tumor-reactive CD8 T cells, have shown modest success in clinical trials. Here we review the mechanisms of cross priming and discuss strategies to increase the efficacy of tumor cell-based vaccines. A synthesis of recent findings on tissue culture conditions, cell death, and dendritic cell activation reveals promising new avenues for clinical investigation.
Collapse
Affiliation(s)
- Brian M Andersen
- Department of Pediatrics, University of Minnesota, Minneapolis, 55455, United States
| | | |
Collapse
|
37
|
Pugin J. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care 2012; 2:27. [PMID: 22788849 PMCID: PMC3488542 DOI: 10.1186/2110-5820-2-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/15/2012] [Indexed: 01/26/2023] Open
Abstract
Systemic inflammation is very prevalent among critically ill patients, particularly those with extensive tissue injury. Although downstream mediators (cytokines) and effector cells (phagocytes) have been identified, proximal mediators originating from injured tissues remained elusive. Alarmins (“danger signals”) released by necrotic/injured cells have been identified recently and certainly play a role in triggering local and systemic inflammation in critically ill patients. The most promising alarmin candidates are of mitochondrial origin, i.e. mitochondrial DNA and the chemotactic factor fMet-Leu-Phe (fMLP). ATP also is released from necrotic tissues and stimulates the assembly of the inflammasome, leading to the production of proinflammatory cytokines, such as interleukin (IL)-1ß. The identification of novel alarmins opens new therapeutic avenues for the treatment of severe SIRS, and SIRS-dependent organ dysfunction.
Collapse
Affiliation(s)
- Jérôme Pugin
- Intensive Care - SIRS Unit, University Hospitals of Geneva, 1211, Geneva 14, Switzerland.
| |
Collapse
|
38
|
Zhu L, Li X, Miao C. Lack of association between TLR4 Asp299Gly and Thr399Ile polymorphisms and sepsis susceptibility: A meta-analysis. Gene 2012; 501:213-8. [DOI: 10.1016/j.gene.2012.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/17/2012] [Accepted: 04/09/2012] [Indexed: 01/03/2023]
|
39
|
Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger--damage control by the immune system. J Leukoc Biol 2012; 92:539-51. [PMID: 22654121 DOI: 10.1189/jlb.0212072] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis.
Collapse
Affiliation(s)
- Veit M Stoecklein
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
40
|
Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Br J Surg 2012; 99 Suppl 1:12-20. [PMID: 22441851 DOI: 10.1002/bjs.7717] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND A systemic inflammatory response syndrome (SIRS) is frequently observed after traumatic injury. The response is sterile and the activating stimulus is tissue damage. Endogenous molecules, called alarmins, are reputed to be released by injured tissues but the precise identity of these mediators is unclear. This review summarizes current preclinical and clinical evidence for trauma alarmins and their role in innate immune activation. METHODS A comprehensive literature review of putative alarmins in tissue damage after traumatic injury was conducted. RESULTS The presence of SIRS at admission is an independent predictor of mortality after trauma. The primary initiators of the human immune response are unclear. Several endogenous substances display alarmin characteristics in vitro. Preclinical studies demonstrate that blockade of certain endogenous substances can reduce adverse clinical sequelae after traumatic injury. Human evidence for trauma alarmins is extremely limited. CONCLUSION The magnitude of acute inflammation is predictive of outcome after trauma, suggesting that an early opportunity for immune modulation may exist. An understanding of the mechanisms of innate immune activation following trauma may lead to new therapeutic agents and improved patient survival.
Collapse
Affiliation(s)
- J Manson
- Trauma Sciences, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| | | | | |
Collapse
|
41
|
Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011; 2011:609579. [PMID: 22110526 PMCID: PMC3216292 DOI: 10.1155/2011/609579] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy has been the focus of intense research since the late 19th century when Coley observed that bacterial components can contribute to cancer regression by eliciting an antitumor immune response. Successful activation and maturation of tumor-specific immune cells is now known to be mediated by bacterial endotoxin, which activates Toll-like receptor 4 (TLR4). TLR4 is expressed on a variety of immune as well as tumor cells, but its activation can have opposing effects. While TLR4 activation can promote antitumor immunity, it can also result in increased tumor growth and immunosuppression. Nevertheless, TLR4 engagement by endotoxin as well as by endogenous ligands represents notable contribution to the outcome of different cancer treatments, such as radiation or chemotherapy. Further research of the role and mechanisms of TLR4 activation in cancer may provide novel antitumor vaccine adjuvants as well as TLR4 inhibitors that could prevent inflammation-induced carcinogenesis.
Collapse
|
42
|
Phelps DS, Umstead TM, Quintero OA, Yengo CM, Floros J. In vivo rescue of alveolar macrophages from SP-A knockout mice with exogenous SP-A nearly restores a wild type intracellular proteome; actin involvement. Proteome Sci 2011; 9:67. [PMID: 22035134 PMCID: PMC3219558 DOI: 10.1186/1477-5956-9-67] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 10/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mice lacking surfactant protein-A (SP-A-/-; knockout; KO) exhibit increased vulnerability to infection and injury. Although many bronchoalveolar lavage (BAL) protein differences between KO and wild-type (WT) are rapidly reversed in KO after infection, their clinical course is still compromised. We studied the impact of SP-A on the alveolar macrophage (AM) proteome under basal conditions. Male SP-A KO mice were SP-A-treated (5 micrograms/mouse) and sacrificed in 6 or 18 hr. The AM proteomes of KO, SP-A-treated KO, and WT mice were studied by 2D-DIGE coupled with MALDI-ToF/ToF and AM actin distribution was examined by phalloidon staining. RESULTS We observed: a) significant differences from KO in WT or exogenous SP-A-treated in 45 of 76 identified proteins (both increases and decreases). These included actin-related/cytoskeletal proteins (involved in motility, phagocytosis, endocytosis), proteins of intracellular signaling, cell differentiation/regulation, regulation of inflammation, protease/chaperone function, and proteins related to Nrf2-mediated oxidative stress response pathway; b) SP-A-induced changes causing the AM proteome of the KO to resemble that of WT; and c) that SP-A treatment altered cell size and F-actin distribution. CONCLUSIONS These differences are likely to enhance AM function. The observations show for the first time that acute in vivo SP-A treatment of KO mice, under basal or unstimulated conditions, affects the expression of multiple AM proteins, alters F-actin distribution, and can restore much of the WT phenotype. We postulate that the SP-A-mediated expression profile of the AM places it in a state of "readiness" to successfully conduct its innate immune functions and ensure lung health.
Collapse
Affiliation(s)
- David S Phelps
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
43
|
Hill M, Deghmane AE, Segovia M, Zarantonelli ML, Tilly G, Blancou P, Bériou G, Josien R, Anegon I, Hong E, Ruckly C, Antignac A, El Ghachi M, Boneca IG, Taha MK, Cuturi MC. Penicillin binding proteins as danger signals: meningococcal penicillin binding protein 2 activates dendritic cells through Toll-like receptor 4. PLoS One 2011; 6:e23995. [PMID: 22046231 PMCID: PMC3203111 DOI: 10.1371/journal.pone.0023995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 08/03/2011] [Indexed: 11/17/2022] Open
Abstract
Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs) and particularly PBP2 are involved in bacterial resistance to β-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC) in a time and dose-dependent manner. PBP2 induces MHC II (LOGEC50 = 4.7 µg/ml±0.1), CD80 (LOGEC50 = 4.88 µg/ml±0.15) and CD86 (LOGEC50 = 5.36 µg/ml±0.1). This effect was abolished when DCs were co-treated with anti-PBP2 antibodies. PBP2-treated DCs displayed enhanced immunogenic properties in vitro and in vivo. Furthermore, proteins co-purified with PBP2 showed no effect on DC maturation. We show through different in vivo and in vitro approaches that this effect is not due to endotoxin contamination. At the mechanistic level, PBP2 induces nuclear localization of p65 NF-kB of 70.7±5.1% cells versus 12±2.6% in untreated DCs and needs TLR4 expression to mature DCs. Immunoprecipitation and blocking experiments showed that PBP2 binds TLR4. In conclusion, we describe a novel function of meningococcal PBP2 as a pathogen associated molecular pattern (PAMP) at the host-pathogen interface that could be recognized by the immune system as a danger signal, promoting the development of immune responses.
Collapse
Affiliation(s)
- Marcelo Hill
- INSERM U643, Nantes, CHU de Nantes, IUN, Nantes, Université de Nantes, UMR 643, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|