1
|
Czopik AK, McNamee EN, Vaughn V, Huang X, Bang IH, Clark T, Wang Y, Ruan W, Nguyen T, Masterson JC, Tak E, Frank S, Collins CB, Li H, Rodriguez-Aguayo C, Lopez-Berestein G, Gerich ME, Furuta GT, Yuan X, Sood AK, de Zoeten EF, Eltzschig HK. HIF-2α-dependent induction of miR-29a restrains T H1 activity during T cell dependent colitis. Nat Commun 2024; 15:8042. [PMID: 39271652 PMCID: PMC11399416 DOI: 10.1038/s41467-024-52113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Metabolic imbalance leading to inflammatory hypoxia and stabilization of hypoxia-inducible transcription factors (HIFs) is a hallmark of inflammatory bowel diseases. We hypothesize that HIF could be stabilized in CD4+ T cells during intestinal inflammation and alter the functional responses of T cells via regulation of microRNAs. Our assays reveal markedly increased T cell-intrinsic hypoxia and stabilization of HIF protein during experimental colitis. microRNA screen in primary CD4+ T cells points us towards miR-29a and our subsequent studies identify a selective role for HIF-2α in CD4-cell-intrinsic induction of miR-29a during hypoxia. Mice with T cell-intrinsic HIF-2α deletion display elevated T-bet (target of miR-29a) levels and exacerbated intestinal inflammation. Mice with miR-29a deficiency in T cells show enhanced intestinal inflammation. T cell-intrinsic overexpression of HIF-2α or delivery of miR-29a mimetic dampen TH1-driven colitis. In this work, we show a previously unrecognized function for hypoxia-dependent induction of miR-29a in attenuating TH1-mediated inflammation.
Collapse
Affiliation(s)
- Agnieszka K Czopik
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Eóin N McNamee
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Victoria Vaughn
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiangsheng Huang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - In Hyuk Bang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Trent Clark
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tom Nguyen
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Joanne C Masterson
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Gastrointestinal Eosinophilic Disease Program University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Eunyoung Tak
- Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sandra Frank
- Organ Protection Program, Department of Anesthesiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Colm B Collins
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Howard Li
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Cristian Rodriguez-Aguayo
- Departmental of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Departmental of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark E Gerich
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Gastrointestinal Eosinophilic Disease Program University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anil K Sood
- Departmental of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin F de Zoeten
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Outcomes Research, Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
2
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
3
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Poenariu IS, Boldeanu L, Ungureanu BS, Caragea DC, Cristea OM, Pădureanu V, Siloși I, Ungureanu AM, Statie RC, Ciobanu AE, Gheonea DI, Osiac E, Boldeanu MV. Interrelation of Hypoxia-Inducible Factor-1 Alpha (HIF-1 α) and the Ratio between the Mean Corpuscular Volume/Lymphocytes (MCVL) and the Cumulative Inflammatory Index (IIC) in Ulcerative Colitis. Biomedicines 2023; 11:3137. [PMID: 38137357 PMCID: PMC10741094 DOI: 10.3390/biomedicines11123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
We intended to investigate the presence and medical application of serum hypoxia-inducible factor-1 alpha (HIF-1α) along with the already known systemic inflammatory markers and the new one's inflammatory indices, the proportion of mean corpuscular volume and lymphocytes (MCVL) and the cumulative inflammatory index (IIC), for patients with ulcerative colitis (UC). We sought to establish correlations that may be present between the serum levels of HIF-1α and these inflammatory indices, as well as their relationship with disease activity and the extent of UC, which can provide us with a more precise understanding of the evolution, prognosis, and future well-being of patients. Serum samples were collected from 46 patients diagnosed with UC and 23 controls. For our assessment of the serum levels of HIF-1α, we used the Enzyme-Linked Immunosorbent Assay (ELISA) technique. Thus, for HIF-1α we detected significantly higher values in more severe and more extensive UC. When it came to MCVL and IIC, we observed statistically significant differences between the three groups being compared (Severe, Moderate, and Mild). Our study highlighted that HIF-1α correlated much better with a disease activity score, MCVL, and IIC. With MCVL and IIC, a strong and very strong correlation had formed between them and well-known inflammation indices. By examining the ROC curves of the analyzed parameters, we recognized that TWI (accuracy of 83.70%) provides the best discrimination of patients with early forms of UC, followed by HIF-1α (73.90% accuracy), MCVL (70.90% accuracy), and PLR (70.40%). In our study, we observed that HIF-1α, MCVL, and PLR had the same sensitivity (73.33%) but HIF-1α had a much better specificity (60.87% vs. 58.70%, and 54.35%). Also, in addition to the PLR, HIF-1α and MCVL can be used as independent predictor factors in the discrimination of patients with early forms of UC.
Collapse
Affiliation(s)
- Ioan Sabin Poenariu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
| | - Lidia Boldeanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Oana Mariana Cristea
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Vlad Pădureanu
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Isabela Siloși
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
| | - Anca Marinela Ungureanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Răzvan-Cristian Statie
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Alina Elena Ciobanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
- Medico Science SRL—Stem Cell Bank Unit, 200690 Craiova, Romania
| |
Collapse
|
5
|
Zheng X, Zhu Y, Zhao Z, Chu Y, Yang W. The role of amino acid metabolism in inflammatory bowel disease and other inflammatory diseases. Front Immunol 2023; 14:1284133. [PMID: 37936710 PMCID: PMC10626463 DOI: 10.3389/fimmu.2023.1284133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammation is a characteristic symptom of the occurrence and development of many diseases, which is mainly characterized by the infiltration of inflammatory cells such as macrophages and granulocytes, and the increased release of proinflammatory factors. Subsequently, macrophage differentiates and T cells and other regulated factors exhibit anti-inflammatory function, releasing pro- and anti-inflammatory factors to maintain homeostasis. Although reports define various degrees of metabolic disorders in both the inflamed and non-inflamed parts of inflammatory diseases, little is known about the changes in amino acid metabolism in such conditions. This review aims to summarize amino acid changes and mechanisms involved in the progression of inflammatory bowel disease (IBD) and other inflammatory diseases. Since mesenchymal stem cells (MSCs) and their derived exosomes (MSC-EXO) have been found to show promising effects in the treatment of IBD and other inflammatory diseases,their potential in the modulation of amino acid metabolism in the treatment of inflammation is also discussed.
Collapse
Affiliation(s)
- Xiaowen Zheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi Zhu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Wenjing Yang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
7
|
Michaels M, Madsen KL. Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunol 2023; 16:72-85. [PMID: 36642380 DOI: 10.1016/j.mucimm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
The concept of immunometabolism has emerged recently whereby the repolarizing of inflammatory immune cells toward anti-inflammatory profiles by manipulating cellular metabolism represents a new potential therapeutic approach to controlling inflammation. Metabolic pathways in immune cells are tightly regulated to maintain immune homeostasis and appropriate functional specificity. Because effector and regulatory immune cell populations have different metabolic requirements, this allows for cellular selectivity when regulating immune responses based on metabolic pathways. Gut microbes have a major role in modulating immune cell metabolic profiles and functional responses through extensive interactions involving metabolic products and crosstalk between gut microbes, intestinal epithelial cells, and mucosal immune cells. Developing strategies to target metabolic pathways in mucosal immune cells through the modulation of gut microbial metabolism has the potential for new therapeutic approaches for human autoimmune and inflammatory diseases, such as inflammatory bowel disease. This review will give an overview of the relationship between metabolic reprogramming and immune responses, how microbial metabolites influence these interactions, and how these pathways could be harnessed in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Margret Michaels
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada
| | - Karen L Madsen
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada; IMPACTT: Integrated Microbiome Platforms for Advancing Causation Testing & Translation, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Tang YY, Wang DC, Wang YQ, Huang AF, Xu WD. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol 2023; 13:1073971. [PMID: 36761171 PMCID: PMC9905447 DOI: 10.3389/fimmu.2022.1073971] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a primary metabolic sensor, and is expressed in different immune cells, such as macrophage, dendritic cell, neutrophil, T cell, and non-immune cells, for instance, synovial fibroblast, and islet β cell. HIF-1α signaling regulates cellular metabolism, triggering the release of inflammatory cytokines and inflammatory cells proliferation. It is known that microenvironment hypoxia, vascular proliferation, and impaired immunological balance are present in autoimmune diseases. To date, HIF-1α is recognized to be overexpressed in several inflammatory autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis, and function of HIF-1α is dysregulated in these diseases. In this review, we narrate the signaling pathway of HIF-1α and the possible immunopathological roles of HIF-1α in autoimmune diseases. The collected information will provide a theoretical basis for the familiarization and development of new clinical trials and treatment based on HIF-1α and inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Qiang Wang
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Wang-Dong Xu,
| |
Collapse
|
9
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
10
|
Zhu F, Wei C, Wu H, Shuai B, Yu T, Gao F, Yuan Y, Zuo D, Liu X, Zhang L, Fan H. Hypoxic mesenchymal stem cell-derived exosomes alleviate ulcerative colitis injury by limiting intestinal epithelial cells reactive oxygen species accumulation and DNA damage through HIF-1α. Int Immunopharmacol 2022; 113:109426. [DOI: 10.1016/j.intimp.2022.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
|
11
|
Xiang Y, Fan D, An Q, Zhang T, Wu X, Ding J, Xu X, Yue G, Tang S, Du Q, Xu J, Xie R. Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Front Physiol 2022; 13:870243. [PMID: 36187789 PMCID: PMC9515906 DOI: 10.3389/fphys.2022.870243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological processes in the human body and participates in the regulation of normal physiological processes. In the hypoxic environment, the main regulator of human body homeostasis is the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-induced genes and then participate in various physiological and pathological processes of the human body. Ion-transporting proteins are extremely important types of proteins. Ion-transporting proteins are distributed on cell membranes or organelles and strictly control the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely related to extensive physiological and pathological processes in the human body. Numerous studies have confirmed that hypoxia and its regulatory factors can regulate the transcription and expression of ion-transporting protein-related genes. Under hypoxic stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to diseases of various human systems and even tumors. Using ion-transporting proteins and hypoxia as targets to explore the mechanism of digestive system diseases and targeted therapy is expected to become a new breakthrough point.
Collapse
Affiliation(s)
- Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| |
Collapse
|
12
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
13
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zaiatz Bittencourt V, Jones F, Doherty G, Ryan EJ. Targeting Immune Cell Metabolism in the Treatment of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1684-1693. [PMID: 33693743 PMCID: PMC8522790 DOI: 10.1093/ibd/izab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The cells of the immune system are highly dynamic, constantly sensing and adapting to changes in their surroundings. Complex metabolic pathways govern leukocytes' ability to fine-tune their responses to external threats. Mammalian target of rapamycin complex 1 and hypoxia inducible factor are important hubs of these pathways and play a critical role coordinating cell activation and proliferation and cytokine production. For this reason, these molecules are attractive therapeutic targets in inflammatory disease. Insight into perturbations in immune cell metabolic pathways and their impact on inflammatory bowel disease (IBD) progression are starting to emerge. However, it remains to be determined whether the aberrations in immune metabolism that occur in gut resident immune cells contribute to disease pathogenesis or are reflected in the peripheral blood of patients with IBD. In this review, we explore what is known about the metabolic profile of T cells, monocytes, macrophages, dendritic cells, and natural killer cells in IBD and discuss the potential of manipulating immune cell metabolism as a novel approach to treating IBD.
Collapse
Affiliation(s)
- Vanessa Zaiatz Bittencourt
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Fachi JL, Pral LP, Dos Santos JAC, Codo AC, de Oliveira S, Felipe JS, Zambom FFF, Câmara NOS, Vieira PMMM, Colonna M, Vinolo MAR. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. Mucosal Immunol 2021; 14:828-841. [PMID: 33446906 PMCID: PMC8221997 DOI: 10.1038/s41385-020-00371-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) have a prominent role in the maintenance of intestine mucosa homeostasis. The hypoxia-inducible factor (HIF) is an important modulator of immune cell activation and a key mechanism for cellular adaptation to oxygen deprivation. However, its role on ILC3 is not well known. In this study, we investigated how a hypoxic environment modulates ILC3 response and the subsequent participation of HIF-1 signaling in this process. We found increased proliferation and activation of intestinal ILC3 at low oxygen levels, a response that was phenocopied when HIF-1α was chemically stabilized and was reversed when HIF-1 was blocked. The increased activation of ILC3 relied on a HIF-1α-dependent transcriptional program, but not on mTOR-signaling or a switch to glycolysis. HIF-1α deficiency in RORyt compartment resulted in impaired IL-17 and IL-22 production by ILC3 in vivo, which reflected in a lower expression of their target genes in the intestinal epithelium and an increased susceptibility to Clostridiodes difficile infection. Taken together, our results show that HIF-1α activation in intestinal ILC3 is relevant for their functions in steady state and infectious conditions.
Collapse
Affiliation(s)
- J L Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - L P Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - J A C Dos Santos
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - A C Codo
- Laboratory of Immunometabolism, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - S de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - J S Felipe
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - F F F Zambom
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - N O S Câmara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - P M M M Vieira
- Laboratory of Immunometabolism, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Campinas, Brazil
- Obesity and Comorbolities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - M Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - M A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
- Experimental Medicine Research Cluster, Campinas, Brazil.
- Obesity and Comorbolities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
16
|
Chen Y, Gaber T. Hypoxia/HIF Modulates Immune Responses. Biomedicines 2021; 9:biomedicines9030260. [PMID: 33808042 PMCID: PMC8000289 DOI: 10.3390/biomedicines9030260] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Yuling Chen
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513364
| |
Collapse
|
17
|
Kim YI, Yi EJ, Kim YD, Lee AR, Chung J, Ha HC, Cho JM, Kim SR, Ko HJ, Cheon JH, Hong YR, Chang SY. Local Stabilization of Hypoxia-Inducible Factor-1α Controls Intestinal Inflammation via Enhanced Gut Barrier Function and Immune Regulation. Front Immunol 2021; 11:609689. [PMID: 33519819 PMCID: PMC7840603 DOI: 10.3389/fimmu.2020.609689] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intestinal epithelial cells are adapted in mucosal hypoxia and hypoxia-inducible factors in these cells can fortify barrier integrity to support mucosal tissue healing. Here we investigated whether hypoxia-related pathways could be proposed as potential therapeutic targets for inflammatory bowel disease. We developed a novel hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor, CG-598 which stabilized HIF-1α in the gut tissue. Treatment of CG-598 did not affect extra-intestinal organs or cause any significant adverse effects such as erythropoiesis. In the experimental murine colitis model, CG-598 ameliorated intestinal inflammation with reduction of inflammatory lesions and pro-inflammatory cytokines. CG-598 treatment fortified barrier function by increasing the expression of intestinal trefoil factor, CD73, E-cadherin and mucin. Also, IL-10 and IL-22 were induced from lamina propria CD4+ T-cells. The effectiveness of CG-598 was comparable to other immunosuppressive therapeutics such as TNF-blockers or JAK inhibitors. These results suggest that CG-598 could be a promising therapeutic candidate to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Young-Dae Kim
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - A Reum Lee
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Jiwoung Chung
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Hae Chan Ha
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Joong Myung Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Jae-Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Rae Hong
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
18
|
Tan X, Pei W, Xie C, Wang Z, Mao T, Zhao X, Kou F, Lu Q, Sun Z, Xue X, Li J. Network Pharmacology Identifies the Mechanisms of Action of Tongxie Anchang Decoction in the Treatment of Irritable Bowel Syndrome with Diarrhea Predominant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2723705. [PMID: 33281910 PMCID: PMC7685835 DOI: 10.1155/2020/2723705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
AIM This study aims to uncover the pharmacological mechanism of Tongxie Anchang Decoction (TXACD), a new and effective traditional Chinese medicine (TCM) prescription, for treating irritable bowel syndrome with diarrhea predominant (IBS-D) using network pharmacology. METHODS The active compounds and putative targets of TXACD were retrieved from TCMSP database and published literature; related target genes of IBS-D were retrieved from GeneCards; PPI network of the common target hub gene was constructed by STRING. Furthermore, these hub genes were analyzed using gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS A total of 54 active compounds and 639 targets were identified through a database search. The compound-target network was constructed, and the key compounds were screened out according to the degree. By using the PPI and GO and KEGG enrichment analyses, the pharmacological mechanism network of TXACD in the treatment of IBS-D was constructed. CONCLUSIONS This study revealed the possible mechanisms by which TXACD treatment alleviated IBS-D involvement in the modulation of multiple targets and multiple pathways, including the immune regulation, inflammatory response, and oxidative stress. These findings provide novel insights into the regulatory role of TXACD in the prevention and treatment of IBS-D and hold promise for herb-based complementary and alternative therapy.
Collapse
Affiliation(s)
- Xiang Tan
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Wenjing Pei
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Chune Xie
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Zhibin Wang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Tangyou Mao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Xingjie Zhao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Fushun Kou
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Qiongqiong Lu
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Zhongmei Sun
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Xiaoxuan Xue
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
19
|
Kerber EL, Padberg C, Koll N, Schuetzhold V, Fandrey J, Winning S. The Importance of Hypoxia-Inducible Factors (HIF-1 and HIF-2) for the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21228551. [PMID: 33202783 PMCID: PMC7697655 DOI: 10.3390/ijms21228551] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Hypoxia is a common feature of inflammation when hypoxia inducible factors (HIFs) adapt cells to conditions of low oxygen tension and inflammation. We studied the role of HIF-1 and HIF-2 in cells of the myeloid lineage in a mouse model of acute colitis. (2) Methods: Mice with and without a conditional knockout for either Hif-1a or Hif-2a or Hif-1a and Hif-2a in cells of the myeloid lineage were treated with 2.5% dextran sodium sulfate (DSS) for 6 days to induce an acute colitis. We analyzed the course of inflammation with respect to macroscopic (disease activity index) and microscopic (histology score and immunohistochemical staining of immune cells) parameters and quantified the mRNA expression of cytokines and chemokines in the colon and the mesenteric lymph nodes. (3) Results: A conditional knockout of myeloid Hif-1a ameliorated whereas the knockout of Hif-2a aggravated murine DSS colitis by increased recruitment of neutrophils to deeper layers of the colon. This led to higher expression of Il6, Ifng, Cd11c, Cd4, and Cd8 in the colon but also induced anti-inflammatory mediators such as Foxp3 and Il10. A conditional knockout of Hif-1a and Hif-2a did not show any differences compared to wildtype mice. (4) Conclusions: Myeloid HIF-1α and HIF-2α play opposing roles in acute DSS colitis. Thus, not only a cell type specific, but also the isoform specific modulation of HIFs needs to be addressed in attempts to modify HIF for therapeutic purposes.
Collapse
|
20
|
Yan Z, Xu G. A Novel Choice to Correct Inflammation-Induced Anemia in CKD: Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat. Front Med (Lausanne) 2020; 7:393. [PMID: 32850902 PMCID: PMC7423837 DOI: 10.3389/fmed.2020.00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Anemia is a complication of chronic kidney disease (CKD), primarily due to insufficient secretion of erythropoietin (EPO) by the kidney. Erythropoiesis-stimulating agents (ESAs) are used to treat anemia associated with chronic kidney disease. A poor response to ESAs has been associated with inflammation. Inflammation can affect erythrocytes and its production in many ways, but mainly through the inflammatory cytokine IL-6 to stimulate the synthesis of hepcidin in the liver. Hepcidin causes iron insufficiency, which causes erythrocytes to fail to mature normally. In addition, inhibition of bone marrow erythroid precursor cells by inflammatory cytokines such as IL-1 and TNF-α also affects bone marrow hematopoiesis. These cytokines are also important factors leading to EPO resistance. Roxadustat is a new drug for the treatment of renal anemia. In addition to promoting the production of EPO, clinical trials have shown that it can significantly reduce hepcidin and can potentially be used for the treatment of inflammation-induced anemia in CKD.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
22
|
Dorneles GP, dos Passos AA, Romão PR, Peres A. New Insights about Regulatory T Cells Distribution and Function with Exercise: The Role of Immunometabolism. Curr Pharm Des 2020; 26:979-990. [DOI: 10.2174/1381612826666200305125210] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023]
Abstract
A lack of physical activity is linked to the development of many chronic diseases through a chronic
low-grade inflammation state. It is now well accepted that the immune system plays a central role in the development
of several chronic diseases, including insulin resistance, type 2 diabetes, atherosclerosis, heart failure and
certain types of cancer. Exercise elicits a strong anti-inflammatory response independently of weight loss and can
be a useful non-pharmacologic strategy to counteract the low-grade inflammation. The CD4+CD25+CD127-
FoxP3+ Regulatory T (Treg) cells are a unique subset of helper T-cells, which regulate immune response and
establish self-tolerance through the secretion of immunoregulatory cytokines, such as IL-10 and TGF-β, and the
suppression of the function and activity of many immune effector cells (including monocytes/macrophages, dendritic
cells, CD4+ and CD8+ T cells, and Natural Killers). The metabolic phenotype of Tregs are regulated by the
transcription factor Foxp3, providing flexibility in fuel choice, but a preference for higher fatty acid oxidation. In
this review, we focus on the mechanisms by which exercise - both acute and chronic - exerts its antiinflammatory
effects through Treg cells mobilization. Furthermore, we discuss the implications of immunometabolic
changes during exercise for the modulation of Treg phenotype and its immunosuppressive function. This
narrative review focuses on the current knowledge regarding the role of Treg cells in the context of acute and
chronic exercise using data from observational and experimental studies. Emerging evidence suggests that the
immunomodulatory effects of exercise are mediated by the ability of exercise to adjust and improve Tregs number
and function.
Collapse
Affiliation(s)
- Gilson P. Dorneles
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Aline A.Z. dos Passos
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Pedro R.T. Romão
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| |
Collapse
|
23
|
Yin J, Zhou C, Yang K, Ren Y, Qiu Y, Xu P, Xiao W, Yang H. Mutual regulation between butyrate and hypoxia-inducible factor-1α in epithelial cell promotes expression of tight junction proteins. Cell Biol Int 2020; 44:1405-1414. [PMID: 32129567 DOI: 10.1002/cbin.11336] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/01/2020] [Indexed: 01/16/2023]
Abstract
Inflammatory bowel disease is a kind of multi-aetiological chronic disease that is driven by multidimensional factors. Hypoxia-inducible factor-1α (HIF-1α) plays an important role in anti-inflammatory and cellular responses to hypoxia. Previous studies have found that B or T-cell-specific HIF-1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF-1α in intestinal epithelial cells (IECs). In our study, HIF-1αΔIEC mice were used to study the function of HIF-1α in IECs. HIF-1α was knocked down in Caco-2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden-1 (ZO-1) and Occludin. The content of colon was harvested for high-performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF-1α played a protective role in dextran sulphate sodium-induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF-1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF-1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF-1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.
Collapse
Affiliation(s)
- Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chao Zhou
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Kunqiu Yang
- Department of General Surgery, Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yanbei Ren
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Pengyuan Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| |
Collapse
|
24
|
Brown E, Rowan C, Strowitzki MJ, Fagundes RR, Faber KN, Güntsch A, Halligan DN, Kugler J, Jones F, Lee CT, Doherty G, Taylor CT. Mucosal inflammation downregulates PHD1 expression promoting a barrier-protective HIF-1α response in ulcerative colitis patients. FASEB J 2020; 34:3732-3742. [PMID: 31944416 DOI: 10.1096/fj.201902103r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
The HIF hydroxylase enzymes (PHD1-3 and FIH) are cellular oxygen-sensors which confer hypoxic-sensitivity upon the hypoxia-inducible factors HIF-1α and HIF-2α. Microenvironmental hypoxia has a strong influence on the epithelial and immune cell function through HIF-dependent gene expression and consequently impacts upon the course of disease progression in ulcerative colitis (UC), with HIF-1α being protective while HIF-2α promotes disease. However, little is known about how inflammation regulates hypoxia-responsive pathways in UC patients. Here we demonstrate that hypoxia is a prominent microenvironmental feature of the mucosa in UC patients with active inflammatory disease. Furthermore, we found that inflammation drives transcriptional programming of the HIF pathway including downregulation of PHD1 thereby increasing the tissue responsiveness to hypoxia and skewing this response toward protective HIF-1 over detrimental HIF-2 activation. We identified CEBPα as a transcriptional regulator of PHD1 mRNA expression which is downregulated in both inflamed tissue derived from patients and in cultured intestinal epithelial cells treated with inflammatory cytokines. In summary, we propose that PHD1 downregulation skews the hypoxic response toward enhanced protective HIF-1α stabilization in the inflamed mucosa of UC patients.
Collapse
Affiliation(s)
- Eric Brown
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Catherine Rowan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Moritz J Strowitzki
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Raphael R Fagundes
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Department Hepatology & Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department Hepatology & Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemarie Güntsch
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Doug N Halligan
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Julia Kugler
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Chee T Lee
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Glen Doherty
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Centre for Colorectal Disease, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
25
|
Endo K, Kito H, Tanaka R, Kajikuri J, Tanaka S, Elboray EE, Suzuki T, Ohya S. Possible Contribution of Inflammation-Associated Hypoxia to Increased K 2P5.1 K + Channel Expression in CD4 + T cells of the Mouse Model for Inflammatory Bowel Disease. Int J Mol Sci 2019; 21:ijms21010038. [PMID: 31861667 PMCID: PMC6981474 DOI: 10.3390/ijms21010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 01/03/2023] Open
Abstract
Previous studies have reported the up-regulation of the two-pore domain K+ channel K2P5.1 in the CD4+ T cells of patients with multiple sclerosis (MS) and rheumatoid arthritis (RA), as well as in a mouse model of inflammatory bowel disease (IBD). However, the mechanisms underlying this up-regulation remain unclear. Inflammation-associated hypoxia is involved in the pathogenesis of autoimmune diseases, such as IBD, MS, and RA, and T cells are exposed to a hypoxic environment during their recruitment from inflamed tissues to secondary lymphoid tissues. We herein investigated whether inflammation-associated hypoxia is attributable to the increased expression and activity of K2P5.1 in the splenic CD4+ T cells of chemically-induced IBD model mice. Significant increases in hypoxia-inducible factor (HIF)-1α transcripts and proteins were found in the splenic CD4+ T cells of the IBD model. In the activated splenic CD4+ T cells, hypoxia (1.5% O2) increased K2P5.1 expression and activity, whereas a treatment with the HIF inhibitor FM19G11 but not the selective HIF-2 inhibitor exerted the opposite effect. Hypoxia-exposed K2P5.1 up-regulation was also detected in stimulated thymocytes and the mouse T-cell line. The class III histone deacetylase sirtuin-1 (SIRT1) is a downstream molecule of HIF-1α signaling. We examined the effects of the SIRT1 inhibitor NCO-01 on K2P5.1 transcription in activated CD4+ T cells, and we found no significant effects on the K2P5.1 transcription. No acute compensatory responses of K2P3.1–K2P5.1 up-regulation were found in the CD4+ T cells of the IBD model and the hypoxia-exposed T cells. Collectively, these results suggest a mechanism for K2P5.1 up-regulation via HIF-1 in the CD4+ T cells of the IBD model.
Collapse
Affiliation(s)
- Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.E.); (R.T.); (S.T.)
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (H.K.); (J.K.)
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (H.K.); (J.K.)
| | - Ryo Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.E.); (R.T.); (S.T.)
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (H.K.); (J.K.)
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.E.); (R.T.); (S.T.)
| | - Elghareeb E. Elboray
- Department of Complex Molecular Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan; (E.E.E.); (T.S.)
- Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Takayoshi Suzuki
- Department of Complex Molecular Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan; (E.E.E.); (T.S.)
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (H.K.); (J.K.)
- Correspondence: ; Tel.: +81-52-853-8149
| |
Collapse
|
26
|
Regulation of CD11b by HIF-1α and the STAT3 signaling pathway contributes to the immunosuppressive function of B cells in inflammatory bowel disease. Mol Immunol 2019; 111:162-171. [PMID: 31063937 DOI: 10.1016/j.molimm.2019.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
B cells have been reported to have a suppressive function in autoimmune diseases, which appears to require an increase of CD11b expression on B cells. However, little is known how CD11b is induced in B cells to play the function. In this study, we found that the high expression of CD11b in B cells occurred not only in the mucosal immune organs, but also in systemically immune organs such as the spleen during dextran sulfate sodium (DSS)-induced colitis. Since the inflammatory lesions in mouse models of inflammatory bowel disease (IBD) were revealed to be significantly hypoxic or even anoxic, the B cells from colitic mice Peyer's patches (PP) were investigated to express higher levels of hypoxia-inducible factor-1α (HIF-1α) than naïve B cells from wildtype (WT) mice. HIF-1α siRNA transfection or HIF-1α protein inhibition led to decreased CD11b expression at both the mRNA and protein levels in vitro. B cells with HIF-1α specific knockdown were then adoptively transferred to Rag-1-/- mice. The result displayed that CD11b expression was decreased in B cells and an exacerbated colitis occurred. The bio-informatics promoter analysis and ChIP assay showed that HIF-1α was the critical transcription factor for CD11b and cooperatively formed a complex with the p-STAT3 homodimers to bind onto hypoxia-responsive element (HRE) regions, which was guaranteed by MEK/ERK pathway activation and IL-10 secretion. In conclusion, our study demonstrated the key function of the hypoxia-associated transcription factor HIF-1α together with p-STAT3 in driving CD11b transcription in B cells and controlling B cell's protective activity in experimental inflammatory bowel disease (IBD).
Collapse
|
27
|
Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity. Int J Mol Sci 2019; 20:ijms20020436. [PMID: 30669540 PMCID: PMC6358763 DOI: 10.3390/ijms20020436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk management, monitoring and development of countermeasures. T lymphocytes and cells of the monocyte-macrophage system are highly migratory cell types that frequently encounter a wide range of oxygen tensions in human tissues and in hypoxic areas, even under homeostatic conditions. Hypoxia-inducible factor 1 and 2 (HIF's) might have an important role in activation of T cells and cells of the monocyte-macrophages system. Thus, we investigated the regulation of HIF-dependent and, therefore, hypoxia-signaling systems in both cell types in altered gravity and performed transcript and protein analysis from parabolic flight and suborbital ballistic rocket experiments. We found that HIF-1α and HIF-1-dependent transcripts were differently regulated in altered gravity, whereas HIF-1α-dependent gene expression adapted after 5 min microgravity. Inter-platform comparisons identified PDK1 as highly responsive to gravitational changes in human U937 myelomonocytic cells and in Jurkat T cells. We suggest HIF-1 as a potential pharmacological target for counteracting immune system deterioration during space flight.
Collapse
|
28
|
Zhao W, Wu C, Li LJ, Fan YG, Pan HF, Tao JH, Leng RX, Ye DQ. RNAi Silencing of HIF-1α Ameliorates Lupus Development in MRL/lpr Mice. Inflammation 2019; 41:1717-1730. [PMID: 30043119 DOI: 10.1007/s10753-018-0815-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Th17 cell and IL-17-mediated autoimmunity and inflammatory responses have been implicated in the development of organ damage in systemic lupus erythematosus (SLE), and new evidence suggests that hypoxia-inducible factor 1α (HIF-1α) enhances Th17 differentiation and promotes IL-17 production. However, the role of HIF-1α in the pathogenesis of lupus has not been examined. In this study, we silenced HIF-1α in vivo in a murine model of SLE to investigate whether lupus progression and the associated inflammatory pathways were affected by downregulating HIF-1α. Treatment with HIF1α-shRNA suppressed serum IL-17 level in MRL/lpr mice. Decreased anti-nucleosome antibody level, reduced urinary protein concentrations, ameliorated pathological damage, and remarkably reduced renal IgG and C3 depositions were observed in HIF1α-shRNA-treated group compared to those in the controls. Our results provide the first evidence for a role of HIF-1α in the pathogenesis of lupus and suggest a potential new therapeutic avenue for the treatment of lupus patients through reducing the HIF-1α level.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
29
|
Lin N, Shay JES, Xie H, Lee DSM, Skuli N, Tang Q, Zhou Z, Azzam A, Meng H, Wang H, FitzGerald GA, Simon MC. Myeloid Cell Hypoxia-Inducible Factors Promote Resolution of Inflammation in Experimental Colitis. Front Immunol 2018; 9:2565. [PMID: 30455703 PMCID: PMC6230677 DOI: 10.3389/fimmu.2018.02565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Colonic tissues in Inflammatory Bowel Disease (IBD) patients exhibit oxygen deprivation and activation of hypoxia-inducible factor 1α and 2α (HIF-1α and HIF-2α), which mediate cellular adaptation to hypoxic stress. Notably, macrophages and neutrophils accumulate preferentially in hypoxic regions of the inflamed colon, suggesting that myeloid cell functions in colitis are HIF-dependent. By depleting ARNT (the obligate heterodimeric binding partner for both HIFα subunits) in a murine model, we demonstrate here that myeloid HIF signaling promotes the resolution of acute colitis. Specifically, myeloid pan-HIF deficiency exacerbates infiltration of pro-inflammatory neutrophils and Ly6C+ monocytic cells into diseased tissue. Myeloid HIF ablation also hinders macrophage functional conversion to a protective, pro-resolving phenotype, and elevates gut serum amyloid A levels during the resolution phase of colitis. Therefore, myeloid cell HIF signaling is required for efficient resolution of inflammatory damage in colitis, implicating serum amyloid A in this process.
Collapse
Affiliation(s)
- Nan Lin
- Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States.,Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jessica E S Shay
- Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Hong Xie
- Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States.,Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David S M Lee
- Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States.,Genomics and Computational Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolas Skuli
- Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Qiaosi Tang
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Zilu Zhou
- Genomics and Computational Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Azzam
- Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Hu Meng
- Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY, United States.,The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Garret A FitzGerald
- Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - M Celeste Simon
- Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans 2018; 46:1147-1159. [PMID: 30301842 PMCID: PMC6195639 DOI: 10.1042/bst20180169] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.
Collapse
|
31
|
Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, Chen Y, Donde H, Wang R, Jala VR, Barve S, Chen SY, Zhang X, Chen Y, McClain CJ, Feng W. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol 2018; 69:886-895. [PMID: 29803899 PMCID: PMC6615474 DOI: 10.1016/j.jhep.2018.05.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is characterized by gut dysbiosis and increased gut permeability. Hypoxia inducible factor 1α (HIF-1α) has been implicated in transcriptional regulation of intestinal barrier integrity and inflammation. We aimed to test the hypothesis that HIF-1α plays a critical role in gut microbiota homeostasis and the maintenance of intestinal barrier integrity in a mouse model of ALD. METHODS Wild-type (WT) and intestinal epithelial-specific Hif1a knockout mice (IEhif1α-/-) were pair-fed modified Lieber-DeCarli liquid diet containing 5% (w/v) alcohol or isocaloric maltose dextrin for 24 days. Serum levels of alanine aminotransferase and endotoxin were determined. Fecal microbiota were assessed. Liver steatosis and injury, and intestinal barrier integrity were evaluated. RESULTS Alcohol feeding increased serum levels of alanine aminotransferase and lipopolysaccharide, hepatic triglyceride concentration, and liver injury in the WT mice. These deleterious effects were exaggerated in IEhif1α-/- mice. Alcohol exposure resulted in greater reduction of the expression of intestinal epithelial tight junction proteins, claudin-1 and occludin, in IEhif1α-/- mice. In addition, cathelicidin-related antimicrobial peptide and intestinal trefoil factor were further decreased by alcohol in IEhif1α-/- mice. Metagenomic analysis showed increased gut dysbiosis and significantly decreased Firmicutes/Bacteroidetes ratio in IEhif1α-/- mice compared to the WT mice exposed to alcohol. An increased abundance of Akkermansia and a decreased level of Lactobacillus in IEhif1α-/- mice were also observed. Non-absorbable antibiotic treatment reversed the liver steatosis in both WT and IEhif1α-/- mice. CONCLUSION Intestinal HIF-1α is essential for the adaptative response to alcohol-induced changes in intestinal microbiota and barrier function associated with elevated endotoxemia and hepatic steatosis and injury. LAY SUMMARY Alcohol consumption alters gut microbiota and multiple intestinal barrier protecting factors that are regulated by intestinal hypoxia-inducible factor 1α (HIF-1α). Absence of intestinal HIF-1α exacerbates gut leakiness leading to an increased translocation of bacteria and bacterial products to the liver, consequently causing alcoholic liver disease. Intestinal specific upregulation of HIF-1α could be developed as a novel approach for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Cuiqing Zhao
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Fengyuan Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA,College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Limimg Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yuhua Wang
- College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Hridgandh Donde
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Rui Wang
- First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yongping Chen
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,Robley Rex Louisville VAMC, Louisville, KY, USA,Corresponding authors: Department of Medicine, University of Louisville, 505 S. Hancock Street CTR517, Louisville, KY, United State, 40202. Tel.: +1 502 852 2912; fax: +1 502 852 8927; , or or
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
32
|
Hsu TS, Lai MZ. Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J Leukoc Biol 2018; 104:911-918. [PMID: 29901858 DOI: 10.1002/jlb.mr1217-481r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates cellular responses to hypoxia. However, conflicting roles for HIF-1α in the functions of regulatory T cells (Tregs) have been reported. In this review, we summarize observations on the requirement for HIF-1α for FOXP3 expression and Tregs development, as well as for HIF-1α-mediated downregulation of FOXP3 and Tregs destabilization. We also examine the association of HIF-1α with Tregs under pathogenic conditions. Based on these findings, we suggest that HIF-1α mainly plays a detrimental role in the function and stability of Tregs and that HIF-1α is disposable for the development and suppressive function of Tregs.
Collapse
Affiliation(s)
- Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
33
|
Krzywinska E, Stockmann C. Hypoxia, Metabolism and Immune Cell Function. Biomedicines 2018; 6:E56. [PMID: 29762526 PMCID: PMC6027519 DOI: 10.3390/biomedicines6020056] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a hallmark of inflamed, infected or damaged tissue, and the adaptation to inadequate tissue oxygenation is regulated by hypoxia-inducible factors (HIFs). HIFs are key mediators of the cellular response to hypoxia, but they are also associated with pathological stress such as inflammation, bacteriological infection or cancer. In addition, HIFs are central regulators of many innate and adaptive immunological functions, including migration, antigen presentation, production of cytokines and antimicrobial peptides, phagocytosis as well as cellular metabolic reprogramming. A characteristic feature of immune cells is their ability to infiltrate and operate in tissues with low level of nutrients and oxygen. The objective of this article is to discuss the role of HIFs in the function of innate and adaptive immune cells in hypoxia, with a focus on how hypoxia modulates immunometabolism.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
| | - Christian Stockmann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
34
|
Suzuki T, Minagawa S, Yamazaki T, Arai T, Kanai M, Shinjo S, Goda N. Loss of hypoxia inducible factor-1α aggravates γδ T-cell-mediated inflammation during acetaminophen-induced liver injury. Hepatol Commun 2018; 2:571-581. [PMID: 29761172 PMCID: PMC5944581 DOI: 10.1002/hep4.1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury is closely associated with acute hepatic inflammation. Hypoxia-inducible factor-1 (HIF-1) is activated during immunological processes and regulates gene expressions in various types of immune cells. Although HIF-1 controls the differentiation and functions of conventional T cells in chronic inflammation, the pathological importance of HIF-1 in innate-like T cells during acute inflammation remains unknown. Here, we investigated the role of HIF-1 in innate-like γδ T cells during APAP-induced acute liver injury. In response to APAP administration, T-cell-specific Hif-1α gene knockout mice sustained severe liver damage compared to wild-type control mice but without any impacts on the initial hepatic insult. This severe liver damage was accompanied by excessive neutrophil infiltration into the liver, increased serum interleukin (IL)-17A levels, and increased hepatic expressions of C-X-C chemokine ligand (Cxcl) 1 and Cxcl2. Neutrophil depletion and IL-17A neutralization completely abolished the aggravated phenotypes in T-cell-specific Hif-1α gene knockout mice. Loss of the Hif-1α gene enhanced the aberrant accumulation of IL-17A-producing innate-like γδ T cells in the affected liver with no apparent effects on their IL-17A-producing ability. Adoptive transfer of Hif-1α-deficient splenic γδ T cells into recombination activating gene 2 (Rag2)-deficient mice aggravated APAP-induced liver injury with increased neutrophil accumulation in the liver compared to that of wild-type γδ T cells. Furthermore, Hif-1α-deficient γδ T cells selectively showed aberrantly enhanced migratory ability. This ability was totally abolished by treatment with the mitochondrial adenosine triphosphate synthase inhibitor oligomycin. Conclusion: Deletion of Hif-1α gene in T cells aggravates APAP-induced acute inflammatory responses by enhancing aberrant innate-like γδ T-cell recruitment, thereby increasing excessive neutrophil infiltration into the liver. (Hepatology Communications 2018;2:571-581).
Collapse
Affiliation(s)
- Tomohiro Suzuki
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Shoko Minagawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Takashi Yamazaki
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Takatomo Arai
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Mai Kanai
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Satoko Shinjo
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering Waseda University Tokyo Japan
| |
Collapse
|
35
|
Bäcker V, Cheung FY, Siveke JT, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1α ameliorates the acute pathology in DSS-induced colitis. PLoS One 2017; 12:e0190074. [PMID: 29261815 PMCID: PMC5738114 DOI: 10.1371/journal.pone.0190074] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/07/2017] [Indexed: 12/27/2022] Open
Abstract
Inflammation and hypoxia are hallmarks of inflammatory bowel disease. Low oxygen levels activate hypoxia-inducible factors as central transcriptional regulators of cellular responses to hypoxia, particularly in myeloid cells where hypoxia-inducible factors control immune cell function and survival. Still, the role of myeloid hypoxia-inducible factor-1 during inflammatory bowel disease remains poorly defined. We therefore investigated the role of hypoxia-inducible factor-1 for myeloid cell function and immune response during colitis. Experimental colitis was induced by administration of 2.5% dextran sulfate sodium to mice with a conditional knockout of hypoxia-inducible factor-1α in myeloid cells and their wild type siblings. Murine colon tissue was examined by histologic analysis, immunohistochemistry, and quantitative polymerase chain reaction. Induction of experimental colitis increased levels of hypoxia and accumulation of hypoxia-inducible factor-1α positive cells in colon tissue of both treated groups. Myeloid hypoxia-inducible factor-1α knockout reduced weight loss and disease activity index when compared to wild type mice. Knockout mice displayed less infiltration of macrophages into intestinal mucosa and reduced mRNA expression of markers for dendritic cells and interleukin-17 secreting T helper cells. Expression of inflammatory and anti-inflammatory cytokines also showed a reduced and delayed induction in myeloid hypoxia-inducible factor-1α knockout mice. Our results show a disease promoting role of myeloid hypoxia-inducible factor-1 during intestinal inflammation. This might result from a hypoxia-inducible factor-1 dependent increase in pro-inflammatory interleukin-17 secreting T helper cells in the absence of obvious changes in regulatory T cells. In contrast, knockout mice appear to shift the balance to anti-inflammatory signals and cells resulting in milder intestinal inflammation.
Collapse
Affiliation(s)
- Veronika Bäcker
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Fung-Yi Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), partner site Essen, University Hospital Essen, Essen, Germany
| | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), partner site Essen, University Hospital Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Sandra Winning
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
36
|
Van Welden S, Selfridge AC, Hindryckx P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol 2017; 14:596-611. [PMID: 28853446 DOI: 10.1038/nrgastro.2017.101] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory conditions such as IBD, the increased oxygen demand by resident and gut-infiltrating immune cells coupled with vascular dysfunction brings about a marked reduction in mucosal oxygen concentrations. To counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor-κB (NF-κB). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which therefore represent promising therapeutic targets for IBD. In this Review, we discuss the involvement of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail on the role of HIFs, NF-κB and PHDs in different cell types during intestinal inflammation. We also provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD.
Collapse
Affiliation(s)
- Sophie Van Welden
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| | - Andrew C Selfridge
- Robarts Clinical Trials West, 4350 Executive Drive 210, San Diego, California 92121, USA
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Colgan SP, Campbell EL. Oxygen metabolism and innate immune responses in the gut. J Appl Physiol (1985) 2017; 123:1321-1327. [PMID: 28705991 DOI: 10.1152/japplphysiol.00113.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/02/2023] Open
Abstract
Epithelial cells of the mucosa provide a first line of defense to prevent the inappropriate translocation of luminal antigens, and therefore contribute significantly to nonspecific innate immunity. In the gastrointestinal (GI) tract, barrier is provided by multiple components of the mucosa, including mucus production, epithelial junctional complexes, and the production of antimicrobial molecules. In recent years, it is better appreciated that tissue oxygen metabolism is key to homeostasis in the mucosa. The intestine, for example, maintains a low baseline Po2 level due to high rates of metabolism, countercurrent blood flow, and the presence of a steep oxygen gradient across the luminal aspect of tissue surface. As a result, hypoxia and hypoxia-inducible factor (HIF)-dependent signaling exists even in the healthy, unperturbed intestinal mucosa. In a number of examples, HIF has been demonstrated both to promote barrier function during homeostasis and to promote resolution of active inflammation. Hypoxia-elicited factors that contribute to innate responses in the mucosa include the transcriptional regulation of mucin genes, junction proteins, and autophagic flux. Here, we review current literature related to hypoxia and innate immunity in health and during mucosal inflammation.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Eric L Campbell
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
38
|
Alberdi M, Iglesias M, Tejedor S, Merino R, López-Rodríguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFNγ expression by the transcription factor NFAT5. Immunol Cell Biol 2016; 95:56-67. [PMID: 27479742 PMCID: PMC5215110 DOI: 10.1038/icb.2016.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Stress-activated transcription factors influence T-cell function in different physiopathologic contexts. NFAT5, a relative of nuclear factor κB and the calcineurin-activated NFATc transcription factors, protects mammalian cells from hyperosmotic stress caused by the elevation of extracellular sodium levels. In T cells exposed to hypernatremia, NFAT5 not only induces osmoprotective gene products but also cytokines and immune receptors, which raises the question of whether this factor could regulate other T-cell functions in osmostress-independent contexts. Here we have used mice with a conditional deletion of Nfat5 in mature T lymphocytes to explore osmostress-dependent and -independent functions of this factor. In vitro experiments with CD4 T cells stimulated in hyperosmotic medium showed that NFAT5 enhanced the expression of IL-2 and the Th17-associated gene products RORγt and IL-23R. By contrast, NFAT5-deficient CD4 T cells activated in vivo by anti-CD3 antibody exhibited a different activation profile and were skewed towards enhanced interferon γ (IFNγ) and IL-17 expression and attenuated Treg responses. Using a model of experimental colitis, we observed that mice lacking NFAT5 in T cells exhibited exacerbated intestinal colitis and enhanced expression of IFNγ in draining lymph nodes and colon. These results show that NFAT5 can modulate different T-cell responses depending on stress conditions and stimulatory context.
Collapse
Affiliation(s)
- Maria Alberdi
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marcos Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC CSIC-Universidad de Cantabria), Santander, Spain
| | - Sonia Tejedor
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ramón Merino
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC CSIC-Universidad de Cantabria), Santander, Spain
| | | | - Jose Aramburu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
39
|
Deng W, Feng X, Li X, Wang D, Sun L. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol 2016; 303:7-15. [DOI: 10.1016/j.cellimm.2016.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/29/2022]
|
40
|
Ohta A. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment. Front Immunol 2016; 7:109. [PMID: 27066002 PMCID: PMC4809887 DOI: 10.3389/fimmu.2016.00109] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy.
Collapse
Affiliation(s)
- Akio Ohta
- Center for Drug Discovery, Northeastern University , Boston, MA , USA
| |
Collapse
|
41
|
Flück K, Breves G, Fandrey J, Winning S. Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol 2016; 9:379-90. [PMID: 26220168 DOI: 10.1038/mi.2015.67] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/23/2015] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) serve as a bridge between innate and adaptive immunity and help to maintain intestinal homeostasis. Inflammatory bowel disease (IBD) is associated with dysregulation of the mucosal immune response. The concomitant hypoxic inflammation in IBD will activate the transcription factor hypoxia-inducible factor-1 (HIF-1) to also drive gene expression in DCs. Recent studies have described a protective role for epithelial HIF-1 in mouse models of IBD. We investigated the role of HIF-1 in DC function in a dextran sodium sulfate (DSS)-induced model of murine colitis. Wild-type and dendritic cell-specific HIF-1α knockout mice were treated with 3% DSS for 7 days. Knockout of HIF-1α in DCs led to a significantly larger loss of body weight in mice with DSS-induced colitis than in control mice. Knockout mice exhibited more severe intestinal inflammation with increased levels of proinflammatory cytokines and enhanced production of mucin. Induction of regulatory T cells (Tregs) was impaired, and the number of forkhead box P3 (Foxp3) Tregs was diminished by dendritic HIF-1α knockout. Our findings demonstrate that in DCs HIF-1α is necessary for the induction of sufficient numbers of Tregs to control intestinal inflammation.
Collapse
Affiliation(s)
- K Flück
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany.,Physiologisches Institut, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - G Breves
- Physiologisches Institut, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - J Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - S Winning
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 2016; 138:1058-66. [PMID: 25784597 PMCID: PMC4573780 DOI: 10.1002/ijc.29519] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
The complex cross-talk of intricate intercellular signaling networks between the tumor and stromal cells promotes cancer progression. Hypoxia is one of the most common conditions encountered within the tumor microenvironment that drives tumorigenesis. Most responses to hypoxia are elicited by a family of transcription factors called hypoxia-inducible factors (HIFs), which induce expression of a diverse set of genes that assist cells to adapt to hypoxic environments. Among the three HIF protein family members, the role of HIF-1 is well established in cancer progression. HIF-1 functions as a signaling hub to coordinate the activities of many transcription factors and signaling molecules that impact tumorigenesis. This mini review discusses the complex role of HIF-1 and its context-dependent partners under various cancer-promoting events including inflammation and generation of cancer stem cells, which are implicated in tumor metastasis and relapse. In addition, the review highlights the importance of therapeutic targeting of HIF-1 for cancer prevention.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
43
|
Phan AT, Goldrath AW. Hypoxia-inducible factors regulate T cell metabolism and function. Mol Immunol 2015; 68:527-35. [PMID: 26298577 PMCID: PMC4679538 DOI: 10.1016/j.molimm.2015.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 02/06/2023]
Abstract
Resolution of infection requires the coordinated response of heterogeneous cell types to a range of physiological and pathological signals to regulate their proliferation, migration, differentiation, and effector functions. One mechanism by which immune cells integrate these signals is through modulating metabolic activity. A well-studied regulator of cellular metabolism is the hypoxia-inducible factor (HIF) family, the highly conserved central regulators of adaptation to limiting oxygen tension. HIF's regulation of cellular metabolism and a variety of effector, signaling, and trafficking molecules has made these transcription factors a recent topic of interest in T cell biology. Low oxygen availability, or hypoxia, increases expression and stabilization of HIF in immune cells, activating molecular programs both unique and common among cell types, including glycolytic metabolism. Notably, numerous oxygen-independent signals, many of which are active in T cells, also result in enhanced HIF activity. Here, we discuss both oxygen-dependent and -independent regulation of HIF activity in T cells and the resulting impacts on metabolism, differentiation, function, and immunity.
Collapse
Affiliation(s)
- Anthony T Phan
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Ananda W Goldrath
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Zenk SF, Vollmer M, Schercher E, Kallert S, Kubis J, Stenger S. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells. Med Microbiol Immunol 2015; 205:219-29. [PMID: 26613797 DOI: 10.1007/s00430-015-0442-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.
Collapse
Affiliation(s)
- Sebastian F Zenk
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Michael Vollmer
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Esra Schercher
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Stephanie Kallert
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Jan Kubis
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Steffen Stenger
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
45
|
Abstract
Hypoxia is a hallmark of chronically inflamed tissue. Hypoxia develops from vascular dysfunction and increased oxygen consumption by infiltrating leukocytes. With respect to inflammatory bowel disease (IBD), hypoxia is likely to be of particular importance: Impairment of the intestinal barrier during IBD allows anoxia from the lumen of the gut to spread to formerly normoxic tissue. In addition, disturbed perfusion of inflamed tissue and a higher oxygen demand of infiltrating immune cells lead to low oxygen levels in inflamed mucosal tissue. Here, cells become hypoxic and must now adapt to this condition. The hypoxia inducible factor (HIF)-1 complex is a key transcription factor for cellular adaption to low oxygen tension. HIF-1 is a heterodimer formed by two subunits: HIF-α (either HIF-1α or HIF-2α) and HIF-1β. Under normoxic conditions, hydroxylation of the HIF-α subunit by specific oxygen-dependent prolyl hydroxylases (PHDs) leads to ubiquitin proteasome-dependent degradation. Under hypoxic conditions, however, PHD activity is inhibited; thus, HIF-α can translocate into the nucleus, dimerize with HIF-1β, and bind to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in intestinal epithelial cells and the effect of HIF stabilization by PHD inhibitors in murine models of colitis. Furthermore, the role of HIF-1α in immune cells becomes more and more important as T cells or dendritic cells for which HIF-1 is of critical importance are highly involved in the pathogenesis of IBD. This review will summarize the function of HIF-1α and the therapeutic prospects for targeting the HIF pathway in intestinal mucosal inflammation.
Collapse
Affiliation(s)
- Katharina Flück
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
46
|
Mladenova DN, Dahlstrom JE, Tran PN, Benthani F, Bean EG, Ng I, Pangon L, Currey N, Kohonen-Corish MRJ. HIF1α deficiency reduces inflammation in a mouse model of proximal colon cancer. Dis Model Mech 2015; 8:1093-103. [PMID: 26183215 PMCID: PMC4582097 DOI: 10.1242/dmm.019000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/07/2015] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies. However, the role of HIF1α is still poorly understood in chronic inflammation that predisposes the colon to carcinogenesis. We have previously reported that the transcription of HIF1α is upregulated and that the protein is stabilised in inflammatory lesions that are caused by the non-steroidal anti-inflammatory drug (NSAID) sulindac in the mouse proximal colon. Here, we exploited this side effect of long-term sulindac administration to analyse the role of HIF1α in colon inflammation using mice with a Villin-Cre-induced deletion of Hif1α exon 2 in the intestinal epithelium (Hif1αΔIEC). We also analysed the effect of sulindac sulfide on the aryl hydrocarbon receptor (AHR) pathway in vitro in colon cancer cells. Most sulindac-treated mice developed visible lesions, resembling the appearance of flat adenomas in the human colon, surrounded by macroscopically normal mucosa. Hif1αΔIEC mice still developed lesions but they were smaller than in the Hif1α-floxed siblings (Hif1αF/F). Microscopically, Hif1αΔIEC mice had significantly less severe colon inflammation than Hif1αF/F mice. Molecular analysis showed reduced MIF expression and increased E-cadherin mRNA expression in the colon of sulindac-treated Hif1αΔIEC mice. However, immunohistochemistry analysis revealed a defect of E-cadherin protein expression in sulindac-treated Hif1αΔIEC mice. Sulindac sulfide treatment in vitro upregulated Hif1α, c-JUN and IL8 expression through the AHR pathway. Taken together, HIF1α expression augments inflammation in the proximal colon of sulindac-treated mice, and AHR activation by sulindac might lead to the reduction of E-cadherin protein levels through the mitogen-activated protein kinase (MAPK) pathway. Summary: HIF1α deficiency reduces inflammation in the mouse proximal colon but is associated with defective E-cadherin expression in colon epithelial cells when mice lacking intestinal epithelium expression of Hif1α are challenged with sulindac.
Collapse
Affiliation(s)
- Dessislava N Mladenova
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Jane E Dahlstrom
- ACT Pathology, The Canberra Hospital and Australian National University Medical School, Canberra, Australian Capital Territory, 2605, Australia
| | - Phuong N Tran
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Fahad Benthani
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Elaine G Bean
- ACT Pathology, The Canberra Hospital and Australian National University Medical School, Canberra, Australian Capital Territory, 2605, Australia
| | - Irvin Ng
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Laurent Pangon
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Nicola Currey
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Maija R J Kohonen-Corish
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia St Vincent's Clinical School, UNSW Medicine, UNSW Australia, Sydney, New South Wales, 2052, Australia School of Medicine, University of Western Sydney, Sydney, New South Wales, 2560, Australia
| |
Collapse
|
47
|
Shehade H, Acolty V, Moser M, Oldenhove G. Cutting Edge: Hypoxia-Inducible Factor 1 Negatively Regulates Th1 Function. THE JOURNAL OF IMMUNOLOGY 2015; 195:1372-6. [DOI: 10.4049/jimmunol.1402552] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
|
48
|
Caria CREP, Moscato CH, Tomé RBG, Pedrazzoli J, Ribeiro ML, Gambero A. Nitric oxide interferes with hypoxia signaling during colonic inflammation. ARQUIVOS DE GASTROENTEROLOGIA 2015; 51:302-8. [PMID: 25591158 DOI: 10.1590/s0004-28032014000400007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/08/2014] [Indexed: 01/24/2023]
Abstract
CONTEXT Intestinal inflammation can induce a local reduction in oxygen levels that triggers an adaptive response centered on the expression of hypoxia-inducible factors (HIFs). Nitric oxide, a well-described inflammatory mediator, may interfere with hypoxia signaling. OBJECTIVES We aimed to evaluate the role of nitric oxide in hypoxia signaling during colonic inflammation. METHODS Colitis was induced by single (acute) or repeated (reactivated colitis) trinitrobenzenosulfonic acid administration in rats. In addition, one group of rats with reactivated colitis was also treated with Nw-Nitro-L-arginine methyl ester hydrochloride to block nitric oxide synthase. Colitis was assessed by macroscopic score and myeloperoxidase activity in the colon samples. Hypoxia was determined using the oxygen-dependent probe, pimonidazole. The expression of HIF-1α and HIF-induced factors (vascular endothelial growth factor - VEGF and apelin) was assessed using Western blotting. RESULTS The single or repeated administration of trinitrobenzenosulfonic acid to rats induced colitis which was characterized by a high macroscopic score and myeloperoxidase activity. Hypoxia was observed with both protocols. During acute colitis, HIF-1α expression was not increased, but VEGF and apelin were increased. HIF-1α expression was inhibited during reactivated colitis, and VEGF and apelin were not increased. Nw-Nitro-L-arginine methyl ester hydrochloride blockade during reactivated colitis restored HIF-1α, VEGF and apelin expression. CONCLUSIONS Nitric oxide could interfere with hypoxia signaling during reactivated colitis inflammation modifying the expression of proteins regulated by HIF-1α.
Collapse
Affiliation(s)
- Cintia Rabelo e Paiva Caria
- Unidade Integrada de Farmacologia e Gastroenterologia (Unifag), Faculdade de Medicina da Universidade São Francisco, São Paulo, SP, Brasil
| | - Camila Henrique Moscato
- Unidade Integrada de Farmacologia e Gastroenterologia (Unifag), Faculdade de Medicina da Universidade São Francisco, São Paulo, SP, Brasil
| | - Renata Bortolin Guerra Tomé
- Unidade Integrada de Farmacologia e Gastroenterologia (Unifag), Faculdade de Medicina da Universidade São Francisco, São Paulo, SP, Brasil
| | - José Pedrazzoli
- Unidade Integrada de Farmacologia e Gastroenterologia (Unifag), Faculdade de Medicina da Universidade São Francisco, São Paulo, SP, Brasil
| | - Marcelo Lima Ribeiro
- Unidade Integrada de Farmacologia e Gastroenterologia (Unifag), Faculdade de Medicina da Universidade São Francisco, São Paulo, SP, Brasil
| | - Alessandra Gambero
- Unidade Integrada de Farmacologia e Gastroenterologia (Unifag), Faculdade de Medicina da Universidade São Francisco, São Paulo, SP, Brasil
| |
Collapse
|
49
|
Parra RS, Lopes AH, Carreira EU, Feitosa MR, Cunha FQ, Garcia SB, Cunha TM, da Rocha JJR, Féres O. Hyperbaric oxygen therapy ameliorates TNBS-induced acute distal colitis in rats. Med Gas Res 2015; 5:6. [PMID: 25926972 PMCID: PMC4414439 DOI: 10.1186/s13618-015-0026-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/06/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study investigated the therapeutic effects of hyperbaric oxygen in experimental acute distal colitis focusing on its effect on the production of pro-inflammatory cytokines, nitric oxide and hypoxia-inducible factor 1alpha. METHODS Colitis was induced with a rectal infusion of 150 mg/kg of TNBS under anesthesia with Ketamine (50 mg/kg) and Xylazine (10 mg/kg). Control animals received only rectal saline. After colitis induction, animals were subjected to two sessions of hyperbaric oxygen and were then euthanized. The distal intestine was resected for macroscopic analysis, determination of myeloperoxidase activity, western-blotting analyses of inducible nitric oxide synthase and cyclooxygenase-2 expression and immunohistochemical analysis of hypoxia-inducible factor 1alpha and cyclooxygenase-2. Cytokines levels in the distal intestine were measured using an enzyme-linked immunosorbent assay. RESULTS Hyperbaric oxygen therapy attenuated the severity of acute distal colitis, with reduced macroscopic damage score. This effect was associated with prevention in the increase of pro-inflammatory cytokine production; myeloperoxidase activity, in the expression of inducible nitric oxide synthase and cyclooxygenase-2. Finally, hyperbaric oxygen inhibited the acute distal colitis-induced up-regulation of hypoxia-inducible factor 1alpha. CONCLUSIONS The results indicate that hyperbaric oxygen attenuates the severity of acute distal colitis through the down-regulation of pro-inflammatory events.
Collapse
Affiliation(s)
- Rogério S Parra
- />Division of Coloproctology, Department of Surgery and Anatomy. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Alexandre H Lopes
- />Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP Brazil
| | - Eleonora U Carreira
- />Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP Brazil
| | - Marley R Feitosa
- />Division of Coloproctology, Department of Surgery and Anatomy. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Fernando Q Cunha
- />Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP Brazil
| | - Sérgio B Garcia
- />Department of Pathology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP Brazil
| | - Thiago M Cunha
- />Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP Brazil
| | - José J R da Rocha
- />Division of Coloproctology, Department of Surgery and Anatomy. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Omar Féres
- />Division of Coloproctology, Department of Surgery and Anatomy. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| |
Collapse
|
50
|
Shehade H, Oldenhove G, Moser M. Hypoxia in the intestine or solid tumors: a beneficial or deleterious alarm signal? Eur J Immunol 2014; 44:2550-7. [PMID: 25043839 DOI: 10.1002/eji.201444719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/01/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The transcription factor hypoxia inducible factors (HIF)-1 functions as a master regulator of oxygen homeostasis. There is increasing evidence that HIF has an essential role to prevent tissue damage in physiological and pathological situations in which cells are deprived of O2. Here, we review the effects of decreased oxygen supply on the innate and adaptive immune responses in the gut and in solid tumors in which the oxygenation profile correlates with the grade of inflammation. Data in the literature indicate that some tumors may co-opt immune mechanisms induced by HIF-1 to promote their survival and proliferation. By contrast, HIF-1 stabilization would have a beneficial effect in the intestinal tract as it would dampen inflammation and promote its resolution. Therefore, stabilization of HIF-1 in hypoxia may have opposite effects on the integrity of the host, depending on the tissue microenvironment.
Collapse
Affiliation(s)
- Hussein Shehade
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|