1
|
Silva PHR, Spedo CT, Barreira AA, Leoni RF. Symbol Digit Modalities Test adaptation for Magnetic Resonance Imaging environment: A systematic review and meta-analysis. Mult Scler Relat Disord 2018; 20:136-143. [PMID: 29414287 DOI: 10.1016/j.msard.2018.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND The Symbol Digit Modalities Test (SDMT) is widely used for cognitive evaluation of information processing speed (IPS), required in many cognitive operations. Despite being unspecific for different neurological disorders, it is sensitive to assess impaired performance related to stroke, Parkinson's disease, traumatic brain injury, and multiple sclerosis. However, in addition to evaluate the presence and severity of IPS impairment, it is of interest to determine the localization and integration of brain regions responsible for the functions assessed by the SDMT. OBJECTIVE To review the studies that adapted the SDMT to the magnetic resonance environment and obtain the brain areas associated with the performance of the task in healthy subjects with a meta-analysis. METHODOLOGY A systematic review was performed using ten studies published between 1990 and 2017, and selected from four databases. All studies included participants of both genders and age between 18 and 50 years, used Functional Magnetic Resonance Imaging (fMRI) and SDMT adaptation and reported brain regions associated with the task. Six of them also reported the region coordinates in a standard space, so they were included in a meta-analysis. Activation Likelihood Estimation algorithm, with significance for p < 0.05 corrected for multiple comparisons, was used to identify areas that are robustly related to the performance of the SDMT. RESULTS The areas predominantly reported in the studies of our meta-analysis were regions of the frontoparietal attentional network and occipital cortex, as well as cuneus, precuneus, and cerebellum. Individually all regions that survived the statistical threshold are consistent with what is expected after reviewing prospective studies. CONCLUSIONS The present study allowed the identification of brain areas activated during the performance of the SDMT in healthy subjects, and therefore it will help understanding the differences in brain activation by this task in clinical populations. Moreover, it may guide future studies of therapeutic strategies and interventions in those populations.
Collapse
Affiliation(s)
- P H R Silva
- Dept. of Physics, FFCLRP, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - C T Spedo
- Dept. of Neuroscience and Behavioral Sciences, FMRP, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - A A Barreira
- Dept. of Neuroscience and Behavioral Sciences, FMRP, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - R F Leoni
- Dept. of Physics, FFCLRP, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
2
|
Repetitive Transcranial Magnetic Stimulation, Cognition, and Multiple Sclerosis: An Overview. Behav Neurol 2018; 2018:8584653. [PMID: 29568339 PMCID: PMC5822759 DOI: 10.1155/2018/8584653] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) affects cognition in the majority of patients. A major aspect of the disease is brain volume loss (BVL), present in all phases and types (relapsing and progressive) of the disease and linked to both motor and cognitive disabilities. Due to the lack of effective pharmacological treatments for cognition, cognitive rehabilitation and other nonpharmacological interventions such as repetitive transcranial magnetic stimulation (rTMS) have recently emerged and their potential role in functional connectivity is studied. With recently developed advanced neuroimaging and neurophysiological techniques, changes related to alterations of the brain's functional connectivity can be detected. In this overview, we focus on the brain's functional reorganization in MS, theoretical and practical aspects of rTMS utilization in humans, and its potential therapeutic role in treating cognitively impaired MS patients.
Collapse
|
3
|
Activation volume vs BOLD signal change as measures of fMRI activation - Its impact on GABA - fMRI activation correlation. Magn Reson Imaging 2017. [PMID: 28634048 DOI: 10.1016/j.mri.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE To explore the relative robustness of functional MRI (fMRI) activation volume and blood oxygen level-dependent (BOLD) signal change as fMRI metric, and to study the effect of relative robustness on the correlation between fMRI activation and cortical gamma amino butyric acid (GABA) in healthy controls and patients with multiple sclerosis (MS). METHODS fMRI data were acquired from healthy controls and patients with MS, with the subjects peforming self paced bilateral finger tapping in block design. GABA spectroscopy was performed with voxel placed on the area of maximum activation during fMRI. Activation volume and BOLD signal changes at primary motor cortex (M1), as well as GABA concentration were calculated for each patient. RESULTS Activation volume correlated with BOLD signal change in healthy controls, but no such correlation was observed in patients with MS. This difference was likely the result of higher intersubject noise variance in the patient population. GABA concentration correlated with M1 activation volume in patients but not in controls, and did not correlate with any fMRI metric in patients or controls. CONCLUSION Our data suggest that activation volume is a more robust measure than BOLD signal change in a group with high intersubject noise variance as in patients with MS. Additionally, this study demonstrated difference in correlation behavior between GABA concentration and the 2 fMRI metrics in patients with MS, suggesting that GABA - activation volume correlation is more appropriate measure in the patient group.
Collapse
|
4
|
Straudi S, Manfredini F, Lamberti N, Zamboni P, Bernardi F, Marchetti G, Pinton P, Bonora M, Secchiero P, Tisato V, Volpato S, Basaglia N. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Trials 2017; 18:88. [PMID: 28241776 PMCID: PMC5330064 DOI: 10.1186/s13063-017-1838-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/12/2017] [Indexed: 11/22/2022] Open
Abstract
Background Gait and mobility impairments affect the quality of life (QoL) of patients with progressive multiple sclerosis (MS). Robot-assisted gait training (RAGT) is an effective rehabilitative treatment but evidence of its superiority compared to other options is lacking. Furthermore, the response to rehabilitation is multidimensional, person-specific and possibly involves functional reorganization processes. The aims of this study are: (1) to test the effectiveness on gait speed, mobility, balance, fatigue and QoL of RAGT compared to conventional therapy (CT) in progressive MS and (2) to explore changes of clinical and circulating biomarkers of neural plasticity. Methods This will be a parallel-group, randomized controlled trial design with the assessor blinded to the group allocation of participants. Ninety-eight (49 per arm) progressive MS patients (EDSS scale 6–7) will be randomly assigned to receive twelve 2-h training sessions over a 4-week period (three sessions/week) of either: (1) RAGT intervention on a robotic-driven gait orthosis (Lokomat, Hocoma, Switzerland). The training parameters (torque of the knee and hip drives, treadmill speed, body weight support) are set during the first session and progressively adjusted during training progression or (2) individual conventional physiotherapy focusing on over-ground walking training performed with the habitual walking device. The same assessors will perform outcome measurements at four time points: baseline (before the first intervention session); intermediate (after six training sessions); end of treatment (after the completion of 12 sessions); and follow-up (after 3 months from the end of the training program). The primary outcome is gait speed, assessed by the Timed 25-Foot Walk Test. We will also assess walking endurance, balance, depression, fatigue and QoL as well as instrumental laboratory markers (muscle metabolism, cerebral venous hemodynamics, cortical activation) and circulating laboratory markers (rare circulating cell populations pro and anti-inflammatory cytokines/chemokines, growth factors, neurotrophic factors, coagulation factors, other plasma proteins suggested by transcriptomic analysis and metabolic parameters). Discussion The RAGT training is expected to improve mobility compared to the active control intervention in progressive MS. Unique to this study is the analysis of various potential markers of plasticity in relation with clinical outcomes. Trial registration ClinicalTrials.gov, identifier: NCT02421731. Registered on 19 January 2015 (retrospectively registered). Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1838-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy
| | - Fabio Manfredini
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy. .,Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| | - Nicola Lamberti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Unit of Translational Surgery and Vascular Diseases Center, Ferrara University Hospital, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Center for Clinical Epidemiology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy
| |
Collapse
|
5
|
Qiao N, Ye Z, Shou X, Wang Y, Li S, Wang M, Zhao Y. Discrepancy between structural and functional visual recovery in patients after trans-sphenoidal pituitary adenoma resection. Clin Neurol Neurosurg 2016; 151:9-17. [PMID: 27728836 DOI: 10.1016/j.clineuro.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The relationship between functional and structural measurements is of fundamental importance in monitoring treatment and progression in patients with pituitary adenoma. In the present study, we examined the association between longitudinal changes in standard automated perimetry (SAP), retinal nerve fiber layer (RNFL) thickness and multifocal visual evoked potential (mfVEP) amplitude after transsphenoidal surgery. METHODS Thirty patients with pituitary adenoma were recruited from Huashan Hospital between September 2010 and January 2014. The examination included pupil examination, anterior and posterior segment examination, SAP, RNFL and mfVEP. At three months and nine months after transsphenoid surgery, follow-up measurements were conducted in twenty-three patients, and at 18 months after surgery, the same examinations were performed in seven patients. RESULTS The average age of patients was 42.6±12.1years, with 23 males and 7 females. The mean score of SAP improved significantly: 1.75 before surgery; 0.62 at three months after surgery (p=0.00) and 0.50 at nine months after surgery (p=0.00). No significant improvement in RNFL thickness was observed at three months or nine months after surgery. The mean score of mfVEP also improved significantly: 0.85 before surgery; 0.53 at three months (p=0.00) and 0.38 at nine months after surgery (P=0.00). No statistical difference was observed in the outcome of patients at nine months of follow-up and 18 months of follow-up. CONCLUSION Visual field and mfVEP recovery with unchanged RNFL thickness was observed in patients after transsphenoid pituitary adenoma resection.
Collapse
Affiliation(s)
- Nidan Qiao
- Shanghai Pituitary Tumor Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Zhao Ye
- Shanghai Pituitary Tumor Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xuefei Shou
- Shanghai Pituitary Tumor Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yongfei Wang
- Shanghai Pituitary Tumor Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Shiqi Li
- Shanghai Pituitary Tumor Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Min Wang
- Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yao Zhao
- Shanghai Pituitary Tumor Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
6
|
Wu L, Zhang Y, Zhou F, Gao L, He L, Zeng X, Gong H. Altered intra- and interregional synchronization in relapsing-remitting multiple sclerosis: a resting-state fMRI study. Neuropsychiatr Dis Treat 2016; 12:853-62. [PMID: 27143886 PMCID: PMC4841392 DOI: 10.2147/ndt.s98962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuroimaging studies of relapsing-remitting multiple sclerosis (RRMS) have found structural disconnection and large-scale neural network dysfunction. However, few studies have explored the local brain activity of RRMS patients in the resting state. PATIENTS AND METHODS In this study, regional homogeneity (ReHo) and resting-state functional connectivity (FC) were used to investigate intra- and interregional synchronized activity in 22 patients with RRMS and 22 matched healthy controls (HCs). RESULTS Compared with HCs, patients with RRMS showed significantly decreased ReHo in the left insula and right caudate. Through further seed-based FC analysis, we found decreased FC between the left insula and left precentral gyrus in patients with RRMS compared with HCs, as well as increased FC between the right caudate and right dorsolateral prefrontal cortex. Pearson's correlation analysis showed that a decreased ReHo value in the left insula was associated with an increased total white matter lesion loads (TWMLL) score (r=-0.594, P=0.004) or a worsened paced auditory serial addition test score (r=0.536, P=0.010). No other significant correlations were observed between the FC value (left insula - left precentral gyrus) and clinical scores (P=0.246-0.982). The ReHo value of the right caudate was negatively correlated with disease duration (r=-0.526, P=0.012) and with the TWMLL score (r=-0.596, P=0.003). Moreover, a positive correlation was observed between the FC value (right caudate - right dorsolateral prefrontal cortex) and the TWMLL score (r=0.523, P=0.012) or the modified fatigue impact scale-5 score (r=0.608, P=0.003). CONCLUSION Together, these findings suggest that the insula with regional dysfunction involves disconnection with sensorimotor regions, and demyelinating lesion-related intra- and interregional dysfunction in the caudate is associated with the impact of fatigue on cognitive control functions. Abnormal synchronization of intra- and interregional activity in the insula and caudate may play important roles in the pathology of RRMS.
Collapse
Affiliation(s)
- Lin Wu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China; Jiangxi Province Medical Imaging Research Institute, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Yue Zhang
- Department of Radiology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China; Jiangxi Province Medical Imaging Research Institute, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Lei Gao
- Jiangxi Province Medical Imaging Research Institute, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China; Jiangxi Province Medical Imaging Research Institute, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China; Jiangxi Province Medical Imaging Research Institute, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China; Jiangxi Province Medical Imaging Research Institute, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
7
|
Pardini M, Yaldizli Ö, Sethi V, Muhlert N, Liu Z, Samson RS, Altmann DR, Ron MA, Wheeler-Kingshott CAM, Miller DH, Chard DT. Motor network efficiency and disability in multiple sclerosis. Neurology 2015; 85:1115-22. [PMID: 26320199 DOI: 10.1212/wnl.0000000000001970] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/24/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To develop a composite MRI-based measure of motor network integrity, and determine if it explains disability better than conventional MRI measures in patients with multiple sclerosis (MS). METHODS Tract density imaging and constrained spherical deconvolution tractography were used to identify motor network connections in 22 controls. Fractional anisotropy (FA), magnetization transfer ratio (MTR), and normalized volume were computed in each tract in 71 people with relapse onset MS. Principal component analysis was used to distill the FA, MTR, and tract volume data into a single metric for each tract, which in turn was used to compute a composite measure of motor network efficiency (composite NE) using graph theory. Associations were investigated between the Expanded Disability Status Scale (EDSS) and the following MRI measures: composite motor NE, NE calculated using FA alone, FA averaged in the combined motor network tracts, brain T2 lesion volume, brain parenchymal fraction, normal-appearing white matter MTR, and cervical cord cross-sectional area. RESULTS In univariable analysis, composite motor NE explained 58% of the variation in EDSS in the whole MS group, more than twice that of the other MRI measures investigated. In a multivariable regression model, only composite NE and disease duration were independently associated with EDSS. CONCLUSIONS A composite MRI measure of motor NE was able to predict disability substantially better than conventional non-network-based MRI measures.
Collapse
Affiliation(s)
- Matteo Pardini
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK.
| | - Özgür Yaldizli
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Varun Sethi
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Nils Muhlert
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Zheng Liu
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Rebecca S Samson
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Daniel R Altmann
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Maria A Ron
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Claudia A M Wheeler-Kingshott
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - David H Miller
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Declan T Chard
- From the NMR Research Unit (M.P., Ö.Y., V.S., N.M., Z.L., R.S.S., D.R.A., M.A.R., C.A.M.W.-K., D.H.M., D.T.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; the Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.P.), University of Genoa, Italy; the Department of Neurology (Ö.Y.), University Hospital Basel, Switzerland; the Department of Psychology (N.M.), Cardiff University, UK; the Department of Neurology (Z.L.), Xuanwu Hospital of Capital Medical University, Beijing, China; the Medical Statistics Department (D.R.A.), London School of Hygiene and Tropical Medicine, UK; and the National Institute for Health Research (NIHR) (D.T.C.), University College London Hospitals (UCLH) Biomedical Research Centre, UK
| |
Collapse
|
8
|
Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background. Neural Plast 2015; 2015:307175. [PMID: 26229689 PMCID: PMC4503575 DOI: 10.1155/2015/307175] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 01/19/2023] Open
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets.
Collapse
|
9
|
Matthews PM, Comley R. Advances in the molecular imaging of multiple sclerosis. Expert Rev Clin Immunol 2014; 5:765-77. [DOI: 10.1586/eci.09.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Simon JH. MRI outcomes in the diagnosis and disease course of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:405-25. [PMID: 24507528 DOI: 10.1016/b978-0-444-52001-2.00017-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite major advances in MRI, including practical implementations of multiple quantitative MRI methods, the conventional measures of focal, macroscopic disease remain the core MRI outcome measures in clinical trials. MRI enhancing lesion counts are used to assess inflammation, and new T2-lesions provide an index of (interval) activity between scans. These simple MRI measures also have immediate significance for early diagnosis as components of the 2010 revised dissemination in space and time criteria, and they provide a mechanism to monitor the subclinical disease in patients, including after treatment is initiated. The focal macroscopic injury, which includes demyelination and axonal damage, is at least partially linked to the diffuse injury through pathophysiologic mechanisms, such as secondary degeneration, but the diffuse diseases is largely independent. Quantitative measures of the more widespread pathology of the normal appearing white and gray matter currently remain applicable to populations of patients rather than individuals. Gray matter pathology, including focal lesions of the cortical gray matter and diffuse changes in the deep and cortical gray has emerged as both early and clinically relevant, as has atrophy. Major technical improvements in MRI hardware and pulse sequence design allow more specific and potentially more sensitive treatment metrics required for targeting outcomes most relevant to neuronal degeneration, remyelination and repair.
Collapse
Affiliation(s)
- Jack H Simon
- Oregon Health and Sciences University and Portland VA Medical Center, Portland, OR, USA.
| |
Collapse
|
11
|
Cruz-Gómez ÁJ, Ventura-Campos N, Belenguer A, Ávila C, Forn C. The link between resting-state functional connectivity and cognition in MS patients. Mult Scler 2013; 20:338-48. [DOI: 10.1177/1352458513495584] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: The objective of this paper is to explore differences in resting-state functional connectivity between cognitively impaired and preserved multiple sclerosis (MS) patients. Methods: Sixty MS patients and 18 controls were assessed with the Brief Repeatable Battery of Neuropsychological Tests (BRB-N). A global Z score of the BRB-N was obtained and allowed us to classify MS patients as cognitively impaired and cognitively preserved ( n = 30 per group). Functional connectivity was assessed by independent component analysis of resting-state networks (RSNs) related to cognition: the default mode network, left and right frontoparietal and salience network. Between-group differences were evaluated and a regression analysis was performed to describe relationships among cognitive status, functional connectivity and radiological variables. Results: Compared to cognitively preserved patients and healthy controls, cognitively impaired patients showed a lesser degree of functional connectivity in all RSNs explored. Cognitively preserved patients presented less connectivity than the control group in the left frontoparietal network. Global Z scores were positively and negatively correlated with brain parenchymal fraction and lesion volume, respectively. Conclusion: Decreased cognitive performance is accompanied by reduced resting state functional connectivity and directly related to brain damage. These results support the use of connectivity as a powerful tool to monitor and predict cognitive impairment in MS patients.
Collapse
Affiliation(s)
- Álvaro J Cruz-Gómez
- Departament de Psicología Bàsica, Clínica i Psicobiología, Universitat Jaume I, Spain
| | - Noelia Ventura-Campos
- Departament de Psicología Bàsica, Clínica i Psicobiología, Universitat Jaume I, Spain
| | | | - Cesar Ávila
- Departament de Psicología Bàsica, Clínica i Psicobiología, Universitat Jaume I, Spain
| | - Cristina Forn
- Departament de Psicología Bàsica, Clínica i Psicobiología, Universitat Jaume I, Spain
| |
Collapse
|
12
|
Task-load manipulation in the Symbol Digit Modalities Test: An alternative measure of information processing speed. Brain Cogn 2013; 82:152-60. [DOI: 10.1016/j.bandc.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/28/2013] [Accepted: 04/08/2013] [Indexed: 11/20/2022]
|
13
|
Zhou Y, Milham M, Zuo XN, Kelly C, Jaggi H, Herbert J, Grossman RI, Ge Y. Functional homotopic changes in multiple sclerosis with resting-state functional MR imaging. AJNR Am J Neuroradiol 2013; 34:1180-7. [PMID: 23348760 DOI: 10.3174/ajnr.a3386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE CC is extensively involved in MS with interhemispheric dysfunction. The purpose of this study was to determine whether interhemispheric correlation is altered in MS by use of a recently developed RS-fMRI homotopy technique and whether these homotopic changes correlate with CC pathology. MATERIALS AND METHODS Twenty-four patients with relapsing-remitting MS and 24 age-matched healthy volunteers were studied with RS-fMRI and DTI acquired at 3T. The Pearson correlation of each pair of symmetric interhemispheric voxels of RS-fMRI time-series data was performed to compute VMHC, and z-transformed for subsequent group-level analysis. In addition, 5 CC segments in the midsagittal area and DTI-derived FA were measured to quantify interhemispheric microstructural changes and correlate with global and regional VMHC in MS. RESULTS Relative to control participants, patients with MS exhibited an abnormal homotopic pattern with decreased VMHC in the primary visual, somatosensory, and motor cortices and increased VMHC in several regions associated with sensory processing and motor control including the insula, thalamus, pallidum, and cerebellum. The global VMHC correlates moderately with the average FA of the entire CC for all participants in both groups (r = 0.3; P = .03). CONCLUSIONS Our data provide preliminary evidence of the potential usefulness of VMHC analyses for the detection of abnormalities of interhemispheric coordination in MS. We demonstrated that the whole-brain homotopic RS-fMRI pattern was altered in patients with MS, which was partially associated with the underlying structural degenerative changes of CC measured with FA.
Collapse
Affiliation(s)
- Yongxia Zhou
- Radiology/Center for Biomedical Imaging, New York UniversitySchool of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rehabilitation interventions in multiple sclerosis: an overview. J Neurol 2012; 259:1994-2008. [DOI: 10.1007/s00415-012-6577-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/30/2022]
|
15
|
Tomassini V, Johansen-Berg H, Jbabdi S, Wise RG, Pozzilli C, Palace J, Matthews PM. Relating brain damage to brain plasticity in patients with multiple sclerosis. Neurorehabil Neural Repair 2012; 26:581-93. [PMID: 22328685 PMCID: PMC3674542 DOI: 10.1177/1545968311433208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. OBJECTIVE . Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. METHODS 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. RESULTS Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. CONCLUSIONS Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients.
Collapse
Affiliation(s)
- Valentina Tomassini
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Richiardi J, Gschwind M, Simioni S, Annoni JM, Greco B, Hagmann P, Schluep M, Vuilleumier P, Van De Ville D. Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage 2012; 62:2021-33. [PMID: 22677149 DOI: 10.1016/j.neuroimage.2012.05.078] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the slow oscillations (<0.11 Hz) of region-averaged time series, and a pattern recognition technique was used to learn a discriminant function indicating which particular functional connections are most affected by disease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at p<0.005) and specificity of 86% (p<0.01) to distinguish between MS patients and controls. The most discriminative connectivity changes were found in subcortical and temporal regions, and contralateral connections were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, possibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level integrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.
Collapse
Affiliation(s)
- Jonas Richiardi
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Döring A, Pfueller CF, Paul F, Dörr J. Exercise in multiple sclerosis -- an integral component of disease management. EPMA J 2011; 3:2. [PMID: 22738091 PMCID: PMC3375103 DOI: 10.1007/s13167-011-0136-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/02/2011] [Indexed: 11/28/2022]
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory disorder of the central nervous system (CNS) in young adults. The disease causes a wide range of symptoms depending on the localization and characteristics of the CNS pathology. In addition to drug-based immunomodulatory treatment, both drug-based and non-drug approaches are established as complementary strategies to alleviate existing symptoms and to prevent secondary diseases. In particular, physical therapy like exercise and physiotherapy can be customized to the individual patient's needs and has the potential to improve the individual outcome. However, high quality systematic data on physical therapy in MS are rare. This article summarizes the current knowledge on the influence of physical activity and exercise on disease-related symptoms and physical restrictions in MS patients. Other treatment strategies such as drug treatments or cognitive training were deliberately excluded for the purposes of this article.
Collapse
Affiliation(s)
- Andrea Döring
- NeuroCure Clinical Research Center and Clinical and Experimental Research Center for Multiple Sclerosis, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Pantano P, Bernardi S, Tinelli E, Pontecorvo S, Lenzi D, Raz E, Tona F, Gasperini C, Pozzilli C. Impaired cortical deactivation during hand movement in the relapsing phase of multiple sclerosis: a cross-sectional and longitudinal fMRI study. Mult Scler 2011; 17:1177-84. [PMID: 21677022 DOI: 10.1177/1352458511411757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Little is known about the cortical activation changes during clinical relapses in multiple sclerosis (MS). OBJECTIVE To assess cross-sectional and longitudinal differences in functional magnetic resonance imaging (fMRI) cortical patterns between the relapsing and stable phases of MS. METHODS We studied 32 patients with relapsing-remitting MS with mild disability: 19 within 48 h of symptom onset of a new relapse (G1) and 13 in the stable phase, relapse-free for at least 6 months (G2). All patients underwent fMRI twice, upon entry (time 1) and 30-50 days later (time 2), during right-hand movement. RESULTS No between-group differences were observed in age, disability or T2 lesion load. Between-group analysis showed a significant difference in the ipsilateral precentral gyrus (IPG) activation at time 1. Activity differences in the IPG expressed reduced deactivation in G1 compared with G2. Longitudinal changes in brain activity in the IPG were significantly greater in G1 than G2. G1 patients with a slow clinical recovery (n = 8) showed different activity at baseline and greater activity changes over time in the IPG than patients with a fast recovery (n = 11). CONCLUSION This study shows that the relapsing phase is associated with reduced brain deactivation in the IPG, which is more marked in patients with a slow clinical recovery. Increased cortical excitability associated with inflammation may determine functional modifications within the ipsilateral motor area.
Collapse
Affiliation(s)
- Patrizia Pantano
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Smith AM, Walker LA, Freedman MS, DeMeulemeester C, Hogan MJ, Cameron I. fMRI investigation of disinhibition in cognitively impaired patients with multiple sclerosis. J Neurol Sci 2009; 281:58-63. [DOI: 10.1016/j.jns.2009.02.366] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/02/2009] [Accepted: 02/13/2009] [Indexed: 10/20/2022]
|
20
|
Abstract
MR imaging has had a major impact on understanding the dynamic neuropathologic findings of multiple sclerosis (MS), early diagnosis of the disease, and clinical trial conduct. The next 10 years can be expected to see further advances with a greater emphasis on large multicenter studies, new techniques and hardware allowing greater imaging sensitivity and resolution, and the exploitation of positron emission tomography molecular imaging for MS. The impact should be felt with a new emphasis on gray matter disease and processes of repair. With new ways of monitoring the disease, new treatment targets should become practical, helping to translate advances in the understanding of immunology and regenerative medicine into novel therapies.
Collapse
Affiliation(s)
- Paul M Matthews
- Glaxo Smith Kline Clinical Imaging Centre, Hammersmith Hospital, London, UK.
| |
Collapse
|
21
|
Plow MA, Resnik L, Allen S. Exploring physical activity behaviour of persons with multiple sclerosis: a qualitative pilot study. Disabil Rehabil 2009; 31:1652-65. [PMID: 19479491 PMCID: PMC4703089 DOI: 10.1080/09638280902738375] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Identify facilitators and barriers to physical activity (PA), and explore the utility of Social Cognitive Theory (SCT) and Transactional Model of Stress and Coping (TMSC) in understanding PA behaviour among persons with multiple sclerosis (MS). METHODS Thirteen participants from a clinical trial were interviewed and classified as physically active, sometimes active or inactive based on the Health-Promoting Lifestyle Profile-II. Interviews were analysed using analytical induction, which consisted of coding data into pre-established categories and then exploring similarities and differences between groups. Pre-established coding categories were constructs from SCT (i.e. environment, expectations, self-efficacy and self-regulation) and TMSC (i.e. stress appraisal and coping style). RESULTS Inactive and active participants differed in their self-regulation skills, self-efficacy and coping styles. Common barriers to PA included symptoms and the physical and social environment. Facilitators of PA included strong self-regulation skills, confidence to overcome symptoms to engage in PA (i.e. barrier self-efficacy) and positive coping styles. CONCLUSION Results from this pilot study suggest that PA interventions will need to implement multiple strategies that target self-efficacy, social environment and coping styles. We found SCT and TMSC useful in understanding PA behaviour among persons with MS; however, a limitation to these theories is that they are not explicit in the relationship between health and cognitions. Future research will need to explore how to incorporate models of health and function into existing behaviour change theories.
Collapse
Affiliation(s)
- Matthew A. Plow
- Research conducted: University of Minnesota, Department of Physical Medicine & Rehabilitation, Program in Rehabilitation Science, 426 Church St SE, Minneapolis, MN 55455
- Postdoctoral Research Associate, University of Illinois at Chicago Department of Occupational Therapy; 1919 W. Taylor Street (MC 811), Chicago, IL 60612, Tel: 312-996-2033, Fax: 312-413-0256
| | - Linda Resnik
- Research Health Scientist, Providence VA Medical Center and Assistant Professor, Brown University, Department of Community Health, Center for Gerontology & Health Care Research, 2 Stimson Avenue, G-ST311, Providence, RI 02912, Tel: 401-863-9214. Fax: 401-863-3489
| | - Susan Allen
- Professor, Brown University, Department of Community Health, Center for Gerontology & Health Care Research, 2 Stimson Avenue, G-ST311, Providence, RI 02912, Tel: 401-863-3818. Fax: 401-863-3489
| |
Collapse
|
22
|
A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage 2008; 43:421-9. [DOI: 10.1016/j.neuroimage.2008.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 07/25/2008] [Accepted: 08/04/2008] [Indexed: 11/21/2022] Open
|
23
|
Mezzapesa DM, Rocca MA, Rodegher M, Comi G, Filippi M. Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 2008; 29:562-73. [PMID: 17538952 PMCID: PMC6870672 DOI: 10.1002/hbm.20418] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To assess the early cortical changes following an acute motor relapse secondary to a pseudotumoral lesion in MS patients, the longitudinal cortical functional correlates of clinical recovery, and the evolution over time of cortical reorganization. METHODS FMRI during the performance of a simple motor task were obtained from 12 MS patients (after a clinical attack involving the motor system secondary to a pseudotumoral lesion) and 15 matched controls. In six patients and five controls, a longitudinal fMRI study was also performed. RESULTS In patients, at baseline, the primary sensorimotor cortex (SMC) of the ipsilateral (contralesional) hemisphere was significantly more active during task performance with the impaired than the unimpaired hand. During task performance with the unimpaired hand, the ipsilateral cerebellum and several motor areas in the contralateral hemisphere were significantly more active. Pseudotumoral lesion volume was correlated with activation of the primary SMC bilaterally (r = -0.86 and -0.85) and the nine-hole peg test score with activation of the primary SMC of the affected hemisphere (r = 0.88). A recovery of function of the primary SMC of the affected hemisphere was found in the four patients with clinical improvement. In the two patients without clinical recovery, there was a persistent recruitment of the primary SMC of the unaffected hemisphere. CONCLUSIONS Pseudotumoral MS lesions affecting the motor system can determine short-term cortical changes characterized by the recruitment of pathways in the unaffected hemisphere. The regain of function of motor areas of the affected hemisphere seems to be a critical factor for a favorable recovery.
Collapse
Affiliation(s)
- Domenico M. Mezzapesa
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Mariaemma Rodegher
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
24
|
Agosta F, Valsasina P, Caputo D, Stroman PW, Filippi M. Tactile-associated recruitment of the cervical cord is altered in patients with multiple sclerosis. Neuroimage 2008; 39:1542-8. [DOI: 10.1016/j.neuroimage.2007.10.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/08/2007] [Accepted: 10/31/2007] [Indexed: 11/24/2022] Open
|
25
|
Marques KB, Santos LMB, Oliveira ALR. Spinal motoneuron synaptic plasticity during the course of an animal model of multiple sclerosis. Eur J Neurosci 2006; 24:3053-62. [PMID: 17156366 DOI: 10.1111/j.1460-9568.2006.05184.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the course of experimental autoimmune encephalomyelitis, a massive loss of motor and sensitive function occurs, which has been classically attributed to the demyelination process. In rats, the clinical signs disappear within 5 days following complete tetraplegia, indicating that demyelination might not be the only cause for the rapid evolution of the disease. The present work investigated the occurrence of experimental autoimmune encephalomyelitis-induced changes of the synaptic covering of spinal motoneurons during exacerbation and after remission. The terminals were typed with transmission electron microscopy as C-, F- and S-type. Immunohistochemical analysis of synaptophysin, glial fibrillary acidic protein and the microglia/macrophage marker F4/80 were also used in order to draw a correlation between the synaptic changes and the glial reaction. The ultrastructural analysis showed that, during exacerbation, there was a strong retraction of both F- and S-type terminals. In this sense, both the covering as well as the length of the remaining terminals suffered great reductions. However, the retracted terminals rapidly returned to apposition, although the mean length remained shorter. A certain level of sprouting may have occurred as, after remission, the number of F-terminals was greater than in the control group. The immunohistochemical analysis showed that the peak of synaptic loss was coincident with an increased macro- and microglial reaction. Our results suggest that the major changes occurring in the spinal cord network during the time course of the disease may contribute significantly to the origin of the clinical signs as well as help to explain their rapid recovery.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Biomarkers/metabolism
- Disease Models, Animal
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Gliosis/etiology
- Gliosis/pathology
- Gliosis/physiopathology
- Microscopy, Immunoelectron
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Nerve Degeneration/etiology
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Regeneration/physiology
- Neuronal Plasticity/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/pathology
- Rats
- Rats, Inbred Lew
- Recovery of Function/physiology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Synaptophysin/metabolism
Collapse
Affiliation(s)
- K B Marques
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970, Campinas, SP, Brazil
| | | | | |
Collapse
|
26
|
Abstract
In this article the basic features of the focal MR imaging lesions and the underlying pathology are reviewed. Next, the diffuse pathology in the normal-appearing white and gray matter as revealed by conventional and quantitative MR imaging techniques is discussed, including reference to how the focal and diffuse pathology may be in part linked through axonal-neuronal degeneration. The MR imaging criteria incorporated for the first time into formal clinical diagnostic criteria for multiple sclerosis are next discussed. Finally, a discussion is provided as to how MR imaging is used in monitoring subclinical disease either before or subsequent to initiation of treatment, in identifying aggressive subclinical disease, and in monitoring treatment.
Collapse
Affiliation(s)
- Jack H Simon
- Department of Radiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
27
|
Penner IK, Kappos L, Rausch M, Opwis K, Radü EW. Therapy-induced plasticity of cognitive functions in MS patients: insights from fMRI. ACTA ACUST UNITED AC 2006; 99:455-62. [PMID: 16713204 DOI: 10.1016/j.jphysparis.2006.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system whose pathological mechanisms are still not completely understood. Physical as well as cognitive deterioration are consequences within the disease process that have an extensive impact on the patient's quality of life. Therefore, understanding the functional background of spontaneous as well as induced remission is of high relevance. Studies on visualization of therapeutic effects of pharmacological or cognitive treatment by functional magnetic resonance imaging (fMRI) are still rare. From fMRI studies on focal brain lesions hypotheses on mechanisms of brain reorganization can be derived. This contribution will first give an overview of the existing studies using fMRI in MS, on cognitive decline, on cognitive treatment studies and its therapeutic effects on behavioural readouts in MS, and on therapy-induced brain plasticity and its possible visualization by fMRI. Results of a study on correlating the effects of cognitive training with changes in brain organization in patients with mild to severe cognitive impairment will be reported.
Collapse
Affiliation(s)
- Iris-Katharina Penner
- Department of Cognitive Psychology and Methodology, University of Basel, Switzerland.
| | | | | | | | | |
Collapse
|
28
|
Penner IK, Kappos L. Retraining attention in MS. J Neurol Sci 2006; 245:147-51. [PMID: 16626744 DOI: 10.1016/j.jns.2005.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/06/2005] [Accepted: 07/12/2005] [Indexed: 10/24/2022]
Abstract
Cognitive decline is frequently observed in multiple sclerosis (MS) and has a major impact on quality of life. Therefore it would be important to offer therapeutic strategies to the patients. In the past, several studies were conducted on pharmacological or cognitive treatment. However, there is currently no specific treatment for cognitive decline and the studies published so far report heterogeneous results. The present paper focuses on the cognitive treatment strategies by reviewing and discussing the few studies that have been carried out in this area. In addition, results of a recently completed fMRI study on the visualization of cognitive training effects will be reported. This review clearly points out that further research in this area is needed to clarify the effects of cognitive intervention. Larger sample sizes and standardized neuropsychological outcome measures as well as standardized training tools are required to allow for comparisons between different studies and to improve our understanding of cognitive decline and the processes of cognitive recovery in MS.
Collapse
Affiliation(s)
- Iris-Katharina Penner
- Department of Cognitive Psychology and Methodology, University of Basel, Missionsstr. 60/62, 4055 Basel, Switzerland.
| | | |
Collapse
|
29
|
Abstract
In this article the basic features of the focal MR imaging lesions and the underlying pathology are reviewed. Next, the diffuse pathology in the normal-appearing white and gray matter as revealed by conventional and quantitative MR imaging techniques is discussed, including reference to how the focal and diffuse pathology may be in part linked through axonal-neuronal degeneration. The MR imaging criteria incorporated for the first time into formal clinical diagnostic criteria for multiple sclerosis are next discussed. Finally, a discussion is provided as to how MR imaging is used in monitoring subclinical disease either before or subsequent to initiation of treatment, in identifying aggressive subclinical disease, and treatment of nonresponders.
Collapse
Affiliation(s)
- Jack H Simon
- Department of Radiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
30
|
Cerasa A, Fera F, Gioia MC, Liguori M, Passamonti L, Nicoletti G, Vercillo L, Paolillo A, Clodomiro A, Valentino P, Quattrone A. Adaptive cortical changes and the functional correlates of visuo-motor integration in relapsing-remitting multiple sclerosis. Brain Res Bull 2005; 69:597-605. [PMID: 16716825 DOI: 10.1016/j.brainresbull.2005.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/07/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
Cortical reorganization has been demonstrated during performance of a motor task in patients with multiple sclerosis. Converging evidence suggests that changes in gray matter volume represent an early hallmark of the disease. We used functional MRI to investigate the role of cortical adaptive mechanisms in maintaining visuo-motor function in the face of structural damage. Two cohorts of patients with clinically definite relapsing-remitting multiple sclerosis were compared with healthy controls matched for demographic, motor and cognitive characteristics during the performance of a visuo-motor integration task. Direct comparison between the two groups demonstrated a greater response of the contralateral dorsal premotor cortex and of the ipsilateral superior parietal cortex in relapsing-remitting multiple sclerosis patients. The functional MRI changes in these areas were strongly correlated with decreased gray matter volumes and increased lesion burden, respectively. Our study demonstrated a selective involvement of the parieto-premotor circuitry in a relatively early stage of the disease, which was not influenced by clinical, motor or cognitive variables. Moreover these results confirm the potential for functional recovery and the adaptive role of these areas in the motor reorganization of multiple sclerosis patients.
Collapse
Affiliation(s)
- Antonio Cerasa
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza 87050, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM. Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 2005; 129:527-37. [PMID: 16251214 DOI: 10.1093/brain/awh670] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cognitive dysfunction (affecting particularly attention and working memory) occurs early in patients with multiple sclerosis. Previous studies have focused on identifying potentially adaptive functional reorganization through recruitment of new brain regions that could limit expression of these deficits. However, lesion studies remind us that functional specializations in the brain make certain brain regions necessary for a given task. We therefore have asked whether altered functional interactions between regions normally recruited provide an alternative adaptive mechanism with multiple sclerosis pathology. We used a version of the n-back task to probe working memory in patients with early multiple sclerosis. We applied a functional connectivity analysis to test whether relationships between relative activations in different brain regions change in potentially adaptive ways with multiple sclerosis. We studied 21 patients with relapsing-remitting multiple sclerosis and 16 age- and sex-matched healthy controls with 3T functional MRI. The two groups performed equally well on the task. Task-related activations were found in similar regions for patients and controls. However, patients showed relatively reduced activation in the superior frontal and anterior cingulate gyri (P > 0.01). Patients also showed a variable, but generally substantially smaller increase in activation than healthy controls with greater task complexity, depending on the specific brain region assessed (P < 0.001). Functional connectivity analysis defined further differences not apparent from the univariate contrast of the task-associated activation patterns. Control subjects showed significantly greater correlations between right dorsolateral prefrontal and superior frontal/anterior cingulate activations (P < 0.05). Patients showed correlations between activations in the right and left prefrontal cortices, although this relationship was not significant in healthy controls (P < 0.05). We interpret these results as showing that, while cognitive processing in the task appears to be performed using similar brain regions in patients and controls, the patients have reduced functional reserve for cognition relevant to memory. Functional connectivity analysis suggests that altered inter-hemispheric interactions between dorsal and lateral prefrontal regions may provide an adaptive mechanism that could limit clinical expression of the disease distinct from recruitment of novel processing regions. Together, these results suggest that therapeutic enhancement of the coherence of interactions between brain regions normally recruited (functional enhancement), as well as recruitment of alternative areas or use of complementary cognitive strategies (both forms of adaptive functional change), may limit expression of cognitive impairments in multiple sclerosis.
Collapse
Affiliation(s)
- Sarah Cader
- Centre for Functional Magnetic Resonance Imaging of the Brain, The John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
32
|
Buckle GJ. Functional Magnetic Resonance Imaging and Multiple Sclerosis: The Evidence for Neuronal Plasticity. J Neuroimaging 2005; 15:82S-93S. [PMID: 16385021 DOI: 10.1177/1051228405284093] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has emerged as a powerful technique to visualize the localization of cerebral activity in both healthy and diseased brains. BOLD fMRI has been used to assess brain function in a variety of diseases, including multiple sclerosis (MS), and has shown that altered patterns of connectivity are used to recruit more widespread eloquent brain networks engaged in tasks relating to motor activity, sensory and cognitive function, and memory when compared to normal controls. This review will examine the evidence that functional reorganization is a consequence of demyelination and tissue loss in MS that may serve as an adaptive response to limit clinical disability. It remains unclear whether cerebral plasticity is a marker of permanent functional restructuring or a short-term compensatory response to injury. Long-term longitudinal studies that correlate fMRI activity with other MRI markers of disease burden and activity, as well as with clinical measures of disease activity and progression, are badly needed to determine fMRI's relevance to clinical practice and its place as a surrogate outcome measure in MS.
Collapse
Affiliation(s)
- Guy J Buckle
- Multiple Sclerosis Center, Department of Neourology, Brigham and Women' Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
33
|
Abstract
MRI provides multiple uses and applications in multiple sclerosis(MS). The basic features of the MRI-detected lesions, including the underlying pathology, are discussed. MRI allows assessment of the normal-appearing white and gray matter, and neuronal tract and functional system disturbances. An overview of the clinical significance of these MRI measures is included, as a basis for understanding their role as outcome measures in clinical trials. MRI recently assumed greater importance in its role in establishing an earlier diagnosis of MS after a first clinical event, and in monitoring subclinical disease before or subsequent to the formal diagnosis. The background to these applications and practical issues are discussed.
Collapse
Affiliation(s)
- Jack H Simon
- Department of Radiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box A-034, Denver, CO 80262, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Anthony Traboulsee
- Division of Neurology, Department of Medicine, The University of British Columbia, S199-2211 Westbrook Mall, Vancouver, British Columbia V6T 2B5, Canada.
| | | | | |
Collapse
|
35
|
De Stefano N, Bartolozzi ML, Guidi L, Stromillo ML, Federico A. Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. J Neurol Sci 2005; 233:203-8. [PMID: 15949506 DOI: 10.1016/j.jns.2005.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent MR studies have emphasised the importance of neuronal and axonal damage in multiple sclerosis. In this respect, proton MR spectroscopy (by monitoring levels of N-acetylaspartate, a putative marker of axonal integrity) has been particularly illuminating by showing indirect evidence of neurodegeneration in both lesional and non-lesional brain tissues from the earliest stages of the disease. The importance of these changes to patients' clinical disability argues for the primary role of neuronal pathology in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Nicola De Stefano
- Neurometabolic Unit, Department of Neurological and Behavioral Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
36
|
Audoin B, Van Au Duong M, Ranjeva J, Ibarrola D, Malikova I, Confort‐Gouny S, Soulier E, Viout P, Ali‐Chérif A, Pelletier J, Cozzone PJ. Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp 2005; 24:216-28. [PMID: 15543553 PMCID: PMC6871730 DOI: 10.1002/hbm.20083] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We sought to determine the influence of tissue damage and the potential impact of cortical reorganization on the performance to the Paced Auditory Serial Addition Test (PASAT) in patients at the earliest stage of multiple sclerosis (MS). Magnetization transfer ratio (MTR) imaging and functional magnetic resonance imaging (fMRI) experiments using PASAT as paradigm were carried out in 18 patients with clinically isolated syndrome suggestive of MS (CISSMS) compared to 18 controls. MTR histogram analyses showed structural abnormalities in patients involving the normal-appearing white matter (NAWM) but also the gray matter (GM). Mean PASAT scores were significantly lower in the group of patients taken as a whole, and were correlated with the mean NAWM MTR value. No correlation was observed between PASAT scores and GM MTR. However, in the subgroup of patients with normal PASAT performance (n = 9), fMRI showed larger activations in bilateral Brodmann area 45 (BA45) and right BA44 compared to that in controls (n = 18). In these areas with potentially compensatory reorganization, the whole group of patients (n = 18) showed significantly greater activation than controls (n = 18). Activation in the right BA45 was inversely correlated with the mean NAWM MTR and the peak position of GM MTR histograms of patients. This study indicates that even at the earliest stage of MS, cortical reorganization is present inside the executive system of working memory and could tend to limit the determinant functional impact of NAWM injury on the execution of the PASAT.
Collapse
Affiliation(s)
- Bertrand Audoin
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
- Service de Neurologie, Hôpital de la Timone, Marseille, France
| | - My Van Au Duong
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Jean‐Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Danielle Ibarrola
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Irina Malikova
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
- Service de Neurologie, Hôpital de la Timone, Marseille, France
| | - Sylviane Confort‐Gouny
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Elisabeth Soulier
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Patrick Viout
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | | | - Jean Pelletier
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
- Service de Neurologie, Hôpital de la Timone, Marseille, France
| | - Patrick J. Cozzone
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| |
Collapse
|
37
|
Thickbroom GW, Byrnes ML, Archer SA, Kermode AG, Mastaglia FL. Corticomotor organisation and motor function in multiple sclerosis. J Neurol 2005; 252:765-71. [PMID: 15750708 DOI: 10.1007/s00415-005-0728-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/30/2004] [Accepted: 11/09/2004] [Indexed: 10/25/2022]
Abstract
Our objective was to determine whether there are changes in the corticomotor map for the hand in multiple sclerosis, and whether these changes correlate with indices of motor function and measures of corticomotor conduction or excitability. Transcranial magnetic stimulation (TMS) maps, motor evoked potential (MEP) latency and amplitude, motor threshold and EDSS and Purdue-pegboard measurements were made in 26 subjects with relapsing-remitting multiple sclerosis. Correlations were sought between these measurements using the Pearson product-moment correlation with a level of significance of p = 0.05 (two-tailed). Map displacement was positively correlated with MEP latency (p = 3 x 10(-4)) and EDSS (p = 0.007), and negatively correlated with Purdue score (p = 4 x 10(-4)). Purdue scores correlated with all MEP parameters (latency, p = 4 x 10(-10); threshold, p = 4 x 10(-6); amplitude, p = 0.003). We conclude that motor reorganisation is associated with impaired corticomotor conduction and may reflect a process of neural plasticity associated with axonal demyelination in MS. An understanding of motor function in MS should incorporate models of both axonal demyelination and conduction deficits as well as neural plasticity.
Collapse
Affiliation(s)
- Gary W Thickbroom
- Centre for Neuromuscular and Neurological Disorders M518, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The advent of magnetic resonance imaging provided a powerful tool for monitoring the dynamics of pathological changes in multiple sclerosis, but conventional approaches offer only limited information that is directly relevant to clinical progression. Continued developments of imaging methods and their use for diagnosis, monitoring pathology and understanding disease progression are reviewed here. RECENT FINDINGS Magnetic resonance imaging is now well established as a clinical test for multiple sclerosis, but the specific ways in which imaging information should best be incorporated into diagnostic criteria are still debated. New data defining the substantial pathology in grey matter, regional variation in the progression of pathology and the relationship between the spatial distribution of pathological changes and symptoms are providing an increasingly compelling description of changes relevant to disability. Molecular-imaging approaches promise much more detailed descriptions. Functional magnetic resonance imaging, which suggests that adaptive functional changes could limit clinical expression of pathology, are providing further clues to the link between measures of pathology and disability. SUMMARY New data further reinforce the view that pathology relevant to clinical progression of multiple sclerosis can be defined by imaging. A range of biologically more specific markers are becoming available using positron emission tomography, as well as magnetic resonance imaging.
Collapse
Affiliation(s)
- Paul M Matthews
- Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
39
|
Yoo S, Talos I, Golby AJ, Black PM, Panych LP. Evaluating requirements for spatial resolution of fMRI for neurosurgical planning. Hum Brain Mapp 2004; 21:34-43. [PMID: 14689508 PMCID: PMC6872071 DOI: 10.1002/hbm.10148] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The unambiguous localization of eloquent functional areas is necessary to decrease the neurological morbidity of neurosurgical procedures. We explored the minimum spatial resolution requirements for functional magnetic resonance imaging (fMRI) data acquisition when brain mapping is used in neurosurgical planning and navigation. Using a 1.5 Tesla clinical MRI scanner, eight patients with brain tumors underwent fMRI scans using spatial resolution of approximately 4 x 4 x 4 mm(3) to map the eloquent motor and language areas during the performance of cognitive/sensorimotor tasks. The fMRI results were then used intra-operatively in an open MRI system to delineate eloquent areas. Retrospectively, activation patterns were visually inspected by a neurosurgeon to determine qualitatively whether ambiguity with respect to the activation boundaries, due to low spatial resolution, could be of potential significance for surgical guidance. A significant degree of ambiguity in both the extent and shape of activation was judged to be present in data from six of the eight patients. Analysis of fMRI data at multiple resolutions from a normal volunteer showed that at 3 mm isotropic resolution, eloquent areas were better localized within the gray matter although there was still some potential for ambiguity caused by activations appearing to cross a sulcus. The data acquired with 2-mm isotropic voxels significantly enhanced the spatial localization of activation to within the gray matter. Thus, isotropic spatial resolution on the order of 2 x 2 x 2 mm(3), which is much higher than the resolutions used in typical fMRI examinations, may be needed for the unambiguous identification of cortical activation with respect to tumors and important anatomical landmarks.
Collapse
Affiliation(s)
- Seung‐Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ion‐Florin Talos
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter McL. Black
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lawrence P. Panych
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
McDonald I. Multiple Sclerosis in its European Matrix: Some Aspects of History, Mechanisms and Treatment. Can J Neurol Sci 2004; 31:37-47. [PMID: 15038469 DOI: 10.1017/s031716710000281x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Susceptibility to multiple sclerosis is influenced by several genes which are relatively common in populations of European origin. Their precise identification is currently being intensively investigated. The pathophysiology of the main clinical features is better understood.Relapseresults from abnormalities of conduction to which both demyelination and inflammation contribute. At the membrane level,remissiondepends on the formation of new sodium channels which restore conduction even in persistently demyelinated axons. Remyelination presumably contributes and synaptic reorganisation may also do so. Axonal degeneration contributes to irrecoverable deficit andprogressionof disability. These observations suggest new therapeutic strategies. The management of multiple sclerosis needs to be improved. Progress requires an ethically based partnership between patients, whose needs are paramount, the research and caring communities and the pharmaceutical industry.
Collapse
Affiliation(s)
- Ian McDonald
- Royal College of Physicians of London, London, UK
| |
Collapse
|
41
|
Audoin B, Ibarrola D, Ranjeva J, Confort‐Gouny S, Malikova I, Ali‐Chérif A, Pelletier J, Cozzone P. Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 2003; 20:51-8. [PMID: 14505331 PMCID: PMC6872003 DOI: 10.1002/hbm.10128] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent functional magnetic resonance imaging (fMRI) studies have suggested that functional cortical changes seen in patients with early relapsing-remitting multiple sclerosis (MS) can have an adaptive role to limit the clinical impact of tissue injury. To determine whether cortical reorganization occurs during high cognitive processes at the earliest stage of multiple sclerosis (MS), we performed an fMRI experiment using the conventional Paced Auditory Serial Addition Test (PASAT) as paradigm in a population of ten patients with clinically isolated syndrome suggestive of multiple sclerosis (CISSMS). At the time of the fMRI exploration, mean disease duration was 6.8 +/- 3.3 months. We compared these results to those obtained in a group of ten education-, age-, and sex-matched healthy controls. Subjects were explored on a 1.5 T MRI system using single-shot gradient-echo EPI sequence. Performances of the two groups during PASAT recorded inside the MR scanner were not different. Statistical assessment of brain activation was based on the random effect analysis (between-group analysis two-sample t-test P < 0.005 confirmed by individual analyses performed in the surviving regions P < 0.05 Mann Whitney U-test). Compared to controls, patients showed significantly greater activation in the right frontopolar cortex, the bilateral lateral prefrontal cortices, and the right cerebellum. Healthy controls did not show greater activation compared to CISSMS patients. The present study argues in favor of the existence of compensatory cortical activations at the earliest stage of MS mainly located in regions involved in executive processing in patients performing PASAT. It also suggests that fMRI can evidence the active processes of neuroplasticity contributing to mask the clinical cognitive expression of brain pathology at the earliest stage of MS.
Collapse
Affiliation(s)
- Bertrand Audoin
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS no. 6612, Faculté de Médecine, Marseille, France
- Département de Neurologie, CHU Timone, Marseille, France
| | - Danielle Ibarrola
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS no. 6612, Faculté de Médecine, Marseille, France
| | - Jean‐Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS no. 6612, Faculté de Médecine, Marseille, France
| | - Sylviane Confort‐Gouny
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS no. 6612, Faculté de Médecine, Marseille, France
| | - Irina Malikova
- Département de Neurologie, CHU Timone, Marseille, France
| | | | - Jean Pelletier
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS no. 6612, Faculté de Médecine, Marseille, France
- Département de Neurologie, CHU Timone, Marseille, France
| | - Patrick Cozzone
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS no. 6612, Faculté de Médecine, Marseille, France
| |
Collapse
|
42
|
Affiliation(s)
- I McDonald
- Royal College of Physicians, London, UK.
| |
Collapse
|