1
|
Li V, McKay FC, Tscharke DC, Smith C, Khanna R, Lechner-Scott J, Rawlinson WD, Lloyd AR, Taylor BV, Morahan JM, Steinman L, Giovannoni G, Bar-Or A, Levy M, Drosu N, Potter A, Caswell N, Smith L, Brady EC, Frost B, Hodgkinson S, Hardy TA, Broadley SA. Repurposing Licensed Drugs with Activity Against Epstein-Barr Virus for Treatment of Multiple Sclerosis: A Systematic Approach. CNS Drugs 2025; 39:305-320. [PMID: 39792343 DOI: 10.1007/s40263-024-01153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS. METHODS A list of therapies with anti-EBV effects was developed from existing reviews. A detailed review of pre-clinical and clinical data was undertaken to assess these candidates for potential usefulness and possible harm in MS. A 'drug-CV' and a plain language version focusing on tolerability aspects was created for each candidate. We used validated criteria to score each candidate with an international scientific panel and people living with MS. RESULTS A preliminary list of 11 drug candidates was generated. Following review by the scientific and lived experience expert panels, six yielded the same highest score. A further review by the expert panel shortlisted four drugs (famciclovir, tenofovir alafenamide, maribavir and spironolactone) deemed to have the best balance of efficacy, safety and tolerability for use in MS. CONCLUSIONS Scientific and lived experience expert panel review of anti-EBV therapies selected four candidates with evidence for efficacy against EBV and acceptable safety and tolerability for potential use in phase III clinical trials for MS.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fiona C McKay
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia.
| | - David C Tscharke
- Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Corey Smith
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Rajiv Khanna
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jeannette Lechner-Scott
- University of Newcastle, School of Medicine and Public Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), Microbiology NSW Health Pathology, Randwick, NSW, 2031, Australia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Julia M Morahan
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Lawrence Steinman
- Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 9305-5101, USA
| | - Gavin Giovannoni
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Natalia Drosu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Andrew Potter
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Nigel Caswell
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Lynne Smith
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Erin C Brady
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Bruce Frost
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Suzanne Hodgkinson
- School of Clinical Medicine, University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Hospital, University of Sydney, Concord West, NSW, 2039, Australia
| | - Simon A Broadley
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| |
Collapse
|
2
|
Chauhan P, Begum MY, Narapureddy BR, Gupta S, Wadhwa K, Singh G, Kumawat R, Sharma N, Ballal S, Jha SK, Abomughaid MM, B D, Ojha S, Jha NK. Unveiling the Involvement of Herpes Simplex Virus-1 in Alzheimer's Disease: Possible Mechanisms and Therapeutic Implications. Mol Neurobiol 2024:10.1007/s12035-024-04535-4. [PMID: 39648189 DOI: 10.1007/s12035-024-04535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Viruses pose a significant challenge and threat to human health, as demonstrated by the current COVID-19 pandemic. Neurodegeneration, particularly in the case of Alzheimer's disease (AD), is significantly influenced by viral infections. AD is a neurodegenerative disease that affects people of all ages and poses a significant threat to millions of individuals worldwide. The precise mechanism behind its development is not yet fully understood; however, the emergence and advancement of AD can be hastened by various environmental factors, such as bacterial and viral infections. There has been a longstanding suspicion that the herpes simplex virus-1 (HSV-1) may have a role to play in the development or advancement of AD. Reactivation of HSV-1 could potentially lead to damage to neurons, either by direct means or indirectly by triggering inflammation. This article provides an overview of the connection between HSV-1 infections and immune cells (astrocytes, microglia, and oligodendrocytes) in the progression of AD. It summarizes recent scientific research on how HSV-1 affects neurons, which could potentially shed light on the clinical features and treatment options for AD. In addition, the paper has explored the impact of HSV-1 on neurons and its role in various aspects of AD, such as Aβ secretion, tau hyperphosphorylation, metabolic dysregulation, oxidative damage, apoptosis, and autophagy. It is believed that the immune response triggered by HSV-1 reactivation plays a role in the development of neurodegeneration in AD. Despite the lack of a cure for AD, researchers have made significant efforts to study the clinical and pathological aspects of the disease, identify biomarkers, and gain insight into its underlying causes. The goal is to achieve early diagnosis and develop treatments that can modify the progression of the disease. The current article discusses the most promising therapy for combating the viral impacts, which provides additional evidence for the frequent reactivations of latent HSV-1 in the AD brain. However, further research is still required to establish the molecular and cellular mechanisms underlying the development of AD through the reactivation of HSV-1. This could potentially lead to new insights in drug development aimed at preventing HSV-1 reactivation and the subsequent development and progression of AD.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Bayapa Reddy Narapureddy
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajsthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Suhas Ballal
- Departmant of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Dheepak B
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
3
|
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B. How to and should we target EBV in MS? Expert Rev Clin Immunol 2024; 20:703-714. [PMID: 38477887 DOI: 10.1080/1744666x.2024.2328739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.
Collapse
Affiliation(s)
- Svetlana Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Hicar
- Department of Pediatrics Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Giovannoni G. Targeting Epstein-Barr virus in multiple sclerosis: when and how? Curr Opin Neurol 2024; 37:228-236. [PMID: 38511407 DOI: 10.1097/wco.0000000000001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW Epidemiological evidence implicates Epstein-Barr virus (EBV) as the cause of multiple sclerosis (MS). However, its biological role in the pathogenesis of MS is uncertain. The article provides an overview of the role of EBV in the pathogenesis of MS and makes a case for targeting EBV as a treatment strategy for MS. RECENT FINDINGS EBV potentially triggers autoimmunity via molecular mimicry or immune dysregulation. Another hypothesis, supported by immunological and virological data, indicates that active EBV infection via latent-lytic infection cycling within the central nervous system or periphery drives MS disease activity. This supports testing small molecule anti-EBV agents targeting both latent and lytic infection, central nervous system-penetrant B-cell therapies and EBV-targeted immunotherapies in MS. Immunotherapies may include EBV-specific cytotoxic or chimeric antigen receptors T-cells, therapeutic EBV vaccines and immune reconstitution therapies to boost endogenous EBV-targeted cytotoxic T-cell responses. SUMMARY EBV is the probable cause of MS and is likely to be driving MS disease activity via latent-lytic infection cycling. There is evidence that all licensed MS disease-modifying therapies target EBV, and there is a compelling case for testing other anti-EBV strategies as potential treatments for MS.
Collapse
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Oh J, Giacomini PS, Yong VW, Costello F, Blanchette F, Freedman MS. From progression to progress: The future of multiple sclerosis. J Cent Nerv Syst Dis 2024; 16:11795735241249693. [PMID: 38711957 PMCID: PMC11072059 DOI: 10.1177/11795735241249693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Significant advances have been made in the diagnosis and treatment of multiple sclerosis in recent years yet challenges remain. The current classification of MS phenotypes according to disease activity and progression, for example, does not adequately reflect the underlying pathophysiological mechanisms that may be acting in an individual with MS at different time points. Thus, there is a need for clinicians to transition to a management approach based on the underlying pathophysiological mechanisms that drive disability in MS. A Canadian expert panel convened in January 2023 to discuss priorities for clinical discovery and scientific exploration that would help advance the field. Five key areas of focus included: identifying a mechanism-based disease classification system; developing biomarkers (imaging, fluid, digital) to identify pathologic processes; implementing a data-driven approach to integrate genetic/environmental risk factors, clinical findings, imaging and biomarker data, and patient-reported outcomes to better characterize the many factors associated with disability progression; utilizing precision-based treatment strategies to target different disease processes; and potentially preventing disease through Epstein-Barr virus (EBV) vaccination, counselling about environmental risk factors (e.g. obesity, exercise, vitamin D/sun exposure, smoking) and other measures. Many of the tools needed to meet these needs are currently available. Further work is required to validate emerging biomarkers and tailor treatment strategies to the needs of individual patients. The hope is that a more complete view of the individual's pathobiology will enable clinicians to usher in an era of truly personalized medicine, in which more informed treatment decisions throughout the disease course achieve better long-term outcomes.
Collapse
Affiliation(s)
- Jiwon Oh
- St. Michael’s Hospital, Toronto, ON, Canada
| | | | - V. Wee Yong
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | - Fiona Costello
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | | | - Mark S. Freedman
- Department of Medicine¸ University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, Ottawa, QC, Canada
| |
Collapse
|
6
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Andersen O, Ernberg I, Hedström AK. Treatment Options for Epstein-Barr Virus-Related Disorders of the Central Nervous System. Infect Drug Resist 2023; 16:4599-4620. [PMID: 37465179 PMCID: PMC10351589 DOI: 10.2147/idr.s375624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Epstein-Barr virus (EBV), a causative agent for several types of lymphomas and mucosal cancers, is a human lymphotropic herpesvirus with the capacity to establish lifelong latent infection. More than 90% of the human population worldwide is infected. The primary infection is usually asymptomatic in childhood, whereas infectious mononucleosis (IM) is common when the infection occurs in adolescence. Primary EBV infection, with or without IM, or reactivation of latent infection in immunocompromised individuals have been associated with a wide range of neurologic conditions, such as encephalitis, meningitis, acute disseminated encephalomyelitis, and cerebellitis. EBV is also involved in malignant lymphomas in the brain. An increasing number of reports on EBV-related disorders of the central nervous system (CNS) including the convincing association with multiple sclerosis (MS) have put in focus EBV-related conditions beyond its established link to malignancies. In this review, we present the clinical manifestations of EBV-related CNS-disorders, put them in the context of known EBV biology and focus on available treatment options and future therapeutic approaches.
Collapse
Affiliation(s)
- Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum Q8C, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Ortega-Hernandez OD, Martínez-Cáceres EM, Presas-Rodríguez S, Ramo-Tello C. Epstein-Barr Virus and Multiple Sclerosis: A Convoluted Interaction and the Opportunity to Unravel Predictive Biomarkers. Int J Mol Sci 2023; 24:ijms24087407. [PMID: 37108566 PMCID: PMC10138841 DOI: 10.3390/ijms24087407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Since the early 1980s, Epstein-Barr virus (EBV) infection has been described as one of the main risk factors for developing multiple sclerosis (MS), and recently, new epidemiological evidence has reinforced this premise. EBV seroconversion precedes almost 99% of the new cases of MS and likely predates the first clinical symptoms. The molecular mechanisms of this association are complex and may involve different immunological routes, perhaps all running in parallel (i.e., molecular mimicry, the bystander damage theory, abnormal cytokine networks, and coinfection of EBV with retroviruses, among others). However, despite the large amount of evidence available on these topics, the ultimate role of EBV in the pathogenesis of MS is not fully understood. For instance, it is unclear why after EBV infection some individuals develop MS while others evolve to lymphoproliferative disorders or systemic autoimmune diseases. In this regard, recent studies suggest that the virus may exert epigenetic control over MS susceptibility genes by means of specific virulence factors. Such genetic manipulation has been described in virally-infected memory B cells from patients with MS and are thought to be the main source of autoreactive immune responses. Yet, the role of EBV infection in the natural history of MS and in the initiation of neurodegeneration is even less clear. In this narrative review, we will discuss the available evidence on these topics and the possibility of harnessing such immunological alterations to uncover predictive biomarkers for the onset of MS and perhaps facilitate prognostication of the clinical course.
Collapse
Affiliation(s)
- Oscar-Danilo Ortega-Hernandez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Eva M Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| |
Collapse
|
9
|
Kalinichenko EN, Babitskaya SV. The Development of the Combination Drug Leukovir ® Tablets for the Treatment of Multiple Sclerosis: A Comprehensive Review. Curr Drug Targets 2023; 24:1271-1281. [PMID: 38037996 DOI: 10.2174/0113894501272301231124074141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
The review is devoted to the development and study of the drug Leukovir® (cladribine+ ribavirin) and its use in the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis, a chronic neurodegenerative disease aiming the risk reduction of relapse and progression of a disability. In clinical trials Leukovir® has proved to be efficient by up to 56 weeks for the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis. The drug is registered in the Republic of Belarus. The efficacy, safety and tolerability profile of the drug Leukovir® suggests that it is well suited for disease-modifying therapy of multiple sclerosis. Patients require four 35-day courses of treatment, each consisting of seven days of treatment followed by a break of 28 days. The use of Leukovir® has contributed to the suppression of inflammatory process activity according to MRI data and stabilization of the clinical condition. It has reduced the number of relapses in patients with relapsing-remitting and secondary-progressive forms of multiple sclerosis.
Collapse
Affiliation(s)
- Elena N Kalinichenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| | - Svetlana V Babitskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| |
Collapse
|
10
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
11
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
12
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
13
|
Zhang W, Wu P, Yin R, Sun M, Zhang R, Liao X, Lin Y, Lu H. Mendelian Randomization Analysis Suggests No Associations of Herpes Simplex Virus Infections With Multiple Sclerosis. Front Neurosci 2022; 16:817067. [PMID: 35299622 PMCID: PMC8920987 DOI: 10.3389/fnins.2022.817067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have suggested an association between infection with herpes simplex virus (HSV) and liability to multiple sclerosis (MS), but it remains largely unknown whether the effect is causal. We performed a two-sample Mendelian randomization (MR) study to explore the relationship between genetically predicted HSV infection and MS risk. Genetic instrumental variables for diagnosed infections with HSV (p < 5 × 10–6) were retrieved from the FinnGen study, and single nucleotide polymorphisms associated with circulating immunoglobulin G (IgG) levels of HSV-1 and HSV-2 and corresponding summary-level statistics of MS were obtained from genome-wide association studies of the European-ancestry. Inverse-variance weighted MR was employed as the primary method and multiple sensitivity analyses were performed. Genetically proxied infection with HSV was not associated with the risk of MS (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.90–1.02; p = 0.22) per one-unit increase in log-OR of herpes viral infections. MR results provided no evidence for the relationship between circulating HSV-1 IgG levels and MS risks (OR = 0.91; 95% CI, 0.81–1.03; p = 0.37), and suggested no causal effect of HSV-2 IgG (OR = 1.04; 95% CI, 0.96–1.13; p = 0.32). Additional sensitivity analyses confirmed the robustness of these null findings. The MR study did not support the causal relationship between genetic susceptibly to HSV and MS in the European population. Further studies are still warranted to provide informative knowledge, and triangulating evidence across multiple lines of evidence are necessary to plan interventions for the treatment and prevention of MS.
Collapse
Affiliation(s)
- Wan Zhang
- Department of Biology, Boston University, Boston, MA, United States
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pengfei Wu
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- School of Life Sciences, Central South University, Changsha, China
| | - Rui Yin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | - Meichen Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rongsen Zhang
- Department of Ultrasound, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyao Liao
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yuhong Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hui Lu,
| |
Collapse
|
14
|
Berger JR, Kakara M. The Elimination of Circulating Epstein-Barr Virus Infected B Cells Underlies Anti-CD20 Monoclonal Antibody Activity in Multiple Sclerosis: A Hypothesis. Mult Scler Relat Disord 2022; 59:103678. [DOI: 10.1016/j.msard.2022.103678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/08/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
|
15
|
Ruprecht K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev Clin Immunol 2020; 16:1143-1157. [PMID: 33152255 DOI: 10.1080/1744666x.2021.1847642] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. While its exact etiology is unknown, it is generally believed that MS is caused by environmental triggers in genetically predisposed individuals. Strong and consistent evidence suggests a key role of Epstein-Barr virus (EBV), a B lymphotropic human gammaherpesvirus, in the etiology of MS. Areas covered: This review summarizes recent developments in the field of EBV and MS with a focus on potential mechanisms underlying the role of EBV in MS. PubMed was searched for the terms 'Epstein-Barr virus' and 'multiple sclerosis'. Expert opinion: The current evidence is compatible with the working hypothesis that MS is a rare complication of EBV infection. Under the premise of a causative role of EBV in MS, it needs to be postulated that EBV causes a specific, and likely persistent, change(s) that is necessarily required for the development of MS. However, although progress has been made, the nature of that change and thus the precise mechanism explaining the role of EBV in MS remain elusive. The mechanism of EBV in MS therefore is a pressing question, whose clarification may substantially advance the pathophysiological understanding, rational therapies, and prevention of MS.
Collapse
Affiliation(s)
- Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
| |
Collapse
|
16
|
Torkildsen Ø, Myhr KM, Skogen V, Steffensen LH, Bjørnevik K. Tenofovir as a treatment option for multiple sclerosis. Mult Scler Relat Disord 2020; 46:102569. [DOI: 10.1016/j.msard.2020.102569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
|
17
|
Devanand DP, Andrews H, Kreisl WC, Razlighi Q, Gershon A, Stern Y, Mintz A, Wisniewski T, Acosta E, Pollina J, Katsikoumbas M, Bell KL, Pelton GH, Deliyannides D, Prasad KM, Huey ED. Antiviral therapy: Valacyclovir Treatment of Alzheimer's Disease (VALAD) Trial: protocol for a randomised, double-blind,placebo-controlled, treatment trial. BMJ Open 2020; 10:e032112. [PMID: 32034019 PMCID: PMC7045215 DOI: 10.1136/bmjopen-2019-032112] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION After infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and can enter the brain via retrograde axonal transport. Recurrent reactivation of HSV1 may lead to neurodegeneration and Alzheimer's disease (AD) pathology. HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid beta-protein (Aβ) aggregation and HSV1 DNA is common in amyloid plaques. Anti-HSV drugs reduce Aβ and phosphorylated tau accumulation in cell-culture models. Cognitive impairment is greater in patients with HSV seropositive, and antiviral drugs show robust efficacy against peripheral HSV infection. Recent studies of electronic health records databases demonstrate that HSV infections increase dementia risk, and that antiviral medication treatment reduces this risk. The generic antiviral drug valacyclovir was superior to placebo in improving memory in a schizophrenia pilot trial but has not been tested in AD. METHODS AND ANALYSIS In patients with mild AD who test positive for HSV1 or HSV2 serum antibodies, valacyclovir, repurposed as an anti-AD drug, will be compared with placebo (lactose pills) in 130 patients (65 valacyclovir and 65 placebo) in a randomised, double-blind, 78-week phase II proof-of-concept trial. Patients on valacyclovir, dose-titrated from 2 g to a targeted oral dose of 4 g daily, compared with placebo, are hypothesised to show smaller cognitive and functional decline, and, using 18F-Florbetapir positron emission tomography (PET) and 18F-MK-6240 PET imaging, to show less amyloid and tau accumulation, respectively. In the lumbar puncture subsample, cerebrospinal fluid acyclovir will be assayed to assess central nervous system valacyclovir penetration. ETHICS AND DISSEMINATION The trial is being overseen by the New York State Psychiatric Institute Institutional Review Board (protocol 7537), the National Institute on Ageing, and the Data Safety Monitoring Board. Written informed consent is obtained for all subjects. Results will be disseminated via publication, clinicaltrials.gov, media and conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier (NCT03282916) Pre-results.
Collapse
Affiliation(s)
- D P Devanand
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Howard Andrews
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University Medical Center, New York, New York, USA
| | - William C Kreisl
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Qolamreza Razlighi
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Anne Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Yaakov Stern
- Department of Psychiatry, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, New York University Medical Center, New York, New York, USA
| | - Edward Acosta
- Department of Pharmacology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Julianna Pollina
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Mariasofia Katsikoumbas
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Karen L Bell
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Gregory H Pelton
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Deborah Deliyannides
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - K M Prasad
- Departments of Psychiatry and Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Edward D Huey
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
18
|
Itzhaki RF. Corroboration of a Major Role for Herpes Simplex Virus Type 1 in Alzheimer's Disease. Front Aging Neurosci 2018; 10:324. [PMID: 30405395 PMCID: PMC6202583 DOI: 10.3389/fnagi.2018.00324] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023] Open
Abstract
Strong evidence has emerged recently for the concept that herpes simplex virus type 1 (HSV1) is a major risk for Alzheimer’s disease (AD). This concept proposes that latent HSV1 in brain of carriers of the type 4 allele of the apolipoprotein E gene (APOE-ε4) is reactivated intermittently by events such as immunosuppression, peripheral infection, and inflammation, the consequent damage accumulating, and culminating eventually in the development of AD. Population data to investigate this epidemiologically, e.g., to find if subjects treated with antivirals might be protected from developing dementia—are available in Taiwan, from the National Health Insurance Research Database, in which 99.9% of the population has been enrolled. This is being extensively mined for information on microbial infections and disease. Three publications have now appeared describing data on the development of senile dementia (SD), and the treatment of those with marked overt signs of disease caused by varicella zoster virus (VZV), or by HSV. The striking results show that the risk of SD is much greater in those who are HSV-seropositive than in seronegative subjects, and that antiviral treatment causes a dramatic decrease in number of subjects who later develop SD. It should be stressed that these results apply only to those with severe cases of HSV1 or VZV infection, but when considered with the over 150 publications that strongly support an HSV1 role in AD, they greatly justify usage of antiherpes antivirals to treat AD. Three other studies are described which directly relate to HSV1 and AD: they deal respectively with lysosomal changes in HSV1-infected cell cultures, with evidence for a role of human herpes virus type 6 and 7 (HHV6 and HHV7) in AD, and viral effects on host gene expression, and with the antiviral characteristics of beta amyloid (Aβ). Three indirectly relevant studies deal respectively with schizophrenia, relating to antiviral treatment to target HSV1, with the likelihood that HSV1 is a cause of fibromyalgia (FM), and with FM being associated with later development of SD. Studies on the link between epilepsy, AD and herpes simplex encephalitis (HSE) are described also, as are the possible roles of APOE-ε4, HHV6 and HSV1 in epilepsy.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Ashraf GM, Tarasov VV, Makhmutovа A, Chubarev VN, Avila-Rodriguez M, Bachurin SO, Aliev G. The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol 2018; 56:4479-4491. [DOI: 10.1007/s12035-018-1388-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
|
20
|
Abstract
PURPOSE OF REVIEW Viruses, particularly herpes simplex virus (HSV), may be a cause of Alzheimer's disease (AD). The evidence supporting the viral hypothesis suggests that antiviral treatment trials, which have not been conducted, are warranted. RECENT FINDINGS HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid aggregation, and their DNA is common in amyloid plaques. HSV1 reactivation is associated with tau hyperphosphorylation and possibly tau propagation. Anti-HSV drugs reduce Aβ and p-tau accumulation in infected mouse brains. Clinically, after the initial oral infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and recurrent reactivation may produce neuronal damage and AD pathology. Clinical studies show cognitive impairment in HSV seropositive patients, and antiviral drugs show strong efficacy against HSV. An antiviral treatment trial in AD is clearly warranted. A phase II treatment trial with valacyclovir, an anti-HSV drug, recently began with evaluation of clinical and biomarker outcomes.
Collapse
|
21
|
Kearns PKA, Casey HA, Leach JP. Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord 2018; 24:157-174. [PMID: 30015080 DOI: 10.1016/j.msard.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple Sclerosis is a chronic, progressive and debilitating neurological disease which, despite extensive study for over 100 years, remains of enigmatic aetiology. Drawn from the epidemiological evidence, there exists a consensus that there are environmental (possibly infectious) factors that contribute to disease pathogenesis that have not yet been fully elucidated. Here we propose a three-tiered hypothesis: 1) a clinic-epidemiological model of multiple sclerosis as a rare late complication of two sequential infections (with the temporal sequence of infections being important); 2) a proposal that the first event is helminthic infection with Enterobius Vermicularis, and the second is Epstein Barr Virus infection; and 3) a proposal for a testable biological mechanism, involving T-Cell exhaustion for Epstein-Barr Virus protein LMP2A. We believe that this model satisfies some of the as-yet unexplained features of multiple sclerosis epidemiology, is consistent with the clinical and neuropathological features of the disease and is potentially testable by experiment. This model may be generalizable to other autoimmune diseases.
Collapse
|
22
|
Harris SA, Harris EA. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer's Disease. Front Aging Neurosci 2018; 10:48. [PMID: 29559905 PMCID: PMC5845560 DOI: 10.3389/fnagi.2018.00048] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical trials treating HSV-1-infected MCI and AD patients with antiviral medication is discussed.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, United States
| | - Elizabeth A Harris
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
23
|
Drosu NC, Edelman ER, Housman DE. Could antiretrovirals be treating EBV in MS? A case report. Mult Scler Relat Disord 2018; 22:19-21. [PMID: 29510325 DOI: 10.1016/j.msard.2018.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 11/28/2022]
Abstract
We present the case of an HIV-negative patient clinically diagnosed with relapsing-remitting MS who achieved significant disease improvement on Combivir (zidovudine/lamivudine). Within months of treatment, the patient reported complete resolution of previously unremitting fatigue and paresthesiae, with simultaneous improvements in lesion burden detected by MRI. All improvements have been sustained for more than three years. This response may be related to the action of zidovudine as a known inhibitor of EBV lytic DNA replication, suggesting future directions for clinical investigation.
Collapse
Affiliation(s)
- Natalia C Drosu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States; Health Sciences & Technology, Harvard Medical School, Boston, MA, United States.
| | - Elazer R Edelman
- Health Sciences & Technology, Harvard Medical School, Boston, MA, United States; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, United States.
| | - David E Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
24
|
Lycke J. Trials of antivirals in the treatment of multiple sclerosis. Acta Neurol Scand 2017; 136 Suppl 201:45-48. [PMID: 29068492 DOI: 10.1111/ane.12839] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/01/2022]
Abstract
There is increasing evidence that human herpes viruses and human endogenous retroviruses (HERV) are involved in the aetiology and pathogenesis of multiple sclerosis (MS). In order to acquire the ultimate evidence to confirm such a relationship, it is probably required to use specific antiviral drugs in clinical trials of MS. The results of published antiviral clinical trials in patients with MS are summarized in this review. None of them showed statistically significant effects on primary outcomes of disease activity or on disability development. However, given their small sample sizes, the strong trends and effects observed in subgroup analysis of antiherpes virus treatment in patients with MS warrant further studies. The possible involvement of HERV in MS is intriguing, and drugs have been developed that could reduce the impact of HERV in MS. However, larger studies are needed as the phase I and II trials were not designed to show clinical efficacy in MS.
Collapse
Affiliation(s)
- J. Lycke
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology at Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
25
|
Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer's Disease. Curr Neuropharmacol 2017; 15:996-1009. [PMID: 28294067 PMCID: PMC5652018 DOI: 10.2174/1570159x15666170313122937] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation is a part of the first line of defense of the body against invasive pathogens, and plays a crucial role in tissue regeneration and repair. A proper inflammatory response ensures the suitable resolution of inflammation and elimination of harmful stimuli, but when the inflammatory reactions are inappropriate it can lead to damage of the surrounding normal cells. The relationship between infections and Alzheimer's Disease (AD) etiology, especially lateonset AD (LOAD) has been continuously debated over the past three decades. METHODS This review discusses whether infections could be a causative factor that promotes the progression of AD and summarizes recent investigations associating infectious agents and chronic inflammation with AD. Preventive and therapeutic approaches to AD in the context of an infectious etiology of the disease are also discussed. RESULTS Emerging evidence supports the hypothesis of the role of neurotropic viruses from the Herpesviridae family, especially Human herpesvirus 1 (HHV-1), Cytomegalovirus (CMV), and Human herpesvirus 2 (HHV-2), in AD neuropathology. Recent investigations also indicate the association between Hepatitis C virus (HCV) infection and dementia. Among bacteria special attention is focused on spirochetes family and on periodontal pathogens such as Porphyromonas gingivalis or Treponema denticola that could cause chronic periodontitis and possibly contribute to the clinical onset of AD. CONCLUSION Chronic viral, bacterial and fungal infections might be causative factors for the inflammatory pathway in AD.
Collapse
Affiliation(s)
- Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Zwolińska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
26
|
Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer's Disease. J Alzheimers Dis 2016; 48:319-53. [PMID: 26401998 PMCID: PMC4923765 DOI: 10.3233/jad-142853] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer's disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
27
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
28
|
Jons D, Sundström P, Andersen O. Targeting Epstein-Barr virus infection as an intervention against multiple sclerosis. Acta Neurol Scand 2015; 131:69-79. [PMID: 25208981 DOI: 10.1111/ane.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
Abstract
We here review contemporary data on genetic and environmental risk factors, particularly Epstein-Barr virus infection, for multiple sclerosis. There is an important immunogenetic etiological factor for multiple sclerosis. However, a general assumption is that immune defense genes are activated by the environment, basically by infections. We contend that the relationship between infectious mononucleosis and multiple sclerosis cannot be completely explained by genetics and inverse causality. Epstein-Barr infection as indicated by positive serology is an obligatory precondition for multiple sclerosis, which is a stronger attribute than a risk factor only. Data on events in the early pathogenesis of multiple sclerosis are cumulating from bio-banks with presymptomatic specimens, but there is only little information from the critical age when Epstein-Barr infection including infectious mononucleosis is acquired, nor on the detailed immunological consequences of this infection in individuals with and without multiple sclerosis. We discuss how focused bio-banking may elaborate a rationale for the development of treatment or vaccination against Epstein-Barr virus infection. A cohort in which intervention against Epstein-Barr infections was performed should be the object of neurological follow-up.
Collapse
Affiliation(s)
- D. Jons
- Section of Clinical Neuroscience and Rehabilitation; Institution of Neuroscience and Physiology; the Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - P. Sundström
- Section of Neurology; Department of Pharmacology and Clinical Neuroscience; University of Umeå; Umeå Sweden
| | - O. Andersen
- Section of Clinical Neuroscience and Rehabilitation; Institution of Neuroscience and Physiology; the Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
29
|
Abstract
Although a role of EBV in autoimmunity is biologically plausible and evidence of altered immune responses to EBV is abundant in several autoimmune diseases, inference on causality requires the determination that disease risk is higher in individuals infected with EBV than in those uninfected and that in the latter it increases following EBV infection. This determination has so far been possible only for multiple sclerosis (MS) and, to some extent, for systemic lupus erythematosus (SLE), whereas evidence is either lacking or not supportive for other autoimmune conditions. In this chapter, we present the main epidemiological findings that justify the conclusion that EBV is a component cause of MS and SLE and possible mechanisms underlying these effects.
Collapse
|
30
|
Annibali V, Mechelli R, Romano S, Buscarinu MC, Fornasiero A, Umeton R, Ricigliano VAG, Orzi F, Coccia EM, Salvetti M, Ristori G. IFN-β and multiple sclerosis: from etiology to therapy and back. Cytokine Growth Factor Rev 2014; 26:221-8. [PMID: 25466632 DOI: 10.1016/j.cytogfr.2014.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 01/09/2023]
Abstract
Several immunomodulatory treatments are currently available for relapsing-remitting forms of multiple sclerosis (RRMS). Interferon beta (IFN) was the first therapeutic intervention able to modify the course of the disease and it is still the most used first-line treatment in RRMS. Though two decades have passed since IFN-β was introduced in the management of MS, it remains a valid approach because of its good benefit/risk profile. This is witnessed by new efforts of pharmaceutical industry to improve this line: a PEGylated form of subcutaneous IFN-β 1a, (Plegridy(®)) with a longer half-life, has been recently approved in RRMS. This review will survey the various stages of the use of type I IFN in MS, with special attention to the effect of the treatment on the supposed viral etiologic factors associated to the disease. The antiviral activities of IFN (that initially prompted its use as immunomodulatory agent in MS), and the mounting evidences in favor of a viral etiology in MS, allowed us to outline a re-appraisal from etiology to therapy and back.
Collapse
Affiliation(s)
- V Annibali
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - R Mechelli
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - S Romano
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - M C Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - A Fornasiero
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - R Umeton
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - V A G Ricigliano
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy; Neuroimmunology Unit, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - F Orzi
- Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - E M Coccia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy.
| | - G Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| |
Collapse
|
31
|
Broadley SA, Barnett MH, Boggild M, Brew BJ, Butzkueven H, Heard R, Hodgkinson S, Kermode AG, Lechner-Scott J, Macdonell RAL, Marriott M, Mason DF, Parratt J, Reddel SW, Shaw CP, Slee M, Spies J, Taylor BV, Carroll WM, Kilpatrick TJ, King J, McCombe PA, Pollard JD, Willoughby E. Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: an Australian and New Zealand perspective: part 1 historical and established therapies. MS Neurology Group of the Australian and New Zealand Association of Neurologists. J Clin Neurosci 2014; 21:1835-46. [PMID: 24993135 DOI: 10.1016/j.jocn.2014.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a potentially life-changing immune mediated disease of the central nervous system. Until recently, treatment has been largely confined to acute treatment of relapses, symptomatic therapies and rehabilitation. Through persistent efforts of dedicated physicians and scientists around the globe for 160 years, a number of therapies that have an impact on the long term outcome of the disease have emerged over the past 20 years. In this three part series we review the practicalities, benefits and potential hazards of each of the currently available and emerging treatment options for MS. We pay particular attention to ways of abrogating the risks of these therapies and provide advice on the most appropriate indications for using individual therapies. In Part 1 we review the history of the development of MS therapies and its connection with the underlying immunobiology of the disease. The established therapies for MS are reviewed in detail and their current availability and indications in Australia and New Zealand are summarised. We examine the evidence to support their use in the treatment of MS.
Collapse
Affiliation(s)
- Simon A Broadley
- School of Medicine, Griffith University, Gold Coast Campus, QLD 4222, Australia; Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia.
| | - Michael H Barnett
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Mike Boggild
- Department of Neurology, The Townsville Hospital, Douglas, QLD, Australia
| | - Bruce J Brew
- Department of Neurology and St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Helmut Butzkueven
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Robert Heard
- Westmead Clinical School, University of Sydney, NSW, Australia
| | - Suzanne Hodgkinson
- South Western Sydney Clinical School, University of New South Wales, NSW, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, WA, Australia; Institute of Immunology and Infectious Diseases, Murdoch University, WA, Australia
| | | | | | - Mark Marriott
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Deborah F Mason
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - John Parratt
- Central Clinical School, University of Sydney, NSW, Australia
| | - Stephen W Reddel
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | | | - Mark Slee
- Centre for Neuroscience and Flinders Medical Centre, Flinders University, SA, Australia
| | - Judith Spies
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Bruce V Taylor
- Menzies Research Institute, University of Tasmania, TAS, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, WA, Australia
| | | | - John King
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Pamela A McCombe
- University of Queensland Centre for Clinical Research, QLD, Australia
| | - John D Pollard
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Ernest Willoughby
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
32
|
Piacentini R, De Chiara G, Li Puma DD, Ripoli C, Marcocci ME, Garaci E, Palamara AT, Grassi C. HSV-1 and Alzheimer's disease: more than a hypothesis. Front Pharmacol 2014; 5:97. [PMID: 24847267 PMCID: PMC4019841 DOI: 10.3389/fphar.2014.00097] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022] Open
Abstract
Among the multiple factors concurring to Alzheimer’s disease (AD) pathogenesis, greater attention should be devoted to the role played by infectious agents. Growing epidemiological and experimental evidence suggests that recurrent herpes simplex virus type-1 (HSV-1) infection is a risk factor for AD although the underlying molecular and functional mechanisms have not been fully elucidated yet. Here, we review literature suggesting the involvement of HSV-1 infection in AD also briefly mentioning possible pharmacological implications of these findings.
Collapse
Affiliation(s)
- Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council Rome, Italy
| | - Domenica D Li Puma
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Cristian Ripoli
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Maria E Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Enrico Garaci
- San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Telematic University Rome, Italy
| | - Anna T Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome Rome, Italy ; San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
33
|
Ding Z, Mathur V, Ho PP, James ML, Lucin KM, Hoehne A, Alabsi H, Gambhir SS, Steinman L, Luo J, Wyss-Coray T. Antiviral drug ganciclovir is a potent inhibitor of microglial proliferation and neuroinflammation. ACTA ACUST UNITED AC 2014; 211:189-98. [PMID: 24493798 PMCID: PMC3920559 DOI: 10.1084/jem.20120696] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aberrant microglial responses contribute to neuroinflammation in many neurodegenerative diseases, but no current therapies target pathogenic microglia. We discovered unexpectedly that the antiviral drug ganciclovir (GCV) inhibits the proliferation of microglia in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (MS), as well as in kainic acid-induced excitotoxicity. In EAE, GCV largely prevented infiltration of T lymphocytes into the central nervous system (CNS) and drastically reduced disease incidence and severity when delivered before the onset of disease. In contrast, GCV treatment had minimal effects on peripheral leukocyte distribution in EAE and did not inhibit generation of antibodies after immunization with ovalbumin. Additionally, a radiolabeled analogue of penciclovir, [(18)F]FHBG, which is similar in structure to GCV, was retained in areas of CNS inflammation in EAE, but not in naive control mice, consistent with the observed therapeutic effects. Our experiments suggest GCV may have beneficial effects in the CNS beyond its antiviral properties.
Collapse
Affiliation(s)
- Zhaoqing Ding
- Stanford, Department of Radiology; Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
|
36
|
Frau J, Cossu D, Coghe G, Lorefice L, Fenu G, Melis M, Paccagnini D, Sardu C, Murru MR, Tranquilli S, Marrosu MG, Sechi LA, Cocco E. Mycobacterium avium subsp. paratuberculosis and multiple sclerosis in Sardinian patients: epidemiology and clinical features. Mult Scler 2013; 19:1437-42. [PMID: 23439580 DOI: 10.1177/1352458513477926] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Mycobacterium avium subspecies paratuberculosis (MAP) is an infectious factor recently found in association with multiple sclerosis (MS) in Sardinia. OBJECTIVES The objectives of this study were to confirm this association and evaluate its role in clinical features. METHODS A total of 436 patients and 264 healthy controls (HCs) were included. We examined the blood of each individual for MAPDNA and MAP2694 antibodies using IS900-specific PCR and ELISA, respectively. Differences in MAP presence between the MS group and HCs were evaluated. In MS patients, we considered: gender, age, age at onset, duration of disease, course, EDSS, therapy, relapse/steroids at study time, and oligoclonal bands (OBs). RESULTS MAPDNA and MAP2694 antibodies were detected in 68 MS and six HCs (p = 1.14 × 10(-11)), and 123 MS and 10 HCs (p = 2.59 × 10(-23)), respectively. OBs were found with reduced frequency in MAP-positive patients (OR = 0.52; p = 0.02). MAP2694 antibodies were detected more in patients receiving MS treatments (OR = 2.26; p = 0.01), and MAPDNA in subjects on steroids (OR = 2.65; p = 0.02). CONCLUSION Our study confirmed the association of MAP and MS in Sardinia. The low OB frequency in MAP patients suggests a peripheral role as a trigger in autoimmunity. MAP positivity might be influenced by steroids and MS therapy. Studies in other populations are needed to confirm the role of MAP in MS.
Collapse
Affiliation(s)
- J Frau
- Multiple Sclerosis Centre, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Farjam M, Ebrahimpour A, Fakhraei B. CD21 positive B cell: a novel target for treatment of multiple sclerosis. Med Hypotheses 2013; 80:556-7. [PMID: 23384704 DOI: 10.1016/j.mehy.2013.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/09/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
Abstract
Etiologic-based therapy is an ideal pharmacological option to treat or prevent diseases. There is no known etiology for multiple sclerosis (MS); however, environmental risk factors have been suggested to predispose genetically susceptible people to be affected by the disease. One of these risk factors is infection with Epstein-Barr virus (EBV). Eradication of this virus has not been effective in modulation of MS, probably due to being inhabitant in the CD21 (EBV receptor) positive B cells. To eradicate this virus, targeting CD21 on these EBV-infected B cells is hypothesized here. A sequential study plan to test this hypothesis has been suggested too. This study might eventually suggest an effective immunopharmacological strategy to treat MS. Moreover, testing this strategy will help in better clarification of the role of EBV in MS disease triggering and predisposition.
Collapse
Affiliation(s)
- Mojtaba Farjam
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | |
Collapse
|
38
|
Sternberg Z. Autonomic dysfunction: A unifying multiple sclerosis theory, linking chronic cerebrospinal venous insufficiency, vitamin D3, and Epstein-Barr virus. Autoimmun Rev 2012; 12:250-9. [DOI: 10.1016/j.autrev.2012.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/22/2012] [Indexed: 12/18/2022]
|
39
|
Virtanen JO, Jacobson S. Viruses and multiple sclerosis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2012; 11:528-44. [PMID: 22583435 DOI: 10.2174/187152712801661220] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/13/2012] [Accepted: 04/20/2012] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is a heterogeneous disease that develops as an interplay between the immune system and environmental stimuli in genetically susceptible individuals. There is increasing evidence that viruses may play a role in MS pathogenesis acting as these environmental triggers. However, it is not known if any single virus is causal, or rather several viruses can act as triggers in disease development. Here, we review the association of different viruses to MS with an emphasis on two herpesviruses, Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6). These two agents have generated the most impact during recent years as possible co-factors in MS disease development. The strongest argument for association of EBV with MS comes from the link between symptomatic infectious mononucleosis and MS and from seroepidemiological studies. In contrast to EBV, HHV-6 has been found significantly more often in MS plaques than in MS normal appearing white matter or non-MS brains and HHV-6 re-activation has been reported during MS clinical relapses. In this review we also suggest new strategies, including the development of new infectious animal models of MS and antiviral MS clinical trials, to elucidate roles of different viruses in the pathogenesis of this disease. Furthermore, we introduce the idea of using unbiased sequence-independent pathogen discovery methodologies, such as next generation sequencing, to study MS brain tissue or body fluids for detection of known viral sequences or potential novel viral agents.
Collapse
Affiliation(s)
- Jussi Oskari Virtanen
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Abstract
Although strong genetic determinants of multiple sclerosis (MS) exist, the findings of migration studies support a role for environmental factors in this disease. Through rigorous epidemiological investigation, Epstein-Barr virus infection, vitamin D nutrition and cigarette smoking have been identified as likely causal factors in MS. In this Review, the strength of this evidence is discussed, as well as the potential biological mechanisms underlying the associations between MS and environmental, lifestyle and dietary factors. Both vitamin D nutrition and cigarette smoking are modifiable; as such, increasing vitamin D levels and smoking avoidance have the potential to substantially reduce MS risk and influence disease progression. Improving our understanding of the environmental factors involved in MS will lead to new and more-effective approaches to prevent this disease.
Collapse
Affiliation(s)
- Alberto Ascherio
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | |
Collapse
|
41
|
Autoimmune disease: A role for new anti-viral therapies? Autoimmun Rev 2011; 11:88-97. [DOI: 10.1016/j.autrev.2011.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/11/2011] [Indexed: 12/30/2022]
|
42
|
Wozniak MA, Itzhaki RF. Antiviral agents in Alzheimer's disease: hope for the future? Ther Adv Neurol Disord 2011; 3:141-52. [PMID: 21179606 DOI: 10.1177/1756285610370069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Matthew A Wozniak
- 3.614 Stopford Building, Faculty of Life Sciences,The University of Manchester,Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
43
|
Ulzheimer JC, Meuth SG, Bittner S, Kleinschnitz C, Kieseier BC, Wiendl H. Therapeutic approaches to multiple sclerosis: an update on failed, interrupted, or inconclusive trials of immunomodulatory treatment strategies. BioDrugs 2010; 24:249-74. [PMID: 20623991 DOI: 10.2165/11537160-000000000-00000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis (MS) continues to be a therapeutic challenge, and much effort is being made to develop new and more effective immune therapies. Particularly in the past decade, neuroimmunologic research has delivered new and highly effective therapeutic options, as seen in the growing number of immunotherapeutic agents and biologics in development. However, numerous promising clinical trials have failed to show efficacy or have had to be halted prematurely because of unexpected adverse events. Some others have shown results that are of unknown significance with regard to a reliable assessment of true efficacy versus safety. For example, studies of the highly innovative monoclonal antibodies that selectively target immunologic effector molecules have not only revealed the impressive efficacy of such treatments, they have also raised serious concerns about the safety profiles of these antibodies. These results add a new dimension to the estimation of risk-benefit ratios regarding acute or long-term adverse effects. Therapeutic approaches that have previously failed in MS have indicated that there are discrepancies between theoretical expectations and practical outcomes of different compounds. Learning from these defeats helps to optimize future study designs and to reduce the risks to patients. This review summarizes trials on MS treatments since 2001 that failed or were interrupted, attempts to analyze the underlying reasons for failure, and discusses the implications for our current view of MS pathogenesis, clinical practice, and design of future studies. In order to maintain clarity, this review focuses on anti-inflammatory therapies and does not include studies on already approved and effective disease-modifying therapies, albeit used in distinct administration routes or under different paradigms. Neuroprotective and alternative treatment strategies are presented elsewhere.
Collapse
|
44
|
Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol 2010; 5:271-7. [PMID: 20369303 DOI: 10.1007/s11481-010-9201-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/05/2010] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) infection results in a life-long persistence of the virus in the host's B-lymphocytes and has been associated with numerous cancers including Burkitt's lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. There is considerable evidence that EBV infection is a strong risk factor for the development of multiple sclerosis. Early age at primary EBV infection is typically asymptomatic, but primary infection during adolescence or adulthood often manifests as infectious mononucleosis, which has been associated with a two- to threefold increased risk of MS. Most importantly, MS risk is extremely low in individuals who are EBV negative, but it increases several folds following EBV infection. Additional evidence supporting a role for EBV in MS pathogenesis includes the observations of elevated antibodies to EBV antigens (especially EBV nuclear antigen-1) prior to the onset of MS, and an increased risk of MS among EBV-positive children. The biological mechanism by which EBV may cause MS is not known, but several possibilities are discussed.
Collapse
|
45
|
Harris VK, Sadiq SA. Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol Diagn Ther 2010; 13:225-44. [PMID: 19712003 DOI: 10.1007/bf03256329] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the brain and spinal cord that predominantly affects white matter. MS has a variable clinical presentation and has no 'diagnostic' laboratory test; this often results in delays to definite diagnosis. In confronting the disease, early diagnosis and appropriate, timely therapeutic intervention are critical factors in ensuring favorable long-term outcomes. The availability of reliable biomarkers could radically alter our management of MS at critical phases of the disease spectrum. Identification of markers that could predict the development of MS in high-risk populations would allow for intervention strategies that may prevent evolution to definite disease. Work with anti-myelin antibodies and the ongoing analysis of microarray gene expression have thus far not yielded biomarkers that predict future disease development. Similarly, extensive studies with serum and cerebrospinal fluid (CSF) have not yielded a disease-specific and sensitive diagnostic biomarker for MS. Establishment of disease diagnosis always leads to questions about long-term prognosis because in an individual patient the natural history of the disease is clinically unpredictable. Biomarkers that correlate with myelin loss, spinal cord disease, grey matter and subcortical demyelination need to be developed in order to accurately predict the disease course. The bulk of effort in biomarker development in MS has been concentrated in the area of monitoring disease activity. At present, a disease 'activation' panel of CSF biomarkers would include the following: interleukin-6 or its soluble receptor, nitric oxide and nitric oxide synthase, osteopontin, and fetuin-A. Although disease activity in MS is predominantly inflammatory, disease progression is likely to be the result of neurodegeneration. Therefore, the roles of proteins indicative of neuronal, axonal, and glial loss such as neurofilaments, tau, 14-3-3 proteins, and N-acetylaspartate are all under investigation, as are proteins affecting remyelination and regeneration, such as Nogo-A. With the increasing awareness of cognition dysfunction in MS, molecules such as apolipoprotein and proteins in the amyloid precursor protein pathway implicated in dementia are also being examined. Serum biomarkers that help monitor therapeutic efficacy such as the titer of antibody to beta-interferon, a first-line medication in MS, are established in clinical practice. Ongoing work with biomarkers that reflect drug bioavailability and factors that distinguish between medication responders and nonresponders are also under investigation. The discovery of new biomarkers relies on applying advances in proteomics along with microarray gene and antigen analysis and will hopefully result in the establishment of specific biomarkers for MS.
Collapse
Affiliation(s)
- Violaine K Harris
- Multiple Sclerosis Research Center of New York, New York, New York 10019, USA
| | | |
Collapse
|
46
|
Ascherio A, Munger KL. Epidemiology of Multiple Sclerosis. MULTIPLE SCLEROSIS 3 2010. [PMCID: PMC7173578 DOI: 10.1016/b978-1-4160-6068-0.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This chapter discusses the environmental factors associated to epidemiology of multiple sclerosis. The epidemiologic evidence points to three environmental risk factors—infection with the Epstein-Barr virus (EBV), low levels of vitamin D, and cigarette smoking—whose association with multiple sclerosis (MS) seems to satisfy in varying degrees most of the criteria that support causality, including temporality, strength, consistency, biologic gradient, and plausibility. None of these associations, however, has been tested experimentally in humans and only one––vitamin D deficiency is presently amenable to experimental interventions. The evidence, albeit more sparse and inconsistent, linking other environmental factors to MS risk are summarized. Epidemiologic clues to the hypothetical role of infection in MS are complex and often seem to point in opposite directions. The ecological studies, database/linkage analyses, and longitudinal studies of sunlight exposure and vitamin D are reviewed. Biologic mechanisms for smoking and increased risk of MS could be neurotoxic, immunomodulatory, vascular, or they could involve increased frequency and duration of respiratory infections. Some other possible risk factors include––diet and hepatitis B vaccine.
Collapse
|
47
|
Pharmacokinetics of acyclovir and its metabolites in cerebrospinal fluid and systemic circulation after administration of high-dose valacyclovir in subjects with normal and impaired renal function. Antimicrob Agents Chemother 2009; 54:1146-51. [PMID: 20038622 DOI: 10.1128/aac.00729-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Valacyclovir, the L-valyl ester prodrug of acyclovir (ACV), is widely prescribed to treat infections caused by varicella-zoster virus or herpes simplex virus. Rarely, treatment is complicated by reversible neuropsychiatric symptoms. By mechanisms not fully understood, this occurs more frequently in the setting of renal impairment. We characterized the steady-state pharmacokinetics of ACV and its metabolites 9-[(carboxymethoxy)methyl]guanine (CMMG) and 8-hydroxy-acyclovir (8-OH-ACV) in cerebrospinal fluid (CSF) and the systemic circulation. We administered multiple doses of high-dose valacyclovir to 6 subjects with normal renal function and 3 subjects with chronic renal impairment (creatinine clearance [CrCl], approximately 15 to 30 ml/min). Dosages were 2,000 mg every 6 h and 1,500 mg every 12 h, respectively. Indwelling intrathecal catheters allowed serial CSF sampling throughout the dosing interval. The average steady-state concentrations of acyclovir, CMMG, and 8-OH-ACV were greater in both the systemic circulation and the CSF among subjects with impaired renal function than among subjects with normal renal function. However, the CSF penetration of each analyte, reflected by the CSF-to-plasma area under the concentration-time curve over the 6- or 12-h dosing interval (AUC(tau)) ratio, did not differ based on renal function. Renal impairment does not alter the propensity for ACV or its metabolites to distribute to the CSF, but the higher concentrations in the systemic circulation, as a result of reduced elimination, are associated with proportionally higher concentrations in CSF.
Collapse
|
48
|
Abstract
Recent seroepidemiologic and pathologic evidence suggests that prior infection with Epstein-Barr virus (EBV) may be necessary for the development of multiple sclerosis (MS). EBV infects more than 90% of all humans, most of whom remain healthy. In contrast, 99% of MS patients have evidence of prior infection with EBV. EBV infects resting B lymphocytes, immortalizing them into long-lived memory B cells that survive largely undetected by the immune system in the peripheral circulation. MS patients show elevated titers to EBV years before developing any neurologic symptoms. Postmortem pathologic analysis of brains of patients with MS has revealed diffuse EBV-associated B-cell dysregulation in all forms of MS. Theories of pathogenesis of EBV in MS include antigenic mimicry, immortalization of B-cell clones, and cytotoxic T-cell dysfunction against virally infected B cells. This article reviews the existing evidence of the relationship between EBV and MS and considers the therapeutic implication of this evidence.
Collapse
Affiliation(s)
- Bridget A Bagert
- Department of Neurology, 1542 Tulane Avenue, Room 718B, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| |
Collapse
|
49
|
Alvarez-Lafuente R, Martinez A, Garcia-Montojo M, Mas A, De Las Heras V, Dominguez-Mozo MI, Maria Del Carmen C, López-Cavanillas M, Bartolome M, Gomez de la Concha E, Urcelay E, Arroyo R. MHC2TA rs4774C and HHV-6A active replication in multiple sclerosis patients. Eur J Neurol 2009; 17:129-35. [PMID: 19659749 DOI: 10.1111/j.1468-1331.2009.02758.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE In a previous report, a strong gene-environment interaction between human herpesvirus 6A (HHV6A) active replication and MHC2TA rs4774C was demonstrated. The objectives of this study were: (i) to reappraise the association that was found in the previous study; (ii) to evaluate if MS patients with minor allele C and HHV-6A active infection had different clinical behavior; and (iii) to analyze the possible association of MHC2TA rs4774C with Epstein-Barr virus (EBV). METHODS A total of 149 MS patients were analyzed both at the MHC2TA locus and by HHV-6A status in serum. We studied a G/C polymorphism (rs4774) by a TaqMan Assay-on-Demand. HHV-6A genomes in serum were evaluated by quantitative PCR. A control group of 562 healthy Spanish individuals was included for comparative purposes in the genetic analyses. A battery of clinical data was collected for all the MS patients included in the study. RESULTS (i) MHC2TA/HHV-6A interaction: we found the same strong association of the rs4774C allele with HHV-6A active replication than in the previous study (P = 0.0001). (ii) CLINICAL DATA the two main statistical significant differences for MS patients with HHV-6A active infection and minor allele C were: (a) a significant number of them were not free of progression (EDSS = 0) 2 years after the diagnosis (P = 0.01); (b) only a third of them responded to interferon beta treatment (P = 0.05). CONCLUSIONS This study has verified previous results about the strong gene-environment interaction between HHV6A active replication and MHC2TA rs4774C. Furthermore, a different clinical behavior for MS patients with HHV-6A active infection and minor allele C was found.
Collapse
|
50
|
Lincoln JA, Hankiewicz K, Cook SD. Could Epstein-Barr Virus or Canine Distemper Virus Cause Multiple Sclerosis? Neurol Clin 2008; 26:699-715, viii. [DOI: 10.1016/j.ncl.2008.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|