1
|
Qian Q, Wu J, Wang C, Yang Z, Cheng Y, Zheng Y, Wang X, Wang H. 6-PPD triggered lipid metabolism disorder and inflammatory response in larval zebrafish (Danio rerio) by regulating PPARγ/NF-κB pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125785. [PMID: 39900129 DOI: 10.1016/j.envpol.2025.125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
As a synthetic rubber antioxidant, the environmental monitoring concentrations of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) have exceeded the risk threshold, attracting widespread attention. Although investigations into the harmful effects on zebrafish have commenced, a comprehensive exploration of its toxicological impacts and underlying molecular mechanisms remains to be conducted. By using zebrafish as a model, this study systematically evaluated 6-PPD-induced lipid metabolism disorders and inflammation response following environmental exposure. Bioinformatics analysis revealed that 6-PPD target genes enriched in the hepatitis B pathway, indicating potential hepatic toxicity via inflammatory pathways. Therefore, we hypothesize that 6-PPD could trigger hepatotoxicity through the crosstalk between lipid metabolism and inflammation. Further experiments substantiated this hypothesis by showing lipid accumulation in the liver following 6-PPD exposure, along with elevated triglyceride (TG) and total cholesterol (TC) levels, and imbalanced expression of lipid metabolism-related marker genes. Additionally, 6-PPD exposure induced the accumulation of reactive oxygen species (ROS) and inhibited the differentiation and maturation of immune cells, resulting in immune evasion. Most of these abnormalities were exacerbated in a dose-dependent manner with increasing concentrations of 6-PPD. The addition of the PPARγ pathway agonist puerarin (PUE) or NF-κB pathway inhibitor quinazoline (QNZ) to 6-PPD exposure group mitigated these toxic effects, validating our conjecture that lipid metabolism disorder and inflammatory responses may result from the regulation of the PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Cuizhen Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453513, China
| | - Zheng Yang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying Cheng
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuansi Zheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Jin Y, Li K, Vik JO, Hillestad M, Olsen RE. Effect of Dietary Cholesterol, Phytosterol, and Docosahexaenoic Acid on Astaxanthin Absorption and Retention in Rainbow Trout. AQUACULTURE NUTRITION 2024; 2024:8265746. [PMID: 39555545 PMCID: PMC11496587 DOI: 10.1155/2024/8265746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 11/19/2024]
Abstract
Astaxanthin (Ax) determines the flesh redness of a salmonid fish which is the most desirable quality indicator by consumers. Fish cannot synthesize Ax de novo, therefore, the only way to increase flesh redness is to increase dietary input or improve the absorption and retention rate of dietary Ax. As a hydrophobic carotenoid, the absorption of Ax can be modulated by other lipid molecules in the diet. The present study explored the effect of three lipids, cholesterol (CH), phytosterol (PS), and docosahexaenoic acid (DHA) on Ax absorption, transport, and retention in rainbow trout. Dietary CH significantly improved Ax absorption by elevating plasma Ax levels (p < 0.05); however, it had no effect on the whole body Ax or flesh color. Dietary PS appears to inhibit Ax absorption since fish had significantly (p < 0.05) reduced whole body Ax. Dietary DHA appeared to have no effect on Ax absorption or retention. By comparing intestinal transcriptomes, a low density lipoprotein receptor (ldlr) gene was significantly downregulated in fish fed the CH diet as compared to the control diet. Since LDLR protein plays a major role in plasma lipoprotein turnover, we hypothesized that the inhibition of ldlr gene by high dietary CH resulted in higher retention of plasma Ax. The elevation of plasma Ax was not reflected in higher flesh coloration, which suggested other limiting factors governing Ax retention in the muscle. On the other hand, the transcriptomic and proteomic analyses found no changes of genes or proteins involved in Ax absorption, transport, or excretion in fish fed PS or DHA diets as compared to the control diet. In conclusion, this study has suggested that CH promotes Ax absorption by regulating lipoprotein retention and provide evidence for improving Ax absorption via dietary modulation.
Collapse
Affiliation(s)
- Yang Jin
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | - Rolf Erik Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Bi D, Van Hal A, Aschmann D, Shen M, Zhang H, Su L, Arias-Alpizar G, Kros A, Barz M, Bussmann J. Deconvolving Passive and Active Targeting of Liposomes Bearing LDL Receptor Binding Peptides Using the Zebrafish Embryo Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310781. [PMID: 38488770 DOI: 10.1002/smll.202310781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Indexed: 08/09/2024]
Abstract
Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Anneke Van Hal
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Mengjie Shen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gabriela Arias-Alpizar
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
4
|
Moll TO, Klemek ML, Farber SA. Directly Measuring Atherogenic Lipoprotein Kinetics in Zebrafish with the Photoconvertible LipoTimer Reporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596423. [PMID: 38853962 PMCID: PMC11160697 DOI: 10.1101/2024.05.29.596423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Lipoprotein kinetics are a crucial factor in understanding lipoprotein metabolism since a prolonged time in circulation can contribute to the atherogenic character of apolipoprotein-B (ApoB)-containing lipoproteins (B-lps). Here, we report a method to directly measure lipoprotein kinetics in live developing animals. We developed a zebrafish geneticly encoded reporter, LipoTimer, in which endogenous ApoBb.1 is fused to the photoconvertible fluorophore Dendra2 which shift its emission profile from green to red upon UV exposure. By quantifying the red population of ApoB-Dendra2 over time, we found that B-lp turnover in wild-type larvae becomes faster as development proceeds. Mutants with impaired B-lp uptake or lipolysis present with increased B-lp levels and half-life. In contrast, mutants with impaired B-lp triglyceride loading display slightly fewer and smaller-B-lps, which have a significantly shorter B-lp half-life. Further, we showed that chronic high-cholesterol feeding is associated with a longer B-lp half-life in wild-type juveniles but does not lead to changes in B-lp half-life in lipolysis deficient apoC2 mutants. These data support the hypothesis that B-lp lipolysis is suppressed by the flood of intestinal-derived B-lps that follow a high-fat meal.
Collapse
Affiliation(s)
- Tabea O.C. Moll
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Steven A. Farber
- Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
6
|
Lin B, Wan H, Yang J, Yu L, Zhou H, Wan H. Lipid regulation of protocatechualdehyde and hydroxysafflor yellow A via AMPK/SREBP2/PCSK9/LDLR signaling pathway in hyperlipidemic zebrafish. Heliyon 2024; 10:e24908. [PMID: 38333845 PMCID: PMC10850903 DOI: 10.1016/j.heliyon.2024.e24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
The consumption of a high-cholesterol diet is known to cause hyperlipidemia, which is one of the main risk factors for cardiovascular disease. Protocatechualdehyde (PCA) and hydroxysafflor yellow A (HSYA) are the active components of Salvia miltiorrhiza and safflower, respectively. However, their exact mechanism is still unclear. The aim of this study is to investigate its effects on lipid deposition and liver damage in hyperlipidemic zebrafish and its mechanism of anti-hyperlipidemia. The results showed that the use of PCA and HSYA alone and in combination can improve lipid deposition, slow behavior, abnormal blood flow and liver tissue damage, and the combined use is more effective. Further RT-qPCR results showed that PCA + HSYA can regulate the mRNA levels of PPAR-γ, SREBP2, SREBP1, HMGCR, PCSK9, mTOR, C/EBPα, LDLR, AMPK, HNF-1α and FoxO3a. The PCA + HSYA significantly improves lipid deposition and abnormal liver function in hyperlipidemic zebrafish larvae, which may be related to the AMPK/SREBP2/PCSK9/LDLR signaling pathway.
Collapse
Affiliation(s)
- Bingying Lin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Cardio-Cerebrovascular Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province (grant no. 2020E10012), Hangzhou, China
| | - Huifen Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Cardio-Cerebrovascular Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province (grant no. 2020E10012), Hangzhou, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Cardio-Cerebrovascular Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province (grant no. 2020E10012), Hangzhou, China
| |
Collapse
|
7
|
Nour J, Bonacina F, Norata GD. Gonadal sex vs genetic sex in experimental atherosclerosis. Atherosclerosis 2023; 384:117277. [PMID: 37775425 DOI: 10.1016/j.atherosclerosis.2023.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/09/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Epidemiological data and interventional studies with hormone replacement therapy suggest that women, at least until menopause, are at decreased cardiovascular risk compared to men. Still the molecular mechanisms beyond this difference are debated and the investigation in experimental models of atherosclerosis has been pivotal to prove that the activation of the estrogen receptor is atheroprotective, despite not enough to explain the differences reported in cardiovascular disease between male and female. This casts also for investigating the importance of the sex chromosome complement (genetic sex) beyond the contribution of sex hormones (gonadal sex) on atherosclerosis. Aim of this review is to present the dualism between gonadal sex and genetic sex with a focus on the data available from experimental models. The molecular mechanisms driving changes in lipid metabolism, immuno-inflammatory reactivity and vascular response in males and females that affect atherosclerosis progression will be discussed.
Collapse
Affiliation(s)
- Jasmine Nour
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Italy
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Italy.
| |
Collapse
|
8
|
Silva P, Rodríguez-Pérez M, Burgos-Ramos E. Zebrafish Model Insights into Mediterranean Diet Liquids: Olive Oil and Wine. Antioxidants (Basel) 2023; 12:1843. [PMID: 37891921 PMCID: PMC10604723 DOI: 10.3390/antiox12101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In this review, we explored the potential of a zebrafish model to investigate the antioxidant effects of key components of the Mediterranean diet, namely, olive oil and wine, in the context of preventing age-related diseases, particularly cardiovascular conditions. This paper explores the spectrum of observational studies to preclinical investigations and ultimately converges toward potential translational insights derived from animal experimentation. This review highlights the potential and underutilization of zebrafish as an experimental model in this domain. We highlighted the genetic proximity of zebrafish to humans, offering a unique opportunity for translational insights into the health benefits of olive oil and wine. Indeed, we wanted to focus on the potential of zebrafish to elucidate the health benefits of olive oil and wine while calling for continued exploration to unlock its full potential to advance our knowledge of age-related disease prevention within the Mediterranean diet framework.
Collapse
Affiliation(s)
- Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| |
Collapse
|
9
|
Sun W, Zhang X, Qiao Y, Griffin N, Zhang H, Wang L, Liu H. Exposure to PFOA and its novel analogs disrupts lipid metabolism in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115020. [PMID: 37201426 DOI: 10.1016/j.ecoenv.2023.115020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Perfluorooctanoic acid (PFOA), a typical perfluoroalkyl group compound, has received worldwide attention due to its significant environmental toxicity. Following regulatory bans on the production and emission of PFOA, concerns have been raised about the potential health risks and the safety of novel perfluoroalkyl analogues. HFPO-DA (trade name Gen-X) and HFPO-TA are two perfluoroalkyl analogues known to be bioaccumulative, whose level of toxicity and whether they are safe alternatives to PFOA remain unclear. In the following study, the physiological and metabolic effects of exposure to PFOA and its novel analogues were explored in zebrafish using 1/3 LC50 (PFOA 100 μM, Gen-X 200 μM, HFPO-TA 30 μM). At the same LC50 toxicological effect, exposure to PFOA and HFPO-TA resulted in abnormal phenotypes such as spinal curvature, pericardial edema and aberrant body length, while Gen-X was little changed. Metabolically, PFOA, HFPO-TA and Gen-X all significantly increased total cholesterol in exposed zebrafish with PFOA and HFPO-TA also increasing total triglyceride levels. Transcriptome analysis showed that the number of differentially expressed genes in PFOA, Gen-X, and HFPO-TA treated conditions compared to control groups were 527, 572, and 3, 933, respectively. KEGG and GO analysis of differentially expressed genes revealed pathways and functions related to lipid metabolism as well as significant activation of the peroxisome proliferators-activated receptor (PPARs) pathway. Furthermore, RT-qPCR analysis identified significant dysregulation in the downstream target genes of PPARα, which is responsible for lipid oxidative catabolism, and the SREBP pathway, which is responsible for lipid synthesis. In conclusion, both perfluoroalkyl analogues HFPO-TA and Gen-X exhibit significant physiological and metabolic toxicity to aquatic organisms and their environmental accumulation should be closely regulated.
Collapse
Affiliation(s)
- Weiqiang Sun
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China
| | - Xuemin Zhang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China
| | - Ying Qiao
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Hongxia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| | - Hui Liu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
10
|
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins. Int J Mol Sci 2023; 24:ijms24065656. [PMID: 36982730 PMCID: PMC10052014 DOI: 10.3390/ijms24065656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health care problem. About 10% of the general population is affected by CKD, representing the sixth cause of death in the world. Cardiovascular events are the main mortality cause in CKD, with a cardiovascular risk 10 times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes with a negative effect on every organ, especially on the cardiovascular system. Mammalian models, sharing structural and functional similarities with humans, have been widely used to study cardiovascular disease mechanisms and test new therapies, but many of them are rather expensive and difficult to manipulate. Over the last few decades, zebrafish has become a powerful non-mammalian model to study alterations associated with human disease. The high conservation of gene function, low cost, small size, rapid growth, and easiness of genetic manipulation are just some of the features of this experimental model. More specifically, embryonic cardiac development and physiological responses to exposure to numerous toxin substances are similar to those observed in mammals, making zebrafish an ideal model to study cardiac development, toxicity, and cardiovascular disease.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
11
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
12
|
Hu YX, You HM, Zhu RF, Liang YL, Li FF, Qin YW, Zhao XX, Liang C, Jing Q. Establishment of a lipid metabolism disorder model in ApoEb mutant zebrafish. Atherosclerosis 2022; 361:18-29. [PMID: 36306655 DOI: 10.1016/j.atherosclerosis.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ApoEb is a zebrafish homologous to mammalian ApoE, whose deficiency would lead to lipid metabolism disorders (LMDs) like atherosclerosis. We attempted to knock out the zebrafish ApoEb, then establish a zebrafish model with LMD. METHODS ApoEb was knocked out using the CRISPR/Cas9 system, and the accumulation of lipids was confirmed by Oil Red O staining, confocal imaging, and lipid measurements. The lipid-lowering effects of simvastatin (SIM), ezetimibe (EZE) and Xuezhikang (XZK), an extract derived from red yeast rice, were evaluated through in vivo imaging in zebrafish larvae. RESULTS In the ApoEb mutant, significant vascular lipid deposition occurred, and lipid measurement performed in the whole-body homogenate of larvae and adult plasma showed significantly increased lipid levels. SIM, EZE and XZK apparently relieved hyperlipidemia in ApoEb mutants, and XZK had a significant inhibitory effect on the recruitment of neutrophils and macrophages. CONCLUSIONS In this study, an LMD model has been established in ApoEb mutant zebrafish. We suggest that this versatile model could be applied in studying hypercholesterolemia and related vascular pathology in the context of early atherosclerosis, as well as the physiological function of ApoE.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Hong-Min You
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Rong-Fang Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Lai Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang-Fang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China.
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
13
|
Kamato D, Ilyas I, Xu S, Little PJ. Non-Mouse Models of Atherosclerosis: Approaches to Exploring the Translational Potential of New Therapies. Int J Mol Sci 2022; 23:12964. [PMID: 36361754 PMCID: PMC9656683 DOI: 10.3390/ijms232112964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 09/26/2023] Open
Abstract
Cardiovascular disease is the largest single cause of disease-related mortality worldwide and the major underlying pathology is atherosclerosis. Atherosclerosis develops as a complex process of vascular lipid deposition and retention by modified proteoglycans, endothelial dysfunction and unresolved chronic inflammation. There are a multitude of current therapeutic agents, most based on lowering plasma lipid levels, but, overall, they have a lower than optimum level of efficacy and many deaths continue to arise from cardiovascular disease world-wide. To identify and evaluate potential novel cardiovascular drugs, suitable animal models that reproduce human atherosclerosis with a high degree of fidelity are required as essential pre-clinical research tools. Commonly used animal models of atherosclerosis include mice (ApoE-/-, LDLR-/- mice and others), rabbits (WHHL rabbits and others), rats, pigs, hamster, zebrafish and non-human primates. Models based on various wild-type and genetically modified mice have been extensively reviewed but mice may not always be appropriate. Thus, here, we provide an overview of the advantages and shortcomings of various non-mouse animal models of atherosclerotic plaque formation, and plaque rupture, as well as commonly used interventional strategies. Taken together, the combinatorial selection of suitable animal models readily facilitates reproducible and rigorous translational research in discovering and validating novel anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Iqra Ilyas
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Suowen Xu
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| |
Collapse
|
14
|
Smith GA, Padmanabhan A, Lau BH, Pampana A, Li L, Lee CY, Pelonero A, Nishino T, Sadagopan N, Xia VQ, Jain R, Natarajan P, Wu RS, Black BL, Srivastava D, Shokat KM, Chorba JS. Cold shock domain-containing protein E1 is a posttranscriptional regulator of the LDL receptor. Sci Transl Med 2022; 14:eabj8670. [PMID: 36103516 PMCID: PMC10174261 DOI: 10.1126/scitranslmed.abj8670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The low-density lipoprotein receptor (LDLR) controls cellular delivery of cholesterol and clears LDL from the bloodstream, protecting against atherosclerotic heart disease, the leading cause of death in the United States. We therefore sought to identify regulators of the LDLR beyond the targets of current therapies and known causes of familial hypercholesterolemia. We found that cold shock domain-containing protein E1 (CSDE1) enhanced hepatic LDLR messenger RNA (mRNA) decay via its 3' untranslated region and regulated atherogenic lipoproteins in vivo. Using parallel phenotypic genome-wide CRISPR interference screens in a tissue culture model, we identified 40 specific regulators of the LDLR that were not previously identified by observational human genetic studies. Among these, we demonstrated that, in HepG2 cells, CSDE1 regulated the LDLR at least as strongly as statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. In addition, we showed that hepatic gene silencing of Csde1 treated diet-induced dyslipidemia in mice to a similar degree as Pcsk9 silencing. These results suggest the therapeutic potential of targeting CSDE1 to manipulate the posttranscriptional regulation of the LDLR mRNA for the prevention of cardiovascular disease. Our approach of modeling a clinically relevant phenotype in a forward genetic screen, followed by mechanistic pharmacologic dissection and in vivo validation, may serve as a generalizable template for the identification of therapeutic targets in other human disease states.
Collapse
Affiliation(s)
- Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arun Padmanabhan
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Bryan H Lau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Li Li
- Department of Medicine and Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clara Y Lee
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Angelo Pelonero
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Tomohiro Nishino
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Nandhini Sadagopan
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Vivian Q Xia
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Rajan Jain
- Department of Medicine and Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Institute of Regenerative Medicine, and Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Roland S Wu
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.,Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John S Chorba
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| |
Collapse
|
15
|
Delnoy B, Haskovic M, Vanoevelen J, Steinbusch LKM, Vos EN, Knoops K, Zimmermann LJI, Noga M, Lefeber DJ, Martini PGV, Coelho AI, Rubio‐Gozalbo ME. Novel mRNA therapy restores GALT protein and enzyme activity in a zebrafish model of classic galactosemia. J Inherit Metab Dis 2022; 45:748-758. [PMID: 35527402 PMCID: PMC9541528 DOI: 10.1002/jimd.12512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Messenger RNA (mRNA) has emerged as a novel therapeutic approach for inborn errors of metabolism. Classic galactosemia (CG) is an inborn error of galactose metabolism caused by a severe deficiency of galactose-1-phosphate:uridylyltransferase (GALT) activity leading to neonatal illness and chronic impairments affecting the brain and female gonads. In this proof of concept study, we used our zebrafish model for CG to evaluate the potential of human GALT mRNA (hGALT mRNA) packaged in two different lipid nanoparticles to restore GALT expression and activity at early stages of development. Both one cell-stage and intravenous single-dose injections resulted in hGALT protein expression and enzyme activity in the CG zebrafish (galt knockout) at 5 days post fertilization (dpf). Moreover, the levels of galactose-1-phosphate (Gal-1-P) and galactonate, metabolites that accumulate because of the deficiency, showed a decreasing trend. LNP-packaged mRNA was effectively translated and processed in the CG zebrafish without signs of toxicity. This study shows that mRNA therapy restores GALT protein and enzyme activity in the CG zebrafish model, and that the zebrafish is a suitable system to test this approach. Further studies are warranted to assess whether repeated injections safely mitigate the chronic impairments of this disease.
Collapse
Affiliation(s)
- Britt Delnoy
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
| | - Minela Haskovic
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
| | - Jo Vanoevelen
- GROW, Maastricht UniversityMaastrichtthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Laura K. M. Steinbusch
- Department of Clinical GeneticsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Esther Naomi Vos
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Kèvin Knoops
- Microscopy CORE LaboratoryMaastricht UniversityMaastrichtthe Netherlands
| | - Luc J. I. Zimmermann
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
| | - Marek Noga
- Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenthe Netherlands
| | - Dirk J. Lefeber
- Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenthe Netherlands
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenthe Netherlands
| | | | - Ana I. Coelho
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Maria Estela Rubio‐Gozalbo
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+Maastrichtthe Netherlands
| |
Collapse
|
16
|
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res 2022; 130:1869-1887. [PMID: 35679358 DOI: 10.1161/circresaha.122.320263] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.).,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), Odense, Denmark (D.F.J.K)
| | - Stephen G Malin
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Göran K Hansson
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| |
Collapse
|
17
|
Pattipeiluhu R, Arias-Alpizar G, Basha G, Chan KYT, Bussmann J, Sharp TH, Moradi MA, Sommerdijk N, Harris EN, Cullis PR, Kros A, Witzigmann D, Campbell F. Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201095. [PMID: 35218106 PMCID: PMC9461706 DOI: 10.1002/adma.202201095] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 05/04/2023]
Abstract
Lipid nanoparticles (LNPs) are the leading nonviral technologies for the delivery of exogenous RNA to target cells in vivo. As systemic delivery platforms, these technologies are exemplified by Onpattro, an approved LNP-based RNA interference therapy, administered intravenously and targeted to parenchymal liver cells. The discovery of systemically administered LNP technologies capable of preferential RNA delivery beyond hepatocytes has, however, proven more challenging. Here, preceded by comprehensive mechanistic understanding of in vivo nanoparticle biodistribution and bodily clearance, an LNP-based messenger RNA (mRNA) delivery platform is rationally designed to preferentially target the hepatic reticuloendothelial system (RES). Evaluated in embryonic zebrafish, validated in mice, and directly compared to LNP-mRNA systems based on the lipid composition of Onpattro, RES-targeted LNPs significantly enhance mRNA expression both globally within the liver and specifically within hepatic RES cell types. Hepatic RES targeting requires just a single lipid change within the formulation of Onpattro to switch LNP surface charge from neutral to anionic. This technology not only provides new opportunities to treat liver-specific and systemic diseases in which RES cell types play a key role but, more importantly, exemplifies that rational design of advanced RNA therapies must be preceded by a robust understanding of the dominant nano-biointeractions involved.
Collapse
Affiliation(s)
- Roy Pattipeiluhu
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- BioNanoPatterning, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333 RC, The Netherlands
| | - Gabriela Arias-Alpizar
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Genc Basha
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Karen Y T Chan
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jeroen Bussmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Thomas H Sharp
- BioNanoPatterning, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333 RC, The Netherlands
| | - Mohammad-Amin Moradi
- Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Nico Sommerdijk
- Department of Biochemistry, Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Pieter R Cullis
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver, V6T 1Z3, Canada
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Dominik Witzigmann
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver, V6T 1Z3, Canada
| | - Frederick Campbell
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
18
|
Vasyutina M, Alieva A, Reutova O, Bakaleiko V, Murashova L, Dyachuk V, Catapano AL, Baragetti A, Magni P. The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism 2022; 129:155138. [PMID: 35051509 DOI: 10.1016/j.metabol.2022.155138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Dyslipidemias and atherosclerosis play a pivotal role in cardiovascular risk and disease. Although some pathophysiological mechanisms underlying these conditions have been unveiled, several knowledge gaps still remain. Experimental models, both in vitro and in vivo, have been instrumental to our better understanding of such complex processes. The latter have often been based on rodent species, either wild-type or, in several instances, genetically modified. In this context, the zebrafish may represent an additional very useful in vivo experimental model for dyslipidemia and atherosclerosis. Interestingly, the lipid metabolism of zebrafish shares several features with that present in humans, recapitulating some molecular features and pathophysiological aspects in a better way than that of rodents. The zebrafish model may be of help to address questions related to exposome factors as well as to genetic features, aiming to dissect selected aspects of the more complex scenario observed in humans. Indeed, exposome-related dyslipidemia/atherosclerosis research in zebrafish may target different scientific questions, related to nutrition, microbiota, temperature, light exposure at the larval stage, exposure to chemicals and epigenetic consequences of such external factors. Addressing genetic features related to dyslipidemia/atherosclerosis using the zebrafish model is already a reality and active research is now ongoing in this promising area. Novel technologies (gene and genome editing) may help to identify new candidate genes involved in dyslipidemia and dyslipidemia-related diseases. Based on these considerations, the zebrafish experimental model appears highly suitable for the study of exposome factors, genes and molecules involved in the development of atherosclerosis-related disease as well as for the validation of novel potential treatment options.
Collapse
Affiliation(s)
- Marina Vasyutina
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia.
| | - Asiiat Alieva
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | - Olga Reutova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Lada Murashova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Alberico L Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
19
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Wilson MH, Ekker SC, Farber SA. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. eLife 2021; 10:e66393. [PMID: 34387191 PMCID: PMC8460263 DOI: 10.7554/elife.66393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.
Collapse
Affiliation(s)
- Meredith H Wilson
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Steven A Farber
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
- Johns Hopkins University Department of BiologyBaltimoreUnited States
| |
Collapse
|
21
|
Chen Y, Xu W, Zhang Q, Zhang Y, Mu R. Intraperitoneal injection of genistein affects the distribution and metabolism of cholesterol in female yellow catfish Tachysurus fulvidraco. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1299-1311. [PMID: 34241762 DOI: 10.1007/s10695-021-00985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Genistein is an abundant phytoestrogen in soybean. This study aimed to determine the effects of genistein on cholesterol distribution and metabolism in female yellow catfish. Three hundred fish (49.2 ± 1.4 g) were randomly divided into five treatments and received intraperitoneal injections as follows: (1) blank, no injection; (2) control, vehicle only; (3) E2, 17β-estradiol at 10 μg·g-1 body weight; (4) low genistein doses, genistein at 10 μg·g-1 body weight; (5) high genistein doses, genistein at 100 μg·g-1 body weight. Both high and low genistein doses significantly reduced (p < 0.05) serum TC and LDL-C 24 h after injection. Moreover, the high genistein doses significantly reduced (p < 0.05) serum HDL-C. Both high and low doses of genistein significantly increased (p < 0.05) hepatic TC. Only high genistein doses significantly increased (p < 0.05) ovary TC. In the liver, both high and low genistein doses significantly increased (p < 0.05) protein and mRNA expression of ldlr. Meanwhile, high genistein doses significantly decreased (p < 0.05) mRNA expression of hmgcr. In ovary tissue, high genistein doses significantly decreased (p < 0.05) mRNA expression of cyp11a1. These results suggested that genistein affected the cholesterol distribution in female yellow catfish. Both high and low doses of genistein reduced cholesterol content in blood and increased its content in the liver by increasing the uptake of blood cholesterol. Meanwhile, high genistein doses may inhibit hepatic cholesterol synthesis. Additionally, high genistein doses could increase cholesterol transfer from serum into the ovary and disturb cholesterol conversion to pregnenolone.
Collapse
Affiliation(s)
- Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenbin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Qingji Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yilin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Longshan Avenue, Duyun, 558000, Guizhou Province, China.
| |
Collapse
|
22
|
Dubińska-Magiera M, Migocka-Patrzałek M, Lewandowski D, Daczewska M, Jagla K. Zebrafish as a Model for the Study of Lipid-Lowering Drug-Induced Myopathies. Int J Mol Sci 2021; 22:5654. [PMID: 34073503 PMCID: PMC8198905 DOI: 10.3390/ijms22115654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced myopathies are classified as acquired myopathies caused by exogenous factors. These pathological conditions develop in patients without muscle disease and are triggered by a variety of medicaments, including lipid-lowering drugs (LLDs) such as statins, fibrates, and ezetimibe. Here we summarise the current knowledge gained via studies conducted using various models, such as cell lines and mammalian models, and compare them with the results obtained in zebrafish (Danio rerio) studies. Zebrafish have proven to be an excellent research tool for studying dyslipidaemias as a model of these pathological conditions. This system enables in-vivo characterization of drug and gene candidates to further the understanding of disease aetiology and develop new therapeutic strategies. Our review also considers important environmental issues arising from the indiscriminate use of LLDs worldwide. The widespread use and importance of drugs such as statins and fibrates justify the need for the meticulous study of their mechanism of action and the side effects they cause.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| |
Collapse
|
23
|
Zebrafish, an In Vivo Platform to Screen Drugs and Proteins for Biomedical Use. Pharmaceuticals (Basel) 2021; 14:ph14060500. [PMID: 34073947 PMCID: PMC8225009 DOI: 10.3390/ph14060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the gap between in vitro evidence from cell lines and in vivo evidence, the lower vertebrate zebrafish possesses many advantages over higher vertebrates, such as low maintenance, high fecundity, light-induced spawning, transparent embryos, short generation interval, rapid embryonic development, fully sequenced genome, and some phenotypes similar to human diseases. Such merits have popularized the zebrafish as a model system for biomedical and pharmaceutical studies, including drug screening. Here, we reviewed the various ways in which zebrafish serve as an in vivo platform to perform drug and protein screening in the fields of rare human diseases, social behavior and cancer studies. Since zebrafish mutations faithfully phenocopy many human disorders, many compounds identified from zebrafish screening systems have advanced to early clinical trials, such as those for Adenoid cystic carcinoma, Dravet syndrome and Diamond-Blackfan anemia. We also reviewed and described how zebrafish are used to carry out environmental pollutant detection and assessment of nanoparticle biosafety and QT prolongation.
Collapse
|
24
|
Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 2021; 24:251-269. [PMID: 33449300 PMCID: PMC8205957 DOI: 10.1007/s10456-020-09761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Tang D, Geng F, Yu C, Zhang R. Recent Application of Zebrafish Models in Atherosclerosis Research. Front Cell Dev Biol 2021; 9:643697. [PMID: 33718384 PMCID: PMC7947229 DOI: 10.3389/fcell.2021.643697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is one of the leading causes of death worldwide. Establishing animal models of atherosclerosis is of great benefit for studying its complicated pathogenesis and screening and evaluating related drugs. Although researchers have generated a variety of models for atherosclerosis study in rabbits, mice and rats, the limitations of these models make it difficult to monitor the development of atherosclerosis, and these models are unsuitable for large scale screening of potential therapeutic targets. On the contrast, zebrafish can fulfill these purposes thanks to their fecundity, rapid development ex utero, embryonic transparency, and conserved lipid metabolism process. Thus, zebrafish have become a popular alternative animal model for atherosclerosis research. In this mini review, we summarize different zebrafish models used to study atherosclerosis, focusing on the latest applications of these models to the dynamic monitoring of atherosclerosis progression, mechanistic study of therapeutic intervention and drug screening, and assessment of the impacts of other risk factors.
Collapse
Affiliation(s)
- Dandan Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Tao J, Wei Z, He Y, Yan X, Ming-Yuen Lee S, Wang X, Ge W, Zheng Y. Toward understanding the prolonged circulation and elimination mechanism of crosslinked polymeric micelles in zebrafish model. Biomaterials 2020; 256:120180. [DOI: 10.1016/j.biomaterials.2020.120180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
27
|
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish. Biomolecules 2020; 10:biom10091352. [PMID: 32971894 PMCID: PMC7564250 DOI: 10.3390/biom10091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of metabolism cause abnormal synthesis, recycling, or breakdown of amino acids, neurotransmitters, and other various metabolites. This aberrant homeostasis commonly causes the accumulation of toxic compounds or depletion of vital metabolites, which has detrimental consequences for the patients. Efficient and rapid intervention is often key to survival. Therefore, it requires useful animal models to understand the pathomechanisms and identify promising therapeutic drug targets. Zebrafish are an effective tool to investigate developmental mechanisms and understanding the pathophysiology of disorders. In the past decades, zebrafish have proven their efficiency for studying genetic disorders owing to the high degree of conservation between human and zebrafish genes. Subsequently, several rare inherited metabolic disorders have been successfully investigated in zebrafish revealing underlying mechanisms and identifying novel therapeutic targets, including methylmalonic acidemia, Gaucher’s disease, maple urine disorder, hyperammonemia, TRAPPC11-CDGs, and others. This review summarizes the recent impact zebrafish have made in the field of inborn errors of metabolism.
Collapse
|
28
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
29
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Giardoglou P, Beis D. On Zebrafish Disease Models and Matters of the Heart. Biomedicines 2019; 7:E15. [PMID: 30823496 PMCID: PMC6466020 DOI: 10.3390/biomedicines7010015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease (CAD) is the leading form of cardiovascular disease (CVD), which is the primary cause of mortality worldwide. It is a complex disease with genetic and environmental risk factor contributions. Reports in human and mammalian models elucidate age-associated changes in cardiac function. The diverse mechanisms involved in cardiac diseases remain at the center of the research interest to identify novel strategies for prevention and therapy. Zebrafish (Danio rerio) have emerged as a valuable vertebrate model to study cardiovascular development over the last few decades. The facile genetic manipulation via forward and reverse genetic approaches combined with noninvasive, high-resolution imaging and phenotype-based screening has provided new insights to molecular pathways that orchestrate cardiac development. Zebrafish can recapitulate human cardiac pathophysiology due to gene and regulatory pathways conservation, similar heart rate and cardiac morphology and function. Thus, generations of zebrafish models utilize the functional analysis of genes involved in CAD, which are derived from large-scale human population analysis. Here, we highlight recent studies conducted on cardiovascular research focusing on the benefits of the combination of genome-wide association studies (GWAS) with functional genomic analysis in zebrafish. We further summarize the knowledge obtained from zebrafish studies that have demonstrated the architecture of the fundamental mechanisms underlying heart development, homeostasis and regeneration at the cellular and molecular levels.
Collapse
Affiliation(s)
- Panagiota Giardoglou
- Zebrafish Disease Models Lab, Center for Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece.
- School of Health Science and Education, Harokopio University, 17676 Athens, Greece.
| | - Dimitris Beis
- Zebrafish Disease Models Lab, Center for Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
31
|
Johansen MD, Hortle E, Kasparian JA, Romero A, Novoa B, Figueras A, Britton WJ, de Silva K, Purdie AC, Oehlers SH. Analysis of mycobacterial infection-induced changes to host lipid metabolism in a zebrafish infection model reveals a conserved role for LDLR in infection susceptibility. FISH & SHELLFISH IMMUNOLOGY 2018; 83:238-242. [PMID: 30219383 DOI: 10.1016/j.fsi.2018.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Changes to lipid metabolism are well-characterised consequences of human tuberculosis infection but their functional relevance are not clearly elucidated in these or other host-mycobacterial systems. The zebrafish-Mycobacterium marinum infection model is used extensively to model many aspects of human-M. tuberculosis pathogenesis but has not been widely used to study the role of infection-induced lipid metabolism. We find mammalian mycobacterial infection-induced alterations in host Low Density Lipoprotein metabolism are conserved in the zebrafish model of mycobacterial pathogenesis. Depletion of LDLR, a key lipid metabolism node, decreased M. marinum burden, and corrected infection-induced altered lipid metabolism resulting in decreased LDL and reduced the rate of macrophage transformation into foam cells. Our results demonstrate a conserved role for infection-induced alterations to host lipid metabolism, and specifically the LDL-LDLR axis, across host-mycobacterial species pairings.
Collapse
Affiliation(s)
- Matt D Johansen
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Elinor Hortle
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia
| | - Joshua A Kasparian
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Tuberculosis Research Program Centenary Institute, Sydney Medical School and Marie Bashir Institute The University of Sydney, Camperdown, NSW, Australia
| | - Kumudika de Silva
- Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Auriol C Purdie
- Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Tuberculosis Research Program Centenary Institute, Sydney Medical School and Marie Bashir Institute The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|