1
|
McCarty KD, Sullivan ME, Tateishi Y, Hargrove TY, Lepesheva GI, Guengerich FP. Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1. J Biol Chem 2023; 299:104841. [PMID: 37209823 PMCID: PMC10285260 DOI: 10.1016/j.jbc.2023.104841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4β,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450-dihydrolanosterol complex showed that the overall reaction is highly processive, with koff rates of P450 51A1-dihydrolanosterol and the 14α-alcohol and 14α-aldehyde complexes being 1 to 2 orders of magnitude less than the forward rates of competing oxidations. epi-Dihydrolanosterol (the 3α-hydroxy analog) was as efficient as the common 3β-hydroxy isomer in the binding and formation of dihydro FF-MAS. The common lanosterol contaminant dihydroagnosterol was found to be a substrate of human P450 51A1, with roughly one-half the activity of dihydrolanosterol. Steady-state experiments with 14α-methyl deuterated dihydrolanosterol showed no kinetic isotope effect, indicating that C-14α C-H bond breaking is not rate-limiting in any of the individual steps. The high processivity of this reaction generates higher efficiency and also renders the reaction less sensitive to inhibitors.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Molly E Sullivan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Yoshimoto FK, Auchus RJ. Rapid kinetic methods to dissect steroidogenic cytochrome P450 reaction mechanisms. J Steroid Biochem Mol Biol 2016; 161:13-23. [PMID: 26472553 PMCID: PMC4841756 DOI: 10.1016/j.jsbmb.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/12/2015] [Accepted: 10/07/2015] [Indexed: 01/03/2023]
Abstract
All cytochrome P450 enzyme reactions involve a catalytic cycle with several discreet physical or chemical steps. This cycle ends with the formation of the reactive heme iron-oxygen complex, which oxygenates substrate. While the steps might be very similar for each P450 enzyme, the rates of each step varies tremendously for each enzyme and sometimes even for different reactions catalyzed by the same enzyme. For example, the rate-limiting step for most bacterial P450 enzymes, with turnover numbers over 1000s(-1), is the second electron transfer. In contrast, steroidogenic P450s from eukaryotes catalyze much slower reactions, with turnover numbers of ∼5-250min(-1); therefore, assumptions about kinetic properties for the mammalian P450 enzymes based on the bacterial enzymes are tenuous. In order to dissect the rates for individual steps, special techniques that isolate individual steps and/or single turnovers are required. This article will review the theoretical principles and practical considerations for several of these techniques, with illustrative published examples. The reader should gain an appreciation for the appropriate methods used to interrogate particular steps in the P450 reaction cycle.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, Ann Arbor, MI 48019, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48019, USA.
| |
Collapse
|
3
|
Hargrove TY, Wawrzak Z, Lamb DC, Guengerich FP, Lepesheva GI. Structure-Functional Characterization of Cytochrome P450 Sterol 14α-Demethylase (CYP51B) from Aspergillus fumigatus and Molecular Basis for the Development of Antifungal Drugs. J Biol Chem 2015; 290:23916-34. [PMID: 26269599 DOI: 10.1074/jbc.m115.677310] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/18/2023] Open
Abstract
Aspergillus fumigatus is the opportunistic fungal pathogen that predominantly affects the immunocompromised population and causes 600,000 deaths/year. The cytochrome P450 51 (CYP51) inhibitor voriconazole is currently the drug of choice, yet the treatment efficiency remains low, calling for rational development of more efficient agents. A. fumigatus has two CYP51 genes, CYP51A and CYP51B, which share 59% amino acid sequence identity. CYP51B is expressed constitutively, whereas gene CYP51A is reported to be inducible. We expressed, purified, and characterized A. fumigatus CYP51B, including determination of its substrate preferences, catalytic parameters, inhibition, and x-ray structure in complexes with voriconazole and the experimental inhibitor (R)-N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VNI). The enzyme demethylated its natural substrate eburicol and the plant CYP51 substrate obtusifoliol at steady-state rates of 17 and 16 min(-1), respectively, but did not metabolize lanosterol, and the topical antifungal drug miconazole was the strongest inhibitor that we identified. The x-ray crystal structures displayed high overall similarity of A. fumigatus CYP51B to CYP51 orthologs from other biological kingdoms but revealed phylum-specific differences relevant to enzyme catalysis and inhibition. The complex with voriconazole provides an explanation for the potency of this relatively small molecule, whereas the complex with VNI outlines a direction for further enhancement of the efficiency of this new inhibitory scaffold to treat humans afflicted with filamentous fungal infections.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zdzislaw Wawrzak
- the Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439
| | - David C Lamb
- Swansea University, Swansea, Wales SA2 8PP, United Kingdom, and
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Galina I Lepesheva
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
4
|
Mosa A, Neunzig J, Gerber A, Zapp J, Hannemann F, Pilak P, Bernhardt R. 2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation. J Steroid Biochem Mol Biol 2015; 150:1-10. [PMID: 25746800 DOI: 10.1016/j.jsbmb.2015.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/27/2022]
Abstract
The biosynthesis of steroid hormones in vertebrates is initiated by the cytochrome P450 CYP11A1, which performs the side-chain cleavage of cholesterol thereby producing pregnenolone. In this study, we report a direct stimulatory effect of the estrogens estradiol and estrone onto the pregnenolone formation in a reconstituted in vitro system consisting of purified CYP11A1 and its natural redox partners. We demonstrated the formation of new products from 11-deoxycorticosterone (DOC), androstenedione, testosterone and dehydroepiandrosterone (DHEA) during the in vitro reaction catalyzed by CYP11A1. In addition, we also established an Escherichia coli-based whole-cell biocatalytic system consisting of CYP11A1 and its redox partners to obtain sufficient yields of products for NMR-characterization. Our results indicate that CYP11A1, in addition to the previously described 6β-hydroxylase activity, possesses a 2β-hydroxylase activity towards DOC and androstenedione as well as a 16β-hydroxylase activity towards DHEA. We also showed that CYP11A1 is able to perform the 6β-hydroxylation of testosterone, a reaction that has been predominantly attributed to CYP3A4. Our results are the first evidence that sex hormones positively regulate the overall production of steroid hormones suggesting the need to reassess the role of CYP11A1 in steroid hormone biosynthesis and its substrate-dependent mechanistic properties.
Collapse
Affiliation(s)
- A Mosa
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - J Neunzig
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - A Gerber
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - J Zapp
- Institute of Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany
| | - F Hannemann
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - P Pilak
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - R Bernhardt
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Goyal S, Xiao Y, Porter NA, Xu L, Guengerich FP. Oxidation of 7-dehydrocholesterol and desmosterol by human cytochrome P450 46A1. J Lipid Res 2014; 55:1933-43. [PMID: 25017465 DOI: 10.1194/jlr.m051508] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 (P450 or CYP) 46A1 is expressed in brain and has been characterized by its ability to oxidize cholesterol to 24S-hydroxycholesterol. In addition, the same enzyme is known to further oxidize 24S-hydroxycholesterol to the 24,25- and 24,27-dihydroxy products, as well as to catalyze side-chain oxidations of 7α-hydroxycholesterol and cholestanol. As precursors in the biosynthesis of cholesterol, 7-dehydrocholesterol has not been found to be a substrate of P450 46A1 and desmosterol has not been previously tested. However, 24-hydroxy-7-dehydrocholesterol was recently identified in brain tissues, which prompted us to reexamine this enzyme and its potential substrates. Here we report that P450 46A1 oxidizes 7-dehydrocholesterol to 24-hydroxy-7-dehydrocholesterol and 25-hydroxy-7-dehydrocholesterol, as confirmed by LC-MS and GC-MS. Overall, the catalytic rates of formation increased in the order of 24-hydroxy-7-dehydrocholesterol < 24-hydroxycholesterol < 25-hydroxy-7-dehydrocholesterol from their respective precursors, with a ratio of 1:2.5:5. In the case of desmosterol, epoxidation to 24S,25-epoxycholesterol and 27-hydroxylation was observed, at roughly equal rates. The formation of these oxysterols in the brain may be of relevance in Smith-Lemli-Opitz syndrome, desmosterolosis, and other relevant diseases, as well as in signal transduction by lipids.
Collapse
Affiliation(s)
- Sandeep Goyal
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Yi Xiao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Libin Xu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
6
|
Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, Guengerich FP. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J Biol Chem 2011; 286:33021-8. [PMID: 21813643 PMCID: PMC3190903 DOI: 10.1074/jbc.m111.282434] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/01/2011] [Indexed: 11/06/2022] Open
Abstract
7-Ketocholesterol is a bioactive sterol, a potent competitive inhibitor of cytochrome P450 7A1, and toxic in liver cells. Multiple origins of this compound have been identified, with cholesterol being the presumed precursor. Although routes for formation of the 7-keto compound from cholesterol have been established, we found that 7-dehydrocholesterol (the immediate precursor of cholesterol) is oxidized by P450 7A1 to 7-ketocholesterol (k(cat)/K(m) = 3 × 10(4) m(-1) s(-1)). P450 7A1 converted lathosterol (Δ(5)-dihydro-7-dehydrocholesterol) to a mixture of the 7-keto and 7α,8α-epoxide products (~1:2 ratio), with the epoxide not rearranging to the ketone. The oxidation of 7-dehydrocholesterol occured with predominant formation of 7-ketocholesterol and with the 7α,8α-epoxide as only a minor product; the synthesized epoxide was stable in the presence of P450 7A1. The mechanism of 7-dehydrocholesterol oxidation to 7-ketocholesterol is proposed to involve a Fe(III)-O-C-C(+) intermediate and a 7,8-hydride shift or an alternative closing to yield the epoxide (Liebler, D. C., and Guengerich, F. P. (1983) Biochemistry 22, 5482-5489). Accordingly, reaction of P450 7A1 with 7-[(2)H(1)]dehydrocholesterol yielded complete migration of deuterium in the product 7-ketocholesterol. The finding that 7-dehydrocholesterol is a precursor of 7-ketocholesterol has relevance to an inborn error of metabolism known as Smith-Lemli-Opitz syndrome (SLOS) caused by defective cholesterol biosynthesis. Mutations within the gene encoding 7-dehydrocholesterol reductase, the last enzyme in the pathway, lead to the accumulation of 7-dehydrocholesterol in tissues and fluids of SLOS patients. Our findings suggest that 7-ketocholesterol levels may also be elevated in SLOS tissue and fluids as a result of P450 7A1 oxidation of 7-dehydrocholesterol.
Collapse
Affiliation(s)
| | | | | | - Qian Cheng
- To whom correspondence should be addressed: Dept. of Biochemistry, Vanderbilt University School of Medicine, 638 Robinson Research Bldg., 2200 Pierce Ave., Nashville, TN 37232-0146. Tel.: 615-322-2261; Fax: 615-322-3141; E-mail:
| | - Ned A. Porter
- From the Departments of Biochemistry and
- Chemistry and
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F. Peter Guengerich
- From the Departments of Biochemistry and
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
7
|
Shinkyo R, Guengerich FP. Inhibition of human cytochrome P450 3A4 by cholesterol. J Biol Chem 2011; 286:18426-33. [PMID: 21471209 DOI: 10.1074/jbc.m111.240457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ∼ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.
Collapse
Affiliation(s)
- Raku Shinkyo
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
8
|
Shinkyo R, Guengerich FP. Cytochrome P450 7A1 cholesterol 7alpha-hydroxylation: individual reaction steps in the catalytic cycle and rate-limiting ferric iron reduction. J Biol Chem 2010; 286:4632-43. [PMID: 21147774 DOI: 10.1074/jbc.m110.193409] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 7A1 is well known as the cholesterol 7α-hydroxylase, the first enzyme involved in bile acid synthesis from cholesterol. The human enzyme has been reported to have the highest catalytic activity of any mammalian P450. Analyses of individual steps of cholesterol 7α-hydroxylation reaction revealed several characteristics of this reaction: (i) two-step binding of cholesterol to ferric P450, with an apparent K(d) of 0.51 μM, (ii) a rapid reduction rate in the presence of cholesterol (∼10 s(-1) for the fast phase), (iii) rapid formation of a ferrous P450-cholesterol-O(2) complex (29 s(-1)), (iv) the lack of a non-competitive kinetic deuterium isotope effect, (v) the lack of a kinetic burst, and (vi) the lack of a deuterium isotope effect when the reaction was initiated with the ferrous P450-cholesterol complex. A minimum kinetic model was developed and is consistent with all of the observed phenomena and the rates of cholesterol 7α-hydroxylation and H(2)O and H(2)O(2) formation. The results indicate that the first electron transfer step, although rapid, becomes rate-limiting in the overall P450 7A1 reaction. This is a different phenomenon compared with other P450s that have much lower rates of catalysis, attributed to the much more efficient substrate oxidation steps in this reaction.
Collapse
Affiliation(s)
- Raku Shinkyo
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
9
|
Huang H, McIntosh AL, Atshaves BP, Ohno-Iwashita Y, Kier AB, Schroeder F. Use of dansyl-cholestanol as a probe of cholesterol behavior in membranes of living cells. J Lipid Res 2010; 51:1157-72. [PMID: 20008119 PMCID: PMC2853442 DOI: 10.1194/jlr.m003244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/11/2009] [Indexed: 12/21/2022] Open
Abstract
While plasma membrane cholesterol-rich microdomains play a role in cholesterol trafficking, little is known about the appearance and dynamics of cholesterol through these domains in living cells. The fluorescent cholesterol analog 6-dansyl-cholestanol (DChol), its biochemical fractionation, and confocal imaging of L-cell fibroblasts contributed the following new insights: i) fluorescence properties of DChol were sensitive to microenvironment polarity and mobility; (ii) DChol taken up by L-cell fibroblasts was distributed similarly as cholesterol and preferentially into cholesterol-rich vs. -poor microdomains resolved by affinity chromatography of purified plasma membranes; iii) DChol reported similar polarity (dielectric constant near 18) but higher mobility near phospholipid polar head group region for cholesterol in purified cholesterol-rich versus -poor microdomains; and iv) real-time confocal imaging, quantitative colocalization analysis, and fluorescence resonance energy transfer with cholesterol-rich and -poor microdomain markers confirmed that DChol preferentially localized in plasma membrane cholesterol-rich microdomains of living cells. Thus, DChol sensed a unique, relatively more mobile microenvironment for cholesterol in plasma membrane cholesterol-rich microdomains, consistent with the known, more rapid exchange dynamics of cholesterol from cholesterol-rich than -poor microdomains.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843
| | - Barbara P. Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Yoshiko Ohno-Iwashita
- Biomembrane Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843
| |
Collapse
|
10
|
Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW. Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 2008; 380:95-106. [PMID: 18511070 DOI: 10.1016/j.jmb.2008.03.065] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 01/08/2023]
Abstract
The activation of vitamin D to its hormonal form is mediated by cytochrome P450 enzymes. CYP2R1 catalyzes the initial step converting vitamin D into 25-hydroxyvitamin D. A CYP2R1 gene mutation causes an inherited form of rickets due to 25-hydroxylase deficiency. To understand the narrow substrate specificity of CYP2R1 we obtained the hemeprotein in a highly purified state, confirmed the enzyme as a vitamin D 25-hydroxylase, and solved the crystal structure of CYP2R1 in complex with vitamin D3. The CYP2R1 structure adopts a closed conformation with the substrate access channel being covered by the ordered B'-helix and slightly opened to the surface, which defines the substrate entrance point. The active site is lined by conserved, mostly hydrophobic residues. Vitamin D3 is bound in an elongated conformation with the aliphatic side-chain pointing toward the heme. The structure reveals the secosteroid binding mode in an extended active site and allows rationalization of the molecular basis of the inherited rickets associated with CYP2R1.
Collapse
|
11
|
Sauer J, Richter KK, Pool-Zobel BL. Products formed during fermentation of the prebiotic inulin with humangut flora enhance expression of biotransformation genes in human primarycolon cells. Br J Nutr 2007; 97:928-37. [PMID: 17381985 DOI: 10.1017/s0007114507666422] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inulin-type fructans are fermented by gut bacteria to yield SCFA, including butyrate which is trophic for colonocytes and induces glutathioneS-transferases (GST) that detoxify carcinogens. Since little is known on similar effects by complex fermentation samples, we studied related products in non-transformed human colonocytes. Inulin enriched with oligofructose (1 : 1, Synergy1) was fermented with human gut flora. SCFA were quantified and a SCFA mixture was prepared accordingly. Colonocytes were incubated (4–12 h) with the Synergy1 fermentation supernatant (SFS), faeces control, a mixture of the three major SCFA (each 0–15 %, v/v) or butyrate (0–50 mm). Metabolic activity was determined to assess trophic effects and cytotoxicity. Expression of ninety-six genes related to biotransformation was studied using cDNA macroarrays. Results on modulated GST were reassessed with real-time PCR and GST activity was measured. Fermentation of inulin resulted in 2–3-fold increases of SCFA. The samples were non-cytotoxic. SFS increased metabolic activity, pointing to trophic effects. The samples modulated gene expression with different response patterns. Key results were thatGSTM2(2·0-fold) andGSTM5(2·2-fold) were enhanced by SFS, whereas the SCFA mixture reduced expression. The faeces control enhancedGSTA4(2·0-fold), but reducedGSTM2(0·2-fold) andGSTM5(0·2-fold). Real-time qPCR confirmed the induction ofGSTM2andGSTM5by SFS and ofGSTA4andGSTT2by butyrate. Activity of GST was not modulated. High concentrations of fermentation products were well tolerated by primary colonocytes, pointing to trophic effects. The induction of GST by the SFS may protect the cells from carcinogenic compounds.
Collapse
Affiliation(s)
- Julia Sauer
- Department of Nutritional Toxicology, Institute for Nutrition, Friedrich-Schiller-University, Dornburger Str. 25, D-07743 Jena, Germany
| | | | | |
Collapse
|
12
|
Mast N, Murtazina D, Liu H, Graham SE, Bjorkhem I, Halpert JR, Peterson J, Pikuleva IA. Distinct binding of cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol to cytochrome P450 27A1: evidence from modeling and site-directed mutagenesis studies. Biochemistry 2006; 45:4396-404. [PMID: 16584175 DOI: 10.1021/bi052654w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 27A1 (P450 27A1 or CYP27A1) is an important enzyme that participates in different pathways of cholesterol degradation as well as in the activation of vitamin D(3). Several approaches were utilized to investigate how two physiological substrates, cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol, interact with CYP27A1. The enzyme active site was first probed spectrally by assessing binding of the two substrates and five substrate analogues followed by computer modeling and site-directed mutagenesis. The computer models suggest that the spatial positions and orientations of cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol are different in the enzyme active site. As a result, some of the active site residues interact with both substrates, although they are situated differently relative to each steroid, and some residues bind only one substrate. Mutation of the overlapping substrate-contact residues (W100, H103, T110, M301C, V367, I481, and V482) affected CYP27A1 binding and enzyme activity in a substrate-dependent manner and allowed identification of several important side chains. T110 is proposed to interact with the 12alpha-hydroxyl of 5beta-cholestane-3alpha,7alpha,12alpha-triol, whereas V367 seems to be crucial for correct positioning of the cholesterol C26 methyl group and for regioselective hydroxylation of this substrate. Distinct binding of the CYP27A1 substrates may provide insight into why phenotypic manifestations of cerebrotendinous xanthomatosis, a disease associated with CYP27A1 deficiency, are so diverse.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 2006; 45:279-94. [PMID: 16574236 DOI: 10.1016/j.plipres.2006.02.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/02/2006] [Accepted: 02/20/2006] [Indexed: 12/18/2022]
Abstract
Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transmembrane helical segment. These regions appear to have a strong influence of the localization of certain proteins into domains in biological membranes. In addition to the SSD, there is also a domain found in soluble proteins, the START domain, that binds lipids. Certain proteins with START domains specifically bind cholesterol and are believed to function in intracellular cholesterol transport. One of these proteins is StAR-D1, that also has a mitochondrial targeting sequence and plays an important role in delivering cholesterol to the mitochondria of steroidogenic cells.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, 1200 Main Street, Hamilton, Ont., Canada L8N 3Z5.
| |
Collapse
|