1
|
Xie P, Wu Y, Lee YY, Wang Y, Zhang Z. Asterias Rolleston starfish gonad lipids: A novel source of Omega-3 fatty acids - assessment of major components and their antioxidant activities. Food Chem 2024; 456:140005. [PMID: 38870815 DOI: 10.1016/j.foodchem.2024.140005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
The major lipids and antioxidant activities of Asterias rolleston gonad lipids were evaluated systematically. Major lipids of A. Rolleston gonad lipids were triacylglycerols (TAGs) and phospholipids (PLs). Total lipids were composed of 15.62% of polyunsaturated fatty acids (PUFAs), and 40.81% of monounsaturated fatty acids (MUFAs). The most abundant PUFA were C20:5n-3 (EPA) (6.28%) and C22:6n-3 (DHA) (5.80%). Predominantly composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), polar lipids were rich in PUFAs and could contain up to 34.59% EPA and DHA, and PE and PI (phosphatidylinositol) were also found to be the main carriers of EPA and ARA (arachidonic acid) in polar lipids. The MUFA and PUFA of Sn-2 in TAG are 39.72% and 30.37%, respectively. A total of 64 TAG species were identified, with Eo-P-M, Eo-Eo-M, and M-M-Eo being the main TAGs components. Moreover, A. rollestoni gonad lipids exhibited potent radical scavenging activities and reducing power in a dose-dependent manner.
Collapse
Affiliation(s)
- Pengkai Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuxin Wu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
2
|
Duo L, Yang J, Wang X, Zhang G, Zhao J, Zou H, Wang Z, Li Y. Krill oil: nutraceutical potential in skin health and disease. Front Nutr 2024; 11:1388155. [PMID: 39070257 PMCID: PMC11272659 DOI: 10.3389/fnut.2024.1388155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.
Collapse
Affiliation(s)
- Lan Duo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Yang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Xue Wang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Wang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
4
|
Zhang X, Yuan T, Chen X, Liu X, Hu J, Liu Z. Effects of DHA on cognitive dysfunction in aging and Alzheimer's disease: The mediating roles of ApoE. Prog Lipid Res 2024; 93:101256. [PMID: 37890592 DOI: 10.1016/j.plipres.2023.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The prevalence of Alzheimer's disease (AD) continues to rise due to the increasing aging population. Among the various genetic factors associated with AD, apolipoprotein E (ApoE), a lipid transporter, stands out as the primary genetic risk factor. Specifically, individuals carrying the ApoE4 allele exhibit a significantly higher risk. However, emerging research indicates that dietary factors play a prominent role in modifying the risk of AD. Docosahexaenoic acid (DHA), a prominent ω-3 fatty acid, has garnered considerable attention for its potential to ameliorate cognitive function. The intricate interplay between DHA and the ApoE genotype within the brain, which may influence DHA's utilization and functionality, warrants further investigation. This review meticulously examines experimental and clinical studies exploring the effects of DHA on cognitive decline. Special emphasis is placed on elucidating the role of ApoE gene polymorphism and the underlying mechanisms are discussed. These studies suggest that early DHA supplementation may confer benefits to cognitively normal older adults carrying the ApoE4 gene. However, once AD develops, ApoE4 non-carriers may experience greater benefits compared to ApoE4 carriers, although the overall effectiveness of DHA supplementation at this stage is limited. Potential mechanisms underlying these differential effects may include accelerated DHA catabolism in ApoE4 carriers, impaired transport across the blood-brain barrier (BBB), and compromised lipidation and circulatory function in ApoE4 carriers. Thus, the supplementation of DHA may represent a potential intervention strategy aimed at compensating for these deficiencies in ApoE4 carriers prior to the onset of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong 523170, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi 710300, China.
| |
Collapse
|
5
|
Yang ZH, Gorusupudi A, Lydic TA, Mondal AK, Sato S, Yamazaki I, Yamaguchi H, Tang J, Rojulpote KV, Lin AB, Decot H, Koch H, Brock DC, Arunkumar R, Shi ZD, Yu ZX, Pryor M, Kun JF, Swenson RE, Swaroop A, Bernstein PS, Remaley AT. Dietary fish oil enriched in very-long-chain polyunsaturated fatty acid reduces cardiometabolic risk factors and improves retinal function. iScience 2023; 26:108411. [PMID: 38047069 PMCID: PMC10692724 DOI: 10.1016/j.isci.2023.108411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Very-long-chain polyunsaturated fatty acids (VLCPUFAs; C24-38) constitute a unique class of PUFA that have important biological roles, but the lack of a suitable dietary source has limited research in this field. We produced an n-3 C24-28-rich VLCPUFA-oil concentrated from fish oil to study its bioavailability and physiological functions in C57BL/6J mice. The serum and retinal C24:5 levels increased significantly compared to control after a single-dose gavage, and VLCPUFAs were incorporated into the liver, brain, and eyes after 8-week supplementation. Dietary VLCPUFAs resulted in favorable cardiometabolic changes, and improved electroretinography responses and visual performance. VLCPUFA supplementation changed the expression of genes involved in PPAR signaling pathways. Further in vitro studies demonstrated that the VLCPUFA-oil and chemically synthesized C24:5 are potent agonists for PPARs. The multiple potential beneficial effects of fish oil-derived VLCPUFAs on cardiometabolic risk and eye health in mice support future efforts to develop VLCPUFA-oil into a supplemental therapy.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Todd A. Lydic
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Anupam K. Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Seizo Sato
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Isao Yamazaki
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Hideaki Yamaguchi
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Jingrong Tang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krishna Vamsi Rojulpote
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna B. Lin
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Decot
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Koch
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel C. Brock
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Julia F. Kun
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Nagata A, Oishi S, Kirishita N, Onoda K, Kobayashi T, Terada Y, Minami A, Senoo N, Yoshioka Y, Uchida K, Ito K, Miura S, Miyoshi N. Allyl Isothiocyanate Maintains DHA-Containing Glycerophospholipids and Ameliorates the Cognitive Function Decline in OVX Mice. ACS OMEGA 2023; 8:43118-43129. [PMID: 38024702 PMCID: PMC10652735 DOI: 10.1021/acsomega.3c06622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.
Collapse
Affiliation(s)
- Akika Nagata
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shiori Oishi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanako Kirishita
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keita Onoda
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Takuma Kobayashi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yuko Terada
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Akira Minami
- Department
of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanami Senoo
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yasukiyo Yoshioka
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Kunitoshi Uchida
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keisuke Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shinji Miura
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Noriyuki Miyoshi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| |
Collapse
|
7
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile. Nutrients 2023; 15:4622. [PMID: 37960275 PMCID: PMC10650154 DOI: 10.3390/nu15214622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Modifying the food structure allows a nutrient to be delivered differently, which can modify not only its digestion process but also its subsequent metabolism. In this study, rats received 3 g of omelette daily containing docosahexaenoic acid (DHA) as crude oil or previously encapsulated with whey proteins, whereas a control group received a DHA-free omelette. The results showed that DHA encapsulation markedly induced a different feeding behaviour so animals ate more and grew faster. Then, after four weeks, endocannabinoids and other N-acyl ethanolamides were quantified in plasma, brain, and heart. DHA supplementation strongly reduced endocannabinoid derivatives from omega-6 fatty acids. However, DHA encapsulation had no particular effect, other than a great increase in the content of DHA-derived docosahexaenoyl ethanolamide in the heart. While DHA supplementation has indeed shown an effect on cannabinoid profiles, its physiological effect appears to be mediated more through more efficient digestion of DHA oil droplets in the case of DHA encapsulation. Thus, the greater release of DHA and other dietary cannabinoids present may have activated the cannabinoid system differently, possibly more locally along the gastrointestinal tract. However, further studies are needed to evaluate the synergy between DHA encapsulation, fasting, hormones regulating food intake, and animal growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédérique Pédrono
- National Research Institute for Agriculture, Food and Environment (INRAE), L’Institut Agro Rennes-Angers, Science and Technology of Milk and Egg (STLO), 35042 Rennes, France; (J.W.); (J.O.); (Y.L.G.); (F.B.); (D.D.)
| |
Collapse
|
8
|
Ren J, Ren A, Huang Z, Deng X, Jiang Z, Xue Y, Fu Z, Smith LE, Ke M, Gong Y. Metabolomic Profiling of Long-Chain Polyunsaturated Fatty Acid Oxidation in Adults with Retinal Vein Occlusion: A Case-Control Study. Am J Clin Nutr 2023; 118:579-590. [PMID: 37454758 DOI: 10.1016/j.ajcnut.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are closely related to neovascular eye diseases. However, the clinical significance of their oxylipins in retinal vein occlusion (RVO) remains inconclusive. OBJECTIVES This case-control study aimed to explore metabolomic profiles of LCPUFA oxidation in RVO and to identify potential indicators for diagnosis and pathologic progression. METHODS The plasma concentrations of ω-3 (n-3) and ω-6 (n-6) LCPUFA and their oxylipins in 44 adults with RVO and 36 normal controls were analyzed using ultraperformance liquid chromatography tandem mass spectrometry. Univariate analysis combined with principal component and orthogonal projections to latent structure discriminant analysis was used to screen differential metabolites. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of 5-oxo-eicosatetraenoic acids (ETE) on angiogenesis ex vivo. Tubule formation and wound healing assays were performed to verify its effects on human retinal microvascular endothelial cell functions. RESULTS Higher ω-6 and lower ω-3 LCPUFA plasma concentrations were measured in the adults with RVO compared with control (odds ratio [OR]: 2.34; 95% confidence interval [CI]: 1.42, 3.86; P < 0.001; OR: 0.28; 95% CI: 0.15, 0.51; P < 0.001). Metabolomic analysis revealed 20 LCPUFA and their oxylipins dysregulated in RVO, including increased arachidonic acid (ω-6, OR: 1.85; 95% CI: 1.18, 2.90; P < 0.001) and its lipoxygenase product 5-oxo-ETE (OR: 11.76; 95% CI: 3.73, 37.11; P < 0.001), as well as decreased docosahexaenoic acid (ω-3, OR: 0.13; 95% CI: 0.05, 0.33; P < 0.001). Interestingly, 5-oxo-ETE was downregulated in ischemic compared with nonischemic central RVO. Exogenous 5-oxo-ETE attenuated aortic ring and choroidal explant sprouting and inhibited tubule formation and migration of human retinal microvascular endothelial cells in a dose-dependent manner, possibly via suppressing the vascular endothelial growth factor signaling pathway. CONCLUSIONS The plasma concentrations of ω-6 and ω-3 LCPUFA and their oxylipins were associated with RVO. The ω-6 LCPUFA-derived metabolite 5-oxo-ETE was a potential marker of RVO development and progression.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Nagata K, Kakizaki Y, Yanagida K, Arai T, Nakano K, Hamano F, Goto M, Okamura T, Shimizu T, Shindou H. Dietary omega-3 fatty acid does not improve male infertility caused by lysophospholipid acyltransferase 3 (LPLAT3/AGPAT3) deficiency. Biochem Biophys Res Commun 2023; 663:179-185. [PMID: 37121128 DOI: 10.1016/j.bbrc.2023.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
Docosahexaenoic acid (DHA), an omega-3 fatty acid, usually presents as a constituent of phospholipids in the cellular membrane. Lysophospholipid acyltransferase 3 (LPLAT3; AGPAT3) is the primary enzyme that incorporates DHA into phospholipids. LPLAT3-KO mice show male infertility and visual dysfunction accompanied by decreased phospholipids (PLs) containing DHA (PL-DHA) in the testis and retina, respectively. In this study, we evaluated the effect of diets consisting mainly of triacylglycerol-bound DHA (fish oil) and PL-bound DHA (salmon roe oil) on the amount of PL-DHA in a broad range of tissues and on reproductive functions. Both diets elevated phosphatidylcholines (PCs)-containing DHA in most tissues of wild type (WT) mice. Although LPLAT3-KO mice acquired a minimal amount of PC-DHA in the testes and sperm by eating either of the diets, reproductive function did not improve. The present study suggests that DHA-rich diets do not restore sufficient PL-DHA to improve male infertility in LPLAT3-KO mice. Alternatively, PL-DHA can be biosynthesized by LPLAT3 but not by external supplementation, which may be necessary for normal reproductive function.
Collapse
Affiliation(s)
- Katsuyuki Nagata
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Yuusuke Kakizaki
- Central Research Institute, Maruha Nichiro Corporation, Tsukuba, Ibaraki, 300-4295, Japan
| | - Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Tetsuya Arai
- Laboratory Animal Medicine, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kenta Nakano
- Laboratory Animal Medicine, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Fumie Hamano
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motohito Goto
- Laboratory Animal Medicine, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan; Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tadashi Okamura
- Laboratory Animal Medicine, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takao Shimizu
- Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan; Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| |
Collapse
|
10
|
Yin M, Chen M, Matsuoka R, Song X, Xi Y, Zhang L, Wang X. UHPLC-Q-Exactive Orbitrap MS/MS based untargeted lipidomics reveals fatty acids and lipids profiles in different parts of capelin (Mallotus villosus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Lindqvist H, Dominguez T, Dragøy R, Ding Y, Burri L. Comparison of Fish, Krill and Flaxseed as Omega-3 Sources to Increase the Omega-3 Index in Dogs. Vet Sci 2023; 10:vetsci10020162. [PMID: 36851466 PMCID: PMC9961762 DOI: 10.3390/vetsci10020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
(1) Background: it is only the longer chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (20:5n-3, EPA), and docosahexaenoic acid (22:6n-3, DHA) and not the shorter chain α-linolenic acid (ALA, 18:3n-3) that have been linked to health benefits. (2) Methods: 45 dogs divided into three groups were first given premium dry food for 38 days (baseline). The O3I was then used as a diagnostic tool to provide a measure of the sum of EPA + DHA in red blood cell membranes given as a percentage of all fatty acids. The dogs were subsequently fed with either krill meal (krill), fishmeal/oil (fish) or flaxseed cake (flax) included in raw food providing daily 416 mg EPA + DHA (971 mg ALA), 513 mg EPA + DHA (1027 mg ALA) and 1465 mg ALA (122 mg EPA + DHA), respectively. (3) Results: the average baseline O3I level of all dogs was low (1.36%), warranting n-3 supplementation. After four weeks, O3I levels were significantly increased in the krill (from 1.36 ± 0.44 to 2.36 ± 0.39%) and fish (from 1.35 ± 0.22 to 1.9 ± 0.35%) groups (p < 0.001). No significant modification of the O3I was detected in the flax animals. (4) Conclusions: only marine n-3 PUFAs resulted in a significantly increased O3I, with dietary krill meal providing the highest increase.
Collapse
Affiliation(s)
- Hanna Lindqvist
- Department of Animal Environment and Health, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | | | | | - Yunpeng Ding
- Aker BioMarine Antarctic AS, 1366 Lysaker, Norway
| | - Lena Burri
- Aker BioMarine Antarctic AS, 1366 Lysaker, Norway
- Correspondence:
| |
Collapse
|
12
|
Gázquez A, Sabater-Molina M, Domínguez-López I, Sánchez-Campillo M, Torrento N, Tibau J, Moreno-Muñoz JA, Rodríguez-Palmero M, López-Sabater MC, Larqué E. Milk fat globule membrane plus milk fat increase docosahexaenoic acid availability in infant formulas. Eur J Nutr 2023; 62:833-845. [PMID: 36280613 PMCID: PMC9941230 DOI: 10.1007/s00394-022-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Milk fat globule membrane (MFGM) has components with emulsifier properties that could affect the provision of substrates to the brain. We evaluated the effects of MFGM plus milk fat addition to infant formulas on docosahexaenoic acid (DHA) availability and gut development. METHODS In Experiment 1, suckling piglets were divided into 3 groups: Group L1 (n = 8): fed with a vegetal fat formula with palm oil; L2 (n = 8): canola oil formula and L3 (n = 8): milk fat + canola oil + 1% Lacprodan (3% MFGM of total protein content). In Experiment 2, Group L4 (n = 7): fed with canola oil + 1% Lacprodan (3% MFGM) and Group L5 (n = 5): milk fat + canola oil + 2% Lacprodan (6% MFGM). All formulas contained 0.2% DHA and 0.2% arachidonic acid. RESULTS In Experiment 1, DHA was similar among the groups in both total fatty acids and plasma phospholipids (PL). However, 3% MFGM (L3) increased significantly the proportion of DHA and LC-PUFA n-3 in liver total fatty acids, jejunum, and also in jejunum PL respect to the other formulas. There were no changes in gut histology, cell proliferation, apoptosis, or brain DHA content. In Experiment 2, higher MFGM dose was used. Then, higher DHA was not only found in peripheral tissues of 6% MFGM (L5) piglets but also in plasma PL, while a similar trend was observed in cortex PL (p = 0.123). CONCLUSION In conclusion, MFGM plus milk fat may increase DHA availability of infant formulas which could contribute to their beneficial health effects.
Collapse
Affiliation(s)
- Antonio Gázquez
- grid.10586.3a0000 0001 2287 8496Department of Physiology, University of Murcia, Campus Mare Nostrum, Murcia, Spain ,grid.452553.00000 0004 8504 7077Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - María Sabater-Molina
- grid.452553.00000 0004 8504 7077Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inés Domínguez-López
- grid.5841.80000 0004 1937 0247Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - María Sánchez-Campillo
- grid.10586.3a0000 0001 2287 8496Department of Physiology, University of Murcia, Campus Mare Nostrum, Murcia, Spain ,grid.452553.00000 0004 8504 7077Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Neus Torrento
- grid.8581.40000 0001 1943 6646Institute of Agrifood Research and Technology (IRTA), Monells, Barcelona, Spain
| | - Joan Tibau
- grid.8581.40000 0001 1943 6646Institute of Agrifood Research and Technology (IRTA), Monells, Barcelona, Spain
| | | | | | - María C. López-Sabater
- grid.5841.80000 0004 1937 0247Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, Campus Mare Nostrum, Murcia, Spain. .,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
13
|
Zavaleta EB, Coavichi LL, Rodríguez LV, Andrade EF, García HS, Rascón Díaz M. Co-microencapsulation of Lactobacillus rhamnosus and krill oil by spray-drying. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Guo C, Jin M, Jiao L, Xie S, Zhang X, Luo J, Zhu T, Zhou Q. Evaluation of Krill Meal in Commercial Diets for Juvenile Swimming Crab ( Portunus trituberculatus). AQUACULTURE NUTRITION 2022; 2022:3007674. [PMID: 36860462 PMCID: PMC9973158 DOI: 10.1155/2022/3007674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 10/27/2022] [Indexed: 06/18/2023]
Abstract
An 8-week feeding trial was carried out to assess the effect of dietary krill meal on growth performance and expression of genes related to TOR pathway and antioxidation of swimming crab (Portunus trituberculatus). Four experimental diets (45% crude protein and 9% crude lipid) were formulated to obtain different replacements of fish meal (FM) with krill meal (KM); FM was replaced with KM at 0% (KM0), 10% (KM10), 20% (KM20), and 30% (KM30); fluorine concentration in diets were analyzed to be 27.16, 94.06, 153.81, and 265.30 mg kg-1, respectively. Each diet was randomly divided into 3 replicates; ten swimming crabs were stocked in each replicate (initial weight, 5.62 ± 0.19 g). The results indicated that crabs fed with the KM10 diet had the highest final weight, percent weight gain (PWG), and specific growth rate (SGR) among all treatments (P < 0.05). Crabs fed with the KM0 diet had the lowest activities of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), glutathione (GSH), and hydroxyl radical scavenging activity and had the highest concentration of malondialdehyde (MDA) in the hemolymph and the hepatopancreas (P < 0.05). In the hepatopancreas, the highest content of 20:5n-3 (EPA) and the lowest content of 22:6n-3 (DHA) were shown in crabs fed with the KM30 diet among all treatments (P < 0.05). With the substitution level of FM with KM gradually increasing from 0% to 30%, the color of the hepatopancreas changed from pale white to red. Expression of tor, akt, s6k1, and s6 in the hepatopancreas was significantly upregulated, while 4e-bp1, eif4e1a, eif4e2, and eif4e3 were downregulated with dietary replacement of FM with KM increasing from 0% to 30% (P < 0.05). Crabs fed with the KM20 diet had notably higher expression of cat, gpx, cMnsod, and prx than those fed with the KM0 diet (P < 0.05). Results demonstrated that 10% replacement of FM with KM can promote growth performance and antioxidant capacity and notably upregulate the mRNA levels of genes related to TOR pathway and antioxidant of swimming crab.
Collapse
Affiliation(s)
- Chen Guo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiangsheng Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Wang DH, Vidovic D, McKay AI, Darwish T, Park HG, Garza SM, Shields SW, Brodbelt JS, Wang Z, Lacombe RJS, Shmanai VV, Lysenko IL, Bekish AV, Schmidt K, Redfield C, Brenna JT, Shchepinov MS. Quantitative High-Field NMR- and Mass Spectrometry-Based Fatty Acid Sequencing Reveals Internal Structure in Ru-Catalyzed Deuteration of Docosahexaenoic Acid. Anal Chem 2022; 94:12971-12980. [PMID: 36098546 DOI: 10.1021/acs.analchem.2c00923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ru-based catalysis results in highly unsaturated fatty acid (HUFA) ethyl esters (EE) deuterated to various extents. The products carry 2H (D) mainly at their bis-allylic positions, where they are resistant to autoxidation compared to natural HUFA and are promising as neurological and retinal drugs. We characterized the extent of deuteration at each allylic position of docosa-4,7,10,13,16,19-hexaenoic acid deuterated to completion at bis-allylic and allylic positions (D-DHA) by two-dimensional (2D) and high-field (600 and 950 MHz) NMR. In separate experiments, the kinetics of docosahexaenoic acid (DHA) EE deuteration was evaluated using Paternò-Büchi (PB) reaction tandem mass spectrometry (MS/MS) analysis, enabling deuteration to be quantitatively characterized for isotopologues (D0-D14 DHA) at each internal allylic position. NMR analysis shows that the net deuteration of the isotopologue mixture is about 94% at the bis-allylic positions, and less than 1% remained as the protiated -CH2-. MS analysis shows that deuteration kinetics follow an increasing curve at bis-allylic positions with higher rate for internal bis-allylic positions. Percent D of bis-allylic positions increases linearly from D1 to D9 in which all internal bis-allylic positions (C9, C12, C15) deuterate uniformly and more rapidly than external bis-allylic positions (C6, C18). The mono-allylic positions near the methyl end (C21) show a steep increase of D only after the D10 isotopologue has been deuterated to >90%, while the mono-allylic position near the carboxyl position, C3, deuterates last and least. These data establish detailed methods for the characterization of Ru-catalyzed deuteration of HUFA as well as the phenomenological reaction kinetics as net product is formed.
Collapse
Affiliation(s)
- Dong Hao Wang
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Dragoslav Vidovic
- School of Chemistry, Monash University, Clayton, Victoria 3800 Australia
| | - Alasdair I McKay
- School of Chemistry, Monash University, Clayton, Victoria 3800 Australia
| | - Tamim Darwish
- National Deuteration Facility-ANSTO, Sydney, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Secilia Martinez Garza
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 United States
| | - Samuel W Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 United States
| | - Zhen Wang
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - R J Scott Lacombe
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, 13 Surganova Street, Minsk 220072, Belarus
| | - Ivan L Lysenko
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, 13 Surganova Street, Minsk 220072, Belarus
| | - Andrei V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, 13 Surganova Street, Minsk 220072, Belarus
| | | | - Christina Redfield
- Dept of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 United States
| | | |
Collapse
|
16
|
Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9865-9876. [PMID: 35916281 DOI: 10.1021/acs.jafc.2c02850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), results in high mortality due to the lack of effective interventions. The current study investigated the preventive effect of krill oil (KO) on DN using a type 2 DM mouse model induced by streptozotocin and high-fat diet for 24 weeks. The diabetic mice developed albuminuria, mesangial matrix accumulation, glomerular hypertrophy, and fibrosis formation, with an increase in renal proinflammatory, oxidative and profibrotic gene expression. KO significantly prevented these effects but did not improve hyperglycemia and glucose intolerance. In high-glucose-treated mesangial cells (MCs), KO preferably modulated TGF-β1 signaling as revealed by RNA-sequencing. In TGF-β1-treated MCs, KO abolished SMAD2/3 phosphorylation and nuclear translocation and activated Smad7 gene expression. The action of KO on the SMADs was confirmed in the diabetic kidneys. Therefore, KO may prevent DN predominantly by suppressing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Xuechun Sun
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Yu Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Rd., Jinan, Shandong 250033, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
17
|
Zhang M, Zhu J, Zhou L, Kan J, Zhao M, Huang R, Liu J, Marchioni E. Antarctic krill oil high internal phase Pickering emulsion stabilized by bamboo protein gels and the anti-inflammatory effect in vitro and in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Kim H, Roh Y, Yong Park S, Lee C, Lim S, Cho S, Lee HY, Auck Hong S, Jin Lee T, Chul Myung S, Yun SJ, Hyun Choi Y, Kim WJ, Moon SK. In vitro and in vivo anti-tumor efficacy of krill oil against bladder cancer: Involvement of tumor-associated angiogenic vasculature. Food Res Int 2022; 156:111144. [DOI: 10.1016/j.foodres.2022.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
|
19
|
Sun X, Sun X, Meng H, Wu J, Guo X, Du L, Wu H. Krill Oil Inhibits NLRP3 Inflammasome Activation in the Prevention of the Pathological Injuries of Diabetic Cardiomyopathy. Nutrients 2022; 14:nu14020368. [PMID: 35057549 PMCID: PMC8780413 DOI: 10.3390/nu14020368] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM), resulting in high mortality. Myocardial fibrosis, cardiomyocyte apoptosis and inflammatory cell infiltration are hallmarks of DCM, leading to cardiac dysfunction. To date, few effective approaches have been developed for the intervention of DCM. In the present study, we investigate the effect of krill oil (KO) on the prevention of DCM using a mouse model of DM induced by streptozotocin and a high-fat diet. The diabetic mice developed pathological features, including cardiac fibrosis, apoptosis and inflammatory cell infiltration, the effects of which were remarkably prevented by KO. Mechanistically, KO reversed the DM-induced cardiac expression of profibrotic and proinflammatory genes and attenuated DM-enhanced cardiac oxidative stress. Notably, KO exhibited a potent inhibitory effect on NLR family pyrin domain containing 3 (NLRP3) inflammasome that plays an important role in DCM. Further investigation showed that KO significantly upregulated the expression of Sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which are negative regulators of NLRP3. The present study reports for the first time the preventive effect of KO on the pathological injuries of DCM, providing SIRT3, PGC-1α and NLRP3 as molecular targets of KO. This work suggests that KO supplementation may be a viable approach in clinical prevention of DCM.
Collapse
Affiliation(s)
- Xuechun Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Rd., Jinan 250033, China;
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun 130041, China;
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
- Correspondence: (L.D.); (H.W.)
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
- Correspondence: (L.D.); (H.W.)
| |
Collapse
|
20
|
Ahmed TB, Eggesbø M, Criswell R, Uhl O, Demmelmair H, Koletzko B. Total Fatty Acid and Polar Lipid Species Composition of Human Milk. Nutrients 2021; 14:nu14010158. [PMID: 35011034 PMCID: PMC8747362 DOI: 10.3390/nu14010158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023] Open
Abstract
Human milk lipids are essential for infant health. However, little is known about the relationship between total milk fatty acid (FA) composition and polar lipid species composition. Therefore, we aimed to characterize the relationship between the FA and polar lipid species composition in human milk, with a focus on differences between milk with higher or lower milk fat content. From the Norwegian Human Milk Study (HUMIS, 2002–2009), a subset of 664 milk samples were analyzed for FA and polar lipid composition. Milk samples did not differ in major FA, phosphatidylcholine, or sphingomyelin species percentages between the highest and lowest quartiles of total FA concentration. However, milk in the highest FA quartile had a lower phospholipid-to-total-FA ratio and a lower sphingomyelin-to-phosphatidylcholine ratio than the lowest quartile. The only FAs associated with total phosphatidylcholine or sphingomyelin were behenic and tridecanoic acids, respectively. Milk FA and phosphatidylcholine and sphingomyelin species containing these FAs showed modest correlations. Associations of arachidonic and docosahexaenoic acids with percentages of phosphatidylcholine species carrying these FAs support the conclusion that the availability of these FAs limits the synthesis of phospholipid species containing them.
Collapse
Affiliation(s)
- Talat Bashir Ahmed
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig-Maximilians-Universität, 80337 Munich, Germany; (T.B.A.); (O.U.)
| | - Merete Eggesbø
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway; (M.E.); (R.C.)
| | - Rachel Criswell
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway; (M.E.); (R.C.)
| | - Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig-Maximilians-Universität, 80337 Munich, Germany; (T.B.A.); (O.U.)
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig-Maximilians-Universität, 80337 Munich, Germany; (T.B.A.); (O.U.)
- Correspondence: (H.D.); (B.K.); Tel.: +49-89-4400-53692 (H.D.); +49-89-4400-52826 (B.K.)
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig-Maximilians-Universität, 80337 Munich, Germany; (T.B.A.); (O.U.)
- Correspondence: (H.D.); (B.K.); Tel.: +49-89-4400-53692 (H.D.); +49-89-4400-52826 (B.K.)
| |
Collapse
|
21
|
Peters R, Breitner J, James S, Jicha GA, Meyer P, Richards M, Smith AD, Yassine HN, Abner E, Hainsworth AH, Kehoe PG, Beckett N, Weber C, Anderson C, Anstey KJ, Dodge HH. Dementia risk reduction: why haven't the pharmacological risk reduction trials worked? An in-depth exploration of seven established risk factors. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12202. [PMID: 34934803 PMCID: PMC8655351 DOI: 10.1002/trc2.12202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022]
Abstract
Identifying the leading health and lifestyle factors for the risk of incident dementia and Alzheimer's disease has yet to translate to risk reduction. To understand why, we examined the discrepancies between observational and clinical trial evidence for seven modifiable risk factors: type 2 diabetes, dyslipidemia, hypertension, estrogens, inflammation, omega-3 fatty acids, and hyperhomocysteinemia. Sample heterogeneity and paucity of intervention details (dose, timing, formulation) were common themes. Epidemiological evidence is more mature for some interventions (eg, non-steroidal anti-inflammatory drugs [NSAIDs]) than others. Trial data are promising for anti-hypertensives and B vitamin supplementation. Taken together, these risk factors highlight a future need for more targeted sample selection in clinical trials, a better understanding of interventions, and deeper analysis of existing data.
Collapse
Affiliation(s)
- Ruth Peters
- Neuroscience ResearchSydneyNew South WalesAustralia
- Department of Psychology University of New South WalesSydneyNew South WalesAustralia
| | - John Breitner
- Douglas Hospital Research Center and McGill UniversityQuebecCanada
| | - Sarah James
- MRC Unit for Lifelong Health and Ageing at UCLUniversity College LondonLondonUK
| | | | - Pierre‐Francois Meyer
- Center for Studies on the Prevention of Alzheimer's Disease (PREVENT‐AD)VerdunQuebecCanada
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCLUniversity College LondonLondonUK
| | - A. David Smith
- OPTIMADepartment of PharmacologyUniversity of OxfordOxfordUK
| | - Hussein N. Yassine
- Departments of Medicine and NeurologyUniversity of Southern CaliforniaCaliforniaUSA
| | - Erin Abner
- University of KentuckyLexingtonKentuckyUSA
| | - Atticus H. Hainsworth
- Molecular and Clinical Sciences Research InstituteSt GeorgesUniversity of LondonLondonUK
- Department of NeurologySt George's HospitalLondonUK
| | | | | | | | - Craig Anderson
- The George Institute for Global HealthSydneyNew South WalesAustralia
| | - Kaarin J. Anstey
- Neuroscience ResearchSydneyNew South WalesAustralia
- Department of Psychology University of New South WalesSydneyNew South WalesAustralia
| | | |
Collapse
|
22
|
Heath RJ, Wood TR. Why Have the Benefits of DHA Not Been Borne Out in the Treatment and Prevention of Alzheimer's Disease? A Narrative Review Focused on DHA Metabolism and Adipose Tissue. Int J Mol Sci 2021; 22:11826. [PMID: 34769257 PMCID: PMC8584218 DOI: 10.3390/ijms222111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 fatty acid rich in seafood, is linked to Alzheimer's Disease via strong epidemiological and pre-clinical evidence, yet fish oil or other DHA supplementation has not consistently shown benefit to the prevention or treatment of Alzheimer's Disease. Furthermore, autopsy studies of Alzheimer's Disease brain show variable DHA status, demonstrating that the relationship between DHA and neurodegeneration is complex and not fully understood. Recently, it has been suggested that the forms of DHA in the diet and plasma have specific metabolic fates that may affect brain uptake; however, the effect of DHA form on brain uptake is less pronounced in studies of longer duration. One major confounder of studies relating dietary DHA and Alzheimer's Disease may be that adipose tissue acts as a long-term depot of DHA for the brain, but this is poorly understood in the context of neurodegeneration. Future work is required to develop biomarkers of brain DHA and better understand DHA-based therapies in the setting of altered brain DHA uptake to help determine whether brain DHA should remain an important target in the prevention of Alzheimer's Disease.
Collapse
Affiliation(s)
- Rory J. Heath
- Emergency Medicine Department, Derriford Hospital, University Hospitals Plymouth, Plymouth PL6 8DH, UK;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
23
|
Hahn K, Hardimon JR, Caskey D, Jost DA, Roady PJ, Brenna JT, Dilger RN. Safety and Efficacy of Sodium and Potassium Arachidonic Acid Salts in the Young Pig. Nutrients 2021; 13:nu13051482. [PMID: 33925724 PMCID: PMC8145490 DOI: 10.3390/nu13051482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Arachidonic acid (ARA; 20:4n6) and docosahexaenoic acid (DHA; 22:6n3) are polyunsaturated fatty acids (FA) naturally present in breast milk and added to most North American infant formulas (IF). We investigated the safety and efficacy of novel sodium and potassium salts of arachidonic acid as bioequivalent to support tissue levels of ARA comparable to the parent oil; M. alpina oil (Na-ARA and K-ARA) and including a Na-DHA group. Pigs of both sexes were randomized to one of five dietary treatments (n = 16 per treatment; 8 male and 8 female) from postnatal day 2 to 23. ARA and DHA were included as either triglyceride (TG) or salt. Target dietary ARA/DHA concentrations as percent of total FA by weight were as follows: TT (0.47 TG/0.32 TG), NaT (0.47 Na-salt/0.32 TG), KT (0.47 K-salt/0.32 TG), and Na0 (0.47 Na-salt/0.00), NaNa (0.47 Na-salt/0.32 Na-salt). The primary outcome in this study was bioequivalence of ARA brain accretion. Growth performance; blood and tissue fatty acid levels; liver histology; complete blood cell counts; and serum chemistries were all evaluated. Overall, diets containing test sources of ARA and DHA did not affect growth performance; liver histology; or substantially influence hematological outcomes as compared with TT. The results confirm that the use of Na and K salt forms of ARA yield bioequivalent ARA accretion in the cerebral cortex and retinal tissue compared to TG-ARA. These findings confirm that use of Na-ARA and K-ARA salts in the young pig was safe and nutritionally bioequivalent to TG-ARA for critical neural tissues.
Collapse
Affiliation(s)
- Kaylee Hahn
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | | | - Doug Caskey
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Douglas A. Jost
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Patrick J. Roady
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, Austin, TX 78723, USA;
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan N. Dilger
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
24
|
Henriksen NL, Aasmul-Olsen K, Venkatasubramanian R, Nygaard MKE, Sprenger RR, Heckmann AB, Ostenfeld MS, Ejsing CS, Eskildsen SF, Müllertz A, Sangild PT, Bering SB, Thymann T. Dairy-Derived Emulsifiers in Infant Formula Show Marginal Effects on the Plasma Lipid Profile and Brain Structure in Preterm Piglets Relative to Soy Lecithin. Nutrients 2021; 13:718. [PMID: 33668360 PMCID: PMC7996312 DOI: 10.3390/nu13030718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Breastfed infants have higher intestinal lipid absorption and neurodevelopmental outcomes compared to formula-fed infants, which may relate to a different surface layer structure of fat globules in infant formula. This study investigated if dairy-derived emulsifiers increased lipid absorption and neurodevelopment relative to soy lecithin in newborn preterm piglets. Piglets received a formula diet containing soy lecithin (SL) or whey protein concentrate enriched in extracellular vesicles (WPC-A-EV) or phospholipids (WPC-PL) for 19 days. Both WPC-A-EV and WPC-PL emulsions, but not the intact diets, increased in vitro lipolysis compared to SL. The main differences of plasma lipidomics analysis were increased levels of some sphingolipids, and lipid molecules with odd-chain (17:1, 19:1, 19:3) as well as mono- and polyunsaturated fatty acyl chains (16:1, 20:1, 20:3) in the WPC-A-EV and WPC-PL groups and increased 18:2 fatty acyls in the SL group. Indirect monitoring of intestinal triacylglycerol absorption showed no differences between groups. Diffusor tensor imaging measurements of mean diffusivity in the hippocampus were lower for WPC-A-EV and WPC-PL groups compared to SL indicating improved hippocampal maturation. No differences in hippocampal lipid composition or short-term memory were observed between groups. In conclusion, emulsification of fat globules in infant formula with dairy-derived emulsifiers altered the plasma lipid profile and hippocampal tissue diffusivity but had limited effects on other absorptive and learning abilities relative to SL in preterm piglets.
Collapse
Affiliation(s)
- Nicole L. Henriksen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Karoline Aasmul-Olsen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Ramakrishnan Venkatasubramanian
- Physiological Pharmaceutics, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Mikkel K. E. Nygaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark; (M.K.E.N.); (S.F.E.)
| | - Richard R. Sprenger
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.R.S.); (C.S.E.)
| | - Anne B. Heckmann
- Arla Foods Ingredients, Sønderhøj 10-12, 8260 Viby J, Denmark; (A.B.H.); (M.S.O.)
| | - Marie S. Ostenfeld
- Arla Foods Ingredients, Sønderhøj 10-12, 8260 Viby J, Denmark; (A.B.H.); (M.S.O.)
| | - Christer S. Ejsing
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.R.S.); (C.S.E.)
| | - Simon F. Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark; (M.K.E.N.); (S.F.E.)
| | - Anette Müllertz
- Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Stine B. Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| |
Collapse
|
25
|
Wen M, Zhao Y, Shi H, Wang C, Zhang T, Wang Y, Xue C. Short-term supplementation of DHA as phospholipids rather than triglycerides improve cognitive deficits induced by maternal omega-3 PUFA deficiency during the late postnatal stage. Food Funct 2021; 12:564-572. [PMID: 33325958 DOI: 10.1039/d0fo02552f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cognitive deficiencies, which are caused by maternal omega-3 PUFA deficiency (O-3 Def), are likely to be more rapidly and easily reversed at younger ages with quicker DHA reversal. This study aims to compare the efficiency of short-term supplementation of DHA in the form of phospholipids (PL) and triglycerides (TG) and improve cognitive deficiency in the O-3 Def model during different periods of brain development (3-week and 7-week old). The animal's spatial task performance, brain PUFA concentration, histopathology, and expression of synapse-associated proteins in the hippocampus were then analyzed. We demonstrate here that DHA-PL shows improved efficiency in improving cognitive deficiency compared to DHA-TG, particularly for adult O-3 Def offspring. The superiority of DHA-PL also correlates with the specific elevation of synapse-associated proteins, including BDNF, DCX, GAP-43, Syn, and PSD95, except to higher brain DHA accretion. This work highlights the DHA-PL as a better DHA supplement for inferior brain development caused by maternal O-3 Def, especially regarding those who missed the optimal time window of neurodevelopment.
Collapse
Affiliation(s)
- Min Wen
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Murciano M, Biancone DM, De Luca F, Piras Marafon D, Guido CA, Spalice A. Breastfeeding in Pediatric Acute-Onset Neuropsychiatric Syndrome: An Italian Observational Study. Front Pediatr 2021; 9:682108. [PMID: 34307255 PMCID: PMC8295522 DOI: 10.3389/fped.2021.682108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Pediatric acute-onset neuropsychiatric syndrome (PANS) is a condition defined by sudden onset of obsessive-compulsive symptoms and/or severe eating restrictions, along with at least two other cognitive, behavioral, or neurological symptoms. Its pathogenesis is unknown but it seems triggered by infections, metabolic disturbances, and other inflammatory reactions. PANS represents a neurodevelopmental problem and infant feeding can play a role. Breast milk is the ideal food for infants and influences children's brain, cognitive, and socio-emotional development. Methods: We enrolled 52 children diagnosed with PANS. We interviewed their parents in order to investigate perinatal history, infant feeding, neurologic development, and confounding factors like socio-economic status and region of origin. We subgrouped PANS patients into three subsets: those who only received human milk (HMO), those who only received infant formula, and those who received mixed feeding. Results: The cohort is composed of 78.9% males, with a median age of 11 years (range 7-17). We found some neurodevelopmental problems (13.5%): walking disorders, ASD, ADHD, oppositional attitude, and delayed psychomotor development. We found scholar performance deficits (25%), including language problems like dysgraphia, dyslexia, and dyscalculia. The achievement of some milestones in the development of the infant is affected in 73.1% of cases. Breastfeeding is not homogeneously practiced in Italy because of social, economic, and cultural phenomena. The richest and the poorest families (100%) in the sample choose breastfeeding, probably with a different approach and for different reasons (awareness or need). In the group of PANS patients fed with HMO, compared to the rest of the patients, we registered fewer cases of growth problems (0 vs. 12.9%; p = 0.14), school performance problems or the need for school support (19.1% vs. 29%; p = 0.42), and a delay in the age of babbling/speaking (range 4-20 vs. 7-36 months; p = 0.066). Conclusion: This is the first study that investigates the role of breastfeeding in the development of PANS. Promoting breastfeeding is important in the general population and also in PANS patients because it has an important social and global health impact, also during adult life. Further studies with a bigger population are needed to investigate the mechanisms underlying PANS and the role that breastfeeding may play in their short- and long-term neurodevelopment.
Collapse
Affiliation(s)
- Manuel Murciano
- Emergency Paediatric Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Davide Maria Biancone
- Child Neurology Division, Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Francesca De Luca
- Child Neurology Division, Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| | | | - Cristiana Alessia Guido
- Child Neurology Division, Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy.,Department of Developmental and Social Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Alberto Spalice
- Child Neurology Division, Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
27
|
Nagao T, Takahashi S, Kurihara H, Takahashi K. Health Beneficial Food Emulsifier Produced from Fishery Byproducts. J Oleo Sci 2020; 69:1231-1240. [PMID: 33028752 DOI: 10.5650/jos.ess20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bioavailability of DHA-bound phospholipids, especially the DHA-bound lysophospholipid (DHA-LPL) could be considered the most effective DHA chemical forms for DHA accretion in the brain. Such a DHA-LPL should also have very high emulsifying stability performance based on its analogy with conventional soy LPL. Therefore, in this study, we describe two fishery byproducts, rich in DHA-bound phospholipids, to derive DHA-LPL via sn-1 positional specific lipase partial hydrolysis of the phospholipids. Through this reaction, the DHA composition increased to 43.8 % from 29.1 % in the salmon head phospholipid-derived DHA-LPL, and to 84.0 % from 47.4 % in the squid meal phospholipid-derived DHA-LPL. In fact, these obtained DHA-LPLs exhibited far higher emulsifying stability than the conventional food emulsifiers in the market. For example, the prepared high-purity squid meal phospholipid-derived LPL sustained an emulsion form for a week even under 80°C. Thus, food emulsifiers produced from fishery byproducts are considered to exhibit very high values of both in a sense of outstandingly high health benefits and sustaining emulsions even under very high temperatures.
Collapse
Affiliation(s)
- Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology
| | | | | | | |
Collapse
|
28
|
Arellanes IC, Choe N, Solomon V, He X, Kavin B, Martinez AE, Kono N, Buennagel DP, Hazra N, Kim G, D'Orazio LM, McCleary C, Sagare A, Zlokovic BV, Hodis HN, Mack WJ, Chui HC, Harrington MG, Braskie MN, Schneider LS, Yassine HN. Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine 2020; 59:102883. [PMID: 32690472 PMCID: PMC7502665 DOI: 10.1016/j.ebiom.2020.102883] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Past clinical trials of docosahexaenoic Acid (DHA) supplements for the prevention of Alzheimer's disease (AD) dementia have used lower doses and have been largely negative. We hypothesized that larger doses of DHA are needed for adequate brain bioavailability and that APOE4 is associated with reduced delivery of DHA and eicosapentaenoic acid (EPA) to the brain before the onset of cognitive impairment. METHODS 33 individuals were provided with a vitamin B complex (1 mg vitamin B12, 100 mg of vitamin B6 and 800 mcg of folic acid per day) and randomized to 2,152 mg of DHA per day or placebo over 6 months. 26 individuals completed both lumbar punctures and MRIs, and 29 completed cognitive assessments at baseline and 6 months. The primary outcome was the change in CSF DHA. Secondary outcomes included changes in CSF EPA levels, MRI hippocampal volume and entorhinal thickness; exploratory outcomes were measures of cognition. FINDINGS A 28% increase in CSF DHA and 43% increase in CSF EPA were observed in the DHA treatment arm compared to placebo (mean difference for DHA (95% CI): 0.08 µg/mL (0.05, 0.10), p<0.0001; mean difference for EPA: 0.008 µg/mL (0.004, 0.011), p<0.0001). The increase in CSF EPA in non-APOE4 carriers after supplementation was three times greater than APOE4 carriers. The change in brain volumes and cognitive scores did not differ between groups. INTERPRETATION Dementia prevention trials using omega-3 supplementation doses equal or lower to 1 g per day may have reduced brain effects, particularly in APOE4 carriers. TRIAL REGISTRATION NCT02541929. FUNDING HNY was supported by R01AG055770, R01AG054434, R01AG067063 from the National Institute of Aging and NIRG-15-361854 from the Alzheimer's Association, and MGH by the L. K. Whittier Foundation. This work was also supported by P50AG05142 (HCC) from the National Institutes of Health. Funders had no role in study design, data collection, data analysis, interpretation, or writing of the report.
Collapse
Affiliation(s)
| | - Nicholas Choe
- Department of Medicine, Keck School of Medicine USC, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine USC, United States
| | - Xulei He
- Department of Medicine, Keck School of Medicine USC, United States
| | - Brian Kavin
- Department of Medicine, Keck School of Medicine USC, United States
| | | | - Naoko Kono
- Department of Preventive Medicine, Keck School of Medicine USC, United States
| | | | - Nalini Hazra
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, United States
| | - Giselle Kim
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, United States
| | - Lina M D'Orazio
- Department of Neurology, Keck School of Medicine USC, United States
| | - Carol McCleary
- Department of Neurology, Keck School of Medicine USC, United States
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Keck School of Medicine USC, United States
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine USC, United States
| | - Howard N Hodis
- Department of Medicine, Keck School of Medicine USC, United States; Department of Preventive Medicine, Keck School of Medicine USC, United States
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine USC, United States
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine USC, United States
| | - Michael G Harrington
- Huntington Medical Research Institutes, CA, United States; Department of Neurology, Keck School of Medicine USC, United States
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, United States
| | - Lon S Schneider
- Department of Neurology, Keck School of Medicine USC, United States; Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine USC, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine USC, United States; Department of Neurology, Keck School of Medicine USC, United States.
| |
Collapse
|
29
|
Moderate High Caloric Maternal Diet Impacts Dam Breast Milk Metabotype and Offspring Lipidome in a Sex-Specific Manner. Int J Mol Sci 2020; 21:ijms21155428. [PMID: 32751478 PMCID: PMC7432416 DOI: 10.3390/ijms21155428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/29/2023] Open
Abstract
Lactation is a critical period during which maternal sub- or over-nutrition affect milk composition and offspring development that can have lasting health effects. The consequences of moderate high-fat, high-simple carbohydrate diet (WD) consumption by rat dams, during gestation and lactation, on milk composition and offspring blood lipidome and its growth, at weaning, were investigated by using a comprehensive lipidomic study on mass-spectrometric platform combined to targeted fatty- and free amino-acids analysis. This holistic approach allowed clear-cut differences in mature milk-lipidomic signature according to maternal diet with a similar content of protein, lactose and leptin. The lower WD-milk content in total fat and triglycerides (TGs), particularly in TGs-with saturated medium-chain, and higher levels in both sphingolipid (SL) and TG species with unsaturated long-chain were associated to a specific offspring blood-lipidome with decreased levels in TGs-containing saturated fatty acid (FA). The sexual-dimorphism in the FA-distribution in TG (higher TGs-rich in oleic and linoleic acids, specifically in males) and SL species (increased levels in very long-chain ceramides, specifically in females) could be associated with some differences that we observed between males and females like a higher total body weight gain in females and an increased preference for fatty taste in males upon weaning.
Collapse
|
30
|
Hewelt-Belka W, Garwolińska D, Młynarczyk M, Kot-Wasik A. Comparative Lipidomic Study of Human Milk from Different Lactation Stages and Milk Formulas. Nutrients 2020; 12:E2165. [PMID: 32708300 PMCID: PMC7401268 DOI: 10.3390/nu12072165] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this report, we present a detailed comparison of the lipid composition of human milk (HM) and formula milk (FM) targeting different lactation stages and infant age range. We studied HM samples collected from 26 Polish mothers from colostrum to 19 months of lactation, along with FM from seven brands available on the Polish market (infant formula, follow-on formula and growing-up formula). Lipid extracts were analysed using liquid chromatography coupled to high-resolution mass spectrometry (LC-Q-TOF-MS). We found that the lipid composition of FM deviates significantly from the HM lipid profile in terms of qualitative and quantitative differences. FM had contrasting lipid profiles mostly across brands and accordingly to the type of fat added but not specific to the target age range. The individual differences were dominant in HM; however, differences according to the lactation stage were also observed, especially between colostrum and HM collected in other lactation stages. Biologically and nutritionally important lipids, such as long-chain polyunsaturated fatty acids (LC-PUFAs) containing lipid species, sphingomyelines or ether analogues of glycerophosphoethanoloamines were detected in HM collected in all studied lactation stages. The observed differences concerned all the major HM lipid classes and highlight the importance of the detailed compositional studies of both HM and FM.
Collapse
Affiliation(s)
- Weronika Hewelt-Belka
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (D.G.); (M.M.); (A.K.-W.)
| | | | | | | |
Collapse
|
31
|
Murota K. Digestion and absorption of dietary glycerophospholipids in the small intestine: Their significance as carrier molecules of choline and n-3 polyunsaturated fatty acids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Harayama T, Shimizu T. Roles of polyunsaturated fatty acids, from mediators to membranes. J Lipid Res 2020; 61:1150-1160. [PMID: 32487545 PMCID: PMC7397749 DOI: 10.1194/jlr.r120000800] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
PUFAs, such as AA and DHA, are recognized as important biomolecules, but understanding their precise roles and modes of action remains challenging. PUFAs are precursors for a plethora of signaling lipids, for which knowledge about synthetic pathways and receptors has accumulated. However, due to their extreme diversity and the ambiguity concerning the identity of their cognate receptors, the roles of PUFA-derived signaling lipids require more investigation. In addition, PUFA functions cannot be explained just as lipid mediator precursors because they are also critical for the regulation of membrane biophysical properties. The presence of PUFAs in membrane lipids also affects the functions of transmembrane proteins and peripheral membrane proteins. Although the roles of PUFAs as membrane lipid building blocks were difficult to analyze, the discovery of lysophospholipid acyltransferases (LPLATs), which are critical for their incorporation, advanced our understanding. Recent studies unveiled how LPLATs affect PUFA levels in membrane lipids, and their genetic manipulation became an excellent strategy to study the roles of PUFA-containing lipids. In this review, we will provide an overview of metabolic pathways regulating PUFAs as lipid mediator precursors and membrane components and update recent progress about their functions. Some issues to be solved for future research will also be discussed.
Collapse
Affiliation(s)
- Takeshi Harayama
- Department of Biochemistry and National Centre of Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan and Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Liu YF, Wu ZX, Zhang J, Liu YX, Liu ZY, Xie HK, Rakariyatham K, Zhou DY. Seasonal Variation of Lipid Profile of Oyster Crassostrea talienwhanensis from the Yellow Sea Area. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1737998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yan-Fei Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Zi-Xuan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Jing Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Yu-Xin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| | - Zhong-Yuan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Kanyasiri Rakariyatham
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| |
Collapse
|
34
|
Lacombe RJS, Lee CC, Bazinet RP. Turnover of brain DHA in mice is accurately determined by tracer-free natural abundance carbon isotope ratio analysis. J Lipid Res 2020; 61:116-126. [PMID: 31712249 PMCID: PMC6939594 DOI: 10.1194/jlr.d119000518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 01/04/2023] Open
Abstract
The brain is highly enriched in the long-chain omega-3 (n-3) PUFA DHA. Due to the limited capacity for local DHA synthesis in the brain, it relies on a continual supply from the circulation to replenish metabolized DHA. Previous studies investigating brain DHA turnover and metabolism have relied on isotope tracers to determine brain fatty acid kinetics; however, this approach is cumbersome and costly. We applied natural abundance carbon isotope ratio analysis via high-precision gas chromatography combustion isotope ratio mass spectrometry, without the use of labeled tracers, to determine the half-life of brain DHA in mice following a dietary switch experiment. Mice fed diets containing either α-linolenic acid (ALA) or DHA as the sole dietary n-3 PUFA were switched onto diets containing ALA, DHA, or ALA + DHA at 6 weeks of age, while control mice were maintained on their respective background diet. We measured brain DHA carbon isotope ratios (reported as δ13CDHA signatures) over a 168-day time course. Brain δ13CDHA signatures of control mice maintained on background diets over the time course were stable (P > 0.05). Brain δ13CDHA signatures of mice switched to the DHA or ALA + DHA diet from the ALA diet changed over time, yielding brain incorporation half-lives of 40 and 34 days, respectively. These half-lives determined by natural abundance carbon isotope ratio analysis were consistent with estimates from kinetic isotope tracer studies. Our results demonstrate the feasibility of natural abundance carbon isotope ratio analysis in the study of fatty acid metabolism without the use of isotopically labeled fatty acid tracers.
Collapse
Affiliation(s)
- R J Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chi-Chiu Lee
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
36
|
Zhao Q, Lv DD, Cao TM, Zhou DY, Shahidi F. Effect of Ice Storage on the Chemical Composition and Lipid Quality in Fat Greenling (Hexagrammos otakii) and Black Rockfish (Sebastes schlegelii). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1695304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qi Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, PR China
| | - Dan-Dan Lv
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, PR China
| | - Tian-Ming Cao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, PR China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
37
|
Liu Z, Zhou D, Rakariyatham K, Xie H, Li D, Zhu B, Shahidi F. Impact of Frying on Changes in Clam (
Ruditapes philippinarum
) Lipids and Frying Oils: Compositional Changes and Oxidative Deterioration. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhong‐Yuan Liu
- School of Food Science and TechnologyDalian Polytechnic University, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
| | - Da‐Yong Zhou
- School of Food Science and TechnologyDalian Polytechnic University, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
- National Engineering Research Center of Seafood, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
| | - Kanyasiri Rakariyatham
- School of Food Science and TechnologyDalian Polytechnic University, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
- National Engineering Research Center of Seafood, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
| | - Hong‐Kai Xie
- Beijing Advanced Innovation Centre of Food Nutrition and Human HealthChina Agricultural University, Qinghua East Road, Haidian District Beijing 100083 China
| | - De‐Yang Li
- School of Food Science and TechnologyDalian Polytechnic University, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
| | - Bei‐Wei Zhu
- School of Food Science and TechnologyDalian Polytechnic University, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
- National Engineering Research Center of Seafood, Qinggongyuan No. 1, Ganjingzi District Dalian 116034 PR China
- Beijing Advanced Innovation Centre of Food Nutrition and Human HealthChina Agricultural University, Qinghua East Road, Haidian District Beijing 100083 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Dagu South Road, Hexi District Tianjin 300457 PR China
| | - Fereidoon Shahidi
- Department of BiochemistryMemorial University of Newfoundland, 230 Elizabeth Ave. St. John's NL A1B3X9 Canada
| |
Collapse
|
38
|
The Effect of n-3 PUFA Binding Phosphatidylglycerol on Metabolic Syndrome-Related Parameters and n-3 PUFA Accretion in Diabetic/Obese KK- Ay Mice. Nutrients 2019; 11:nu11122866. [PMID: 31766692 PMCID: PMC6950267 DOI: 10.3390/nu11122866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022] Open
Abstract
n-3 Polyunsaturated fatty acid binding phospholipids (n-3 PUFA-PLs) are known to be potent carriers of n-3 PUFAs and provide health benefits. We previously prepared n-3 PUFA binding phosphatidylglycerol (n-3 PUFA-PG) by phospholipase D-mediated transphosphatidylation. Because PG has excellent emulsifiability, n-3 PUFA-PG is expected to work as a functional molecule with properties of both PG and n-3 PUFAs. In the present study, the health benefits and tissue accretion of dietary n-3 PUFA-PG were examined in diabetic/obese KK-Ay mice. After a feeding duration over 30 days, n-3 PUFA-PG significantly reduced the total and non-HDL cholesterols in the serum of diabetic/obese KK-Ay mice. In the mice fed n-3 PUFA-PG, but not n-3 PUFA-TAG, hepatic lipid content was markedly alleviated depending on the neutral lipid reduction compared with the SoyPC-fed mice. Further, the n-3 PUFA-PG diet increased eicosapentaenoic acid and docosahexaenoic acid (DHA) and reduced arachidonic acid in the small intestine, liver, perirenal white adipose tissue, and brain, and the ratio of the n-6 PUFAs to n-3 PUFAs in those tissues became lower compared to the SoyPC-fed mice. Especially, the DHA level was more significantly elevated in the brains of n-3 PUFA-PG-fed mice compared to the SoyPC-fed mice, whereas n-3 PUFA-TAG did not significantly alter DHA in the brain. The present results indicate that n-3 PUFA-PG is a functional lipid for reducing serum and liver lipids and is able to supply n-3 PUFAs to KK-Ay mice.
Collapse
|
39
|
Shen Y, Xie HK, Liu ZY, Lu T, Yu ZL, Zhang LH, Zhou DY, Wang T. Characterization of glycerophospholipid molecular species in muscles from three species of cephalopods by direct infusion-tandem mass spectrometry. Chem Phys Lipids 2019; 226:104848. [PMID: 31705861 DOI: 10.1016/j.chemphyslip.2019.104848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 11/30/2022]
Abstract
More than 200 molecular species of glycerophospholipids (GP) including glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE), glycerophosphoserine (GPS), lysoglycerophosphocholine (LGPC), lysoglycerophosphoethanolamine (LGPE) and lysoglycerophosphoserine (LGPS), as well as 18 kinds of sphingomyelin (SM) were characterized by using a direct infusion-tandem mass (MS/MS) spectrometry method for lipids from the muscles of cephalopods Sepiella maindroni, Octopus ocellatus and Loligo chinensis for the first time. The majority of the GP molecular species contained long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Therefore, cephalopods can be a good possible source of dietary GP carrying n-3 LC-PUFA. The total lipids were composed of phospholipid (PL, 72.29-83.32 wt% of total lipids), cholesterol (12.70-23.60 wt% of total lipids), triacylglycerol (1.86-2.93 wt% of total lipids), diacylglycerol (0.15-1.09 wt% of total lipids), monoacylglycerol (0.06-0.18 wt% of total lipids) and free fatty acid (0.72-1.86 wt% of total lipids). For PL, phosphatidylcholine (44.47-62.30 mol%), phosphatidylethanolamine (22.57-39.08 mol%), phosphatidylserine (6.15-10.18 mol%), phosphatidylglycerol (0.68-3.11 mol%), phosphatidylinositol (2.41-7.15 mol%) and lysophosphatidylcholine (1.84-5.24 mol%) were detected. Furthermore, the total lipids from the muscles of cephalopods Sepiella maindroni, Octopus ocellatus and Loligo chinensis contained 41.80-50.02 mol% of saturated fatty acids, 11.53-21.54 mol% of monounsaturated fatty acids and 36.67-40.82 mol% of PUFA, whilst DHA (15.25-26.71 mol%) and EPA (6.29-16.57 mol%) were found to account for the majority of the PUFA. With these data presented, cephalopod muscle can be considered as a healthy food for humans.
Collapse
Affiliation(s)
- Yan Shen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian, 116034, PR China; Beijing Advanced Innovation Centre of Food Nutrition and Human Health, China Agricultural University, Beijing, 100083, PR China
| | - Zhong-Yuan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Ting Lu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Zhuo-Liang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Li-Hua Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; National Engineering Research Center of Seafood, Dalian, 116034, PR China.
| | - Tong Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
40
|
Caputo MP, Radlowski EC, Lawson M, Antonson A, Watson JE, Matt SM, Leyshon BJ, Das A, Johnson RW. Herring roe oil supplementation alters microglial cell gene expression and reduces peripheral inflammation after immune activation in a neonatal piglet model. Brain Behav Immun 2019; 81:455-469. [PMID: 31271868 PMCID: PMC6754775 DOI: 10.1016/j.bbi.2019.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 01/29/2023] Open
Abstract
Neonatal brain development can be disrupted by infection that results in microglial cell activation and neuroinflammation. Studies indicate that polyunsaturated fatty acids (PUFAs) and their metabolites can resolve inflammation. It is not known if dietary PUFA increases lipid metabolites in brain or reduces neuroinflammation in neonates. We hypothesized that dietary PUFAs might suppress neuroinflammation by inhibiting pro-inflammatory cytokine over-production and promoting inflammatory resolution in the periphery and brain. Piglets were obtained on postnatal day (PD) 2 and randomly assigned to herring roe oil (HRO) or control (CON) diet. HRO was included at 2 g/kg powdered diet. HRO increased DHA levels in occipital lobe and the DHA to arachidonic acid (ARA) ratio in hippocampal tissue. HRO decreased ARA metabolites in occipital lobe. HRO failed to attenuate microglial pro-inflammatory cytokine production ex vivo. HRO did not affect fever or circulating resolvin D1 levels. HRO decreased circulating neutrophils and liver inflammatory gene expression, but increased resolution marker gene expression in liver post LPS. HRO upregulated CXCL16, TGFBR1, and C1QA in microglial cells. HRO supplementation exerted beneficial effects on inflammation in the periphery, but further studies are needed to evaluate the specific effects of omega-3 supplementation on microglial cell physiology in the neonate.
Collapse
Affiliation(s)
- Megan P. Caputo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Veterinary Medical Scholars Program, Office of Research and Advanced Studies, University of Illinois at Urbana-Champaign, College of Veterinary Medicine, 3505 VMBSB, 2001 South Lincoln Ave, Urbana, IL, 61802 USA
| | - Emily C. Radlowski
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Marcus Lawson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Adrienne Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Josephine E. Watson
- Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL, 61802 USA
| | - Stephanie M. Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| | - Brian J. Leyshon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL 61802, USA; Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL 61802, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 VMBSB, 2001 South Lincoln Ave, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL 61801, USA; Bioengineering Department, University of Illinois at Urbana-Champaign, 1102 Everitt Lab, MC-278, 1406 West Green St., Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Matthews Ave, M/C 251, Urbana, IL 61801, USA.
| | - Rodney W. Johnson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| |
Collapse
|
41
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
42
|
Effects of hot air drying process on lipid quality of whelks Neptunea arthritica cumingi Crosse and Neverita didyma. Journal of Food Science and Technology 2019; 56:4166-4176. [PMID: 31477988 DOI: 10.1007/s13197-019-03887-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/26/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Whelks Neptunea arthritica cumingi Crosse and Neverita didyma were processed by hot air drying and changes of thei lipids and the mechanism involved were evaluated by analyzing peroxide value, thiobarbituric acid-reactive substances, total oxidation value, fatty acid composition, activities of lipases and lipoxygenase (LOX), as well as contents of triacylglycerol (TAG), free fatty acid (FFA), phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The processing significantly decreased the contents of PC, PE and TAG but increased the content of FFA. The presence of acid lipase and phospholipase in whelk tissues and their activity preservation during processing suggest that the enzymes may help hydrolyze lipids. By contrast, the reduction of PC, PE and TAG was more pronounced than the increase in FFA in whelk tissues upon processing, indicating the oxidative degradation of FFA. LOX may play a role in lipid oxidation due to the stability of the starting components during processing.
Collapse
|
43
|
Ang X, Chen H, Xiang JQ, Wei F, Quek SY. Preparation and functionality of lipase-catalysed structured phospholipid – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Wu Z, Hu X, Zhou D, Tan Z, Liu Y, Xie H, Rakariyatham K, Shahidi F. Seasonal Variation of Proximate Composition and Lipid Nutritional Value of Two Species of Scallops (
Chlamys farreri
and
Patinopecten yessoensis
). EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zi‐Xuan Wu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalian 116034P. R. China
| | - Xiao‐Pei Hu
- National Engineering Research Center of SeafoodDalian 116034P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing 100083P. R. China
| | - Da‐Yong Zhou
- School of Food Science and TechnologyDalian Polytechnic UniversityDalian 116034P. R. China
- National Engineering Research Center of SeafoodDalian 116034P. R. China
| | - Zhi‐Feng Tan
- School of Food Science and TechnologyDalian Polytechnic UniversityDalian 116034P. R. China
| | - Yu‐Xin Liu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalian 116034P. R. China
- National Engineering Research Center of SeafoodDalian 116034P. R. China
| | - Hong‐Kai Xie
- National Engineering Research Center of SeafoodDalian 116034P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing 100083P. R. China
| | - Kanyasiri Rakariyatham
- School of Food Science and TechnologyDalian Polytechnic UniversityDalian 116034P. R. China
- National Engineering Research Center of SeafoodDalian 116034P. R. China
| | - Fereidoon Shahidi
- Department of BiochemistryMemorial University of NewfoundlandSt. John's, NL A1B3X9Canada
| |
Collapse
|
45
|
Liu YF, Yin FW, Liu YX, Wu ZX, Zhang J, Zhao Q, Rakariyatham K, Zhou DY. Characterization of Glycerophospholipid Molecular Species in Two Species of Arcidaes ( Scapharca subcrenata and Scapharca broughtonii). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1595801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yan-Fei Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Fa-Wen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Yu-Xin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| | - Zi-Xuan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Jing Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Qi Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Kanyasiri Rakariyatham
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| |
Collapse
|
46
|
Yang X, Li Y, Li Y, Ye D, Yuan L, Sun Y, Han D, Hu Q. Solid Matrix-Supported Supercritical CO₂ Enhances Extraction of γ-Linolenic Acid from the Cyanobacterium Arthrospira ( Spirulina) platensis and Bioactivity Evaluation of the Molecule in Zebrafish. Mar Drugs 2019; 17:md17040203. [PMID: 30935028 PMCID: PMC6520994 DOI: 10.3390/md17040203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Marine cyanobacteria represent a large untapped source of functional glycolipids enriched with polyunsaturated fatty acids (PUFAs) for human health. However, advanced methods for scalable isolation of diverse species containing high-purity PUFA-rich glycolipids will have to be developed and their possible pharmaceutical and nutraceutical functions identified. This paper introduces a novel solid matrix-supported supercritical CO₂ extraction method for scalable isolation of the PUFA γ-linolenic acid (GLA)-enriched glycolipids from the cyanobacterium Arthrospira (Spirulina) platensis, which has been the most widely used among microalgae in the nutraceutical and pharmaceutical industries. Of various porous materials studied, diatomite was the best to facilitate extraction of GLA-rich glycolipids, resulting in an extraction efficiency of 98%. Gamma-linolenic acid made up 35% of total fatty acids (TFAs) in the extracts, which was considerably greater than that obtained with ethanol (26%), Bligh and Dyer (24%), and in situ transesterification (24%) methods, respectively. Lipidomics analysis revealed that GLA was exclusively associated with galactolipids. Pharmaceutical functions of GLA-rich galactolipids were investigated on a zebrafish caudal fin regeneration model. The results suggested that GLA extracted from A. platensis possessed anti-oxidative, anti-inflammatory, and anti-allergic activities, which acted in a concerted manner to promote post-injury regeneration of zebrafish.
Collapse
Affiliation(s)
- Xiaohong Yang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Yuan
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China.
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Beijing Key Laboratory of Algae Biomass, Microalgae Biotechnology Center, SDIC Biotech Investment Co., LTD., State Development & Investment Corp., Beijing 100142, China.
| |
Collapse
|
47
|
Chouinard‐Watkins R, Lacombe RJS, Metherel AH, Masoodi M, Bazinet RP. DHA Esterified to Phosphatidylserine or Phosphatidylcholine is More Efficient at Targeting the Brain than DHA Esterified to Triacylglycerol. Mol Nutr Food Res 2019; 63:e1801224. [DOI: 10.1002/mnfr.201801224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Raphaël Chouinard‐Watkins
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| | - R. J. Scott Lacombe
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| | - Adam H. Metherel
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| | - Mojgan Masoodi
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
- Lipid BiologyNestlé Research EPFL Innovation Park 1015 Lausanne Switzerland
| | - Richard P. Bazinet
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| |
Collapse
|
48
|
Song G, Zhang M, Zhang Y, Wang H, Chen K, Dai Z, Shen Q. Development of a 450 nm Laser Irradiation Desorption Method for Fast Headspace Solid‐Phase Microextraction of Volatiles from Krill Oil (
Euphausia superba
). EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Gongshuai Song
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang ProvinceInstitute of SeafoodZhejiang Gongshang UniversityRM.203, 2nd Lab BLDG, NO. 149, Jiaogong RoadHangzhouChina
| | - Mengna Zhang
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang ProvinceInstitute of SeafoodZhejiang Gongshang UniversityRM.203, 2nd Lab BLDG, NO. 149, Jiaogong RoadHangzhouChina
| | - Yanping Zhang
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang ProvinceInstitute of SeafoodZhejiang Gongshang UniversityRM.203, 2nd Lab BLDG, NO. 149, Jiaogong RoadHangzhouChina
| | - Honghai Wang
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang ProvinceInstitute of SeafoodZhejiang Gongshang UniversityRM.203, 2nd Lab BLDG, NO. 149, Jiaogong RoadHangzhouChina
| | - Kang Chen
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang ProvinceInstitute of SeafoodZhejiang Gongshang UniversityRM.203, 2nd Lab BLDG, NO. 149, Jiaogong RoadHangzhouChina
| | - Zhiyuan Dai
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang ProvinceInstitute of SeafoodZhejiang Gongshang UniversityRM.203, 2nd Lab BLDG, NO. 149, Jiaogong RoadHangzhouChina
| | - Qing Shen
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang ProvinceInstitute of SeafoodZhejiang Gongshang UniversityRM.203, 2nd Lab BLDG, NO. 149, Jiaogong RoadHangzhouChina
| |
Collapse
|
49
|
Sun W, Shi B, Xue C, Jiang X. The comparison of krill oil extracted through ethanol-hexane method and subcritical method. Food Sci Nutr 2019; 7:700-710. [PMID: 30847148 PMCID: PMC6392833 DOI: 10.1002/fsn3.914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
This study aimed to develop a safe method EH (ethanol-hexane) to extract two kinds of krill oil (KO) simultaneously and analyze their composition. Meanwhile, subcritical butane and subcritical butane-dimethyl ether extraction were used to extract KO for analysis comparison. Folch method was used to extract total lipids. When the volume ratio of ethanol to hexane is 4:6, the separation effect of ethanol layer and hexane layer is best. At this condition, the EH method yielded similar amount of lipids (up to 97. 72% of total lipids) with subcritical butane extraction method (97.60%). The recovery rate of ethanol and hexane was 83.6% and 86.86%, respectively. KO in hexane layer and extracted by the subcritical butane method are abundant in astaxanthin (910 and 940 mg/kg respectively), while KO in the ethanol layer had the highest phospholipid (PL) content (47.34%), n-3 polyunsaturated fatty acids (PUFA) content (45.51%), and the lowest fluorine content (11.17 μg/g), making it a potential candidate in the nutraceutical and antioxidant industry.
Collapse
Affiliation(s)
- Weiwei Sun
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Bowen Shi
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Changhu Xue
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoming Jiang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| |
Collapse
|
50
|
Hosomi R, Fukunaga K, Nagao T, Tanizaki T, Miyauchi K, Yoshida M, Kanda S, Nishiyama T, Takahashi K. Effect of Dietary Partial Hydrolysate of Phospholipids, Rich in Docosahexaenoic Acid-Bound Lysophospholipids, on Lipid and Fatty Acid Composition in Rat Serum and Liver. J Food Sci 2019; 84:183-191. [DOI: 10.1111/1750-3841.14416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ryota Hosomi
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Toshihiro Nagao
- Osaka Research Inst. of Industrial Science and Technology; Morinomiya Center; 1-6-50, Morinomiya Joto-ku Osaka 536-8553 Japan
| | - Toshifumi Tanizaki
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Kazumasa Miyauchi
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Munehiro Yoshida
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Seiji Kanda
- Dept. of Public Health; Kansai Medical Univ.; 2-5-1, Shin-machi Hirakata Osaka 573-1010 Japan
| | - Toshimasa Nishiyama
- Dept. of Public Health; Kansai Medical Univ.; 2-5-1, Shin-machi Hirakata Osaka 573-1010 Japan
| | - Koretaro Takahashi
- Faculty of Engineering; Kitami Inst. of Technology; 165 Koen-cho Kitami Hokkaido 090-8507 Japan
| |
Collapse
|