1
|
Xu WJ, Wang S, Zhao QH, Xu JY, Hu XY, Gong SG, He J, Qiu HL, Luo CJ, Xu J, Li HT, Li ZP, Wang L, Shi Y, Zhao YL, Jiang R. Serum ASGR2 level: an efficacy biomarker for balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Front Immunol 2024; 15:1402250. [PMID: 38855107 PMCID: PMC11157431 DOI: 10.3389/fimmu.2024.1402250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Background This study aimed to employ plasma proteomics to investigate the molecular changes, pathway alterations, and potential novel biochemical markers associated with balloon pulmonary angioplasty (BPA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Methods Pre- and post-BPA plasma samples from five CTEPH patients in the PRACTICE study were analyzed to identify differentially expressed proteins. Proteomic and bioinformatics analyses were conducted, and the identified proteins were further validated using ELISA assays in a separate cohort of the same study. Correlation and multivariate regression analyses were performed to investigate the associations between these differentially expressed proteins and clinical parameters. Results Significantly higher serum levels of asialoglycoprotein receptor 2 (ASGR2) were detected in 5 CTEPH patients compared to those in healthy individuals but decreased significantly after successful BPA procedures. The decrease in serum levels of ASGR2 after the completion of BPA procedures was further validated in a separate cohort of 48 patients with CTEPH [0.70 (0.51, 1.11) ng/mL vs. 0.38 (0.27, 0.59) ng/mL, P < 0.001]. Significant associations were found between the pre-BPA ASGR2 level and clinical parameters, including neutrophil percentage (R = 0.285, P < 0.05), platelet (PLT) count (R = 0.386, P < 0.05), and high-density lipoprotein cholesterol (HDL-C) before BPA (R = -0.285, P < 0.05). Significant associations were detected between post-BPA serum ASGR2 levels and lymphocyte percentage (LYM%) (R = 0.306, P < 0.05), neutrophil-to-lymphocyte ratio (R = -0.294, P < 0.05), and pulmonary vascular resistance after BPA (R = -0.35, P < 0.05). Multivariate stepwise regression analysis revealed that pre-BPA ASGR2 levels were associated with HDL-C and PLT count (both P < 0.001), while post-BPA ASGR2 levels were associated with LYM% (P < 0.05). Conclusion Serum levels of ASGR2 may be a biomarker for the effectiveness of BPA treatment in CTEPH patients. The pre-BPA serum level of ASGR2 in CTEPH patients was associated with HDL-C and the PLT count. The post-BPA serum level of ASGR2 was correlated with the LYM%, which may reflect aspects of immune and inflammatory status.
Collapse
Affiliation(s)
- Wei-Jie Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shang Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian-Hao Zhao
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Yi Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiao-Yi Hu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Su-Gang Gong
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Xu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui-Ting Li
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ze-Pu Li
- Department of Cardiology, Affiliated Renhe Hospital of Shanghai University, Shanghai, China
| | - Lan Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Shi
- Department of Cardiology, Yantai Yu-Huangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Ya-Lin Zhao
- Department of Respiratory Critical Care Medicine, The First Hospital of Kunming, Kunming, China
| | - Rong Jiang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Wang XX, Li ZH, Du HY, Liu WB, Zhang CJ, Xu X, Ke H, Peng R, Yang DG, Li JJ, Gao F. The role of foam cells in spinal cord injury: challenges and opportunities for intervention. Front Immunol 2024; 15:1368203. [PMID: 38545108 PMCID: PMC10965697 DOI: 10.3389/fimmu.2024.1368203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024] Open
Abstract
Spinal cord injury (SCI) results in a large amount of tissue cell debris in the lesion site, which interacts with various cytokines, including inflammatory factors, and the intrinsic glial environment of the central nervous system (CNS) to form an inhibitory microenvironment that impedes nerve regeneration. The efficient clearance of tissue debris is crucial for the resolution of the inhibitory microenvironment after SCI. Macrophages are the main cells responsible for tissue debris removal after SCI. However, the high lipid content in tissue debris and the dysregulation of lipid metabolism within macrophages lead to their transformation into foamy macrophages during the phagocytic process. This phenotypic shift is associated with a further pro-inflammatory polarization that may aggravate neurological deterioration and hamper nerve repair. In this review, we summarize the phenotype and metabolism of macrophages under inflammatory conditions, as well as the mechanisms and consequences of foam cell formation after SCI. Moreover, we discuss two strategies for foam cell modulation and several potential therapeutic targets that may enhance the treatment of SCI.
Collapse
Affiliation(s)
- Xiao-Xin Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Wu-Bo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
3
|
Busnelli M, Manzini S, Colombo A, Franchi E, Bonacina F, Chiara M, Arnaboldi F, Donetti E, Ambrogi F, Oleari R, Lettieri A, Horner D, Scanziani E, Norata GD, Chiesa G. Lack of ApoA-I in ApoEKO Mice Causes Skin Xanthomas, Worsening of Inflammation, and Increased Coronary Atherosclerosis in the Absence of Hyperlipidemia. Arterioscler Thromb Vasc Biol 2022; 42:839-856. [PMID: 35587694 PMCID: PMC9205301 DOI: 10.1161/atvbaha.122.317790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. Methods: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. Results: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. Conclusions: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Matteo Chiara
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Elena Donetti
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health (F. Ambrogi), Università degli Studi di Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - David Horner
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Eugenio Scanziani
- Department of Veterinary Medicine (E.S.), Università degli Studi di Milano, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy (E.S.)
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy.,Centro per lo Studio dell'Aterosclerosi, Bassini Hospital, Cinisello B, Milan, Italy (G.D.N.)
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| |
Collapse
|
4
|
Different Pathways of Cellular Cholesterol Efflux. Cell Biochem Biophys 2022; 80:471-481. [PMID: 35737216 DOI: 10.1007/s12013-022-01081-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Cholesterol efflux is the first and rate-limiting step of reverse cholesterol transport (RCT) from peripheric cells to the liver. The involvement of high-density lipoprotein (HDL) in RCT determines the atheroprotective properties of HDL. Cholesterol efflux from different membrane pools includes both passive and energy-dependent processes. The first type of route consists of cholesterol desorption from the cell membrane into the unstirred layer adjacent to the cell surface and diffusion in the water phase. Moreover, the selective uptake and facilitated diffusion of cholesterol and cholesteryl ester molecules through the hydrophobic tunnel in the scavenger receptor BI molecule does not require energy consumption. The second type of route includes active cholesterol export by the ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Several cholesterol acceptors specifically bind cholesterol and phospholipid molecules, and cholesterol binding to the albumin molecule, which acts as a shuttle, significantly increases cholesterol movement between acceptors and red blood cells, thus functioning as a sink for cholesterol. Cholesterol and phospholipid molecules effluxed from macrophages by ABCA1 are accepted exclusively by the lipid-free apolipoprotein apoA-I, which is the major protein moiety of HDL, whereas those effluxed by ABCG1 are accepted by HDL. ABCA1- and ABCG1-mediated cholesterol transport, together with cholesterol diffusion, largely determine cholesterol turnover at the physiological level of intracellular cholesterol. However, at cholesterol overload, ABCA1-mediated efflux prevails over other routes. The exchange of apoA-I between lipid-free and lipid-associated states and the synergism of nascent and mature HDL contribute to cholesterol efflux efficiency. Moreover, extracellular cholesterol deposits and microvesicles may be involved in RCT.
Collapse
|
5
|
Eckel RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes, beyond glucose. Cell Metab 2021; 33:1519-1545. [PMID: 34289375 PMCID: PMC8411849 DOI: 10.1016/j.cmet.2021.07.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Despite the decades-old knowledge that diabetes mellitus is a major risk factor for cardiovascular disease, the reasons for this association are only partially understood. While this association is true for both type 1 and type 2 diabetes, different pathophysiological processes may be responsible. Lipids and other risk factors are indeed important, whereas the role of glucose is less clear. This lack of clarity stems from clinical trials that do not unambiguously show that intensive glycemic control reduces cardiovascular events. Animal models have provided mechanisms that link diabetes to increased atherosclerosis, and evidence consistent with the importance of factors beyond hyperglycemia has emerged. We review clinical, pathological, and animal studies exploring the pathogenesis of atherosclerosis in humans living with diabetes and in mouse models of diabetes. An increased effort to identify risk factors beyond glucose is now needed to prevent the increased cardiovascular disease risk associated with diabetes.
Collapse
Affiliation(s)
- Robert H Eckel
- Divisions of Endocrinology, Metabolism and Diabetes, and Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, and Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Ni J, Hong H, Zhang Y, Tang S, Han Y, Fang Z, Zhang Y, Zhou N, Wang Q, Liu Y, Li Z, Wang Y, Dong M. Development of a non-invasive method for skin cholesterol detection: pre-clinical assessment in atherosclerosis screening. Biomed Eng Online 2021; 20:52. [PMID: 34074299 PMCID: PMC8170999 DOI: 10.1186/s12938-021-00889-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Establishing a high-accuracy and non-invasive method is essential for evaluating cardiovascular disease. Skin cholesterol is a novel marker for assessing the risk of atherosclerosis and can be used as an independent risk factor of early assessment of atherosclerotic risk. METHODS We propose a non-invasive skin cholesterol detection method based on absorption spectroscopy. Detection reagents specifically bind to skin cholesterol and react with indicator to produce colored products, the skin cholesterol content can be obtained through absorption spectrum information on colored products detected by non-invasive technology. Gas chromatography is used to measure cholesterol extracted from the skin to verify the accuracy and reliability of the non-invasive test method. A total of 342 subjects were divided into normal group (n = 115), disease group (n = 110) and risk group (n = 117). All subjects underwent non-invasive skin cholesterol test. The diagnostic accuracy of the measured value was analyzed by receiver-operating characteristic (ROC) curve. RESULTS The proposed method is able to identify porcine skin containing gradient concentration of cholesterol. The values measured by non-invasive detection method were significantly correlated with gas chromatography measured results (r = 0.9074, n = 73, p < 0.001). Bland-Altman bias was - 72.78 ± 20.03 with 95% limits of agreement - 112.05 to - 33.51, falling within the prespecified clinically non-significant range. We further evaluated the method of patients with atherosclerosis and risk population as well as normal group, patients and risk atherosclerosis group exhibited higher skin cholesterol content than normal group (all P < 0.001). The area under the ROC curve for distinguishing Normal/Disease group was 0.8642 (95% confidence interval, 0.8138 to 0.9146), meanwhile, the area under the ROC curve for distinguishing Normal/Risk group was 0.8534 (95% confidence interval, 0.8034 to 0.9034). CONCLUSIONS The method demonstrated its capability of detecting different concentration of skin cholesterol. This non-invasive skin cholesterol detection system may potentially be used as a risk assessment tool for atherosclerosis screening, especially for a large population.
Collapse
Affiliation(s)
- Jingshu Ni
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Haiou Hong
- Health Management Center, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yang Zhang
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shiqi Tang
- Health Management Center, Renmin Hospital of WuHan University, Wuhan, 430060, China
| | - Yongsheng Han
- Department of Cardiovascular Medicine, First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, China
| | - Yuanzhi Zhang
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China
- Wanjiang Center for Development of Emerging Industrial Technology, Tongling, 244000, China
| | - Nan Zhou
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China
- Wanjiang Center for Development of Emerging Industrial Technology, Tongling, 244000, China
| | - Quanfu Wang
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China
- Wanjiang Center for Development of Emerging Industrial Technology, Tongling, 244000, China
| | - Yong Liu
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Wanjiang Center for Development of Emerging Industrial Technology, Tongling, 244000, China
| | - Zhongsheng Li
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China
| | - YiKun Wang
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| | - Meili Dong
- Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science , Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
7
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
8
|
Hariri MA, Jaffa MA, Saoud R, Zhao J, Zhu R, Jaffa AA, El-Achkar GA, Moussa M, Kobeissy F, Hassan A, Ziyadeh FN, Mechref Y, Jaffa AA. Vascular Cells Proteome Associated with Bradykinin and Leptin Inflammation and Oxidative Stress Signals. Antioxidants (Basel) 2020; 9:antiox9121251. [PMID: 33316969 PMCID: PMC7764689 DOI: 10.3390/antiox9121251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
Among the primary contributors to cardiovascular diseases are inflammation and oxidative imbalance within the vessel walls as well as the fibrosis of rat aortic smooth muscle cell (RASMC). Bradykinin (BK) and leptin are inflammatory modulators that are linked to vascular injury. In this study, we employed tandem LC-MS/MS to identify protein signatures that encompass protein abundance in RASMC treated with BK or leptin followed by systems biology analyses to gain insight into the biological pathways and processes linked to vascular remodeling. In the study, 1837 proteins were identified in control untreated RASMC. BK altered the expression of 72 (4%) and 120 (6.5%) proteins, whereas leptin altered the expression of 189 (10.2%) and 127 (6.5%) proteins after 24 and 48 h, respectively, compared to control RASMC. BK increased the protein abundance of leptin receptor, transforming growth factor-β. On the other hand, leptin increased the protein abundance of plasminogen activator inhibitor 1 but decreased the protein abundance of cofilin. BK and leptin induced the expression of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) and pathway analysis revealed the activation of mitogen-activated protein kinases (MAPKs) and AKT pathways. The proteome profile in response to BK and leptin revealed mechanistic interplay of multiple processes that modulate inflammation and oxidative stress signals in the vasculature.
Collapse
Affiliation(s)
- Moustafa Al Hariri
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Richard Saoud
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.Z.); (R.Z.)
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.Z.); (R.Z.)
| | - Aneese A. Jaffa
- Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Ghewa A. El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar;
| | - Fuad N. Ziyadeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.Z.); (R.Z.)
- Correspondence: (Y.M.); (A.A.J.); Tel.: +1812-219-1972 (Y.M.); +961-1-350000 (A.A.J.)
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
- Correspondence: (Y.M.); (A.A.J.); Tel.: +1812-219-1972 (Y.M.); +961-1-350000 (A.A.J.)
| |
Collapse
|
9
|
Karjalainen MK, Holmes MV, Wang Q, Anufrieva O, Kähönen M, Lehtimäki T, Havulinna AS, Kristiansson K, Salomaa V, Perola M, Viikari JS, Raitakari OT, Järvelin MR, Ala-Korpela M, Kettunen J. Apolipoprotein A-I concentrations and risk of coronary artery disease: A Mendelian randomization study. Atherosclerosis 2020; 299:56-63. [PMID: 32113648 DOI: 10.1016/j.atherosclerosis.2020.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Apolipoprotein A-I (apoA-I) infusions represent a potential novel therapeutic approach for the prevention of coronary artery disease (CAD). Although circulating apoA-I concentrations inversely associate with risk of CAD, the evidence base of this representing a causal relationship is lacking. The aim was to assess the causal role of apoA-I using human genetics. METHODS We identified a variant (rs12225230) in APOA1 locus that associated with circulating apoA-I concentrations (p < 5 × 10-8) in 20,370 Finnish participants, and meta-analyzed our data with a previous GWAS of apoA-I. We obtained genetic estimates of CAD from UK Biobank and CARDIoGRAMplusC4D (totaling 122,733 CAD cases) and conducted a two-sample Mendelian randomization analysis. We compared our genetic findings to observational associations of apoA-I with risk of CAD in 918 incident CAD cases among 11,535 individuals from population-based prospective cohorts. RESULTS ApoA-I was associated with a lower risk of CAD in observational analyses (HR 0.81; 95%CI: 0.75, 0.88; per 1-SD higher apoA-I), with the association showing a dose-response relationship. Rs12225230 associated with apoA-I concentrations (per-C allele beta 0.076 SD; SE: 0.013; p = 1.5 × 10-9) but not with confounders. In Mendelian randomization analyses, apoA-I was not related to risk of CAD (OR 1.13; 95%CI: 0.98,1.30 per 1-SD higher apoA-I), which was different from the observational association. Similar findings were observed using an independent ABCA1 variant in sensitivity analysis. CONCLUSIONS Genetic evidence fails to support a cardioprotective role for apoA-I. This is in line with the cumulative evidence showing that HDL-related phenotypes are unlikely to have a protective role in CAD.
Collapse
Affiliation(s)
- Minna K Karjalainen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK; Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
| | - Qin Wang
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Olga Anufrieva
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratoriesand Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aki S Havulinna
- National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM-HiLIFE), Helsinki, Finland
| | | | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland; Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Jorma S Viikari
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland; Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, UK
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia.
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
10
|
Zamanian-Daryoush M, Gogonea V, DiDonato AJ, Buffa JA, Choucair I, Levison BS, Hughes RA, Ellington AD, Huang Y, Li XS, DiDonato JA, Hazen SL. Site-specific 5-hydroxytryptophan incorporation into apolipoprotein A-I impairs cholesterol efflux activity and high-density lipoprotein biogenesis. J Biol Chem 2020; 295:4836-4848. [PMID: 32098873 DOI: 10.1074/jbc.ra119.012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein constituent of high-density lipoprotein (HDL) and a target of myeloperoxidase-dependent oxidation in the artery wall. In atherosclerotic lesions, apoA-I exhibits marked oxidative modifications at multiple sites, including Trp72 Site-specific mutagenesis studies have suggested, but have not conclusively shown, that oxidative modification of Trp72 of apoA-I impairs many atheroprotective properties of this lipoprotein. Herein, we used genetic code expansion technology with an engineered Saccharomyces cerevisiae tryptophanyl tRNA-synthetase (Trp-RS):suppressor tRNA pair to insert the noncanonical amino acid 5-hydroxytryptophan (5-OHTrp) at position 72 in recombinant human apoA-I and confirmed site-specific incorporation utilizing MS. In functional characterization studies, 5-OHTrp72 apoA-I (compared with WT apoA-I) exhibited reduced ABC subfamily A member 1 (ABCA1)-dependent cholesterol acceptor activity in vitro (41.73 ± 6.57% inhibition; p < 0.01). Additionally, 5-OHTrp72 apoA-I displayed increased activation and stabilization of paraoxonase 1 (PON1) activity (μmol/min/mg) when compared with WT apoA-I and comparable PON1 activation/stabilization compared with reconstituted HDL (WT apoA-I, 1.92 ± 0.04; 5-OHTrp72 apoA-I, 2.35 ± 0.0; and HDL, 2.33 ± 0.1; p < 0.001, p < 0.001, and p < 0.001, respectively). Following injection into apoA-I-deficient mice, 5-OHTrp72 apoA-I reached plasma levels comparable with those of native apoA-I yet exhibited significantly reduced (48%; p < 0.01) lipidation and evidence of HDL biogenesis. Collectively, these findings unequivocally reveal that site-specific oxidative modification of apoA-I via 5-OHTrp at Trp72 impairs cholesterol efflux and the rate-limiting step of HDL biogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Valentin Gogonea
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Anthony J DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jennifer A Buffa
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ibrahim Choucair
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Bruce S Levison
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Randall A Hughes
- United States Army Research Laboratory South, University of Texas, Austin, Texas 78712
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712
| | - Ying Huang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 .,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
11
|
Wu Y, Zhang F, Lu R, Feng Y, Li X, Zhang S, Hou W, Tian J, Kong X, Sun L. Functional lncRNA-miRNA-mRNA networks in rabbit carotid atherosclerosis. Aging (Albany NY) 2020; 12:2798-2813. [PMID: 32045883 PMCID: PMC7041763 DOI: 10.18632/aging.102778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is one of the most common clinical cardiovascular disorders. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis; however, their functional roles and regulatory mechanisms remain unclear. In this study, we induced atherosclerotic plaques in three rabbit carotid arteries through an atherogenic diet and balloon injury; three age-matched rabbits were fed normal chow and served as controls. We thoroughly investigated the RNA (mRNA, lncRNA and miRNA) expression profiles in atherosclerotic rabbit carotid models with deep RNA sequencing. We identified several significantly differentially expressed RNAs. The corresponding lncRNA-miRNA-mRNA network was constructed, and the significantly dysregulated network was selected. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the mRNAs in the network were involved in leukocyte activation, cell proliferation, cell adhesion molecules and cytokine-cytokine receptor interaction. After rigorous screening, we obtained a differentially expressed lncRNA-miRNA-mRNA interaction network associated with atherosclerosis. In the network, XLOC_054118 and XLOC_030217 upregulate the CHI3L1, SOAT, CTSB and CAPG genes by competitively binding to the miRNA ocu-miR-96-5p. XLOC_062719 and XLOC_063297 upregulate CTSS, CTSB and EDNRA genes by competitively binding to the miRNA ocu-miR-185-5p.
Collapse
Affiliation(s)
- Yingnan Wu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Feng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Rui Lu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yanan Feng
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoying Li
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shuang Zhang
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenying Hou
- Department of Ultrasound, Xuanwu Hospital Capital University, Beijing 100053, China
| | - Jiawei Tian
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xianchao Kong
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Litao Sun
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
- Department of Ultrasound, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| |
Collapse
|
12
|
Zhang J, Nie S, Zu Y, Abbasi M, Cao J, Li C, Wu D, Labib S, Brackee G, Shen CL, Wang S. Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. J Control Release 2019; 303:263-273. [PMID: 30999008 PMCID: PMC6579691 DOI: 10.1016/j.jconrel.2019.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022]
Abstract
Intimal macrophages play a critical role in atherosclerotic lesion initiation and progression by taking up oxidized low-density lipoprotein (oxLDL) and promoting inflammatory process. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdiA-PC), a major type of oxidized phosphatidylcholines (PC) found on oxLDL, has a high binding affinity to the macrophage scavenger receptor CD36 and participates in CD36-mediated recognition and uptake of oxLDL by intimal macrophages. We successfully synthesized epigallocatechin gallate (EGCG)-loaded nanoparticles (Enano), which were composed of EGCG, PC, (+) alpha-tocopherol acetate, and surfactant. We also incorporated KOdiA-PC on the surface of Enano to make ligand-coated Enano (L-Enano) to target intimal macrophages. The objectives of this study were to determine the anti-atherogenic effects of Enano and L-Enano in LDL receptor null (LDLr-/-) mice. Our in vitro data demonstrated that L-Enano had a higher binding affinity to mouse peritoneal macrophages than Enano. This high binding affinity was diminished by CD36 antibodies or knockdown of the CD36 receptor in mouse peritoneal macrophages, confirming the specific binding of L-Enano to the macrophage CD36 receptor. LDLr-/- mice were randomly divided to six groups and received weekly tail vein injection with PBS, EGCG, void nanoparticles (Vnano), Enano, ligand-coated Vnano (L-Vnano), or L-Enano once per week for 22 weeks. The dose of EGCG was 25 mg per kg body weight. L-Enano at 20 μg/mL significantly decreased production of monocyte chemoattractant protein-1, tumor necrosis factor alpha, and interleukin-6 from mouse macrophages, while having no effect on their plasma levels compared to the PBS control. There were no significant differences in blood lipid profiles among six treatment groups. Mice treated with L-Enano also had significantly smaller lesion surface areas on aortic arches compared to the PBS control. Liver EGCG content was decreased by treatments in the order of EGCG>Enano>L-Enano. Native EGCG had inhibitory effects on liver and body fat accumulation. This molecular target approach signals an important step towards inhibiting atherosclerosis development via targeted delivery of bioactive compounds to intimal macrophages.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jun Cao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Chuan Li
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Dayong Wu
- Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Safaa Labib
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Gordon Brackee
- Laboratory Animal Resources Center, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA; Comparative Biology Resources Center, University of Rhode Island, Kingston, RI 02881, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
13
|
Madsen CM, Varbo A, Nordestgaard BG. Low HDL Cholesterol and High Risk of Autoimmune Disease: Two Population-Based Cohort Studies Including 117341 Individuals. Clin Chem 2019; 65:644-652. [PMID: 30745290 DOI: 10.1373/clinchem.2018.299636] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/22/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND HDL is quantitatively the most important lipoprotein in most species and mechanistic evidence points toward a role for HDL in normal immune function. We tested the hypothesis that concentrations of HDL cholesterol are associated with risk of autoimmune disease. METHODS From 2 studies of the general population-the Copenhagen General Population Study and the Copenhagen City Heart study-we included 107954 and 9387 individuals with baseline measurements of HDL cholesterol. These were followed with the national Danish Patient Registry from baseline in 2003-2015 or 1991-1994 through 2017, during which time 4078 and 1101 individuals developed autoimmune disease in the 2 studies. RESULTS In the Copenhagen General Population Study, compared to individuals with HDL cholesterol ≥2.0 mmol/L (77 mg/dL), the multifactorially adjusted hazard ratios for any autoimmune disease were 1.06 (95% CI, 0.94-1.19) for individuals with HDL cholesterol of 1.5-1.99 mmol/L (58-77 mg/dL), 1.18 (95% CI, 1.04-1.35) for individuals with HDL cholesterol of 1.0-1.49 mmol/L (39-58 mg/dL), and 1.84 (95% CI, 1.52-2.22) for individuals with HDL cholesterol <1.0 mmol/L (39 mg/dL) (P for trend <0.001). These results were similar when excluding events within 5 years of baseline, in women and men separately, for events at baseline, irrespective of low-grade inflammation or triglyceride concentrations, for the apolipoprotein A1 part of HDL, and for more restrictive end point definitions. Finally, the Copenhagen City Heart Study provided independent confirmation. CONCLUSIONS Low HDL cholesterol level is associated with high risk of autoimmune disease in individuals from the general population. Our observational findings cannot determine causality.
Collapse
Affiliation(s)
- Christian M Madsen
- Department of Clinical Biochemistry and.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anette Varbo
- Department of Clinical Biochemistry and.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and .,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Denmark
| |
Collapse
|
14
|
May-Zhang LS, Chen Z, Dosoky NS, Yancey PG, Boyd KL, Hasty AH, Linton MF, Davies SS. Administration of N-Acyl-Phosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptor -/- Mice Improves Indices of Cardiometabolic Disease. Sci Rep 2019; 9:420. [PMID: 30674978 PMCID: PMC6344515 DOI: 10.1038/s41598-018-37373-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Obesity increases the risk for cardiometabolic diseases. N-acyl phosphatidylethanolamines (NAPEs) are precursors of N-acylethanolamides, which are endogenous lipid satiety factors. Incorporating engineered bacteria expressing NAPEs into the gut microbiota retards development of diet induced obesity in wild-type mice. Because NAPEs can also exert anti-inflammatory effects, we hypothesized that administering NAPE-expressing bacteria to low-density lipoprotein receptor (Ldlr)-/- mice fed a Western diet would improve various indices of cardiometabolic disease manifested by these mice. NAPE-expressing E. coli Nissle 1917 (pNAPE-EcN), control Nissle 1917 (pEcN), or vehicle (veh) were given via drinking water to Ldlr-/- mice for 12 weeks. Compared to pEcN or veh treatment, pNAPE-EcN significantly reduced body weight and adiposity, hepatic triglycerides, fatty acid synthesis genes, and increased expression of fatty acid oxidation genes. pNAPE-EcN also significantly reduced markers for hepatic inflammation and early signs of fibrotic development. Serum cholesterol was reduced with pNAPE-EcN, but atherosclerotic lesion size showed only a non-significant trend for reduction. However, pNAPE-EcN treatment reduced lesion necrosis by 69% indicating an effect on preventing macrophage inflammatory death. Our results suggest that incorporation of NAPE expressing bacteria into the gut microbiota can potentially serve as an adjuvant therapy to retard development of cardiometabolic disease.
Collapse
Affiliation(s)
- Linda S May-Zhang
- Division of Clinical Pharmacology, Department of Pharmacology, 2220 Pierce Avenue, Vanderbilt University, 556 Robinson Research Building, Nashville, TN, 37221, USA
| | - Zhongyi Chen
- Division of Clinical Pharmacology, Department of Pharmacology, 2220 Pierce Avenue, Vanderbilt University, 556 Robinson Research Building, Nashville, TN, 37221, USA
| | - Noura S Dosoky
- Division of Clinical Pharmacology, Department of Pharmacology, 2220 Pierce Avenue, Vanderbilt University, 556 Robinson Research Building, Nashville, TN, 37221, USA
| | - Patricia G Yancey
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt Medical Center, 2220 Pierce Avenue, 312 Preston Research Building, Nashville, TN, 37232, USA
| | - Kelli L Boyd
- AA-6206 Medical Center North, Department of Pathology, Microbiology, and Immunology, Vanderbilt Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2220 Pierce Avenue, 813 Light Hall, Nashville, TN, 37232, USA
| | - MacRae F Linton
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt Medical Center, 2220 Pierce Avenue, 312 Preston Research Building, Nashville, TN, 37232, USA
| | - Sean S Davies
- Division of Clinical Pharmacology, Department of Pharmacology, 2220 Pierce Avenue, Vanderbilt University, 556 Robinson Research Building, Nashville, TN, 37221, USA.
| |
Collapse
|
15
|
Vilahur G. High-density lipoprotein benefits beyond the cardiovascular system: a potential key role for modulating acquired immunity through cholesterol efflux. Cardiovasc Res 2019; 113:e51-e53. [PMID: 29088380 DOI: 10.1093/cvr/cvx193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Science Institute (ICCC), IIB-Sant Pau, CiberCV, Hospital de Sant Pau, Barcelona, Spain
| |
Collapse
|
16
|
Cao J, Xu Y, Li F, Shang L, Fan D, Yu H. Protein markers of dysfunctional HDL in scavenger receptor class B type I deficient mice. J Transl Med 2018; 16:155. [PMID: 29879989 PMCID: PMC5992774 DOI: 10.1186/s12967-018-1502-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/03/2018] [Indexed: 11/24/2022] Open
Abstract
Background Scavenger receptor class B type I (SR-BI) plays a key role in high density lipoproteins (HDL) metabolism. SR-BI deficiency in mice results in enhanced susceptibility to atherosclerosis with abnormal large, cholesterol enriched, and functional impaired HDL. This study was to characterize the protein markers of dysfunctional HDL in SR-BI deficient (SR-BI−/−) mice and to test if the defective of HDL might be affected by probucol treatment. Methods Shotgun proteomics and 2-D gel electrophoresis were performed to examine the profile of HDL protein and distribution of HDL particles isolated from SR-BI−/− mice. HDL’s cell-function, paraoxonase 1 (PON1) and myeloperoxidase activity were assessed. The mice were treated with 1.2 mg/g/day probucol for 6 weeks and the impact on HDL protein markers was analyzed. The differential proteins were quantified by Western blotting. Results The relative amount of protein in SR-BI−/− HDL was decreased by about 25% compared to that in HDL from wild type (WT) mice. Compared to WT HDL, relative protein abundance of representative apoAI and PON1 in SR-BI−/− HDL were significantly reduced, whereas acute-phase protein serum amyloid A (SAA) and apoAIV, proteinase inhibitor proteins α-1-antitrypsin (A1AT) were increased. The distribution of plasma apoAI-containing HDL particles in SR-BI−/− mice was also dramatically altered, although plasma apoAI level was no difference. The protein alterations were accompanied with dysfunction of SR-BI−/− HDL, evidenced by impaired cholesterol homeostasis in macrophages, and reduced anti-oxidative and anti-inflammatory effects. Probucol treatment of SR-BI−/− mice could restored the relative contents of critical proteins including apoAI, PON1, SAA, apoAIV and A1AT on HDL, and improve HDL dysfunction despite decreased HDL-C level. Conclusion SR-BI deficiency leading to dysfunctional HDL is closely related to alteration of HDL protein, suggesting that identification of apoAI, PON1, SAA, apoAIV, and A1AT may serve as the valuable protein markers for diagnosis and therapeutics of dysfunctional HDL-related metabolic diseases. Electronic supplementary material The online version of this article (10.1186/s12967-018-1502-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Yanyong Xu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Feifei Li
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Liang Shang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China.
| |
Collapse
|
17
|
SOAT1 deficiency attenuates atherosclerosis by regulating inflammation and cholesterol transportation via HO-1 pathway. Biochem Biophys Res Commun 2018; 501:343-350. [PMID: 29567472 DOI: 10.1016/j.bbrc.2018.03.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Sterol O-acyltransferase 1 (SOAT1) is a key enzyme for cholesteryl ester biosynthesis. The objective of the present study is to investigate the role and underlying molecular mechanisms of SOAT1 in atherosclerosis. Our results indicated that SOAT1 was highly expressed in endothelial cells of atherosclerotic lesions in human patients with atherosclerosis and in apolipoprotein E deficient (ApoE-/-) mice fed with high fat diet (HFD). We established a model of atherosclerosis using ApoE and SOAT1 gene double knockout (ApoE-/-SOAT1-/-) mice. SOAT1-/- alleviated HFD-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice, accompanied with the reduced triglyceride (TG), total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C), while the enhanced high-density lipoprotein-cholesterol (HDL-C) in serum of ApoE-/- mice. SOAT1-/- decreased collagen accumulation in the lesions. SOAT1-/- reduced macrophage infiltration and suppressed inflammation in ApoE-/- mice fed with HFD, as evidenced by the decreased expressions of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor α (TNF-α). Of importance, SOAT1-/--attenuated inflammation was along with the inactivation of β-catenin and nuclear factor kappa B (NF-κB) ApoE-/- mice. Moreover, oxidative stress observed in ApoE-/- mice was inactivated by SOAT1 double knockout. In addition, expression levels of fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), protein convertase subtilisin/kexin type 9 (PCSK 9) and sterol regulatory element-binding protein-1c (SREBP-1c) were decreased in liver, peritoneal macrophages and abdominal aortas of SOAT1-knockout ApoE-/- mice. In contrast, SOAT1-/- displayed improved expressions of peroxisome proliferator-activated receptor-γ (PPAR-γ) and lipoxygenase (LOX)-α in liver, peritoneal macrophages and abdominal aortas of ApoE-/- mice. Of note, the in vitro study, oxidized low-density lipoprotein (ox-LDL) incubation reduced heme oxygenase (HO-1) expressions in human umbilical vein endothelial cells (HUVECs), which was improved by SOAT1 knockdown. Pre-treatment of sn-protoporphyrin (SnPP), an important HO-1 inhibitor, abolished the role of SOAT1 inhibition in suppressing inflammation and abnormal cholesterol transportation. These results indicated that SOAT1 deficiency protected against atherosclerosis progression via inhibiting cholesterol transportation in ApoE-/- mice, which was, at least partly, dependent on HO-1 expressions.
Collapse
|
18
|
Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, McNamara CA, Kronenberg M, Crotty S, Thomas MJ, Sorci-Thomas MG, Hedrick CC. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun 2018; 9:1095. [PMID: 29545616 PMCID: PMC5854619 DOI: 10.1038/s41467-018-03493-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
Regulatory T (Treg) cells contribute to the anti-inflammatory response during atherogenesis. Here we show that during atherogenesis Treg cells lose Foxp3 expression and their immunosuppressive function, leading to the conversion of a fraction of these cells into T follicular helper (Tfh) cells. We show that Tfh cells are pro-atherogenic and that their depletion reduces atherosclerosis. Mechanistically, the conversion of Treg cells to Tfh cells correlates with reduced expression of IL-2Rα and pSTAT5 levels and increased expression of IL-6Rα. In vitro, incubation of naive T cells with oxLDL prevents their differentiation into Treg cells. Furthermore, injection of lipid-free Apolipoprotein AI (ApoAI) into ApoE−/− mice reduces intracellular cholesterol levels in Treg cells and prevents their conversion into Tfh cells. Together our results suggest that ApoAI, the main protein in high-density lipoprotein particles, modulates the cellular fate of Treg cells and thus influences the immune response during atherosclerosis. Regulatory T (Treg) cells contribute to the anti-inflammatory response during atherogenesis. Here Gaddis et al. show that Apolipoprotein AI prevents the conversion of Treg cells into pro-atherogenic T follicular helper cells, and thus regulates the immune response during atherogenesis.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Chantel McSkimming
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Veronica Romines
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Angela M Taylor
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Coleen A McNamara
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Mary G Sorci-Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.,Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, 9200W. Wisconsin Ave., Milwaukee, WI, 53226, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Wacker BK, Dronadula N, Bi L, Stamatikos A, Dichek DA. Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 2017; 38:206-217. [PMID: 29122817 DOI: 10.1161/atvbaha.117.309565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gene therapy that expresses apo A-I (apolipoprotein A-I) from vascular wall cells has promise for preventing and reversing atherosclerosis. Previously, we reported that transduction of carotid artery endothelial cells with a helper-dependent adenoviral (HDAd) vector expressing apo A-I reduced early (4 weeks) fatty streak development in fat-fed rabbits. Here, we tested whether the same HDAd could provide long-term protection against development of more complex lesions. APPROACH AND RESULTS Fat-fed rabbits (n=25) underwent bilateral carotid artery gene transfer, with their left and right common carotids randomized to receive either a control vector (HDAdNull) or an apo A-I-expressing vector (HDAdApoAI). Twenty-four additional weeks of high-fat diet yielded complex intimal lesions containing lipid-rich macrophages as well as smooth muscle cells, often in a lesion cap. Twenty-four weeks after gene transfer, high levels of apo A-I mRNA (median ≥250-fold above background) were present in all HDAdApoAI-treated arteries. Compared with paired control HDAdNull-treated arteries in the same rabbit, HDAdApoAI-treated arteries had 30% less median intimal lesion volume (P=0.03), with concomitant reductions (23%-32%) in intimal lipid, macrophage, and smooth muscle cell content (P≤0.05 for all). HDAdApoAI-treated arteries also had decreased intimal inflammatory markers. VCAM-1 (vascular cell adhesion molecule-1)-stained area was reduced by 36% (P=0.03), with trends toward lower expression of ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein 1), and TNF-α (tumor necrosis factor-α; 13%-39% less; P=0.06-0.1). CONCLUSIONS In rabbits with severe hyperlipidemia, transduction of vascular endothelial cells with an apo A-I-expressing HDAd yields at least 24 weeks of local apo A-I expression that durably reduces atherosclerotic lesion growth and intimal inflammation.
Collapse
Affiliation(s)
- Bradley K Wacker
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Nagadhara Dronadula
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Lianxiang Bi
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Alexis Stamatikos
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - David A Dichek
- From the Department of Medicine, University of Washington School of Medicine, Seattle.
| |
Collapse
|
20
|
Fazio S, Minnier J, Shapiro MD, Tsimikas S, Tarugi P, Averna MR, Arca M, Tavori H. Threshold Effects of Circulating Angiopoietin-Like 3 Levels on Plasma Lipoproteins. J Clin Endocrinol Metab 2017; 102. [PMID: 28633452 PMCID: PMC5587068 DOI: 10.1210/jc.2016-4043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Angiopoietin-like 3 (ANGPTL3) deficiency in plasma due to loss-of-function gene mutations results in familial combined hypobetalipoproteinemia type 2 (FHBL2) in homozygotes. However, the lipid phenotype in heterozygotes is much milder and does not appear to relate directly to ANGPTL3 levels. Furthermore, the low-density lipoprotein (LDL) phenotype in carriers of ANGPTL3 mutations is unexplained. OBJECTIVE To determine whether reduction below a critical threshold in plasma ANGPTL3 levels is a determinant of lipoprotein metabolism in FHBL2, and to determine whether proprotein convertase subtilisin kexin type 9 (PCSK9) is involved in determining low LDL levels in this condition. DESIGN We studied subjects from 19 families with ANGPTL3 mutations and subjects with familial combined hypobetalipoproteinemia type 1 (FHBL1) due to truncated apolipoprotein B (apoB) species. RESULTS First, total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and HDL and LDL particle concentration correlated with plasma ANGPTL3 levels but only when the latter was <25% of normal (<60 ng/dL). Second, the very low-density lipoprotein particle concentration correlated strongly with plasma ANGPTL3 when the latter was <58% of normal. Third, both FHBL1 and FHBL2 subjects showed low levels of mature and LDL-bound PCSK9 and higher levels of its furin-cleaved form. Finally, LDL-bound PCSK9 is protected from cleavage by furin and binds to the LDL receptor more strongly than apoB-free PCSK9. CONCLUSIONS Our results suggest that the hypolipidemic effects of ANGPTL3 mutations in FHBL2 are dependent on a threshold of plasma ANGPTL3 levels, with differential effects on various lipoprotein particles. The increased inactivation of PCSK9 by furin in FHBL1 and FHBL2 is likely to cause increased LDL clearance and suggests novel therapeutic avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hagai Tavori
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
21
|
Cao X, Li Y. β 3-Adrenergic receptor regulates hepatic apolipoprotein A-I gene expression. J Clin Lipidol 2017; 11:1168-1176. [PMID: 28802864 DOI: 10.1016/j.jacl.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND β3-adrenergic receptor (β3-AR) was shown to upregulate hepatic apolipoprotein A-I (apoA-I) expression and reverse atherosclerotic plaques in vivo experiments. However, the effect of β3-AR on apoA-I expression in vitro is unknown. The specific mechanism underlying β3-AR prevention of atherosclerosis is unclear. OBJECTIVE The present study was designed to investigate the molecular mechanism of β3-AR-mediated regulation of hepatic apoA-I gene expression. METHODS HepG2 cells were preincubated with/without a selective protein kinase A inhibitor (H-89) and then treated with a selective β3-AR agonist (BRL37344) or antagonist (SR59230A). The hepatic apoA-I expression was detected by reverse transcription real-time quantitative polymerase chain reaction and Western blot analysis. Enzyme-linked immunosorbent assay was used to evaluate the secretion of apoA-I. A recombinant plasmid containing the apoA-I promoter was constructed and transiently transfected into HepG2 cells, and dual-luciferase reporter assays were used to examine the activity of the apoA-I promoter. A chromatin immunoprecipitation polymerase chain reaction assay was used to evaluate binding activities of hepatocyte nuclear factor-4 (HNF-4), HNF-3, and early growth response protein-1. RESULTS β3-AR activation significantly upregulated apoA-I expression, promoted apoA-I secretion, and enhanced the activities of the apoA-I promoter, HNF-4, and HNF-3 in hepatocytes, whereas early growth response protein-1 was not affected. Moreover, protein kinase A inhibition partially suppressed the activation of the apoA-I promoter, HNF-4, and HNF-3 and almost completely blocked the upregulation of apoA-I expression induced by β3-AR. CONCLUSION β3-AR activation increased the activities of the apoA-I promoter, HNF-4, and HNF-3, which might account for the mechanism of β3-AR-mediated upregulation of hepatic apoA-I expression. β3-AR might exert an anti-atherosclerotic effect by upregulating hepatic apoA-I expression and promoting the cholesterol reverse transport process.
Collapse
Affiliation(s)
- Xiaojing Cao
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, ChaoYang District, Beijing, China
| | - Yanfang Li
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, ChaoYang District, Beijing, China.
| |
Collapse
|
22
|
Kaul S, Xu H, Zabalawi M, Maruko E, Fulp BE, Bluemn T, Brzoza-Lewis KL, Gerelus M, Weerasekera R, Kallinger R, James R, Zhang YS, Thomas MJ, Sorci-Thomas MG. Lipid-Free Apolipoprotein A-I Reduces Progression of Atherosclerosis by Mobilizing Microdomain Cholesterol and Attenuating the Number of CD131 Expressing Cells: Monitoring Cholesterol Homeostasis Using the Cellular Ester to Total Cholesterol Ratio. J Am Heart Assoc 2016; 5:JAHA.116.004401. [PMID: 27821400 PMCID: PMC5210328 DOI: 10.1161/jaha.116.004401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disorder whose development is inversely correlated with high-density lipoprotein concentration. Current therapies involve pharmaceuticals that significantly elevate plasma high-density lipoprotein cholesterol concentrations. Our studies were conducted to investigate the effects of low-dose lipid-free apolipoprotein A-I (apoA-I) on chronic inflammation. The aims of these studies were to determine how subcutaneously injected lipid-free apoA-I reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without sustained elevations in plasma high-density lipoprotein cholesterol concentrations. METHODS AND RESULTS Ldlr-/- and Ldlr-/- apoA-I-/- mice were fed a Western diet for a total of 12 weeks. After 6 weeks, a subset of mice from each group received subcutaneous injections of 200 μg of lipid-free human apoA-I 3 times a week, while the other subset received 200 μg of albumin, as a control. Mice treated with lipid-free apoA-I showed a decrease in cholesterol deposition and immune cell retention in the aortic root compared with albumin-treated mice, regardless of genotype. This reduction in atherosclerosis appeared to be directly related to a decrease in the number of CD131 expressing cells and the esterified cholesterol to total cholesterol content in several immune cell compartments. In addition, apoA-I treatment altered microdomain cholesterol composition that shifted CD131, the common β subunit of the interleukin 3 receptor, from lipid raft to nonraft fractions of the plasma membrane. CONCLUSIONS ApoA-I treatment reduced lipid and immune cell accumulation within the aortic root by systemically reducing microdomain cholesterol content in immune cells. These data suggest that lipid-free apoA-I mediates beneficial effects through attenuation of immune cell lipid raft cholesterol content, which affects numerous types of signal transduction pathways that rely on microdomain integrity for assembly and activation.
Collapse
Affiliation(s)
- Sushma Kaul
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Manal Zabalawi
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elisa Maruko
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Brian E Fulp
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Theresa Bluemn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Kristina L Brzoza-Lewis
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mark Gerelus
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Rachel Kallinger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Roland James
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Yi Sherry Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Mary G Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI .,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
23
|
Abstract
Elevated levels of cholesteryl ester (CE)-enriched apoB containing plasma lipoproteins lead to increased foam cell formation, the first step in the development of atherosclerosis. Unregulated uptake of low-density lipoprotein cholesterol by circulating monocytes and other peripheral blood cells takes place through scavenger receptors and over time causes disruption in cellular cholesterol homeostasis. As lipoproteins are taken up, their CE core is hydrolyzed by liposomal lipases to generate free cholesterol (FC). FC can be either re-esterified and stored as CE droplets or shuttled to the plasma membrane for ATP-binding cassette transporter A1-mediated efflux. Because cholesterol is an essential component of all cellular membranes, some FC may be incorporated into microdomains or lipid rafts. These platforms are essential for receptor signaling and transduction, requiring rapid assembly and disassembly. ATP-binding cassette transporter A1 plays a major role in regulating microdomain cholesterol and is most efficient when lipid-poor apolipoprotein AI (apoAI) packages raft cholesterol into soluble particles that are eventually catabolized by the liver. If FC is not effluxed from the cell, it becomes esterified, CE droplets accumulate and microdomain cholesterol content becomes poorly regulated. This dysregulation leads to prolonged activation of immune cell signaling pathways, resulting in receptor oversensitization. The availability of apoAI or other amphipathic α-helix-rich apoproteins relieves the burden of excess microdomain cholesterol in immune cells allowing a reduction in immune cell proliferation and infiltration, thereby stimulating regression of foam cells in the artery. Therefore, cellular balance between FC and CE is essential for proper immune cell function and prevents chronic immune cell overstimulation and proliferation.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI.
| | - Michael J Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
24
|
Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol 2015; 6:182. [PMID: 26388772 PMCID: PMC4557107 DOI: 10.3389/fphar.2015.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| |
Collapse
|
25
|
Hafiane A, Bielicki JK, Johansson JO, Genest J. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro. PLoS One 2015. [PMID: 26207756 PMCID: PMC4514675 DOI: 10.1371/journal.pone.0131997] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are potentially anti-atherogenic.
Collapse
Affiliation(s)
- Anouar Hafiane
- Cardiovascular Research Laboratories Laboratory, Research Institute of the McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - John K. Bielicki
- Lawrence Berkeley National Laboratory, Donner Laboratory, MS1-267, Berkeley, CA, United States of America
| | | | - Jacques Genest
- Cardiovascular Research Laboratories Laboratory, Research Institute of the McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
- * E-mail:
| |
Collapse
|
26
|
Pollard RD, Blesso CN, Zabalawi M, Fulp B, Gerelus M, Zhu X, Lyons EW, Nuradin N, Francone OL, Li XA, Sahoo D, Thomas MJ, Sorci-Thomas MG. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake. J Biol Chem 2015; 290:15496-15511. [PMID: 25947382 DOI: 10.1074/jbc.m115.646240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.
Collapse
Affiliation(s)
- Ricquita D Pollard
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06268
| | - Manal Zabalawi
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Brian Fulp
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Mark Gerelus
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Xuewei Zhu
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Erica W Lyons
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Nebil Nuradin
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Omar L Francone
- Shire Human Genetic Therapies, Lexington, Massachusetts 02421
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky 40506
| | - Daisy Sahoo
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael J Thomas
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mary G Sorci-Thomas
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|