1
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Goo YH, Plakkal Ayyappan J, Cheeran FD, Bangru S, Saha PK, Baar P, Schulz S, Lydic TA, Spengler B, Wagner AH, Kalsotra A, Yechoor VK, Paul A. Lipid droplet-associated hydrolase mobilizes stores of liver X receptor sterol ligands and protects against atherosclerosis. Nat Commun 2024; 15:6540. [PMID: 39095402 PMCID: PMC11297204 DOI: 10.1038/s41467-024-50949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Foam cells in atheroma are engorged with lipid droplets (LDs) that contain esters of regulatory lipids whose metabolism remains poorly understood. LD-associated hydrolase (LDAH) has a lipase structure and high affinity for LDs of foam cells. Using knockout and transgenic mice of both sexes, here we show that LDAH inhibits atherosclerosis development and promotes stable lesion architectures. Broad and targeted lipidomic analyzes of primary macrophages and comparative lipid profiling of atheroma identified a broad impact of LDAH on esterified sterols, including natural liver X receptor (LXR) sterol ligands. Transcriptomic analyzes coupled with rescue experiments show that LDAH modulates the expression of prototypical LXR targets and leads macrophages to a less inflammatory phenotype with a profibrotic gene signature. These studies underscore the role of LDs as reservoirs and metabolic hubs of bioactive lipids, and suggest that LDAH favorably modulates macrophage activation and protects against atherosclerosis via lipolytic mobilization of regulatory sterols.
Collapse
Affiliation(s)
- Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | | | - Francis D Cheeran
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
- Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Paula Baar
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
- TransMIT GmbH, Center for Mass Spectrometric Developments, Giessen, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
- Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Vijay K Yechoor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Antoni Paul
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
3
|
Jiang X, Zhang B, Lan F, Zhong C, Jin J, Li X, Zhou Q, Li J, Yang N, Wen C, Sun C. Host genetics and gut microbiota jointly regulate blood biochemical indicators in chickens. Appl Microbiol Biotechnol 2023; 107:7601-7620. [PMID: 37792060 PMCID: PMC10656342 DOI: 10.1007/s00253-023-12814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Blood biochemical indicators play a crucial role in assessing an individual's overall health status and metabolic function. In this study, we measured five blood biochemical indicators, including total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-CH), triglycerides (TG), high-density lipoprotein cholesterol (HDL-CH), and blood glucose (BG), as well as 19 growth traits of 206 male chickens. By integrating host whole-genome information and 16S rRNA sequencing of the duodenum, jejunum, ileum, cecum, and feces microbiota, we assessed the contributions of host genetics and gut microbiota to blood biochemical indicators and their interrelationships. Our results demonstrated significant negative phenotypic and genetic correlations (r = - 0.20 ~ - 0.67) between CHOL and LDL-CH with growth traits such as body weight, abdominal fat content, muscle content, and shin circumference. The results of heritability and microbiability indicated that blood biochemical indicators were jointly regulated by host genetics and gut microbiota. Notably, the heritability of HDL-CH was estimated to be 0.24, while the jejunal microbiability for BG and TG reached 0.45 and 0.23. Furthermore, by conducting genome-wide association study (GWAS) with the single-nucleotide polymorphism (SNPs), insertion/deletion (indels), and structural variation (SV), we identified RAP2C, member of the RAS oncogene family (RAP2C), dedicator of cytokinesis 11 (DOCK11), neurotensin (NTS) and BOP1 ribosomal biogenesis factor (BOP1) as regulators of HDL-CH, and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5), dihydrodiol dehydrogenase (DHDH), and potassium voltage-gated channel interacting protein 1 (KCNIP1) as candidate genes of BG. Moreover, our findings suggest that cecal RF39 and Clostridia_UCG_014 may be linked to the regulation of CHOL, and jejunal Streptococcaceae may be involved in the regulation of TG. Additionally, microbial GWAS results indicated that the presence of gut microbiota was under host genetic regulation. Our findings provide valuable insights into the complex interaction between host genetics and microbiota in shaping the blood biochemical profile of chickens. KEY POINTS: • Multiple candidate genes were identified for the regulation of CHOL, HDL-CH, and BG. • RF39, Clostridia_UCG_014, and Streptococcaceae were implicated in CHOL and TG modulation. • The composition of gut microbiota is influenced by host genetics.
Collapse
Affiliation(s)
- Xinwei Jiang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Boxuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fangren Lan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Conghao Zhong
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Liu D, Zhu J, Zhou D, Nikas EG, Mitanis NT, Sun Y, Wu C, Mancuso N, Cox NJ, Wang L, Freedland SJ, Haiman CA, Gamazon ER, Nikas JB, Wu L. A transcriptome-wide association study identifies novel candidate susceptibility genes for prostate cancer risk. Int J Cancer 2022; 150:80-90. [PMID: 34520569 PMCID: PMC8595764 DOI: 10.1002/ijc.33808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
A large proportion of heritability for prostate cancer risk remains unknown. Transcriptome-wide association study combined with validation comparing overall levels will help to identify candidate genes potentially playing a role in prostate cancer development. Using data from the Genotype-Tissue Expression Project, we built genetic models to predict normal prostate tissue gene expression using the statistical framework PrediXcan, a modified version of the unified test for molecular signatures and Joint-Tissue Imputation. We applied these prediction models to the genetic data of 79 194 prostate cancer cases and 61 112 controls to investigate the associations of genetically determined gene expression with prostate cancer risk. Focusing on associated genes, we compared their expression in prostate tumor vs normal prostate tissue, compared methylation of CpG sites located at these loci in prostate tumor vs normal tissue, and assessed the correlations between the differentiated genes' expression and the methylation of corresponding CpG sites, by analyzing The Cancer Genome Atlas (TCGA) data. We identified 573 genes showing an association with prostate cancer risk at a false discovery rate (FDR) ≤ 0.05, including 451 novel genes and 122 previously reported genes. Of the 573 genes, 152 showed differential expression in prostate tumor vs normal tissue samples. At loci of 57 genes, 151 CpG sites showed differential methylation in prostate tumor vs normal tissue samples. Of these, 20 CpG sites were correlated with expression of 11 corresponding genes. In this TWAS, we identified novel candidate susceptibility genes for prostate cancer risk, providing new insights into prostate cancer genetics and biology.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dan Zhou
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily G Nikas
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Nikos T Mitanis
- Department of Mathematics, University of the Aegean, Samos, Greece
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian, P. R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, 364012, P.R. China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, Fujian, 364012, P.R. China
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Stephen J Freedland
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jason B Nikas
- Research & Development, Genomix Inc., Minneapolis, MN, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Olarte MJ, Swanson JMJ, Walther TC, Farese RV. The CYTOLD and ERTOLD pathways for lipid droplet-protein targeting. Trends Biochem Sci 2022; 47:39-51. [PMID: 34583871 PMCID: PMC8688270 DOI: 10.1016/j.tibs.2021.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
Lipid droplets (LDs) are the main organelles for lipid storage, and their surfaces contain unique proteins with diverse functions, including those that facilitate the deposition and mobilization of LD lipids. Among organelles, LDs have an unusual structure with an organic, hydrophobic oil phase covered by a phospholipid monolayer. The unique properties of LD monolayer surfaces require proteins to localize to LDs by distinct mechanisms. Here we review the two pathways known to mediate direct LD protein localization: the CYTOLD pathway mediates protein targeting from the cytosol toLDs, and the ERTOLD pathway functions in protein targeting from the endoplasmic reticulum toLDs. We describe the emerging principles for each targeting pathway in animal cells and highlight open questions in the field.
Collapse
Affiliation(s)
- Maria-Jesus Olarte
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02124, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02124, USA.
| |
Collapse
|
6
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
7
|
Determinants of Endoplasmic Reticulum-to-Lipid Droplet Protein Targeting. Dev Cell 2020; 54:471-487.e7. [PMID: 32730754 DOI: 10.1016/j.devcel.2020.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/11/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Lipid droplet (LD) formation from the endoplasmic reticulum (ER) is accompanied by the targeting and accumulation of specific hydrophobic, membrane-embedded proteins on LDs. The determinants of this process are unknown. Here, we study the hydrophobic membrane motifs of two Drosophila melanogaster proteins, GPAT4 and ALG14, that utilize this pathway, and we identify crucial sequence features that mediate LD accumulation. Molecular dynamics simulations and studies in cells reveal that LD targeting of these motifs requires deeply inserted tryptophans that have lower free energy in the LD oil phase and positively charged residues near predicted hairpin hinges that become less constrained in the LD environment. Analyzing hydrophobic motifs from similar LD-targeting proteins, it appears that the distribution of tryptophan and positively charged residues distinguishes them from non-LD-targeting membrane motifs. Our studies identify specific sequence features and principles of hydrophobic membrane motifs that mediate their accumulation on LDs.
Collapse
|
8
|
Dubey R, Stivala CE, Nguyen HQ, Goo YH, Paul A, Carette JE, Trost BM, Rohatgi R. Lipid droplets can promote drug accumulation and activation. Nat Chem Biol 2020; 16:206-213. [PMID: 31932720 PMCID: PMC6989039 DOI: 10.1038/s41589-019-0447-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Genetic screens in cultured human cells represent a powerful unbiased strategy to identify cellular pathways that determine drug efficacy, providing critical information for clinical development. We used insertional mutagenesis-based screens in haploid cells to identify genes required for the sensitivity to lasonolide A (LasA), a macrolide derived from a marine sponge that kills certain types of cancer cells at low nanomolar concentrations. Our screens converged on a single gene, LDAH, encoding a member of the metabolite serine hydrolase family that is localized on the surface of lipid droplets. Mechanistic studies revealed that LasA accumulates in lipid droplets, where it is cleaved into a toxic metabolite by LDAH. We suggest that selective partitioning of hydrophobic drugs into the oil phase of lipid droplets can influence their activation and eventual toxicity to cells.
Collapse
Affiliation(s)
- Ramin Dubey
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Craig E Stivala
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Genentech, South San Francisco, CA, USA
| | | | - Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Antoni Paul
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Barry M Trost
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Affiliation(s)
- Zhipeng Li
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Siti Nur Sarah Morris
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
10
|
Zhang Y, Liu Y, Duan J, Wang H, Zhang Y, Qiao K, Wang J. Cholesterol depletion sensitizes gallbladder cancer to cisplatin by impairing DNA damage response. Cell Cycle 2019; 18:3337-3350. [PMID: 31599189 DOI: 10.1080/15384101.2019.1676581] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is the common malignancy of the bile tract system with extremely poor clinical outcomes, owing to its metastatic property and intrinsic resistance to the first-line drugs. Although it is well-established that cholesterol abnormity contributes to gallstone formation, a leading risk factor for GBC, the link of cholesterol homeostasis with GBC has not been investigated. The present study systematically examined the genes implicated in cholesterol homeostasis, and revealed altered gene expressions of de novo cholesterol biosynthesis and sterol sulfonation (SULT2B1), reduced bile acid synthesis (CYP7B1 and CYP39A1) and impaired sterol efflux (ABCA1, ABCG5, LCAT, and CETP) in GBC tissues. Suppression of cholesterol biosynthesis by lovastatin inhibited GBC cell proliferation possibly through attenuating the DNA repair process. Further investigation revealed lovastatin sensitized GBC cells to cisplatin-induced apoptosis and suppressed the activation of CHK1, CHK2, and H2AX during DNA damage response. By using chemically distinct statins, HMGCR depletion or supplementing mevalonate, the product of HMGCR, we showed the inhibitory effects on DNA repair process of lovastatin were due to the blockage of the mevalonate pathway. Subcutaneous xenograft mice model suggested lovastatin promoted the therapeutic efficacy of cisplatin, and significantly prolonged the survival times of tumor-bearing mice. Moreover, HMGCR ablation repressed tumor growth in vivo, which can be rescued partially by restored expression of HMGCR, suggesting the on-target effects of lovastatin. Therefore, our study provides the clinical relevance of cholesterol homeostasis with GBC progression, and highlights a novel intervention of combined use of lovastatin and cisplatin for GBC.
Collapse
Affiliation(s)
- Yonglong Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- Clinical Stem Cell Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinlin Duan
- Department of Pathology Affiliated Tongren Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Qiao
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Currall BB, Chen M, Sallari RC, Cotter M, Wong KE, Robertson NG, Penney KL, Lunardi A, Reschke M, Hickox AE, Yin Y, Wong GT, Fung J, Brown KK, Williamson RE, Sinnott-Armstrong NA, Kammin T, Ivanov A, Zepeda-Mendoza CJ, Shen J, Quade BJ, Signoretti S, Arnos KS, Banks AS, Patsopoulos N, Liberman MC, Kellis M, Pandolfi PP, Morton CC. Loss of LDAH associated with prostate cancer and hearing loss. Hum Mol Genet 2019; 27:4194-4203. [PMID: 30169630 DOI: 10.1093/hmg/ddy310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Great strides in gene discovery have been made using a multitude of methods to associate phenotypes with genetic variants, but there still remains a substantial gap between observed symptoms and identified genetic defects. Herein, we use the convergence of various genetic and genomic techniques to investigate the underpinnings of a constellation of phenotypes that include prostate cancer (PCa) and sensorineural hearing loss (SNHL) in a human subject. Through interrogation of the subject's de novo, germline, balanced chromosomal translocation, we first identify a correlation between his disorders and a poorly annotated gene known as lipid droplet associated hydrolase (LDAH). Using data repositories of both germline and somatic variants, we identify convergent genomic evidence that substantiates a correlation between loss of LDAH and PCa. This correlation is validated through both in vitro and in vivo models that show loss of LDAH results in increased risk of PCa and, to a lesser extent, SNHL. By leveraging convergent evidence in emerging genomic data, we hypothesize that loss of LDAH is involved in PCa and other phenotypes observed in support of a genotype-phenotype association in an n-of-one human subject.
Collapse
Affiliation(s)
- Benjamin B Currall
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ming Chen
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Richard C Sallari
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maura Cotter
- Center for Molecular Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Kristen E Wong
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nahid G Robertson
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathryn L Penney
- Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Lunardi
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Markus Reschke
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ann E Hickox
- Harvard Medical School, Boston, MA, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Yanbo Yin
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Garrett T Wong
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacqueline Fung
- Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kerry K Brown
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Nicholas A Sinnott-Armstrong
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tammy Kammin
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Ivanov
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Cinthya J Zepeda-Mendoza
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jun Shen
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA.,Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA
| | - Bradley J Quade
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen S Arnos
- Department of Science, Technology, & Mathematics, Gallaudet University, Washington, DC, USA
| | - Alexander S Banks
- Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston MA, USA
| | - Nikolaos Patsopoulos
- Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - M Charles Liberman
- Harvard Medical School, Boston, MA, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pier Paolo Pandolfi
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cynthia C Morton
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA.,Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
13
|
Chaplot K, Pimpale L, Ramalingam B, Deivasigamani S, Kamat SS, Ratnaparkhi GS. SOD1 activity threshold and TOR signalling modulate VAP(P58S) aggregation via reactive oxygen species-induced proteasomal degradation in a Drosophila model of amyotrophic lateral sclerosis. Dis Model Mech 2019; 12:dmm.033803. [PMID: 30635270 PMCID: PMC6398501 DOI: 10.1242/dmm.033803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is an incurable, late-onset motor neuron disease, linked strongly to various causative genetic loci. ALS8 codes for a missense mutation, P56S, in VAMP-associated protein B (VAPB) that causes the protein to misfold and form cellular aggregates. Uncovering genes and mechanisms that affect aggregation dynamics would greatly help increase our understanding of the disease and lead to potential therapeutics. We developed a quantitative high-throughput Drosophila S2R+ cell-based kinetic assay coupled with fluorescent microscopy to score for genes involved in the modulation of aggregates of the fly orthologue, VAP(P58S), fused with GFP. A targeted RNA interference screen against 900 genes identified 150 hits that modify aggregation, including the ALS loci Sod1 and TDP43 (also known as TBPH), as well as genes belonging to the mTOR pathway. Further, a system to measure the extent of VAP(P58S) aggregation in the Drosophila larval brain was developed in order to validate the hits from the cell-based screen. In the larval brain, we find that reduction of SOD1 levels or decreased mTOR signalling reduces aggregation, presumably by increasing the levels of cellular reactive oxygen species (ROS). The mechanism of aggregate clearance is, primarily, proteasomal degradation, which appears to be triggered by an increase in ROS. We have thus uncovered an interesting interplay between SOD1, ROS and mTOR signalling that regulates the dynamics of VAP aggregation. Mechanistic processes underlying such cellular regulatory networks will lead to better understanding of the initiation and progression of ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kriti Chaplot
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Lokesh Pimpale
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | | | | | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
14
|
Pathak D, Mehendale N, Singh S, Mallik R, Kamat SS. Lipidomics Suggests a New Role for Ceramide Synthase in Phagocytosis. ACS Chem Biol 2018; 13:2280-2287. [PMID: 29963848 PMCID: PMC6102644 DOI: 10.1021/acschembio.8b00438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Phagocytosis
is an evolutionarily conserved biological process where pathogens
or cellular debris are cleared by engulfing them in a membrane-enclosed
cellular compartment called the phagosome. The formation, maturation,
and subsequent degradation of a phagosome is an important immune response
essential for protection against many pathogens. Yet, the global lipid
profile of phagosomes remains unknown, especially as a function of
their maturation in immune cells. Here, we show using mass spectrometry
based quantitative lipidomics that the ceramide class of lipids, especially
very long chain ceramides, are enriched on maturing phagosomes with
a concomitant decrease in the biosynthetic precursors of ceramides.
We thus posit a new function for the enzyme ceramide synthase during
phagocytosis in mammalian macrophages. Biochemical assays, cellular
lipid feeding experiments, and pharmacological blockade of ceramide
synthase together show that this enzyme indeed controls the flux of
ceramides on maturing phagosomes. We also find similar results in
the primitive eukaryote Dictyostelium discoideum,
suggesting that ceramide enrichment may be evolutionarily conserved
and likely an indispensible step in phagosome maturation.
Collapse
Affiliation(s)
- Divya Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005, India
| | - Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shubham Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Roop Mallik
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
15
|
Lipid Droplet-Associated Hydrolase Promotes Lipid Droplet Fusion and Enhances ATGL Degradation and Triglyceride Accumulation. Sci Rep 2017; 7:2743. [PMID: 28578400 PMCID: PMC5457427 DOI: 10.1038/s41598-017-02963-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 01/09/2023] Open
Abstract
Lipid droplet (LD)-associated hydrolase (LDAH) is a newly identified LD protein abundantly expressed in tissues that predominantly store triacylglycerol (TAG). However, how LDAH regulates TAG metabolism remains unknown. We found that upon oleic acid loading LDAH translocalizes from the ER to newly formed LDs, and induces LD coalescence in a tubulin-dependent manner. LDAH overexpression and downregulation in HEK293 cells increase and decrease, respectively, TAG levels. Pulse and chase experiments show that LDAH enhances TAG biogenesis, but also decreases TAG turnover and fatty acid release from cells. Mutations in predicted catalytic and acyltransferase motifs do not influence TAG levels, suggesting that the effect is independent of LDAH’s enzymatic activity. However, a LDAH alternative-splicing variant missing 90 amino acids at C-terminus does not promote LD fusion or TAG accumulation, while it still localizes to LDs. Interestingly, LDAH enhances polyubiquitination and proteasomal degradation of adipose triglyceride lipase (ATGL), a rate limiting enzyme of TAG hydrolysis. Co-expression of ATGL reverses the changes in LD phenotype induced by LDAH, and both proteins counterbalance their effects on TAG stores. Together, these studies support that under conditions of TAG storage in LDs LDAH plays a primarily lipogenic role, inducing LD growth and enhancing degradation of ATGL.
Collapse
|