1
|
Rubio-Ruíz ME, Plata-Corona JC, Soria-Castro E, Díaz-Juárez JA, Sánchez-Aguilar M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence-A Narrative Review. Cells 2024; 13:1488. [PMID: 39273057 PMCID: PMC11394383 DOI: 10.3390/cells13171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the world, and that is why finding an effective and multi-functional treatment alternative to combat these diseases has become more important. Fibrates and thiazolidinediones, peroxisome proliferator-activated receptors alpha and gamma are the pharmacological therapies used to treat dyslipidemia and type 2 diabetes, respectively. New mechanisms of action of these drugs have been found, demonstrating their pleiotropic effects, which contribute to preserving the heart by reducing or even preventing myocardial damage. Here, we review the mechanisms underlying the cardioprotective effects of PPAR agonists and regulating morphological and physiological heart alterations (metabolic flexibility, mitochondrial damage, apoptosis, structural remodeling, and inflammation). Moreover, clinical evidence regarding the cardioprotective effect of PPAR agonists is also addressed.
Collapse
Affiliation(s)
- María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Juan Carlos Plata-Corona
- Department of Interventional Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Julieta Anabell Díaz-Juárez
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Sánchez-Aguilar
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| |
Collapse
|
2
|
Paquette M, Blais C, Fortin A, Bernard S, Baass A. Dietary recommendations for dysbetalipoproteinemia: A need for better evidence. J Clin Lipidol 2023; 17:549-556. [PMID: 37268489 DOI: 10.1016/j.jacl.2023.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
The increased risk of cardiovascular disease in patients with dysbetalipoproteinemia (DBL) is well documented and is associated with the dysfunctional metabolism of remnant lipoproteins. Although these patients are known to respond well to lipid-lowering medication including statins and fibrates, the best dietary approach to lower remnant lipoprotein accumulation and to prevent cardiovascular outcomes remain unclear. Indeed, current evidence is based on studies published mainly in the 1970s, which comprise small sample sizes and methodological limitations. This review aims to summarize nutritional studies performed in DBL patients to date and to discuss potential avenues in this field and future areas of research.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Chantal Blais
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Andréanne Fortin
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada; Department of Medicine, Division of Endocrinology, University of Montreal, Montreal, Québec, Canada; Research Centre of the Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, Québec, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
3
|
Heidemann BE, Koopal C, Roeters van Lennep JE, Stroes ESG, Riksen NP, Mulder MT, -van der Zee LCVV, Blackhurst DM, Marais AD, Visseren FLJ. Effect of evolocumab on fasting and post fat load lipids and lipoproteins in familial dysbetalipoproteinemia. J Clin Lipidol 2023; 17:112-123. [PMID: 36384662 DOI: 10.1016/j.jacl.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Familial dysbetalipoproteinemia (FD) is the second most common monogenic lipid disorder (prevalence 1 in 850-3500), characterized by postprandial remnant accumulation and associated with increased cardiovascular disease (CVD) risk. Many FD patients do not achieve non-HDL-C treatment goals, indicating the need for additional lipid-lowering treatment options. OBJECTIVES To evaluate the effect of the PCSK9 monoclonal antibody evolocumab added to standard lipid-lowering therapy on fasting and post fat load lipids and lipoproteins in patients with FD. METHODS A randomized placebo-controlled double-blind crossover trial comparing evolocumab (140 mg subcutaneous every 2 weeks) with placebo during two 12-week treatment periods. At the start and end of each treatment period patients received an oral fat load. The primary endpoint was the 8-hour post fat load non-HDL-C area under the curve (AUC). Secondary endpoints included fasting and post fat load lipids and lipoproteins. RESULTS In total, 28 patients completed the study. Mean age was 62±9 years and 93% had an Ɛ2Ɛ2 genotype. Evolocumab reduced the 8-hour post fat load non-HDL-C AUC with 49% (95%CI 42-55) and apolipoprotein B (apoB) AUC with 47% (95%CI 41-53). Other fasting and absolute post fat load lipids and lipoproteins including triglycerides and remnant-cholesterol were also significantly reduced by evolocumab. However, evolocumab did not have significant effects on the rise above fasting levels that occurred after consumption of the oral fat load. CONCLUSIONS Evolocumab added to standard lipid-lowering therapy significantly reduced fasting and absolute post fat load concentrations of non-HDL-C, apoB and other atherogenic lipids and lipoproteins in FD patients. The clinically significant decrease in lipids and lipoproteins can be expected to translate into a reduction in CVD risk in these high-risk patients.
Collapse
Affiliation(s)
- Britt E Heidemann
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Charlotte Koopal
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jeanine E Roeters van Lennep
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonie C van Vark -van der Zee
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dee M Blackhurst
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - A David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
4
|
Aguilar-Salinas CA, Gómez-Díaz RA, Corral P. New Therapies for Primary Hyperlipidemia. J Clin Endocrinol Metab 2022; 107:1216-1224. [PMID: 34888679 DOI: 10.1210/clinem/dgab876] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/19/2022]
Abstract
Primary hyperlipidemias include a heterogeneous set of monogenic and polygenic conditions characterized by a strong family aggregation, severe forms of hypercholesterolemia and/or hypertriglyceridemia, appearance early on life, and a high risk of cardiovascular events and/or recurrent pancreatitis. In real life, a small proportion of the primary hyperlipidemia cases is recognized and treated properly. Our goal is to present an update of current and upcoming therapies for patients with primary hyperlipidemia. Recently, new lipid-lowering medications have obtained authorization from the U.S. Food and Drug Administration and the European Medicines Agency. These drugs target metabolic pathways, including (adenosine 5'-triphosphates)-citrate lyase (bempedoic acid), proprotein convertase subtilisin/kexin 9 (inclisiran), apolipoprotein CIII (volanesorsen), and angiopoietin-like 3 (volanesorsen), that have additive effects with the actions of the currently available therapies (i.e., statins, ezetimibe or fibrates). We discuss the potential clinical indications for the novel medications. To conclude, the addition of these new medications to the therapeutic options for primary hyperlipidemia patients may increase the likelihood of achieving the treatment targets. Also, it could be a safer alternative for patients with side effects for the currently available drugs.
Collapse
Affiliation(s)
- Carlos A Aguilar-Salinas
- Direction of Nutrition Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Rita A Gómez-Díaz
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Pablo Corral
- Pharmacology Department, School of Medicine, FASTA University, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Hadjivasilis A, Kouis P, Kousios A, Panayiotou A. The Effect of Fibrates on Kidney Function and Chronic Kidney Disease Progression: A Systematic Review and Meta-Analysis of Randomised Studies. J Clin Med 2022; 11:768. [PMID: 35160220 PMCID: PMC8836930 DOI: 10.3390/jcm11030768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
AIM Fibrates have proven efficacy in cardiovascular risk reduction and are commonly used, in addition to statins, to control hypertriglyceridaemia. Their use is often limited due to reduction in glomerular filtration rate at treatment initiation. However, recent studies suggest benign changes in kidney function and improvement of proteinuria, an established early marker of microvascular disease and kidney disease progression. We summarize the evidence from existing trials and provide a summary of effects of fibrates, alone or in combination, on kidney disease progression and proteinuria. METHODS AND RESULTS Systematic review and meta-analysis of randomized, controlled trials (PROSPERO CRD42020187764). Out of 12,243 potentially eligible studies, 29 were included in qualitative and quantitative analysis, with a total of 20,176 patients. Mean creatinine increased by 1.05 (95% CI (0.63 to 1.46)) units in patients receiving fibrates vs. comparator, and this was similar in all other subgroups. eGFR showed a bigger decrease in the fibrates arm (SMD -1.99; 95% CI (-3.49 to -0.48)) when all studies were pooled together. Notably, short-term serum creatinine and eGFR changes remained constant in the long-term. Pooled estimates show that fibrates improve albuminuria progression, RR 0.86; 95% CI (0.76 to 0.98); albuminuria regression, RR 1.19; 95% CI (1.08 to 1.310). CONCLUSIONS Fibrates improve albuminuria in patients with and without diabetes when used to treat hyperlipidaemia. The modest creatinine increase should not be a limiting factor for fibrate initiation in people with preserved renal function or mild CKD. The long-term effects on kidney disease progression warrant further study.
Collapse
Affiliation(s)
- Alexandros Hadjivasilis
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
| | - Panayiotis Kouis
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | - Andreas Kousios
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
- West London Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London W12 0HS, UK
- Centre for Inflammatory Disease, Imperial College London, London W12 0HS, UK
| | - Andrie Panayiotou
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
| |
Collapse
|
6
|
Folwaczny A, Waldmann E, Altenhofer J, Henze K, Parhofer KG. Postprandial Lipid Metabolism in Normolipidemic Subjects and Patients with Mild to Moderate Hypertriglyceridemia: Effects of Test Meals Containing Saturated Fatty Acids, Mono-Unsaturated Fatty Acids, or Medium-Chain Fatty Acids. Nutrients 2021; 13:nu13051737. [PMID: 34065380 PMCID: PMC8160756 DOI: 10.3390/nu13051737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Fasting and postprandial hypertriglyceridemia are causal risk factors for atherosclerosis. The prevalence of hypertriglyceridemia is approximately 25–30% and most hypertriglyceridemic patients suffer from mild to moderate hypertriglyceridemia. Data regarding dietary interventions on postprandial triglyceride metabolism of mildly to moderately hypertriglyceridemic patients is, however, sparse. In a randomized controlled trial, eight mildly hypertriglyceridemic patients and five healthy, normolipidemic controls received three separate standardized fat-meals containing either saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), or medium-chain fatty acids (MCFA) in a randomized order. Fasting and postprandial lipid parameters were determined over a 10 h period and the (incremental) area under the curve (AUC/iAUC) for plasma triglycerides and other parameters were determined. MCFA do not lead to a significant elevation of postprandial total plasma triglycerides and other triglyceride parameters, while both SFA (patients: p = 0.003, controls: p = 0.03 compared to MCFA) and MUFA (patients: p = 0.001; controls: p = 0.14 compared to MCFA) do lead to such an increase. Patients experienced a significantly more pronounced increase of plasma triglycerides than controls (SFA: patients iAUC = 1006 mg*h/dL, controls iAUC = 247 mg*h/dL, p = 0.02; MUFA: patients iAUC = 962 mg*h/dL, controls iAUC = 248 mg*h/dL, p = 0.05). Replacing SFA with MCFA may be a treatment option for mildly to moderately hypertriglyceridemic patients as it prevents postprandial hypertriglyceridemia.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The functions, genetic variations and impact of apolipoprotein E on lipoprotein metabolism in general are placed in the context of clinical practice dealing with moderate dyslipidaemia as well as dysbetalipoproteinemia, a highly atherogenic disorder and lipoprotein glomerulopathy. RECENT FINDINGS Additional variants of apolipoprotein E and participation of apolipoprotein E in inflammation are of interest. The mostly favourable effects of apolipoprotein E2 as well as the atherogenic nature of apolipoproteinE4, which has an association with cognitive impairment, are confirmed. The contribution of remnant lipoproteins of triglyceride-rich lipoproteins, of which dysbetalipoproteinemia represents an extreme, is explored in atherosclerosis. Mimetic peptides may present new therapeutic approaches. Apolipoprotein E is an important determinant of the lipid profile and cardiovascular health in the population at large and can precipitate dysbetalipoproteinemia and glomerulopathy. Awareness of apolipoprotein E polymorphisms should improve medical care.
Collapse
|
8
|
Boot CS, Luvai A, Neely RDG. The clinical and laboratory investigation of dysbetalipoproteinemia. Crit Rev Clin Lab Sci 2020; 57:458-469. [PMID: 32255405 DOI: 10.1080/10408363.2020.1745142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Familial dysbetalipoproteinemia (type III hyperlipoproteinemia) is a potentially underdiagnosed inherited dyslipidemia associated with greatly increased risk of coronary and peripheral vascular disease. The mixed hyperlipidemia observed in this disorder usually responds well to appropriate medical therapy and lifestyle modification. Although there are characteristic clinical features such as palmar and tuberous xanthomata, associated with dysbetalipoproteinemia, they are not always present, and their absence cannot be used to exclude the disorder. The routine lipid profile cannot distinguish dysbetalipoproteinemia from other causes of mixed hyperlipidemia and so additional investigations are required for confident diagnosis or exclusion. A range of investigations that have been proposed as potential diagnostic tests are discussed in this review, but the definitive biochemical test for dysbetalipoproteinemia is widely considered to be beta quantification. Beta quantification can determine the presence of "β-VLDL" in the supernatant following ultracentrifugation and whether the VLDL cholesterol to triglyceride ratio is elevated. Both features are considered hallmarks of the disease. However, beta quantification and other specialist tests are not widely available and are not high-throughput tests that can practically be applied to all patients with mixed hyperlipidemia. Using apolipoprotein B (as a ratio either to total or non-HDL cholesterol or as part of a multi-step algorithm) as an initial test to select patients for further investigation is a promising approach. Several studies have demonstrated a high degree of diagnostic sensitivity and specificity using these approaches and apolipoprotein B is a relatively low-cost test that is widely available on high-throughput platforms. Genetic testing is also important in the diagnosis, but it should be noted that most individuals with an E2/2 genotype do not suffer from remnant hyperlipidemia and around 10% of familial dysbetalipoproteinemia cases are caused by rarer, autosomal dominant mutations in APOE that will only be detected if the gene is fully sequenced. Wider implementation of diagnostic pathways utilizing apo B could lead to more rational use of specialist investigations and more consistent detection of patients with dysbetalipoproteinemia. Without the application of a consistent evidence-based approach to identifying dysbetalipoproteinemia, many cases are likely to remain undiagnosed.
Collapse
Affiliation(s)
- Christopher S Boot
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ahai Luvai
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert D G Neely
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Sulaiman RA. Inherited metabolic disorders and dyslipidaemia. J Clin Pathol 2019; 73:384-390. [PMID: 31757783 DOI: 10.1136/jclinpath-2019-205910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 11/04/2022]
Abstract
Monogenic dyslipidaemia is a diverse group of multisystem disorders. Patients may present to various specialities from early childhood to late in adult life, and it usually takes longer before the diagnosis is established. Increased awareness of these disorders among clinicians is imperative for early diagnosis. This best practice review provides an overview of primary dyslipidaemias, highlighting their clinical presentation, relevant biochemical and molecular tests. It also addresses the emerging role of genetics in the early diagnosis and prevention of these disorders.
Collapse
Affiliation(s)
- Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Wei XY, Yang YJ, Zhu XH. The effect of bezafibrate in preventing glucolipid abnormalities induced by the antipsychotic risperidone. Psychiatry Res 2019; 281:112584. [PMID: 31586837 DOI: 10.1016/j.psychres.2019.112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022]
Abstract
The present study aimed to investigate the effect of bezafibrate on glucolipid abnormalities induced by antipsychotics in schizophrenia. Patients in the treatment group (group A) were treated with antipsychotics and a daily dose of 200 mg bezafibrate for 12 weeks, and patients in the control group (group B) were treated with antipsychotics; sugar, fat and weight changes before and after the treatment were compared between the two groups. Before treatment the differences in TG, TC, LDL-C, HDL-C, body weight and blood glucose between groups A and B were not statistically significant. However, in group B, levels of TG, TC, LDL-C, body weight and blood glucose after treatment showed statistically significant increases, although levels of HDL-C did not register any statistically significant change. By contract, in group A, there were no statistically significant changes in any of the variables measured. Bezafibrate can prevent an increase in sugar, fat and weight gain in treating schizophrenia patients with antipsychotics, and low doses of bezafibrate are safe in the antipsychotic treatment for schizophrenia.
Collapse
Affiliation(s)
- Xian-Yu Wei
- Department of Psychology, Xuzhou Oriental People's Hospital, Xuzhou 221004, China.
| | - Yong-Jie Yang
- Department of Psychology, Xuzhou Oriental People's Hospital, Xuzhou 221004, China
| | - Xiang-Hua Zhu
- Department of Psychology, Xuzhou Oriental People's Hospital, Xuzhou 221004, China
| |
Collapse
|
11
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
12
|
Abstract
Dyslipidemia is one of the major cardiovascular risk factors, but beyond statin treatment-which represents the cornerstone of therapy-a relevant practical uncertainty regards the use of fibrate derivatives. In the lack of successful results from the main cardiovascular trials, guidelines recommend the use of peroxisome proliferator-activated receptor agonists in selected cases, i.e. patients with true atherogenic dyslipidemia. However, recent observations indicate that fenofibrate treatment may provide a reliable complementary support against residual cardiovascular risk. We therefore summarize current evidence on fenofibrate, seeking to provide an updated interpretation of recent studies in the field.
Collapse
|
13
|
Update on the diagnosis, treatment and management of rare genetic lipid disorders. Pathology 2019; 51:193-201. [DOI: 10.1016/j.pathol.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
|
14
|
Dyslipidemias in clinical practice. Clin Chim Acta 2018; 487:117-125. [PMID: 30201369 DOI: 10.1016/j.cca.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023]
Abstract
Most dyslipidemic conditions have been linked to an increased risk of cardiovascular disease. Over the past few years major advances have been made regarding the genetic and metabolic basis of dyslipidemias. Detailed characterization of the genetic basis of familial lipid disorders and knowledge concerning the effects of environmental factors on the expression of dyslipidemias have increased substantially, contributing to a better diagnosis in individual patients. In addition to these developments, therapeutic options to lower cholesterol levels in clinical practice have expanded even further in patients with familial hypercholesterolemia and in subjects with cardiovascular disease. Finally, promising upcoming therapeutic lipid lowering strategies will be reviewed. All these advances will be discussed in relation to current clinical practice with special focus on common lipid disorders including familial dyslipidemias.
Collapse
|