1
|
Shamaprasad P, Nădăban A, Iacovella CR, Gooris GS, Bunge AL, Bouwstra JA, McCabe C. The phase behavior of skin-barrier lipids: A combined approach of experiments and simulations. Biophys J 2024; 123:3188-3204. [PMID: 39030908 PMCID: PMC11447553 DOI: 10.1016/j.bpj.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Skin barrier function is localized in its outermost layer, the stratum corneum (SC), which is comprised of corneocyte cells embedded in an extracellular lipid matrix containing ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). The unique structure and composition of this lipid matrix are important for skin barrier function. In this study, experiments and molecular dynamics simulation were combined to investigate the structural properties and phase behavior of mixtures containing nonhydroxy sphingosine CER (CER NS), CHOL, and FFA. X-ray scattering for mixtures with varying CHOL levels revealed the presence of the 5.4 nm short periodicity phase in the presence of CHOL. Bilayers in coarse-grained multilayer simulations of the same compositions contained domains with thicknesses of approximately 5.3 and 5.8 nm that are associated with elevated levels, respectively, of CER sphingosine chains with CHOL, and CER acyl chains with FFA chains. The prevalence of the thicker domain increased with decreasing CHOL content. This might correspond to a phase with ∼5.8 nm spacing observed by x-rays (other details unknown) in mixtures with lower CHOL content. Scissoring and stretching frequencies from Fourier transform infrared spectroscopy (FTIR) also indicate interaction between FFA and CER acyl chains and little interaction between CER acyl and CER sphingosine chains, which requires CER molecules to adopt a predominantly extended conformation. In the simulated systems, neighbor preferences of extended CER chains align more closely with the FTIR observations than those of CERs with hairpin ceramide chains. Both FTIR and atomistic simulations of reverse mapped multilayer membranes detect a hexagonal to fluid phase transition between 65 and 80°C. These results demonstrate the utility of a collaborative experimental and simulation effort in gaining a more comprehensive understanding of SC lipid membranes.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Nădăban A, Frame CO, El Yachioui D, Gooris GS, Dalgliesh RM, Malfois M, Iacovella CR, Bunge AL, McCabe C, Bouwstra JA. The Sphingosine and Phytosphingosine Ceramide Ratio in Lipid Models Forming the Short Periodicity Phase: An Experimental and Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13794-13809. [PMID: 38917358 PMCID: PMC11238587 DOI: 10.1021/acs.langmuir.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The lipids located in the outermost layer of the skin, the stratum corneum (SC), play a crucial role in maintaining the skin barrier function. The primary components of the SC lipid matrix are ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). They form two crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). In inflammatory skin conditions like atopic dermatitis and psoriasis, there are changes in the SC CER composition, such as an increased concentration of a sphingosine-based CER (CER NS) and a reduced concentration of a phytosphingosine-based CER (CER NP). In the present study, a lipid model was created exclusively forming the SPP, to examine whether alterations in the CER NS:CER NP molar ratio would affect the lipid organization. Experimental data were combined with molecular dynamics simulations of lipid models containing CER NS:CER NP at ratios of 1:2 (mimicking a healthy SC ratio) and 2:1 (observed in inflammatory skin diseases), mixed with CHOL and lignoceric acid as the FFA. The experimental findings show that the acyl chains of CER NS and CER NP and the FFA are in close proximity within the SPP unit cell, indicating that CER NS and CER NP adopt a linear conformation, similarly as observed for the LPP. Both the experiments and simulations indicate that the lamellar organization is the same for the two CER NS:CER NP ratios while the SPP NS:NP 1:2 model had a slightly denser hydrogen bonding network than the SPP NS:NP 2:1 model. The simulations show that this might be attributed to intermolecular hydrogen bonding with the additional hydroxide group on the headgroup of CER NP compared with CER NS.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
3
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Yang MY, Lee E, Park CS, Nam YS. Molecular Dynamics Investigation into CerENP's Effect on the Lipid Matrix of Stratum Corneum. J Phys Chem B 2024; 128:5378-5386. [PMID: 38805566 DOI: 10.1021/acs.jpcb.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The extracellular lipid matrix in the stratum corneum (SC) plays a critical role in skin barrier functionality, comprising three primary components: ceramides, cholesterol, and free fatty acids. The diverse ceramides, differentiated by molecular structures such as hydroxylations and varying chain lengths, are essential for the lipid matrix's structural integrity. Recently, a new subclass of ceramide, 1-O-acylceramide NP (CerENP), has been identified; however, its precise role in the lipid matrix of the SC is still elusive. Herein, we investigate the role of CerENP on the structure and permeability of the SC using molecular dynamics simulations. Our findings indicate that CerENP contributes to a compact lipid matrix in the lateral dimension of our SC model with a repeat distance of about 13 nm. Additionally, ethanol permeability assessments show that CerENP effectively reduces molecular penetration through the lipid matrix. This study provides an insight into the role of a new subclass of ceramide in the SC, enhancing our understanding of skin structure and the mechanisms behind barrier dysfunction in skin diseases.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Eunok Lee
- LCS Biotech Co. Ltd., 11-2, Deokseongsandan 2-ro 50, Idong-eup, Cheoin-gu, Yongin-si 17130, Gyeonggi-do, Republic of Korea
| | - Chang Seo Park
- LCS Biotech Co. Ltd., 11-2, Deokseongsandan 2-ro 50, Idong-eup, Cheoin-gu, Yongin-si 17130, Gyeonggi-do, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Nădăban A, Gooris GS, Beddoes CM, Dalgliesh RM, Malfois M, Demé B, Bouwstra JA. The molecular arrangement of ceramides in the unit cell of the long periodicity phase of stratum corneum models shows a high adaptability to different ceramide head group structures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184324. [PMID: 38688405 DOI: 10.1016/j.bbamem.2024.184324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
The stratum corneum (SC) lipid matrix, composed primarily of ceramides (CERs), cholesterol and free fatty acids (FFA), has an important role for the skin barrier function. The presence of the long periodicity phase (LPP), a unique lamellar phase, is characteristic for the SC. Insight into the lipid molecular arrangement within the LPP unit cell is imperative for understanding the relationship between the lipid subclasses and the skin barrier function. In this study, the impact of the CER head group structure on the lipid arrangement and barrier functionality was investigated using lipid models forming the LPP. The results demonstrate that the positions of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), two essentials CER subclasses, are not influenced by the addition of another CER subclass (N-(tetracosanoyl)-dihydrosphingosine (CER NdS), N-(2R-hydroxy-tetracosanoyl)-sphingosine (CER AS) or D-(2R-hydroxy-tetracosanoyl)-phytosphingosine (CER AP)). However, differences are observed in the lipid organization and the hydrogen bonding network of the three different models. A similar localization of CER NP and CER NS is also observed in a more complex lipid model, with the CER subclass composition mimicking that of human SC. These studies show the adaptability and insensitivity of the LPP unit cell structure to changes in the lipid head group structures of the CER subclasses.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Carrer de la Llum 2-6, Cerdanyola del Vallès 08290, Barcelona, Spain
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands.
| |
Collapse
|
6
|
Mistry J, Notman R. Mechanisms of the Drug Penetration Enhancer Propylene Glycol Interacting with Skin Lipid Membranes. J Phys Chem B 2024; 128:3885-3897. [PMID: 38622775 PMCID: PMC11056976 DOI: 10.1021/acs.jpcb.3c06784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Very few drugs have the necessary physicochemical properties to cross the skin's main permeability barrier, the stratum corneum (SC), in sufficient amounts. Propylene glycol (PG) is a chemical penetration enhancer that could be included in topical formulations in order to overcome the barrier properties of the skin and facilitate the transport of drugs across it. Experiments have demonstrated that PG increases the mobility and disorder of SC lipids and may extract cholesterol from the SC, but little is known about the molecular mechanisms of drug permeation enhancement by PG. In this work, we have performed molecular dynamics (MD) simulations to investigate the molecular-level effects of PG on the structure and properties of model SC lipid bilayers. The model bilayers were simulated in the presence of PG concentrations over the range of 0-100% w/w PG, using both an all-atom and a united atom force field. PG was found to localize in the hydrophilic headgroup regions at the bilayer interface, to occupy the lipid-water hydrogen-bonding sites, and to slightly increase lipid tail disorder in a concentration-dependent manner. We showed with MD simulation that PG enhances the permeation of small molecules such as water by interacting with the bilayer interface; the results of our study may be used to guide the design of formulations for transdermal drug delivery with enhanced skin permeation, as well as topical formulations and cosmetic products.
Collapse
Affiliation(s)
- Jade Mistry
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Rebecca Notman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
7
|
Xu L, Kasting GB. Solvent and Crystallization Effects on the Dermal Absorption of Hydrophilic and Lipophilic Compounds. J Pharm Sci 2024; 113:948-960. [PMID: 37797884 DOI: 10.1016/j.xphs.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
This study probes the mechanisms by which volatile solvents (water, ethanol) and a nonionic surfactant (Triton X-100) influence the skin permeation of dissolved solutes following deposition of small doses onto unoccluded human skin. A secondary objective was to sharpen guidelines for the use of these and other simple solvent systems for dermal safety testing of cosmetic ingredients at finite doses. Four solutes were studied - niacinamide, caffeine, testosterone and geraniol - at doses close to that estimated to saturate the upper layers of the stratum corneum. Methods included tensiometry, visualization of spreading on skin, polarized light microscopy and in vitro permeation testing using radiolabeled solutes. Ethanol, aqueous ethanol and dilute aqueous Triton solutions all yielded surface tensions below 36 mN/m, allowing them to spread easily on the skin, unlike water (72.4 mN/m) which did not spread. Deposition onto skin of niacinamide (32 μg·cm-2) or caffeine (3.2 μg·cm-2) from water and ethanol led to crystalline deposits on the skin surface, whereas the same amounts applied from aqueous ethanol and 2 % Triton did not. Skin permeation of these compounds was inversely correlated to the extent of crystallization. A separate study with caffeine showed the absence of a dose-related skin permeability increase with Triton. Permeation of testosterone (8.2 μg·cm-2) was modestly increased when dosed from aqueous ethanol versus ethanol. Permeation of geraniol (2.9 μg·cm-2) followed the order aqueous ethanol > water ∼ 2 % Triton >> ethanol and was inversely correlated with evaporative loss. We conclude that, under the conditions tested, aqueous ethanol and Triton serve primarily as deposition aids and do not substantially disrupt stratum corneum lipids. Implications for the design of in vitro skin permeability tests are discussed.
Collapse
Affiliation(s)
- Lijing Xu
- James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
8
|
Zhong F, Lu H, Meng R, Feng C, Jia H, Yang HF, Wang F. Effect of Penetration Enhancer on the Structure of Stratum Corneum: On-Site Study by Confocal Polarized Raman Imaging. Mol Pharm 2024; 21:1300-1308. [PMID: 38294949 DOI: 10.1021/acs.molpharmaceut.3c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Keratin and lipid structures in the stratum corneum (SC) are closely related to the SC barrier function. The application of penetration enhancers (PEs) disrupts the structure of SC, thereby promoting infiltration. To quantify these PE-induced structural changes in SC, we used confocal Raman imaging (CRI) and polarized Raman imaging (PRI) to explore the integrity and continuity of keratin and lipid structures in SC. The results showed that water is the safest PE and that oleic acid (OA), sodium dodecyl sulfate (SDS), and low molecular weight protamine (LMWP) disrupted the ordered structure of keratin, while azone and liposomes had less of an effect on keratin. Azone, OA, and SDS also led to significant changes in lipid structure, while LMWP and liposomes had less of an effect. Establishing this non-invasive and efficient strategy will provide new insights into transdermal drug delivery and skin health management.
Collapse
Affiliation(s)
- Feng Zhong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Hangwei Lu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
- Hangzhou Shiguang Xinya Biotechnology Ltd., Hangzhou 310000, P.R. China
| | - Ru Meng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Chunbo Feng
- Shanghai Jahwa United Co., Ltd., Shanghai 200438, P.R. China
| | - Haidong Jia
- Shanghai Jahwa United Co., Ltd., Shanghai 200438, P.R. China
| | - Hai-Feng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
9
|
Wang X, Cui C, Meng X, Han C, Wu B, Dou X, Zhao C, Zhang Y, Li K, Feng C. Chiral Supramolecular Hydrogel Enhanced Transdermal Delivery of Sodium Aescinate to Modulate M1 Macrophage Polarization Against Lymphedema. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303495. [PMID: 38037850 PMCID: PMC10837362 DOI: 10.1002/advs.202303495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Indexed: 12/02/2023]
Abstract
Sodium aescinate (SA) shows great potential for treating lymphedema since it can regulate the expression of cytokines in M1 macrophages, however, it is commonly administered intravenously in clinical practice and often accompanied by severe toxic side effects and short metabolic cycles. Herein, SA-loaded chiral supramolecular hydrogels are prepared to prove the curative effects of SA on lymphedema and enhance its safety and transdermal transmission efficiency. In vitro studies demonstrate that SA- loaded chiral supramolecular hydrogels can modulate local immune responses by inhibiting M1 macrophage polarization. Typically, these chiral hydrogels can significantly increase the permeability of SA with good biocompatibility due to the high enantioselectivity between chiral gelators and stratum corneum and L-type hydrogels are found to have preferable drug penetration over D-type hydrogels. In vivo studies show that topical delivery of SA via chiral hydrogels results in dramatic therapeutic effects on lymphedema. Specifically, it can downregulate the level of inflammatory cytokines, reduce the development of fibrosis, and promote the regeneration of lymphatic vessels. This study initiates the use of SA for lymphedema treatment and for the creation of an effective chiral biological platform for improved topical administration.
Collapse
Affiliation(s)
- Xueqian Wang
- State Key Lab of Metal Matrix CompositesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Chunxiao Cui
- Department of Burns and Plastic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong UniversityShanghai200127China
| | - Xinxian Meng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Chengyao Han
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Beibei Wu
- State Key Lab of Metal Matrix CompositesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix CompositesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Changli Zhao
- State Key Lab of Metal Matrix CompositesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Yixin Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Ke Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix CompositesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
10
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Nădăban A, Rousel J, El Yachioui D, Gooris GS, Beddoes CM, Dalgliesh RM, Malfois M, Rissmann R, Bouwstra JA. Effect of sphingosine and phytosphingosine ceramide ratio on lipid arrangement and barrier function in skin lipid models. J Lipid Res 2023; 64:100400. [PMID: 37301511 PMCID: PMC10457584 DOI: 10.1016/j.jlr.2023.100400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
The lipids in the uppermost layer of the skin, the stratum corneum (SC), play an important role in the skin barrier function. The three main subclasses in the SC lipid matrix are ceramides (CER), cholesterol, and free fatty acids. In inflammatory skin diseases, such as atopic dermatitis and psoriasis, the SC lipid composition is modulated compared to the composition in healthy SC. One of the main alterations is the molar ratio between the concentration of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), which correlated with an impaired skin barrier function. In the present study, we investigated the impact of varying the CER NS:CER NP ratios on the lipid organization, lipid arrangement, and barrier functionality in SC lipid model systems. The results indicate that a higher CER NS:CER NP ratio as observed in diseased skin did not alter the lipid organization or lipid arrangement in the long periodicity phase encountered in SC. The trans-epidermal water loss, an indication of the barrier functionality, was significantly higher for the CER NS:CER NP 2:1 model (mimicking the ratio in inflammatory skin diseases) compared to the CER NS:CER NP 1:2 ratio (in healthy skin). These findings provide a more detailed insight into the lipid organization in both healthy and diseased skin and suggest that in vivo the molar ratio between CER NS:CER NP contributes to barrier impairment as well but might not be the main factor.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jannik Rousel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Robert Rissmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands; Leiden University Medical Center, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
Pullmannová P, Čuříková-Kindlová BA, Ondrejčeková V, Kováčik A, Dvořáková K, Dulanská L, Georgii R, Majcher A, Maixner J, Kučerka N, Zbytovská J, Vávrová K. Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films. ACS OMEGA 2023; 8:422-435. [PMID: 36643519 PMCID: PMC9835644 DOI: 10.1021/acsomega.2c04924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.
Collapse
Affiliation(s)
- Petra Pullmannová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Barbora A. Čuříková-Kindlová
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Veronika Ondrejčeková
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Kristýna Dvořáková
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Lucia Dulanská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Robert Georgii
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische
Universität München, Lichtenbergstr. 1, 85748Garching, Germany
| | - Adam Majcher
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Norbert Kučerka
- Faculty
of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32Bratislava, Slovakia
- Frank
Laboratory of Neutron Physics, Joint Institute
for Nuclear Research, Joliot-Curie 6, 141980Dubna, Russia
| | - Jarmila Zbytovská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Kateřina Vávrová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
13
|
Nădăban A, Gooris GS, Beddoes CM, Dalgliesh RM, Bouwstra JA. Phytosphingosine ceramide mainly localizes in the central layer of the unique lamellar phase of skin lipid model systems. J Lipid Res 2022; 63:100258. [PMID: 35931203 PMCID: PMC9421324 DOI: 10.1016/j.jlr.2022.100258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the lipid arrangement within the skin's outermost layer, the stratum corneum (SC), is important for advancing knowledge on the skin barrier function. The SC lipid matrix consists of ceramides (CERs), cholesterol, and free fatty acids, which form unique crystalline lamellar phases, referred to as the long periodicity phase (LPP) and short periodicity phases. As the SC lipid composition is complex, lipid model systems that mimic the properties of native SC are used to study the SC lipid organization and molecular arrangement. In previous studies, such lipid models were used to determine the molecular organization in the trilayer structure of the LPP unit cell. The aim of this study was to examine the location of CER N-(tetracosanoyl)-phytosphingosine (CER NP) in the unit cell of this lamellar phase and compare its position with CER N-(tetracosanoyl)-sphingosine (CER NS). We selected CER NP as it is the most prevalent CER subclass in the human SC, and its location in the LPP is not known. Our neutron diffraction results demonstrate that the acyl chain of CER NP was positioned in the central part of the trilayer structure, with a fraction also present in the outer layers, the same location as determined for the acyl chain of CER NS. In addition, our Fourier transformed infrared spectroscopy results are in agreement with this molecular arrangement, suggesting a linear arrangement for the CER NS and CER NP. These findings provide more detailed insight into the lipid organization in the SC lipid matrix.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
14
|
Ruan J, Liu C, Wang J, Zhong T, Quan P, Fang L. Efficacy and safety of permeation enhancers: a kinetic evaluation approach and molecular mechanism study in the skin. Int J Pharm 2022; 626:122155. [PMID: 36049584 DOI: 10.1016/j.ijpharm.2022.122155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022]
Abstract
This study sought to provide approach for evaluating and predicting the efficacy and safety of permeation enhancers on the basis of their kinetic distribution behavior in the skin dictated by physicochemical properties. Herein, the efficacy-safety regularity of eight permeation enhancers were studied with ex vivo skin permeation study, small-angle X-ray scattering, MTT assay, H&E staining, and in vivo skin erythema analysis, classifying into the following three categories: high enhancement-low irritation, medium enhancement-high irritation, and low enhancement-low irritation. These three modes were positively correlated with the distribution amount of permeation enhancers in the skin layers and verified by the in vitro tape-stripping study. The kinetic parameter, effective-safety index (IES), was proposed to describe the regularity of enhancement effect tendency and irritation risk, and the relationship between IES and physicochemical properties of permeation enhancers was analyzed with multiple regression analysis. According to the results of modulated temperature differential scanning calorimetry and dielectric spectrum, permeation enhancers with high lipophilicity and low polarity had IES > 1, suggesting high enhancement effect and low irritation due to their higher affinity with the stratum corneum (SC) than with epidermis (EP). Permeation enhancers with medium lipophilicity and medium polarity exhibited 0 <IES ≤ 1, showing medium enhancement effect and high irritation, as determined by their comparable affinity with the SC and epidermis (EP). However, permeation enhancers with low lipophilicity and high polarity had IES → 0, demonstrating low enhancement effect and irritation, as indicated by their poor affinity with the SC. In summary, different physicochemical properties of permeation enhancers influenced their affinities with skin layers, resulting in their different enhancement effect and irritation potential. This study will provide a theoretical basis and criteria for evaluating and predicting the safety and efficacy of permeation enhancers, which will enable a more rational selection of permeation enhancers in the optimization of transdermal patches.
Collapse
Affiliation(s)
- Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Ting Zhong
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
15
|
Shamaprasad P, Frame CO, Moore TC, Yang A, Iacovella CR, Bouwstra JA, Bunge AL, McCabe C. Using molecular simulation to understand the skin barrier. Prog Lipid Res 2022; 88:101184. [PMID: 35988796 PMCID: PMC10116345 DOI: 10.1016/j.plipres.2022.101184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Alexander Yang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
16
|
Morris SA, Kasting GB, Ananthapadmanabhan K. Surfactant equilibria and its impact on penetration into stratum corneum. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Rabionet M, Bernard P, Pichery M, Marsching C, Bayerle A, Dworski S, Kamani MA, Chitraju C, Gluchowski NL, Gabriel KR, Asadi A, Ebel P, Hoekstra M, Dumas S, Ntambi JM, Jacobsson A, Willecke K, Medin JA, Jonca N, Sandhoff R. Epidermal 1-O-acylceramides appear with the establishment of the water permeability barrier in mice and are produced by maturating keratinocytes. Lipids 2022; 57:183-195. [PMID: 35318678 DOI: 10.1002/lipd.12342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
1-O-Acylceramides (1-OACs) have a fatty acid esterified to the 1-hydroxyl of the sphingosine head group of the ceramide, and recently we identified these lipids as natural components of human and mouse epidermis. Here we show epidermal 1-OACs arise shortly before birth during the establishment of the water permeability barrier in mice. Fractionation of human epidermis indicates 1-OACs concentrate in the stratum corneum. During in vitro maturation into reconstructed human epidermis, human keratinocytes dramatically increase 1-OAC levels indicating they are one source of epidermal 1-OACs. In search of potential enzymes responsible for 1-OAC synthesis in vivo, we analyzed mutant mice with deficiencies of ceramide synthases (Cers2, Cers3, or Cers4), diacylglycerol acyltransferases (Dgat1 or Dgat2), elongase of very long fatty acids 3 (Elovl3), lecithin cholesterol acyltransferase (Lcat), stearoyl-CoA desaturase 1 (Scd1), or acidic ceramidase (Asah1). Overall levels of 1-OACs did not decrease in any mouse model. In Cers3 and Dgat2-deficient epidermis they even increased in correlation with deficient skin barrier function. Dagt2 deficiency reshapes 1-OAC synthesis with an increase in 1-OACs with N-linked non-hydroxylated fatty acids and a 60% decrease compared to control in levels of 1-OACs with N-linked hydroxylated palmitate. As none of the single enzyme deficiencies we examined resulted in a lack of 1-OACs, we conclude that either there is functional redundancy in forming 1-OAC and more than one enzyme is involved, and/or an unknown acyltransferase of the epidermis performs the final step of 1-OAC synthesis, the implications of which are discussed.
Collapse
Affiliation(s)
- Mariona Rabionet
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Pauline Bernard
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Melanie Pichery
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Christian Marsching
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Aline Bayerle
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Shaalee Dworski
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina L Gluchowski
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Abolfazl Asadi
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Philipp Ebel
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Menno Hoekstra
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Leiden, Netherlands
| | - Sabrina Dumas
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James M Ntambi
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anders Jacobsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jeffrey A Medin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathalie Jonca
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Institut Fédératif de Biologie, Toulouse, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| |
Collapse
|
18
|
Cholesterol Sulfate Fluidizes the Sterol Fraction of the Stratum Corneum Lipid Phase and Increases its Permeability. J Lipid Res 2022; 63:100177. [PMID: 35143845 PMCID: PMC8953687 DOI: 10.1016/j.jlr.2022.100177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide’s acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.
Collapse
|
19
|
Ruan J, Liu C, Song H, Zhong T, Quan P, Fang L. Sustainable and efficient skin absorption behaviour of transdermal drug: The effect of the release kinetics of permeation enhancer. Int J Pharm 2022; 612:121377. [PMID: 34915145 DOI: 10.1016/j.ijpharm.2021.121377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
At present, how the release kinetics of permeation enhancers affected their enhancement efficacy on drug skin absorption and its molecular mechanisms remained unclear. Herein, the release kinetics of permeation enhancer (Plurol Oleique CC (POCC)) which involved release percent (PR), release duration (RD) and release kinetic constant (k) and its enhancement efficacy on drug skin absorption were investigated with in vitro skin retention study and in vitro skin permeation study, respectively. POCC released from the acidic-drug loading patches followed with the Higuchi release model and had short RD (8-16 h), resulting in its unsustainable enhancement efficiency for acidic drugs. However, POCC released from the basic-drug loading patches followed with zero-order model with long RD (12-24 h), inducing a sustainable and efficient enhancement efficiency for basic drugs. The lower variance of an innovative parameter permeation enhancement coefficient (CPE) represented the relatively sustainable and effective enhancement effect and was listed as followed: 0.20 (Zaltoprofen (ZPF)), 0.31 (Diclofenac (DCF)), 0.27 (Indomethacin (IMC)), 0.07 (Azasetron (AST)), 0.11 (Oxybutynin (OBN)) and 0.06 (Donepezil (DNP)). According to the results of FT-IR, MTDSC, 13C NMR spectra, molecular dynamics simulation, SAXS and Raman imaging, the Higuchi release model was caused by strong interaction between the acid drugs and pressure sensitive adhesive (PSA). This strong interaction induced faster diffusion speed of POCC from acidic-drug loading patches and make the swell degree of long periodicity phase (LPP) of stratum corneum (SC) lipids reached plateau early. The zero-order release model was because the weak interaction between basic drugs and PSA making most of POCC was still bound to PSA, which in turn lead to LPP swelled at a slow but sustainable process. In conclusion, zero-order release kinetic of POCC lead to sustainable and efficient penetration enhancement efficiency on basic drug, while the Higuchi release kinetic showed opposite effect for acidic drugs. A deep understanding of release kinetics of enhancer and its enhancement efficiency may drive the ideal selection of permeation enhancers and rational optimization of transdermal patches.
Collapse
Affiliation(s)
- Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Haoyuan Song
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Ting Zhong
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
20
|
Uche L, Gooris GS, Bouwstra JA, Beddoes CM. Increased Levels of Short-Chain Ceramides Modify the Lipid Organization and Reduce the Lipid Barrier of Skin Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9478-9489. [PMID: 34319754 PMCID: PMC8389989 DOI: 10.1021/acs.langmuir.1c01295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The skin barrier function is attributed to the stratum corneum (SC) intercellular lipid matrix, which is composed primarily of ceramides (CERs), free fatty acids, and cholesterol. These lipids are organized in two lamellar phases: the short and long periodicity phases (SPP and LPP), respectively. The LPP is considered important for the skin barrier function. High levels of short-chain CERs are observed in various inflammatory skin diseases and have been correlated with barrier dysfunction. In this research, we investigated how the increase in the fraction of the short-chain CER with a nonhydroxy C16 acyl chain linked to a C18 sphingosine base CER NS(C16) at the expense of the physiological chain length CER NS with a C24 acyl chain (CER NS(C24)) impacts the microstructure and barrier function of a lipid model that mimicked certain characteristics of the SC lipid organization. The permeability and lipid organization of the model membranes were compared with that of a control model without CER NS(C16). The permeability increased significantly when ≥50% of CER NS(C24) was substituted with CER NS(C16). Employing biophysical techniques, we showed that the lipid packing density reduced with an increasing proportion of CER NS(C16). Substitution of 75% of CER NS(C24) by CER NS(C16) resulted in the formation of phase-separated lipid domains and alteration of the LPP structure. Using deuterium-labeled lipids enabled simultaneous characterization of the C24 and C16 acyl chains in the lipid models, providing insight into the mechanisms underlying the reduced skin barrier function in diseased skin.
Collapse
|
21
|
Petracca B, Nădăban A, Eeman M, Gooris GS, Bouwstra JA. Effects of ozone on stratum corneum lipid integrity and assembly. Chem Phys Lipids 2021; 240:105121. [PMID: 34352254 DOI: 10.1016/j.chemphyslip.2021.105121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/04/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
The stratum corneum (SC) acts as the main barrier of the skin against exogenous substances (e.g. air pollutants) and against the loss of endogenous substances such as water. The SC consists of keratin-rich dead cells surrounded by crystalline lamellar lipid regions. The main lipid classes are ceramides (CERs), free fatty acids (FFAs), and cholesterol (CHOL). Tropospheric ozone (O3) is a potent oxidant compound that reacts instantly with biological molecules such as lipids and proteins. Although it has been reported that O3 induces biological responses at the cellular level, to the best of our knowledge, there is no information related to the damages O3 can cause at the level of the SC extracellular lipid matrix. The aim of our work was to investigate which SC lipid subclasses are prone to oxidation when exposed to O3 and how the changes in chemical structures affect the lipid organization in a stratum corneum substitute (SCS) membrane. Ultimately the barrier properties of the SCS were examined. Our studies reveal that O3 induces chemical modifications of the unsaturated bonds in CERs and CHOL. The appearance of carbonyl groups at the headgroup level and the removal of the linoleate moiety of omega acylceramides (CER EOS) impact the lamellar organization of the lipid assembly and to a lesser extent the lateral packing of the lipids. Unexpectedly, the modifications improved the barrier function of the SCS.
Collapse
Affiliation(s)
- Benedetta Petracca
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Marc Eeman
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium.
| | - Gert S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| |
Collapse
|
22
|
Peña-Juárez MC, Guadarrama-Escobar OR, Escobar-Chávez JJ. Transdermal Delivery Systems for Biomolecules. J Pharm Innov 2021; 17:319-332. [PMID: 33425065 PMCID: PMC7786146 DOI: 10.1007/s12247-020-09525-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2020] [Indexed: 01/12/2023]
Abstract
Purpose The present review article focuses on highlighting the main technologies used as tools that improve the delivery of transdermal biomolecules, addressing them from the point of view of research in the development of transdermal systems that use physical and chemical permeation enhancers and nanocarrier systems or a combination of them. Results Transdermal drug delivery systems have increased in importance since the late 1970s when their use was approved by the Food and Drug Administration (FDA). They appeared to be an alternative resource for the administration of many potent drugs. The first transdermal drug delivery system used for biomolecules was for the treatment of hormonal disorders. Biomolecules have been used primarily in many treatments for cancer and diabetes, vaccines, hormonal disorders, and contraception. Conclusions The latest technologies that have used such transdermal biomolecule transporters include electrical methods (physical penetration enhancers), some chemical penetration enhancers and nanocarriers. All of them allow the maintenance of the physical and chemical properties of the main proteins and peptides through these clinical treatments, allowing their efficient storage, transport, and release and ensuring the achievement of their target and better results in the treatment of many diseases. Graphical abstract
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| | - Omar Rodrigo Guadarrama-Escobar
- Sección de Estudios de Posgrado e Investigación de la Escuela Nacional de Ciencias Biológicas. Programa de Posgrado: Doctorado en Ciencias Químico Biológicas-Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Col. Santo Tomás C. P. 11340, Alcaldía Miguel Hidalgo, Ciudad de México, Mexico
| | - José Juan Escobar-Chávez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| |
Collapse
|
23
|
Uche LE, Gooris GS, Bouwstra JA, Beddoes CM. High concentration of the ester-linked ω-hydroxy ceramide increases the permeability in skin lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183487. [PMID: 33068546 DOI: 10.1016/j.bbamem.2020.183487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
The ester-linked ω-hydroxy acyl chain linked to a sphingosine base referred to as CER EOS is essential for the skin barrier lipid organization. While the majority of the skin lipids form a dense, crystalline structure, associated with low permeability, the unsaturated moiety of CER EOS, (either the linoleate or the oleate chain) exists in a liquid phase at the skin's physiological temperature. Thus, the relationship between CER EOS and barrier function is not entirely comprehended. We studied the permeability and lipid organization in skin lipid models, gradually increasing in CER EOS concentration, mixed with non-hydroxy sphingosine-based ceramide (CER NS) in an equimolar ratio of CERs, cholesterol, and free fatty acids (FFAs) mimicking the ratio in the native skin. A significant increase in the orthorhombic-hexagonal phase transition temperature was recorded when CER EOS concentration was raised to 70 mol% of the total CER content and higher, rendering a higher fraction of lipids in the orthorhombic phase at the expense of the hexagonal phase at physiological temperature. The model's permeability did not differ when CER EOS concentration ranged between 10 and 30% but increased significantly at 70% and higher. Using CER EOS with a perdeuterated oleate chain, it was shown that the fraction of lipids in a liquid phase increased with CER EOS concentration, while the neighboring CERs and FFAs remained in a crystalline state. The increased fraction of the liquid phase therefore, had a stronger effect on permeability than the increased fraction of lipids forming an orthorhombic phase.
Collapse
Affiliation(s)
- Lorretta E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Gerrit S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands.
| | - Charlotte M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| |
Collapse
|
24
|
Beddoes C, Gooris GS, Foglia F, Ahmadi D, Barlow DJ, Lawrence MJ, Demé B, Bouwstra JA. Arrangement of Ceramides in the Skin: Sphingosine Chains Localize at a Single Position in Stratum Corneum Lipid Matrix Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10270-10278. [PMID: 32816488 PMCID: PMC7498151 DOI: 10.1021/acs.langmuir.0c01992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Understanding the structure of the stratum corneum (SC) is essential to understand the skin barrier process. The long periodicity phase (LPP) is a unique trilayer lamellar structure located in the SC. Adjustments in the composition of the lipid matrix, as in many skin abnormalities, can have severe effects on the lipid organization and barrier function. Although the location of individual lipid subclasses has been identified, the lipid conformation at these locations remains uncertain. Contrast variation experiments via small-angle neutron diffraction were used to investigate the conformation of ceramide (CER) N-(tetracosanoyl)-sphingosine (NS) within both simplistic and porcine mimicking LPP models. To identify the lipid conformation of the twin chain CER NS, the chains were individually deuterated, and their scattering length profiles were calculated to identify their locations in the LPP unit cell. In the repeating trilayer unit of the LPP, the acyl chain of CER NS was located in the central and outer layers, while the sphingosine chain was located exclusively in the middle of the outer layers. Thus, for the CER NS with the acyl chain in the central layer, this demonstrates an extended conformation. Electron density distribution profiles identified that the lipid structure remains consistent regardless of the lipid's lateral packing phase, this may be partially due to the anchoring of the extended CER NS. The presented results provide a more detailed insight on the internal arrangement of the LPP lipids and how they are expected to be arranged in healthy skin.
Collapse
Affiliation(s)
- Charlotte
M. Beddoes
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gert S. Gooris
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Fabrizia Foglia
- Chemistry
Department, Christopher Ingold Laboratories, University College London, London WC1H 0AJ, United Kingdom
| | - Delaram Ahmadi
- Pharmaceutical
Science Division, King’s College
London, London WC2R 2LS, United Kingdom
| | - David J. Barlow
- Pharmaceutical
Science Division, King’s College
London, London WC2R 2LS, United Kingdom
| | - M. Jayne Lawrence
- Division
of Pharmacy and Optometry, Manchester University, Manchester M13 9PL, United Kingdom
| | - Bruno Demé
- Institute
Laue-Langevin, Grenoble 38000, France
| | - Joke A. Bouwstra
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- . Tel: 00 31 71 527 4208. Fax: 00 31 71 527 4565
| |
Collapse
|
25
|
Egorova E, van Rijt MMJ, Sommerdijk N, Gooris GS, Bouwstra JA, Boyle AL, Kros A. One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS NANO 2020; 14:5874-5886. [PMID: 32348119 PMCID: PMC7254838 DOI: 10.1021/acsnano.0c01021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The functionalization of gold nanoparticles (GNPs) with peptidic moieties can prevent their aggregation and facilitate their use for applications both in vitro and in vivo. To date, no peptide-based coating has been shown to stabilize GNPs larger than 30 nm in diameter; such particles are of interest for applications including vaccine development, drug delivery, and sensing. Here, GNPs with diameters of 20, 40, and 100 nm are functionalized with peptide amphiphiles. Using a combination of transmission electron microscopy, UV-vis spectroscopy, and dynamic light scattering, we show that GNPs up to 100 nm in size can be stabilized by these molecules. Moreover, we demonstrate that these peptide amphiphiles form curvature-dependent, ordered structures on the surface of the GNPs and that the GNPs remain disperse at high-salt concentrations and in the presence of competing thiol-containing molecules. These results represent the development of a peptide amphiphile-based coating system for GNPs which has the potential to be beneficial for a wide range of biological applications, in addition to image enhancement and catalysis.
Collapse
Affiliation(s)
- Elena
A. Egorova
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Mark M. J. van Rijt
- Laboratory
of Physical Chemistry and the Centre for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The
Netherlands
| | - Nico Sommerdijk
- Radboud
Institute for Molecular Life Sciences, Radboud
University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Gert S. Gooris
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Joke A. Bouwstra
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Aimee L. Boyle
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| |
Collapse
|
26
|
MacDermaid CM, Hall KW, DeVane RH, Klein ML, Fiorin G. Coexistence of Lipid Phases Stabilizes Interstitial Water in the Outer Layer of Mammalian Skin. Biophys J 2020; 118:1588-1601. [PMID: 32101711 DOI: 10.1016/j.bpj.2020.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
The lipid matrix in the outer layer of mammalian skin, the stratum corneum, has been previously investigated by multiple biophysical techniques aimed at identifying hydrophilic and lipophilic pathways of permeation. Although consensus is developing over the microscopic structure of the lipid matrix, no molecular-resolution model describes the permeability of all chemical species simultaneously. Using molecular dynamics simulations of a model mixture of skin lipids, the self-assembly of the lipid matrix lamellae has been studied. At higher humidity, the resulting lamellar phase is maintained by partitioning excess water into isolated droplets of controlled size and spatial distribution. The droplets may fuse together to form intralamellar water channels, thereby providing a pathway for the permeation of hydrophilic species. These results reconcile competing data on the outer skin's structure and broaden the scope of molecular-based methods to improve the safety of topical products and to advance transdermal drug delivery.
Collapse
Affiliation(s)
- Christopher M MacDermaid
- Institute for Computational Molecular Science and Temple Materials Institute, Philadelphia, Pennsylvania
| | - Kyle Wm Hall
- Institute for Computational Molecular Science and Temple Materials Institute, Philadelphia, Pennsylvania
| | | | - Michael L Klein
- Institute for Computational Molecular Science and Temple Materials Institute, Philadelphia, Pennsylvania
| | - Giacomo Fiorin
- Institute for Computational Molecular Science and Temple Materials Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Murine Epidermal Ceramide Synthase 4 Is a Key Regulator of Skin Barrier Homeostasis. J Invest Dermatol 2020; 140:1927-1937.e5. [PMID: 32092351 DOI: 10.1016/j.jid.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/21/2022]
Abstract
Epidermal barrier dysfunction is associated with a wide range of highly prevalent inflammatory skin diseases. However, the molecular processes that drive epidermal barrier maintenance are still largely unknown. Here, using quantitative proteomics, lipidomics, and mouse genetics, we characterize epidermal barrier maintenance versus a newly established barrier and functionally identify differential ceramide synthase 4 protein expression as one key difference. We show that epidermal loss of ceramide synthase 4 first disturbs epidermal lipid metabolism and adult epidermal barrier function, ultimately resulting in chronic skin barrier disease characterized by acanthosis, hyperkeratosis, and immune cell accumulation. Importantly, prolonged barrier dysfunction induced by loss of ceramide synthase 4 induced a barrier repair response that largely recapitulates molecular programs of barrier establishment. Collectively, this study provides an unbiased temporal proteomic characterization of barrier maintenance and disturbed homeostasis and shows that lipid homeostasis is essential to maintain adult skin barrier function to prevent disease.
Collapse
|
28
|
Wang E, Klauda JB. Molecular Structure of the Long Periodicity Phase in the Stratum Corneum. J Am Chem Soc 2019; 141:16930-16943. [DOI: 10.1021/jacs.9b08995] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Zhu Z, Chen J, Wang G, Elsherbini A, Zhong L, Jiang X, Qin H, Tripathi P, Zhi W, Spassieva SD, Morris AJ, Bieberich E. Ceramide regulates interaction of Hsd17b4 with Pex5 and function of peroxisomes. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1514-1524. [PMID: 31176039 DOI: 10.1016/j.bbalip.2019.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
The sphingolipid ceramide regulates beta-oxidation of medium and long chain fatty acids in mitochondria. It is not known whether it also regulates oxidation of very long chain fatty acids (VLCFAs) in peroxisomes. Using affinity chromatography, co-immunoprecipitation, and proximity ligation assays we discovered that ceramide interacts with Hsd17b4, an enzyme critical for peroxisomal VLCFA oxidation and docosahexaenoic acid (DHA) generation. Immunocytochemistry showed that Hsd17b4 is distributed to ceramide-enriched mitochondria-associated membranes (CEMAMs). Molecular docking and in vitro mutagenesis experiments showed that ceramide binds to the sterol carrier protein 2-like domain in Hsd17b4 adjacent to peroxisome targeting signal 1 (PTS1), the C-terminal signal for interaction with peroxisomal biogenesis factor 5 (Pex5), a peroxin mediating transport of Hsd17b4 into peroxisomes. Inhibition of ceramide biosynthesis induced translocation of Hsd17b4 from CEMAMs to peroxisomes, interaction of Hsd17b4 with Pex5, and upregulation of DHA. This data indicates a novel role of ceramide as a molecular switch regulating interaction of Hsd17b4 with Pex5 and peroxisomal function.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Jianzhong Chen
- Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America; School of Life Science, China Medical University, Shenyang, PR China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America; Department of Rehabilitation, ShengJing Hospital of China Medical University, Shenyang, PR China
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA. United States of America
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Andrew J Morris
- Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America; Lexington Veteran Affairs Medical Center, Lexington, KY, United States of America
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|