1
|
Chen G, Wu X, Zhu H, Li K, Zhang J, Sun S, Wang H, Wang M, Shao B, Li H, Zhang Y, Du S. Multisample lipidomic profiles of irritable bowel syndrome and irritable bowel syndrome-like symptoms in patients with inflammatory bowel disease: new insight into the recognition of the same symptoms in different diseases. J Gastroenterol 2024; 59:1000-1010. [PMID: 39254836 PMCID: PMC11496327 DOI: 10.1007/s00535-024-02148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Overlapping clinical manifestations of irritable bowel syndrome (IBS) and IBS-like symptoms in patients with inflammatory bowel disease (IBD-IBS) present challenges in diagnosis and management. Both conditions are associated with alterations in metabolites, but few studies have described the lipid profiles. Our aim was to pinpoint specific lipids that contribute to the pathogenesis of IBS and IBD-IBS by analyzing multiple biologic samples. METHODS Diarrhea-predominant IBS (IBS-D) patients (n = 39), ulcerative colitis in remission with IBS-like symptoms patients (UCR-IBS) (n = 21), and healthy volunteers (n = 35) were recruited. IBS-D patients meet the Rome IV diagnostic criteria, and UCR-IBS patients matched mayo scores ≤ two points and Rome IV diagnostic criteria. Serum, feces, and mucosa were collected for further analysis. Lipid extraction was carried out by ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). RESULTS Lipidomics of mucosa and serum samples significantly differed among the three groups. Feces showed the most altered lipid species, and the enrichment analysis of 347 differentially abundant metabolites via KEGG pathway analysis revealed that alpha-linolenic acid metabolism was significantly altered in the two groups (P < 0.01). The ratio of omega-6/omega-3 fatty acid were imbalance in serum samples. CONCLUSIONS This study revealed a comprehensive lipid composition pattern between IBS-D patients and UCR-IBS patients. We found several distinctive lipids involved in alpha-linolenic acid metabolism, reflecting an imbalance in the omega-6/omega-3 fatty acid ratio. Compared to mucosa and serum samples, fecal samples might have more advantages in lipidomics studies due to the convenience of sample collection and effectiveness in reflecting metabolic information.
Collapse
Affiliation(s)
- Guorong Chen
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Xuan Wu
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Huiting Zhu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kemin Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Junhai Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Shijie Sun
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China.
| |
Collapse
|
2
|
Metherel AH, Valenzuela R, Klievik BJ, Cisbani G, Rotarescu RD, Gonzalez-Soto M, Cruciani-Guglielmacci C, Layé S, Magnan C, Mutch DM, Bazinet RP. Dietary docosahexaenoic acid (DHA) downregulates liver DHA synthesis by inhibiting eicosapentaenoic acid elongation. J Lipid Res 2024; 65:100548. [PMID: 38649096 PMCID: PMC11126934 DOI: 10.1016/j.jlr.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| | | | - Brinley J Klievik
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Melissa Gonzalez-Soto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Sophie Layé
- INRA, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | | | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Li X, Pan C, Ma W, Yang T, Wang C, Han W, Zhang W, Li H, Li Z, Zhao T, Guo XF, Li D. Effects of dietary supplementation of fish oil plus vitamin D 3 on gut microbiota and fecal metabolites, and their correlation with nonalcoholic fatty liver disease risk factors: a randomized controlled trial. Food Funct 2024; 15:2616-2627. [PMID: 38356413 DOI: 10.1039/d3fo02319b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We previously reported that fish oil plus vitamin D3 (FO + D) could ameliorate nonalcoholic fatty liver disease (NAFLD). However, it is unclear whether the beneficial effects of FO + D on NAFLD are associated with gut microbiota and fecal metabolites. In this study, we investigated the effects of dietary supplementation of FO + D on gut microbiota and fecal metabolites and their correlation with NAFLD risk factors. Methods: A total of 61 subjects were randomly divided into three groups: FO + D group (2.34 g day-1 of eicosatetraenoic acid (EPA) + docosahexaenoic acid (DHA) + 1680 IU vitamin D3), FO group (2.34 g day-1 of EPA + DHA), and corn oil (CO) group (1.70 g d-1 linoleic acid). Blood and fecal samples were collected at the baseline and day 90. Gut microbiota were analyzed through 16S rRNA PCR analysis, and fecal co-metabolites were determined via untargeted ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Results: The relative abundance of Eubacterium (p = 0.03) and Lactobacillus (p = 0.05) increased, whereas that of Streptococcus (p = 0.02) and Dialister (p = 0.04) decreased in the FO + D group compared with the CO group. Besides, changes in tetracosahexaenoic acid (THA, C24:6 n-3) (p = 0.03) levels were significantly enhanced, whereas 8,9-DiHETrE levels (p < 0.05) were reduced in the FO + D group compared with the CO group. The changes in 1,25-dihydroxyvitamin D3 levels in the fecal samples were inversely associated with insulin resistance, which was determined using the homeostatic model assessment model (HOMA-IR, r = -0.29, p = 0.02), and changes in 8,9-DiHETrE levels were positively associated with adiponectin levels (r = -0.43, p < 0.05). Conclusion: The present results indicate that the beneficial effects of FO + D on NAFLD may be partially attributed to the impact on gut microbiota and fecal metabolites.
Collapse
Affiliation(s)
- Xueqi Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
- Binzhou Center for Disease Control and Prevention, Binzhou, China
| | - Chi Pan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
| | - Wenjun Ma
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
| | - Ting Yang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
| | - Chong Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
| | - Weiwei Han
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
| | - Wei Zhang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongxia Li
- Byhealth Institute of Nutrition & Health, Guangzhou, China
| | - Ting Zhao
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Valenzuela R, Metherel AH, Cisbani G, Smith ME, Chouinard-Watkins R, Klievik BJ, Videla LA, Bazinet RP. Protein concentrations and activities of fatty acid desaturase and elongase enzymes in liver, brain, testicle, and kidney from mice: Substrate dependency. Biofactors 2024; 50:89-100. [PMID: 37470206 DOI: 10.1002/biof.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
The synthesis rates of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in rodents and humans are not agreed upon and depend on substrate availability independently of the capacity for synthesis. Therefore, we aimed to assess the activities of the enzymes for n-3 and n-6 PUFA synthesis pathways in liver, brain, testicle, kidney, heart, and lung, in relation to their protein concentration levels. Eight-week-old Balb/c mice (n = 8) were fed a standard chow diet (6.2% fat, 18.6% protein, and 44.2% carbohydrates) until 14 weeks of age, anesthetized with isoflurane and tissue samples were collected (previously perfused) and stored at -80°C. The protein concentration of the enzymes (Δ-6D, Δ-5D, Elovl2, and Elovl5) were assessed by ELISA kits; their activities were assayed using specific PUFA precursors and measuring the respective PUFA products as fatty acid methyl esters by gas chromatographic analysis. The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein concentration and activity of the enzymes were significantly correlated. Furthermore, Δ-6D, Δ-5D, and Elovl2 have a higher affinity for n-3 PUFA precursors compared to n-6 PUFA. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Mackenzie E Smith
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Brinley J Klievik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Cisbani G, Chouinard-Watkins R, Smith ME, Malekanian A, Valenzuela R, Metherel AH, Bazinet RP. Dietary triacetin, but not medium chain triacylglycerides, blunts weight gain in diet-induced rat model of obesity. Lipids 2023; 58:257-270. [PMID: 37997471 DOI: 10.1002/lipd.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Consumption of a Western diet (WD) is known to increase the risk of obesity. Short or medium chain fatty acids influence energy metabolism, and triacetin, a synthetic short chain triacylglyceride, has been shown to lower body fat under normal conditions. This study aimed to investigate if triacetin as part of a WD modifies rat weight and body fat. Male rats were fed a control diet or WD for 8 weeks. At week 8, rats in the WD group were maintained on a WD diet or switched to a WD diet containing 30% energy from medium-chain triacylglyceride (WD-MCT) or triacetin (WD-T) for another 8 weeks. At week 16, rats were euthanized and liver, adipose and blood were collected. Tissue fatty acids (FAs) were quantified by gas chromatography (GC) and hepatic FAs were measured by GC-combustion-isotope ratio mass spectrometry for δ13 C-palmitic acid (PAM)-a novel marker of de novo lipogenesis (DNL). Rats fed WD-T had a body weight not statistically different to the control group, and gained less body weight than rats fed WD alone. Furthermore, WD-T fed rats had a lower fat mass, and lower total liver and plasma FAs compared to the WD group. Rats fed WD-T did not differ from WD in blood ketone or glucose levels, however, had a significantly lower hepatic δ13 C-PAM value than WD fed rats; suggestive of lower DNL. In summary, we show that triacetin has the potential to blunt weight gain and adipose tissue accumulation in a rodent model of obesity, possibly due to a decrease in DNL.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mackenzie E Smith
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arezou Malekanian
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Chen Y, Chai H, Li Z, Liu B, Tan M, Li S, Ma Y. Gut microbiota and their metabolite profiles following peripheral nerve xenotransplantation. Heliyon 2023; 9:e18529. [PMID: 37554826 PMCID: PMC10404661 DOI: 10.1016/j.heliyon.2023.e18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Intestinal pathogens are associated with xenotransplantation tolerance and rejection. However, changes in the gut microbiota in patients who have undergone peripheral nerve xenotransplantation and their association with immune rejection have not yet been reported. OBJECTIVE We aimed to explore intestinal microbes and their metabolites at different time points after peripheral nerve transplantation to provide new insight into improving transplant tolerance. METHODS A peripheral nerve xenotransplantation model was constructed by suturing the segmented nerves of Sprague Dawley rats to those of C57 male mice using xenotransplantation nerve bridging. Fecal samples and intestinal contents were collected at three time points: before surgery (Pre group; n = 10), 1 month after transplantation (Pos1 m group; n = 10), and 3 months after transplantation (Pos3 m group; n = 10) for 16S DNA sequencing and nontargeted metabolome detection. RESULTS Alpha diversity results suggested that species diversity was significantly downregulated after peripheral nerve xenotransplantation. There were six gut flora genera with significantly different expression levels after xenotransplantation: four were downregulated and two were upregulated. A comparison of the Pre vs. Pos1 m groups and the Pos1 m vs. Pos3 m groups revealed that the most significant differentially expressed Kyoto Encyclopedia of Genes and Genomes metabolite pathways were involved in phenylalanine, tyrosine, and tryptophan biosynthesis, as well as histidine metabolism. Metabolites with a strong relationship to the differentially expressed microbial flora were identified. CONCLUSION Our study found lower gut microbiome diversity, with increased short-chain fatty acid (SCFA)-producing and sulfate-reducing bacteria at 1 month post peripheral nerve xenotransplantation, and these were decreased at 3 months post-transplantation. The identification of specific bacterial metabolites is essential for recognizing potential diagnostic markers of xenotransplantation rejection or characterizing therapeutic targets to prevent post-transplant infection.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510360, Guangdong, China
| | - Zhenzhen Li
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Bin Liu
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Minxuan Tan
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Shaopeng Li
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Yanxia Ma
- Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Irvine NA, West AL, Von Gerichten J, Miles EA, Lillycrop KA, Calder PC, Fielding BA, Burdge GC. Exogenous tetracosahexaenoic acid modifies the fatty acid composition of human primary T lymphocytes and Jurkat T cell leukemia cells contingent on cell type. Lipids 2023; 58:185-196. [PMID: 37177900 PMCID: PMC10946481 DOI: 10.1002/lipd.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Tetracosahexaenoic acid (24:6ω-3) is an intermediate in the conversion of 18:3ω-3 to 22:6ω-3 in mammals. There is limited information about whether cells can assimilate and metabolize exogenous 24:6ω-3. This study compared the effect of incubation with 24:6ω-3 on the fatty acid composition of two related cell types, primary CD3+ T lymphocytes and Jurkat T cell leukemia, which differ in the integrity of the polyunsaturated fatty acid (PUFA) biosynthesis pathway. 24:6ω-3 was only detected in either cell type when cells were incubated with 24:6ω-3. Incubation with 24:6ω-3 induced similar increments in the amount of 22:6ω-3 in both cell types and modified the homeoviscous adaptations fatty acid composition induced by activation of T lymphocytes. The effect of incubation with 18:3ω-3 compared to 24:6ω-3 on the increment in 22:6ω-3 was tested in Jurkat cells because primary T cells cannot convert 18:3ω-3 to 22:6ω-3. The increment in the 22:6ω-3 content of Jurkat cells incubated with 24:6ω-3 was 19.5-fold greater than that of cells incubated with 18:3ω-3. Acyl-coA oxidase siRNA knockdown decreased the amount of 22:6ω-3 and increased the amount of 24:6ω-3 in Jurkat cells. These findings show exogenous 24:6ω-3 can be incorporated into primary human T lymphocytes and Jurkat cells and induces changes in fatty acid composition consistent with its conversion to 22:6ω-3 via a mechanism involving peroxisomal β-oxidation that is regulated independently from the integrity of the upstream PUFA synthesis pathway. One further implication is that consuming 24:6ω-3 may be an effective alternative means of achieving health benefits attributed to 20:5ω-3 and 22:6ω-3.
Collapse
Affiliation(s)
- Nicola A. Irvine
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Annette L. West
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Johanna Von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental SciencesUniversity of SouthamptonSouthamptonHampshireUK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
- National Institute of Health and Care Research Southampton Biomedical Research CentreUniversity Hospital Southampton National Health Service Foundation Trust and University of SouthamptonSouthamptonHampshireUK
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
- National Institute of Health and Care Research Southampton Biomedical Research CentreUniversity Hospital Southampton National Health Service Foundation Trust and University of SouthamptonSouthamptonHampshireUK
| |
Collapse
|
8
|
Zhukova NV. Fatty Acids of Echinoderms: Diversity, Current Applications and Future Opportunities. Mar Drugs 2022; 21:md21010021. [PMID: 36662194 PMCID: PMC9865275 DOI: 10.3390/md21010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The phylum Echinodermata comprising the classes Asteroidea, Ophiuroidea, Echinoidea, Holothuroidea, and Crinodeia, is one of the important invertebrate groups. Members of this phylum live exclusively in marine habitats and are distributed in almost all depths and latitudes. Some of them, such as sea urchins and sea cucumbers, are commercially valuable and constitute a major fishery resource. Echinoderms are increasingly recognized as a unique source of various metabolites with a wide range of biological activities. The importance of dietary polyunsaturated fatty acids, such as eicosapentaenoic acid, in human health has drawn attention to echinoderms as a promising source of essential fatty acids (FAs). Extensive information on the FAs of the phylum has been accumulated to date. The biosynthetic capabilities and feeding habits of echinoderms explain the findings of the unusual FAs in them. Certain common and unusual FAs may serve as chemotaxonomic markers of the classes. The main goal of the review was to gather the relevant information on the distribution of FAs among the echinoderm classes, describe the structures, distribution, biosynthetic pathways, and bioactivity, with an emphasis on the FAs specific for echinoderms. A large part of the review is devoted to the FAs derived from echinoderms that exhibit various biological activities promising for potential therapeutic applications.
Collapse
Affiliation(s)
- Natalia V Zhukova
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
9
|
Rotarescu RD, Rezaei K, Mutch DM, Metherel AH. Increases in plasma n-3 tetracosapentaenoic acid and tetracosahexaenoic acid following 12 weeks of EPA, but not DHA, supplementation in women and men. Prostaglandins Leukot Essent Fatty Acids 2022; 185:102494. [PMID: 36148741 DOI: 10.1016/j.plefa.2022.102494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
Dietary feeding and stable isotope studies in rodents support that the 24-carbon omega-3 polyunsaturated fatty acids, tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA), are immediate precursors to docosahexaenoic acid (DHA, 22:6n-3). In this study, we assessed for the first time, changes in TPAn-3 or THA levels following omega-3 PUFA supplementation in humans, providing insight into human omega-3 PUFA metabolism. In this secondary analysis of a double-blind randomized control trial, women and men (19 - 30 years, n = 10 - 14 per sex, per diet) were supplemented with 3 g/day EPA, DHA, or olive oil control for 12 weeks. Plasma TPAn-3 and THA concentrations were determined by gas chromatography-mass spectrometry to determine changes following supplementation in a sex-specific manner (sex x time). EPA supplementation significantly increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM). Furthermore, women had 111% and 99% higher plasma TPAn-3 and THA in the EPA supplemented group compared to men (p < 0.0001). There were no significant effects of time on plasma TPAn-3 or THA concentrations in the DHA supplemented or olive oil supplemented groups. In conclusion, EPA, but not DHA, supplementation in humans increased plasma TPAn-3 and THA levels, suggesting that THA accumulates prior to conversion to DHA in the n-3 PUFA synthesis pathway. Furthermore, women generally exhibit higher plasma TPAn-3 and THA concentrations compared with men, suggesting that women have a greater ability to accumulate 24-carbon n-3 PUFA in plasma via EPA and DPAn-3 elongation, which may explain the known higher DHA levels in women. Summary: In this secondary analysis of a double-blind randomized control trial, we assessed changes in omega-3 (n-3) tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) plasma levels in women and men (19 - 30 years, n = 10 - 14 per sex, per diet) following 12-weeks of n-3 PUFA supplementation (3 g/day EPA, DHA or olive oil). Women had higher plasma TPAn-3 in all supplementation groups and higher THA levels in the EPA and olive oil groups (p < 0.0001) compared to men. EPA supplementation increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM), but DHA supplementation had no effect. For the first time in humans, we show that plasma TPAn-3 and THA levels are higher in women and increased with EPA, but not DHA supplementation, suggesting an accumulation of THA prior to conversion to DHA in the n-3 PUFA synthesis pathway.
Collapse
Affiliation(s)
- Ruxandra D Rotarescu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, ON, Canada
| | - Kimia Rezaei
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, ON, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, ON, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, ON, Canada.
| |
Collapse
|
10
|
Bobin-Dubigeon C, Nazih H, Croyal M, Bard JM. Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity. Nutrients 2022; 14:nu14122461. [PMID: 35745191 PMCID: PMC9230874 DOI: 10.3390/nu14122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
According to the International Agency for Research on Cancer (IARC) more than 10% of cancers can be explained by inadequate diet and excess body weight. Breast cancer is the most common cancer affecting women. The goal of our study is to clarify the relationship between ω3 fatty acids (FA) carried by different lipoproteins and breast cancer (BC) severity, according to two approaches: through clinic-biological data and through in vitro breast cancer cell models. The clinical study has been performed in sera from a cohort of BC women (n = 140, ICO, France) whose tumors differed by their hormone receptors status (HR− for tumors negative for estrogen receptors and progesterone receptors, HR+ for tumors positive for either estrogen receptors or progesterone receptors) and the level of proliferation markers (Ki-67 ≤ 20% Prolif− and Ki-67 ≥ 30% Prolif+). Lipids and ω3FA have been quantified in whole serum and in apoB-containing lipoproteins (Non-HDL) or free of it (HDL). Differences between Prolif− and Prolif+ were compared by Wilcoxon test in each sub-group HR+ and HR−. Results are expressed as median [25th−75th percentile]. Plasma cholesterol, triglycerides, HDL-cholesterol and Non-HDL cholesterol did not differ between Prolif− and Prolif+ sub-groups of HR− and HR+ patients. Plasma EPA and DHA concentrations did not differ either. In the HR− group, the distribution of EPA and DHA between HDL and Non-HDL differed significantly, as assessed by a higher ratio between the FA concentration in Non-HDL and HDL in Prolif− vs. Prolif+ patients (0.20 [0.15−0.36] vs. 0.04 [0.02−0.08], p = 0.0001 for EPA and 0.08 [0.04−0.10] vs. 0.04 [0.01−0.07], p = 0.04 for DHA). In this HR− group, a significant increase in Non-HDL EPA concentration was also observed in Prolif− vs. Prolif+ (0.18 [0.13−0.40] vs. 0.05 [0.02−0.07], p = 0.001). A relative enrichment on Non-HDL in EPA and DHA was also observed in Prolif− patients vs. Prolif+ patients, as assessed by a higher molar ratio between FA and apoB (0.12 [0.09−0.18] vs. 0.02 [0.01−0.05], p < 0.0001 for EPA and 1.00 [0.73−1.69 vs. 0.52 [0.14−1.08], p = 0.04 for DHA). These data were partly confirmed by an in vitro approach of proliferation of isolated lipoproteins containing EPA and DHA on MDA-MB-231 (HR−) and MCF-7 (HR+) cell models. Indeed, among all the studied fractions, only the correlation between the EPA concentration of Non-HDL was confirmed in vitro, although with borderline statistical significance (p = 0.07), in MDA-MB-231 cells. Non-HDL DHA, in the same cells model was significantly correlated to proliferation (p = 0.04). This preliminary study suggests a protective effect on breast cancer proliferation of EPA and DHA carried by apo B-containing lipoproteins (Non-HDL), limited to HR− tumors.
Collapse
Affiliation(s)
- Christine Bobin-Dubigeon
- EA 2160—IUML FR3473 CNRS, Nantes Université, UMR6286, US2B, 44035 Nantes, France
- Department of Biopathology, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France;
- CRNHO, West Human Nutrition Research Center, 44000 Nantes, France; (H.N.); (M.C.)
- Correspondence:
| | - Hassan Nazih
- CRNHO, West Human Nutrition Research Center, 44000 Nantes, France; (H.N.); (M.C.)
- ISOMer UE2160 IUML, Nantes Université, CNRS3473, 44300 Nantes, France
| | - Mikael Croyal
- CRNHO, West Human Nutrition Research Center, 44000 Nantes, France; (H.N.); (M.C.)
- CHU Nantes, Nantes Université, CNRS, Inserm, BioCore, US16, SFR Bonamy, 44000 Nantes, France
| | - Jean-Marie Bard
- Department of Biopathology, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France;
- CRNHO, West Human Nutrition Research Center, 44000 Nantes, France; (H.N.); (M.C.)
- ISOMer UE2160 IUML, Nantes Université, CNRS3473, 44300 Nantes, France
| |
Collapse
|
11
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
12
|
Brenna JT, Kothapalli KSD. New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis. Curr Opin Clin Nutr Metab Care 2022; 25:60-66. [PMID: 34937850 DOI: 10.1097/mco.0000000000000810] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Molecular studies have clarified the roles of the fatty acid desaturase (FADSx) and elongation of very long chain fatty acid (ELOVLx) genes, as well as acyl-coenzyme A synthase long-chain isoforms (ACSLx) required for entry to long-chain polyunsaturated fatty acid (LCPUFA) biosynthetic pathways. RECENT FINDINGS FADS1 and FADS2 but not FADS3 are active toward PUFA. FADS1 is a Δ5-desaturase operating on five C20 PUFA, and is strongly regulated by human genetic polymorphisms, modulating circulating arachidonic acid (20:4n-6) levels. In contrast, FADS2 operates on at least 16 substrates, including five saturates, and catalyzes Δ6, Δ4, and Δ8 desaturation. FADS2 silencing in cancer cells leads to FADS1 synthesis of unusual fatty acids. ACSL6 and ACSL4 are required to maintain tissue 22:6n-3 and 20:4n-6, respectively. FADS2AT2, is the first transcript to differentially inhibit desaturation, attenuating 18:3n-3 but not 18:2n-6 desaturation. The PUFA elongases ELOVL5, 2, and 4 are implicated in cancer, age-related methylation, and retinal degeneration, respectively. SUMMARY The mixture of fatty acids available to FADS2 in any tissue defines the product mixture available for further synthesis of membrane lipids and signaling molecules and may be relevant in many clinical conditions including cancer. Functional genetic variants define the levels of circulating arachidonic acid via FADS1 regulation; genotypes that drive high arachidonic acid may predispose to disease.
Collapse
Affiliation(s)
- J Thomas Brenna
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, Dell Medical School and College of Natural Sciences, University of Texas at Austin, Austin, Texas
- Cornell University, Ithaca, New York, USA
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, Dell Medical School and College of Natural Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
Murine and human microglial cells are relatively enriched with eicosapentaenoic acid compared to the whole brain. Neurochem Int 2021; 150:105154. [PMID: 34384851 DOI: 10.1016/j.neuint.2021.105154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/30/2022]
Abstract
The brain is a multicellular organ enriched with lipids. While the fatty acid composition of gross cerebral tissue is well characterized, the fatty acid composition of specific brain cells, particularly microglia cells, is less well characterized. Microglia cells are the innate immune cells of the brain, and a paucity of studies measuring their fatty acid composition using either immortalized or primary microglia cells report a higher ratio of eicosapentaenoic acid (EPA) to docosahexaenoic acid (DHA) than widely observed in whole brain tissue. Here we further characterize the fatty acid composition of murine microglia cells from young male and female mice as well as of human origin and compared it with a myelin-enriched fraction from the same mice. Our results show that saturated and monounsaturated fatty acids are the most abundant followed by polyunsaturated fatty acids (PUFA), with no statistical differences between sexes. Regarding PUFA, although DHA levels did not differ between human and murine cells, EPA was statistically higher in murine microglia. Notably, the DHA to EPA ratio was about 400 times higher in microglial cells compared to the myelin-enriched fraction. Thus, our results suggest that as compared to whole brain tissue EPA is relatively abundant in microglia cells, particularly in comparison to other n-3 PUFA such as DHA. Since the fatty acid composition of microglia can influence their functionality, a better understanding of EPA and DHA metabolism in microglia and the brain could identify new targets to modify microglial activity.
Collapse
|
14
|
Ljungblad L, Gleissman H, Hedberg G, Wickström M, Eissler N, Pickova J, Johnsen JI, Tedroff K, Strandvik B, Kogner P. Body surface area-based omega-3 fatty acids supplementation strongly correlates to blood concentrations in children. Prostaglandins Leukot Essent Fatty Acids 2021; 169:102285. [PMID: 33964665 DOI: 10.1016/j.plefa.2021.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Omega-3 fatty acids have been suggested as a complement in cancer treatment, but doses are not established. We performed a dose-finding study in 33 children in remission from cancer. Participants were allocated to a body surface area (BSA) adjusted dose (mg/m2) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (40:60), ranging 233-3448 mg/m2 daily for 90 days. Fatty acid concentration in plasma phospholipids and red blood cells were determined by GC. Supplementation was well tolerated and correlated strongly with blood ω3-fatty acid concentrations and EPA showed the highest increase. Using the ω3-index disregards docosapentaenoic acid (DPA), which increased 30-43% in our study motivating an EDD-index (∑EPA,DPA,DHA). The ratio between arachidonic acid and EPA or DHA showed negative exponential trends. Dose per BSA enabled an individualized omega-3 supplementation decreasing the variation referred to interindividual differences. Based on our results, we suggest a dose of 1500 mg/m2 BSA for further studies.
Collapse
Affiliation(s)
- L Ljungblad
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - H Gleissman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - G Hedberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - M Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - N Eissler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - J Pickova
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J I Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - K Tedroff
- Neuropediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - B Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm, Sweden
| | - P Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Astrid Lindgrens Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Balakrishnan J, Kannan S, Govindasamy A. Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain. Nutr Res 2020; 85:119-134. [PMID: 33482601 DOI: 10.1016/j.nutres.2020.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neurodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India.
| | - Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal. Puducherry, India
| |
Collapse
|
16
|
Lin L, Metherel AH, Di Miceli M, Liu Z, Sahin C, Fioramonti X, Cummins CL, Layé S, Bazinet RP. Tetracosahexaenoylethanolamide, a novel N-acylethanolamide, is elevated in ischemia and increases neuronal output. J Lipid Res 2020; 61:1480-1490. [PMID: 32826272 DOI: 10.1194/jlr.ra120001024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Di Miceli
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Xavier Fioramonti
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Layé
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Metherel AH, Bazinet RP. Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion. Prog Lipid Res 2019; 76:101008. [PMID: 31626820 DOI: 10.1016/j.plipres.2019.101008] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
N-3 polyunsaturated fatty acids (PUFA) and the numerous families of lipid mediators derived from them collectively regulate numerous biological processes. The mechanisms by which n-3 PUFA regulate biological processes begins with an understanding of the n-3 biosynthetic pathway that starts with alpha-linolenic acid (18:3n-3) and is commonly thought to end with the production of docosahexaenoic acid (DHA, 22:6n-3). However, our understanding of this pathway is not as complete as previously believed. In the current review we provide a background of the evidence supporting the pathway as currently understood and provide updates from recent studies challenging three central dogma of n-3 PUFA metabolism. By building on nearly three decades of research primarily in cell culture and oral dosing studies, recent evidence presented focuses on in vivo kinetic modelling and compound-specific isotope abundance studies in rodents and humans that have been instrumental in expanding our knowledge of the pathway. Specifically, we highlight three main updates to the n-3 PUFA biosynthesis pathway: (1) DHA synthesis rates cannot be as low as previously believed, (2) DHA is both a product and a precursor to tetracosahexaenoic acid (24:6n-3) and (3) increases in EPA in response to DHA supplementation are not the result of increased retroconversion.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Metherel AH, Irfan M, Klingel SL, Mutch DM, Bazinet RP. Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: a randomized control trial. Am J Clin Nutr 2019; 110:823-831. [PMID: 31204771 DOI: 10.1093/ajcn/nqz097] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/29/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND It has long been believed that DHA supplementation increases plasma EPA via the retroconversion pathway in mammals. However, in rodents this increase in EPA is likely due to a slower metabolism of EPA, but this has never been tested directly in humans. OBJECTIVE The aim of this study was to use the natural variations in 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of n-3 PUFA supplements to assess n-3 PUFA metabolism following DHA or EPA supplementation in humans. METHODS Participants (aged 21.6 ± 2.2 y) were randomly assigned into 1 of 3 supplement groups for 12 wk: 1) olive oil control, 2) ∼3 g/d DHA, or 3) ∼3 g/d EPA. Blood was collected before and after the supplementation period, and concentrations and δ13C of plasma n-3 PUFA were determined. RESULTS DHA supplementation increased (P < 0.05) plasma EPA concentrations by 130% but did not affect plasma δ13C-EPA (-31.0 ± 0.30 to -30.8 ± 0.19, milliUrey ± SEM, P > 0.05). In addition, EPA supplementation did not change plasma DHA concentrations (P > 0.05) but did increase plasma δ13C-DHA (-27.9 ± 0.2 to -25.6 ± 0.1, P < 0.05) toward δ13C-EPA of the supplement (-23.5 ± 0.22). EPA supplementation increased plasma concentrations of EPA and docosapentaenoic acid (DPAn-3) by 880% and 200%, respectively, and increased plasma δ13C-EPA (-31.5 ± 0.2 to -25.7 ± 0.2) and δ13C-DPAn-3 (-28.9 ± 0.3 to -25.0 ± 0.1) toward δ13C-EPA of the supplement. CONCLUSIONS In this study, we show that the increase in plasma EPA following DHA supplementation in humans does not occur via retroconversion, but instead from a slowed metabolism and/or accumulation of plasma EPA. Furthermore, substantial amounts of supplemental EPA can be converted into DHA. δ13C of n-3 PUFA in humans is a powerful and underutilized tool that can track dietary n-3 PUFA and elucidate complex metabolic questions. This trial was registered at clinicaltrials.gov as NCT03378232.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Maha Irfan
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shannon L Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|