2
|
Wu BJ, Shrestha S, Ong KL, Johns D, Hou L, Barter PJ, Rye KA. Cholesteryl ester transfer protein inhibition enhances endothelial repair and improves endothelial function in the rabbit. Arterioscler Thromb Vasc Biol 2015; 35:628-36. [PMID: 25633313 DOI: 10.1161/atvbaha.114.304747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High-density lipoproteins (HDLs) can potentially protect against atherosclerosis by multiple mechanisms, including enhancement of endothelial repair and improvement of endothelial function. This study asks if increasing HDL levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, enhances endothelial repair and improves endothelial function in New Zealand White rabbits with balloon injury of the abdominal aorta. APPROACH AND RESULTS New Zealand White rabbits received chow or chow supplemented with 0.07% or 0.14% (wt/wt) des-fluoro-anacetrapib for 8 weeks. Endothelial denudation of the abdominal aorta was carried out after 2 weeks. The animals were euthanized 6 weeks postinjury. Treatment with 0.07% and 0.14% des-fluoro-anacetrapib reduced cholesteryl ester transfer protein activity by 81±4.9% and 92±12%, increased plasma apolipoprotein A-I levels by 1.4±0.1-fold and 1.5±0.1-fold, increased plasma HDL-cholesterol levels by 1.8±0.2-fold and 1.9±0.1-fold, reduced intimal hyperplasia by 37±11% and 51±10%, and inhibited vascular cell proliferation by 25±6.1% and 35±6.7%, respectively. Re-endothelialization of the injured aorta increased from 43±6.7% (control) to 69±6.6% and 76±7.7% in the 0.07% and 0.14% des-fluoro-anacetrapib-treated animals, respectively. Aortic ring relaxation and guanosine 3',5'-cyclic monophosphate production in response to acetylcholine were also improved. Incubation of HDLs from the des-fluoro-anacetrapib-treated animals with human coronary artery endothelial cells increased cell proliferation and migration relative to control. These effects were abolished by knockdown of scavenger receptor-B1 and PDZ domain-containing protein 1 and by pharmacological inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt. CONCLUSIONS Increasing HDL levels by inhibiting cholesteryl ester transfer protein reduces intimal thickening and regenerates functional endothelium in damaged New Zealand White rabbit aortas in an scavenger receptor-B1-dependent and phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt-dependent manner.
Collapse
Affiliation(s)
- Ben J Wu
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.).
| | - Sudichhya Shrestha
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Kwok L Ong
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Douglas Johns
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Liming Hou
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Philip J Barter
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Kerry-Anne Rye
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.).
| |
Collapse
|
5
|
Gao X, Yuan S, Jayaraman S, Gursky O. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): protein conformational ensemble on HDL. Biochemistry 2012; 51:4633-41. [PMID: 22631438 DOI: 10.1021/bi300555d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
8
|
Gillard BK, Lin HYA, Massey JB, Pownall HJ. Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1125-32. [PMID: 19635584 DOI: 10.1016/j.bbalip.2009.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 12/17/2022]
Abstract
Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport.
Collapse
Affiliation(s)
- Baiba K Gillard
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS-A601, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
11
|
Castellani LW, Nguyen CN, Charugundla S, Weinstein MM, Doan CX, Blaner WS, Wongsiriroj N, Lusis AJ. Apolipoprotein AII is a regulator of very low density lipoprotein metabolism and insulin resistance. J Biol Chem 2007; 283:11633-44. [PMID: 18160395 DOI: 10.1074/jbc.m708995200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein AII (apoAII) transgenic (apoAIItg) mice exhibit several traits associated with the insulin resistance (IR) syndrome, including IR, obesity, and a marked hypertriglyceridemia. Because treatment of the apoAIItg mice with rosiglitazone ameliorated the IR and hypertriglyceridemia, we hypothesized that the hypertriglyceridemia was due largely to overproduction of very low density lipoprotein (VLDL) by the liver, a normal response to chronically elevated insulin and glucose. We now report in vivo and in vitro studies that indicate that hepatic fatty acid oxidation was reduced and lipogenesis increased, resulting in a 25% increase in triglyceride secretion in the apoAIItg mice. In addition, we observed that hydrolysis of triglycerides from both chylomicrons and VLDL was significantly reduced in the apoAIItg mice, further contributing to the hypertriglyceridemia. This is a direct, acute effect, because when mouse apoAII was injected into mice, plasma triglyceride concentrations were significantly increased within 4 h. VLDL from both control and apoAIItg mice contained significant amounts of apoAII, with approximately 4 times more apoAII on apoAIItg VLDL. ApoAII was shown to transfer spontaneously from high density lipoprotein (HDL) to VLDL in vitro, resulting in VLDL that was a poorer substrate for hydrolysis by lipoprotein lipase. These results indicate that one function of apoAII is to regulate the metabolism of triglyceride-rich lipoproteins, with HDL serving as a plasma reservoir of apoAII that is transferred to the triglyceride-rich lipoproteins in much the same way as VLDL and chylomicrons acquire most of their apoCs from HDL.
Collapse
Affiliation(s)
- Lawrence W Castellani
- Departments of Medicine/Cardiology University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Silva RAGD, Schneeweis LA, Krishnan SC, Zhang X, Axelsen PH, Davidson WS. The structure of apolipoprotein A-II in discoidal high density lipoproteins. J Biol Chem 2007; 282:9713-9721. [PMID: 17264082 DOI: 10.1074/jbc.m610380200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well accepted that high levels of high density lipoproteins (HDL) reduce the risk of atherosclerosis in humans. Apolipoprotein A-I (apoA-I) and apoA-II are the first and second most common protein constituents of HDL. Unlike apoA-I, detailed structural models for apoA-II in HDL are not available. Here, we present a structural model of apoA-II in reconstituted HDL (rHDL) based on two well established experimental approaches: chemical cross-linking/mass spectrometry (MS) and internal reflection infrared spectroscopy. Homogeneous apoA-II rHDL were reacted with a cross-linking agent to link proximal lysine residues. Upon tryptic digestion, cross-linked peptides were identified by electrospray mass spectrometry. 14 cross-links were identified and confirmed by tandem mass spectrometry (MS/MS). Infrared spectroscopy indicated a beltlike molecular arrangement for apoA-II in which the protein helices wrap around the lipid bilayer rHDL disc. The cross-links were then evaluated on three potential belt arrangements. The data clearly refute a parallel model but support two antiparallel models, especially a "double hairpin" form. These models form the basis for understanding apoA-II structure in more complex HDL particles.
Collapse
Affiliation(s)
- R A Gangani D Silva
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Lumelle A Schneeweis
- Departments of Pharmacology, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Srinivasan C Krishnan
- Mass Spectrometry Application Laboratory, Applied Biosystems, Framingham, Massachusetts 01701
| | - Xiuqi Zhang
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Paul H Axelsen
- Departments of Pharmacology, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237.
| |
Collapse
|