1
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
2
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Scavenger receptor class B type 1 (SR-B1) promotes atheroprotection through its role in HDL metabolism and reverse cholesterol transport in the liver. However, evidence indicates that SR-B1 may impact atherosclerosis through nonhepatic mechanisms. RECENT FINDINGS Recent studies have brought to light various mechanisms by which SR-B1 affects lesional macrophage function and protects against atherosclerosis. Efferocytosis is efficient in early atherosclerotic lesions. At this stage, and beyond its role in cholesterol efflux, SR-B1 promotes free cholesterol-induced apoptosis of macrophages through its control of apoptosis inhibitor of macrophage (AIM). At more advanced stages, macrophage SR-B1 binds and mediates the removal of apoptotic cells. SR-B1 also participates in the induction of autophagy which limits necrotic core formation and increases plaque stability. SUMMARY These studies shed new light on the atheroprotective role of SR-B1 by emphasizing its essential contribution in macrophages during atherogenesis as a function of lesion stages. These new findings suggest that macrophage SR-B1 is a therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Thierry Huby
- Sorbonne Universités, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | | |
Collapse
|
4
|
Abe RJ, Abe JI, Nguyen MTH, Olmsted-Davis EA, Mamun A, Banerjee P, Cooke JP, Fang L, Pownall H, Le NT. Free Cholesterol Bioavailability and Atherosclerosis. Curr Atheroscler Rep 2022; 24:323-336. [PMID: 35332444 PMCID: PMC9050774 DOI: 10.1007/s11883-022-01011-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.
Collapse
Affiliation(s)
- Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minh T H Nguyen
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Abrar Mamun
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Longhou Fang
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Henry Pownall
- Weill Cornell Medicine, New York, NY, USA
- Center for Bioenergetics, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Apolipoprotein A1-Related Proteins and Reverse Cholesterol Transport in Antiatherosclerosis Therapy: Recent Progress and Future Perspectives. Cardiovasc Ther 2022; 2022:4610834. [PMID: 35087605 PMCID: PMC8763555 DOI: 10.1155/2022/4610834] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia characterized by abnormal deposition of cholesterol in arteries can cause atherosclerosis and coronary artery occlusion, leading to atherosclerotic coronary heart disease. The body prevents atherosclerosis by reverse cholesterol transport to mobilize and excrete cholesterol and other lipids. Apolipoprotein A1, the major component of high-density lipoprotein, plays a key role in reverse cholesterol transport. Here, we reviewed the role of apolipoprotein A1-targeting molecules in antiatherosclerosis therapy, in particular ATP-binding cassette transporter A1, lecithin-cholesterol acyltransferase, and scavenger receptor class B type 1.
Collapse
|
6
|
Vogel A, Brunner JS, Hajto A, Sharif O, Schabbauer G. Lipid scavenging macrophages and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159066. [PMID: 34626791 DOI: 10.1016/j.bbalip.2021.159066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Macrophages are professional phagocytes, indispensable for maintenance of tissue homeostasis and integrity. Depending on their resident tissue, macrophages are exposed to highly diverse metabolic environments. Adapted to their niche, they can contribute to local metabolic turnover through metabolite uptake, conversion, storage and release. Disturbances in tissue homeostasis caused by infection, inflammation or damage dramatically alter the local milieu, impacting macrophage activation status and metabolism. In the case of persisting stimuli, defective macrophage responses ensue, which can promote tissue damage and disease. Especially relevant herein are disbalances in lipid rich environments, where macrophages are crucially involved in lipid uptake and turnover, preventing lipotoxicity. Lipid uptake is to a large extent facilitated by macrophage expressed scavenger receptors that are dynamically regulated and important in many metabolic diseases. Here, we review the receptors mediating lipid uptake and summarize recent findings on their role in health and disease. We further highlight the underlying pathways driving macrophage lipid acquisition and their impact on myeloid metabolic remodelling.
Collapse
Affiliation(s)
- Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Julia Stefanie Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Alexander Hajto
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| |
Collapse
|
7
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
8
|
Gracia-Rubio I, Martín C, Civeira F, Cenarro A. SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Biomedicines 2021; 9:biomedicines9060612. [PMID: 34072125 PMCID: PMC8229968 DOI: 10.3390/biomedicines9060612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
High plasma level of low-density lipoprotein (LDL) is the main driver of the initiation and progression of cardiovascular disease (CVD). Nevertheless, high-density lipoprotein (HDL) is considered an anti-atherogenic lipoprotein due to its role in reverse cholesterol transport and its ability to receive cholesterol that effluxes from macrophages in the artery wall. The scavenger receptor B class type 1 (SR-B1) was identified as the high-affinity HDL receptor, which facilitates the selective uptake of cholesterol ester (CE) into the liver via HDL and is also implicated in the plasma clearance of LDL, very low-density lipoprotein (VLDL) and lipoprotein(a) (Lp(a)). Thus, SR-B1 is a multifunctional receptor that plays a main role in the metabolism of different lipoproteins. The aim of this review is to highlight the association between SR-B1 and CVD risk through mice and human genetic studies.
Collapse
Affiliation(s)
- Irene Gracia-Rubio
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Correspondence: or ; Tel.: +34-976-765-500 (ext. 142895)
| | - César Martín
- Instituto Biofisika (UPV/EHU, CSIC) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco UPB/EHU, 48940 Bilbao, Spain;
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Tao H, Yancey PG, Blakemore JL, Zhang Y, Ding L, Jerome WG, Brown JD, Vickers KC, Linton MF. Macrophage SR-BI modulates autophagy via VPS34 complex and PPARα transcription of Tfeb in atherosclerosis. J Clin Invest 2021; 131:94229. [PMID: 33661763 PMCID: PMC8011903 DOI: 10.1172/jci94229] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy modulates lipid turnover, cell survival, inflammation, and atherogenesis. Scavenger receptor class B type I (SR-BI) plays a crucial role in lysosome function. Here, we demonstrate that SR-BI regulates autophagy in atherosclerosis. SR-BI deletion attenuated lipid-induced expression of autophagy mediators in macrophages and atherosclerotic aortas. Consequently, SR-BI deletion resulted in 1.8- and 2.5-fold increases in foam cell formation and apoptosis, respectively, and increased oxidized LDL-induced inflammatory cytokine expression. Pharmacological activation of autophagy failed to reduce lipid content or apoptosis in Sr-b1-/- macrophages. SR-BI deletion reduced both basal and inducible levels of transcription factor EB (TFEB), a master regulator of autophagy, causing decreased expression of autophagy genes encoding VPS34 and Beclin-1. Notably, SR-BI regulated Tfeb expression by enhancing PPARα activation. Moreover, intracellular macrophage SR-BI localized to autophagosomes, where it formed cholesterol domains resulting in enhanced association of Barkor and recruitment of the VPS34-Beclin-1 complex. Thus, SR-BI deficiency led to lower VPS34 activity in macrophages and in atherosclerotic aortic tissues. Overexpression of Tfeb or Vps34 rescued the defective autophagy in Sr-b1-/- macrophages. Taken together, our results show that macrophage SR-BI regulates autophagy via Tfeb expression and recruitment of the VPS34-Beclin-1 complex, thus identifying previously unrecognized roles for SR-BI and potentially novel targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Huan Tao
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Patricia G. Yancey
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - John L. Blakemore
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Youmin Zhang
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Lei Ding
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - W. Gray Jerome
- Department of Pathology, Microbiology and Immunology, and
| | - Jonathan D. Brown
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Kasey C. Vickers
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - MacRae F. Linton
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Belyaeva VS, Stepenko YV, Lyubimov II, Kulikov AL, Tietze AA, Kochkarova IS, Martynova OV, Pokopeyko ON, Krupen’kina LA, Nagikh AS, Pokrovskiy VM, Patrakhanov EA, Belashova AV, Lebedev PR, Gureeva AV. Non-hematopoietic erythropoietin-derived peptides for atheroprotection and treatment of cardiovascular diseases. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.58891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relevance: Cardiovascular diseases continue to be the leading cause of premature adult death.Lipid profile and atherogenesis: Dislipidaemia leads to subsequent lipid accumulation and migration of immunocompetent cells into the vessel intima. Macrophages accumulate cholesterol forming foam cells – the morphological substrate of atherosclerosis in its initial stage.Inflammation and atherogenesis: Pro-inflammatory factors provoke oxidative stress, vascular wall damage and foam cells formation.Endothelial and mitochondrial dysfunction in the development of atherosclerosis: Endothelial mitochondria are some of the organelles most sensitive to oxidative stress. Damaged mitochondria produce excess superoxide and H2O2, which are the main factors of intracellular damage, further increasing endothelial dysfunction.Short non-hematopoietic erythropoietin-based peptides as innovative atheroprotectors: Research in recent decades has shown that erythropoietin has a high cytoprotective activity, which is mainly associated with exposure to the mitochondrial link and has been confirmed in various experimental models. There is also a short-chain derivative, the 11-amino acid pyroglutamate helix B surface peptide (PHBSP), which selectively binds to the erythropoietin heterodymic receptor and reproduces its cytoprotective properties. This indicates the promising use of short-chain derivatives of erythropoietin for the treatment and prevention of atherosclerotic vascular injury. In the future, it is planned to study the PHBSP derivatives, the modification of which consists in adding RGD and PGP tripeptides with antiaggregant properties to the original 11-member peptide.
Collapse
|
11
|
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159:4-33. [PMID: 32730849 DOI: 10.1016/j.addr.2020.07.019] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
With cardiovascular disease being the leading cause of morbidity and mortality worldwide, effective and cost-efficient therapies to reduce cardiovascular risk are highly needed. Lipids and lipoprotein particles crucially contribute to atherosclerosis as underlying pathology of cardiovascular disease and influence inflammatory processes as well as function of leukocytes, vascular and cardiac cells, thereby impacting on vessels and heart. Statins form the first-line therapy with the aim to block cholesterol synthesis, but additional lipid-lowering drugs are sometimes needed to achieve low-density lipoprotein (LDL) cholesterol target values. Furthermore, beyond LDL cholesterol, also other lipid mediators contribute to cardiovascular risk. This review comprehensively discusses low- and high-density lipoprotein cholesterol, lipoprotein (a), triglycerides as well as fatty acids and derivatives in the context of cardiovascular disease, providing mechanistic insights into their role in pathological processes impacting on cardiovascular disease. Also, an overview of applied as well as emerging therapeutic strategies to reduce lipid-induced cardiovascular burden is provided.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, the Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
12
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
13
|
Hung AM, Tsuchida Y, Nowak KL, Sarkar S, Chonchol M, Whitfield V, Salas N, Dikalova A, Yancey PG, Huang J, Linton MF, Ikizler TA, Kon V. IL-1 Inhibition and Function of the HDL-Containing Fraction of Plasma in Patients with Stages 3 to 5 CKD. Clin J Am Soc Nephrol 2019; 14:702-711. [PMID: 31015261 PMCID: PMC6500942 DOI: 10.2215/cjn.04360418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Systemic inflammation modulates cardiovascular disease risk and functionality of HDL in the setting of CKD. Whether interventions that modify systemic inflammation can improve HDL function in CKD is unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted a post hoc analysis of two randomized, clinical trials, IL-1 trap in participants with GFR 15-59 ml/min per 1.73 m2 (study A) and IL-1 receptor antagonist in participants on maintenance hemodialysis (study B), to evaluate if IL-1 blockade had improved the anti-inflammatory activity (IL-6, TNF-α, and Nod-like receptor protein 3), antioxidant function (superoxide production), and net cholesterol efflux capacity of HDL. HDL function was measured using LPS-stimulated THP-1 macrophages or peritoneal macrophages of apoE-deficient mice exposed to the apoB-depleted, HDL-containing fraction obtained from the plasma of the study participants, collected before and after the interventions to block IL-1 effects. Analysis of covariance was used for between group comparisons. RESULTS The mean age of the participants was 60±13 years, 72% (n=33) were men, and 39% (n=18) were black. There were 32 CKD (16 IL-1 trap and 16 placebo) and 14 maintenance hemodialysis (7 IL-1 receptor antagonist and 7 placebo) participants. Compared with placebo, IL-1 inhibition, in study A and B reduced cellular expression of TNF-α by 15% (P=0.05) and 64% (P=0.02), IL-6 by 38% (P=0.004) and 56% (P=0.08), and Nod-like receptor protein 3 by 16% (P=0.01) and 25% (P=0.02), respectively. The intervention blunted superoxide production in the treated arm compared with placebo, with the values being higher by 17% in the placebo arm in study A (P<0.001) and 12% in the placebo arm in study B (P=0.004). Net cholesterol efflux capacity was not affected by either intervention. CONCLUSIONS IL-1 blockade improves the anti-inflammatory and antioxidative properties of the HDL-containing fraction of plasma in patients with stages 3-5 CKD, including those on maintenance hemodialysis.
Collapse
Affiliation(s)
- Adriana M Hung
- Division of Nephrology, Tennessee Valley Healthcare System, Nashville, Tennessee; .,Department of Medicine and
| | - Yohei Tsuchida
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Kristen L Nowak
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | - Michel Chonchol
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | | | | | | | | | | | - T Alp Ikizler
- Division of Nephrology, Tennessee Valley Healthcare System, Nashville, Tennessee.,Department of Medicine and
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
14
|
Sahebi R, Hassanian SM, Ghayour‐Mobarhan M, Farrokhi E, Rezayi M, Samadi S, Bahramian S, Ferns GA, Avan A. Scavenger receptor Class B type I as a potential risk stratification biomarker and therapeutic target in cardiovascular disease. J Cell Physiol 2019; 234:16925-16932. [DOI: 10.1002/jcp.28393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Ghayour‐Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Effat Farrokhi
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shabbou Bahramian
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan Iran
| | - Gordon A. Ferns
- Division of Medical Education Brighton & Sussex Medical School, Falmer Brighton Sussex
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
15
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
16
|
Pearson JT, Yoshimoto M, Chen YC, Sultani R, Edgley AJ, Nakaoka H, Nishida M, Umetani K, Waddingham MT, Jin HL, Zhang Y, Kelly DJ, Schwenke DO, Inagaki T, Tsuchimochi H, Komuro I, Yamashita S, Shirai M. Widespread Coronary Dysfunction in the Absence of HDL Receptor SR-B1 in an Ischemic Cardiomyopathy Mouse Model. Sci Rep 2017; 7:18108. [PMID: 29273789 PMCID: PMC5741771 DOI: 10.1038/s41598-017-18485-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/12/2017] [Indexed: 02/02/2023] Open
Abstract
Reduced clearance of lipoproteins by HDL scavenger receptor class B1 (SR-B1) plays an important role in occlusive coronary artery disease. However, it is not clear how much microvascular dysfunction contributes to ischemic cardiomyopathy. Our aim was to determine the distribution of vascular dysfunction in vivo in the coronary circulation of male mice after brief exposure to Paigen high fat diet, and whether this vasomotor dysfunction involved nitric oxide (NO) and or endothelium derived hyperpolarization factors (EDHF). We utilised mice with hypomorphic ApoE lipoprotein that lacked SR-B1 (SR-B1−/−/ApoER61h/h, n = 8) or were heterozygous for SR-B1 (SR-B1+/−/ApoER61h/h, n = 8) to investigate coronary dilator function with synchrotron microangiography. Partially occlusive stenoses were observed in vivo in SR-B1 deficient mice only. Increases in artery-arteriole calibre to acetylcholine and sodium nitroprusside stimulation were absent in SR-B1 deficient mice. Residual dilation to acetylcholine following L-NAME (50 mg/kg) and sodium meclofenamate (3 mg/kg) blockade was present in both mouse groups, except at occlusions, indicating that EDHF was not impaired. We show that SR-B1 deficiency caused impairment of NO-mediated dilation of conductance and microvessels. Our findings also suggest EDHF and prostanoids are important for global perfusion, but ultimately the loss of NO-mediated vasodilation contributes to atherothrombotic progression in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- James T Pearson
- Monash Biomedical Imaging Facility, Melbourne, Victoria, Australia. .,Department of Physiology, Monash University, Melbourne, Victoria, Australia. .,Australian Synchrotron, Melbourne, Victoria, Australia. .,National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Misa Yoshimoto
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Health Sciences, Nara Women's University, Nara, Japan
| | - Yi Ching Chen
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Rohullah Sultani
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Amanda J Edgley
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.,St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Hajime Nakaoka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Harima, Hyogo, Japan
| | - Mark T Waddingham
- St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Hui-Ling Jin
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuan Zhang
- St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Darren J Kelly
- St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Daryl O Schwenke
- Department of Physiology - HeartOtago, University of Otago, Dunedin, New Zealand
| | - Tadakatsu Inagaki
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shizuya Yamashita
- Departments of Community Medicine and Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Mikiyasu Shirai
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
17
|
Linton MF, Tao H, Linton EF, Yancey PG. SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis. Trends Endocrinol Metab 2017; 28:461-472. [PMID: 28259375 PMCID: PMC5438771 DOI: 10.1016/j.tem.2017.02.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/07/2023]
Abstract
The HDL receptor scavenger receptor class B type I (SR-BI) plays crucial roles in cholesterol homeostasis, lipoprotein metabolism, and atherosclerosis. Hepatic SR-BI mediates reverse cholesterol transport (RCT) by the uptake of HDL cholesterol for routing to the bile. Through the selective uptake of HDL lipids, hepatic SR-BI modulates HDL composition and preserves HDL's atheroprotective functions of mediating cholesterol efflux and minimizing inflammation and oxidation. Macrophage and endothelial cell SR-BI inhibits the development of atherosclerosis by mediating cholesterol trafficking to minimize atherosclerotic lesion foam cell formation. SR-BI signaling also helps limit inflammation and cell death and mediates efferocytosis of apoptotic cells in atherosclerotic lesions thereby preventing vulnerable plaque formation. SR-BI is emerging as a multifunctional therapeutic target to reduce atherosclerosis development.
Collapse
Affiliation(s)
- MacRae F Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA; Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA.
| | - Huan Tao
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | - Edward F Linton
- Perelman School of Medicine, University of Pennsylvania, Jordan Medical Education Center, 6th Floor, 3400 Civic Center Blvd, Philadelphia, PA 19104-6055, USA
| | - Patricia G Yancey
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA.
| |
Collapse
|
18
|
Nikiforov NG, Elizova NV, Bukrinsky M, Dubrovsky L, Makeev VJ, Wakabayashi Y, Liu P, Foxx KK, Kruth HS, Jin X, Zakiev ER, Orekhov AN. Use of Primary Macrophages for Searching Novel Immunocorrectors. Curr Pharm Des 2017; 23:915-920. [PMID: 28124601 DOI: 10.2174/1381612823666170125110128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/11/2017] [Indexed: 11/22/2022]
Abstract
In this mini-review, the role of macrophage phenotypes in atherogenesis is considered. Recent studies on distribution of M1 and M2 macrophages in different types of atherosclerotic lesions indicate that macrophages exhibit a high degree of plasticity of phenotype in response to various conditions in microenvironment. The effect of the accumulation of cholesterol, a key event in atherogenesis, on the macrophage phenotype is also discussed. The article presents the results of transcriptome analysis of cholesterol-loaded macrophages revealing genes involved in immune response whose expression rate has changed the most. It turned out that the interaction of macrophages with modified LDL leads to higher expression levels of pro-inflammatory marker TNF-α and antiinflammatory marker CCL18. Phenotypic profile of macrophage activation could be a good target for testing of novel anti-atherogenic immunocorrectors. A number of anti-atherogenic drugs were tested as potential immunocorrectors using primary macrophage-based model.
Collapse
Affiliation(s)
- Nikita G Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Natalia V Elizova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Michael Bukrinsky
- GW School of Medicine and Health Sciences, George Washington University, 20037 Washington, DC, United States
| | - Larisa Dubrovsky
- GW School of Medicine and Health Sciences, George Washington University, 20037 Washington, DC, United States
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russian Federation
| | - Yoshiyuki Wakabayashi
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, 20892 Bethesda, MD, United States
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, 20892 Bethesda, MD, United States
| | - Kathy K Foxx
- Kalen Biomedical, LLC, 20886 Montgomery Village, MD, United States
| | - Howard S Kruth
- Experimental Atherosclerosis Section, Center for Molecular, National Heart, Lung, and Blood Institute , National Institutes of Health, 20892 Bethesda, MD, United States
| | - Xueting Jin
- Experimental Atherosclerosis Section, Center for Molecular, National Heart, Lung, and Blood Institute , National Institutes of Health, 20892 Bethesda, MD, United States
| | - Emile R Zakiev
- INSERM UMR_S 1166, Faculte de Medecine Pitie-Salpetriere, University of Pierre and Marie Curie - Paris 6, 75013 Paris, France
| | - Alexander N Orekhov
- Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
19
|
Kaseda R, Jabs K, Hunley TE, Jones D, Bian A, Allen RM, Vickers KC, Yancey PG, Linton MF, Fazio S, Kon V. Dysfunctional high-density lipoproteins in children with chronic kidney disease. Metabolism 2015; 64:263-73. [PMID: 25467845 PMCID: PMC4277938 DOI: 10.1016/j.metabol.2014.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Our aim was to determine if chronic kidney disease (CKD) occurring in childhood impairs the normally vasoprotective functions of high-density lipoproteins (HDLs). MATERIALS AND METHODS HDLs were isolated from children with end-stage renal disease on dialysis (ESRD), children with moderate CKD and controls with normal kidney function. Macrophage response to HDLs was studied as expression of inflammatory markers (MCP-1, TNF-α, IL-1β) and chemotaxis. Human umbilical vein endothelial cells were used for expression of adhesion molecules (ICAM-1, VCAM-1, E-selectin) and adhesion. Cellular proliferation, apoptosis, and necrosis of endothelial cells were measured by MTS/PMS reagent-based assay, flow cytometry, and ELISA. Cholesterol efflux was assessed by gas chromatographic measurements of cholesterol in macrophages exposed to HDLs. RESULTS Compared with HDL(Control), HDL(CKD) and HDL(ESRD) heightened the cytokine response and disrupted macrophage chemotaxis. HDL(Control) reduced endothelial expression of ICAM-1, VCAM-1, E-selectin, whereas HDL(CKD) and HDL(ESRD) were less effective and showed reduced capacity to protect endothelial cells against monocyte adhesion. Compared with a dramatically enhanced endothelial proliferation following injurious stimulus by HDL(Control), neither HDL(CKD) nor HDL(ESRD) caused proliferative effects. HDLs of all three groups were equally protective against apoptosis assessed by flow cytometry and cleaved caspase-3 activity. Compared to HDL(Control), HDL(CKD) and HDL(ESRD) trended toward reduced capacity as cholesterol acceptors. CONCLUSION CKD in children impairs HDL function. Even in the absence of long-standing and concomitant risk factors, CKD alters specific HDL functions linked to control of inflammation and endothelial responses.
Collapse
MESH Headings
- Adolescent
- Apoptosis
- Biological Transport
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/prevention & control
- Cell Adhesion
- Cell Line
- Cell Proliferation
- Cells, Cultured
- Chemotaxis
- Child
- Child, Preschool
- Cholesterol/blood
- Cholesterol/metabolism
- Coculture Techniques
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Human Umbilical Vein Endothelial Cells
- Humans
- Infant
- Kidney Failure, Chronic/blood
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/physiopathology
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Macrophages/pathology
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Risk Factors
- Severity of Illness Index
- Tennessee/epidemiology
Collapse
Affiliation(s)
- Ryohei Kaseda
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Kathy Jabs
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Tracy E Hunley
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Deborah Jones
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Aihua Bian
- Department of Statistics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan M Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Patricia G Yancey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - MacRae F Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergio Fazio
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pathology, Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To summarize the recent findings about the roles of scavenger receptor class B type I (SR-BI) in immunity and discuss the underlying mechanisms by which SR-BI prevents immune dysfunctions. RECENT FINDINGS SR-BI is well known as a high-density lipoprotein (HDL) receptor playing key roles in HDL metabolism and in protection against atherosclerosis. Recent studies have indicated that SR-BI is also an essential modulator in immunity. SR-BI deficiency in mice causes immune dysfunctions, including increased atherosclerosis, elevated susceptibility to sepsis, impaired lymphocyte homeostasis, and autoimmune disorders. SR-BI exerts its protective roles through a variety of HDL-dependent and HDL-independent mechanisms. SR-BI is also involved in hepatitis C virus cell entry. A deficiency of SR-BI in humanized mice has been shown to decrease hepatitis C virus infectivity. SUMMARY SR-BI regulates immunity via multiple mechanisms and its deficiency causes numerous diseases. A comprehensive understanding of the roles of SR-BI in protection against immune dysfunctions may provide a therapeutic target for intervention against its associated diseases.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Junting Ai
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 580] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
22
|
Chadwick AC, Sahoo D. Functional genomics of the human high-density lipoprotein receptor scavenger receptor BI: an old dog with new tricks. Curr Opin Endocrinol Diabetes Obes 2013; 20:124-31. [PMID: 23403740 PMCID: PMC3967407 DOI: 10.1097/med.0b013e32835ed575] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The athero-protective role of scavenger receptor BI (SR-BI) is primarily attributed to its ability to selectively transfer cholesteryl esters from high-density lipoproteins (HDLs) to the liver during reverse cholesterol transport (RCT). In this review, we highlight recent findings that reveal the impact of SR-BI on lipid levels and cardiovascular disease in humans. Moreover, additional responsibilities of SR-BI in modulating adrenal and platelet function, as well as female fertility in humans, are discussed. RECENT FINDINGS Heterozygote carriers of P297S, S112F and T175A-mutant SR-BI receptors were identified in patients with high HDL-cholesterol levels. HDL from P297S-SR-BI carriers was unable to mediate macrophage cholesterol efflux, whereas hepatocytes expressing P297S-SR-BI were unable to mediate the selective uptake of HDL-cholesteryl esters. S112F and T175A-mutant receptors exhibited similar impaired cholesterol transport functions in vitro. Reduced SR-BI function in P297S carriers was also associated with decreased steroidogenesis and altered platelet function. Further, human population studies identified SCARB1 variants associated with female infertility. SUMMARY Identification of SR-BI variants confirms the key role of this receptor in influencing lipid levels and RCT in humans. A deeper understanding of the contributions of SR-BI to steroidogenesis, platelet function and fertility is required in light of exploration of HDL-raising therapies aimed at reducing cardiovascular risk.
Collapse
Affiliation(s)
- Alexandra C. Chadwick
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Medicine, Division of Endocrinology, Metabolism & Clinical Nutrition, Milwaukee, WI, 53226, USA
- To whom correspondence should be addressed: H4930 Health Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Phone: 1-414-955-7414; Fax: 1-414-456-6570,
| |
Collapse
|
23
|
Chadwick AC, Sahoo D. Functional characterization of newly-discovered mutations in human SR-BI. PLoS One 2012; 7:e45660. [PMID: 23029167 PMCID: PMC3448639 DOI: 10.1371/journal.pone.0045660] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022] Open
Abstract
In rodents, SR-BI has been firmly established as a physiologically relevant HDL receptor that mediates removal of HDL-cholesteryl esters (CE). However, its role in human lipoprotein metabolism is less defined. Recently, two unique point mutations in human SR-BI - S112F or T175A - were identified in subjects with high HDL-cholesterol (HDL-C) levels. We hypothesized that mutation of these conserved residues would compromise the cholesterol-transport functions of SR-BI. To test this hypothesis, S112F- and T175A-SR-BI were generated by site-directed mutagenesis. Cell surface expression was confirmed for both mutant receptors in COS-7 cells upon transient transfection, albeit at lower levels for T175A-SR-BI. Both mutant receptors displayed defective HDL binding, selective uptake of HDL-CE and release of free cholesterol (FC) from cells to HDL. Mutant receptors were also unable to re-organize plasma membrane pools of FC. While these impaired functions were independent of receptor oligomerization, inability of T175A-SR-BI to mediate cholesterol-transport functions could be related to altered N-linked glycosylation status. In conclusion, high HDL-C levels observed in carriers of S112F- or T175A-SR-BI mutant receptors are consistent with the inability of these SR-BI receptors to mediate efficient selective uptake of HDL-CE, and suggest that increased plasma HDL concentrations in these settings may not be associated with lower risk of cardiovascular disease.
Collapse
Affiliation(s)
- Alexandra C Chadwick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
24
|
Research Advances of Cholesterol Efflux in Atherosclerosis*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
HDL-C: does it matter? An update on novel HDL-directed pharmaco-therapeutic strategies. Int J Cardiol 2012; 167:646-55. [PMID: 22668801 DOI: 10.1016/j.ijcard.2012.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/09/2012] [Accepted: 05/11/2012] [Indexed: 11/22/2022]
Abstract
It has long been recognized that elevated levels of low-density lipoprotein cholesterol (LDL-C) increase the risk of cardiovascular disease (CHD) and that pharmacologic therapy to decrease LDL-C significantly reduces cardiovascular events. Despite the effectiveness of statins for CHD risk reduction, even optimal LDL-lowering therapy alone fails to avert 60% to 70% of CHD cases. A low plasma concentration of high-density lipoprotein cholesterol (HDL-C) is also associated with increased risk of CHD. However, the convincing epidemiologic data linking HDL cholesterol (HDL-C) to CHD risk in an inverse correlation has not yet translated into clinical trial evidence supporting linearity between HDL-C increases and CHD risk reduction. It is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-C levels. Discoveries in the past decade have shed light on the complex metabolic and antiatherosclerotic pathways of HDL. These insights, in turn, have fueled the development of new HDL-targeted drugs, which can be classified according to four different therapeutic approaches: directly augmenting the concentration of apolipoprotein A-I (apo A-I), the major protein constituent of HDL; indirectly augmenting the concentration of apo A-I and HDL cholesterol; mimicking the functionality of apo A-I and enhancing reverse cholesterol transport. This review discusses the latest in novel HDL directed therapeutic strategies.
Collapse
|
26
|
Cai L, Wang Z, Meyer JM, Ji A, van der Westhuyzen DR. Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. J Lipid Res 2012; 53:1472-81. [PMID: 22589557 DOI: 10.1194/jlr.m023234] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Scavenger receptor BI (SR-BI), an HDL receptor, plays a key role in reverse cholesterol transport. In mice, disruption of SR-BI results in hypersensitivity to lipopolysaccharide (LPS) and bacteria-induced septic shock due to adrenal insufficiency and abnormal hepatic pathogen clearance. In this study, we identify an anti-inflammatory role of macrophage SR-BI. Using bone marrow transplantation, we report an enhanced pro-inflammatory response to LPS in wild-type (WT) mice receiving SR-BI-null compared with WT bone marrow cells and a reduced response in SR-BI-null mice receiving WT compared with SR-BI-null cells. Although significant, SR-BI deficiency limited to bone marrow-derived cells promoted a relatively modest enhancement of the inflammatory response to LPS in mice compared with the effect of whole-body SR-BI deletion. Consistent with earlier findings, SR-BI-null primary macrophages exhibited a greater inflammatory cytokine response to LPS than control macro phages. In addition, we showed that overexpression of SR-BI in J774 macrophages attenuated the inflammatory response to LPS. The LPS-induced cytokine expression in both WT and SR-BI-null macrophages was dependent not only on NFκB as previously reported but also on JNK and P38 cell signaling pathways. The increased inflammatory signaling in SR-BI-null cells was not related to alterations in cellular cholesterol content. We conclude that SR-BI plays an important function in regulating the macrophage inflammatory response to LPS.
Collapse
Affiliation(s)
- Lei Cai
- Department of Veterans Affairs Medical Center, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
27
|
Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer's disease mouse model. PLoS One 2011; 6:e21880. [PMID: 21755005 PMCID: PMC3130747 DOI: 10.1371/journal.pone.0021880] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/11/2011] [Indexed: 02/03/2023] Open
Abstract
Background Apolipoprotein E (ApoE), a cholesterol carrier associated with atherosclerosis, is a major risk factor for Alzheimer's disease (AD). The low-density lipoprotein receptor (LDLR) regulates ApoE levels in the periphery and in the central nervous system. LDLR has been identified on astrocytes and a number of studies show that it modulates amyloid deposition in AD transgenic mice. However these findings are controversial on whether LDLR deletion is beneficial or detrimental on the AD-like phenotype of the transgenic mice. Methodology/Principal Findings To investigate the role of LDLR in the development of the amyloid related phenotype we used an APP/PS1 transgenic mouse (5XFAD) that develops an AD-like pathology with amyloid plaques, astrocytosis and microgliosis. We found that 4 months old 5XFAD transgenic mice on the LDLR deficient background (LDLR-/-) have increased amyloid plaque deposition. This increase is associated with a significant decrease in astrocytosis and microgliosis in the 5XFAD/LDLR-/- mice. To further elucidate the role of LDLR in relation with ApoE we have generated 5XFAD transgenic mice on the ApoE deficient (ApoE-/-) or the ApoE/LDLR double deficient background (ApoE-/-/LDLR -/-). We have found that ApoE deletion in the 4 months old 5XFAD/ApoE-/- mice decreases amyloid plaque formation as expected, but has no effect on astrocytosis or microgliosis. By comparison 5XFAD/ApoE-/-LDLR -/- double deficient mice of the same age have increased amyloid deposition with decreased astrocytosis and microgliosis. Conclusions Our analysis shows that LDL deficiency regulates astrocytosis and microgliosis in an AD mouse model. This effect is independent of ApoE, as both 5XFAD/LDLR -/- and 5XFAD/ApoE-/- LDLR -/- mice show reduction in inflammatory response and increase in amyloid deposition compared to control mice. These results demonstrate that LDLR regulates glial response in this mouse model independently of ApoE and modifies amyloid deposition.
Collapse
|
28
|
Zhao Y, Pennings M, Hildebrand RB, Ye D, Calpe-Berdiel L, Out R, Kjerrulf M, Hurt-Camejo E, Groen AK, Hoekstra M, Jessup W, Chimini G, Van Berkel TJC, Van Eck M. Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in Bone marrow-derived cells in LDL receptor knockout mice on western-type diet. Circ Res 2010; 107:e20-31. [PMID: 21071707 DOI: 10.1161/circresaha.110.226282] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE macrophages cannot limit the uptake of lipids and rely on cholesterol efflux mechanisms for maintaining cellular cholesterol homeostasis. Important mediators of macrophage cholesterol efflux are ATP-binding cassette transporter 1 (ABCA1), which mediates the efflux of cholesterol to lipid-poor apolipoprotein AI, and scavenger receptor class B type I (SR-BI), which promotes efflux to mature high-density lipoprotein. OBJECTIVE the aim of the present study was to increase the insight into the putative synergistic roles of ABCA1 and SR-BI in foam cell formation and atherosclerosis. METHODS AND RESULTS low-density lipoprotein receptor knockout (LDLr KO) mice were transplanted with bone marrow from ABCA1/SR-BI double knockout mice, the respective single knockouts, or wild-type littermates. Serum cholesterol levels were lower in ABCA1/SR-BI double knockout transplanted animals, as compared to the single knockout and wild-type transplanted animals on Western-type diet. Despite the lower serum cholesterol levels, massive foam cell formation was found in macrophages from spleen and the peritoneal cavity. Interestingly, ABCA1/SR-BI double knockout transplanted animals also showed a major increase in proinflammatory KC (murine interleukin-8) and interleukin-12p40 levels in the circulation. Furthermore, after 10 weeks of Western-type diet feeding, atherosclerotic lesion development in the aortic root was more extensive in the LDLr KO mice reconstituted with ABCA1/SR-BI double knockout bone marrow. CONCLUSIONS deletion of ABCA1 and SR-BI in bone marrow-derived cells enhances in vivo macrophage foam cell formation and atherosclerotic lesion development in LDLr KO mice on Western diet, indicating that under high dietary lipid conditions, both macrophage ABCA1 and SR-BI contribute significantly to cholesterol homeostasis in the macrophage in vivo and are essential for reducing the risk for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, University Medical Center Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao Y, Van Berkel TJ, Van Eck M. Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 2010; 21:441-53. [PMID: 20683325 DOI: 10.1097/mol.0b013e32833dedaa] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cholesterol efflux mechanisms are essential for macrophage cholesterol homeostasis. HDL, an important cholesterol efflux acceptor, comprises a class of heterogeneous particles that induce cholesterol efflux via distinct pathways. This review focuses on the understanding of the different cholesterol efflux pathways and physiological acceptors involved, and their regulation in atherosclerotic lesions. RECENT FINDINGS The synergistic interactions of ATP-binding cassette transporters A1 and G1 as well as ATP-binding cassette transporter A1 and scavenger receptor class B type I are essential for cellular cholesterol efflux and the prevention of macrophage foam cell formation. However, the importance of aqueous diffusion should also not be underestimated. Significant progress has been made in understanding the mechanisms underlying ATP-binding cassette A1-mediated cholesterol efflux and regulation of its expression and trafficking. Conditions locally in the atherosclerotic lesion, for example, lipids, cytokines, oxidative stress, and hypoxia, as well as systemic factors, including inflammation and diabetes, critically influence the expression of cholesterol transporters on macrophage foam cells. Furthermore, HDL modification and remodeling in atherosclerosis, inflammation, and diabetes impairs its function as an acceptor for cellular cholesterol. SUMMARY Recent advances in the understanding of the regulation of cholesterol transporters and their acceptors in atherosclerotic lesions indicate that HDL-based therapies should aim to enhance the activity of cholesterol transporters and improve both the quantity and quality of HDL.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands
| | | | | |
Collapse
|
30
|
Mahapatra S, Ayoubi P, Shaw EI. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection. BMC Microbiol 2010; 10:244. [PMID: 20854687 PMCID: PMC2954873 DOI: 10.1186/1471-2180-10-244] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/20/2010] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. RESULTS We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM) to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray slides. A total of 784 (mock treated) and 901 (CAM treated) THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold), eliminated the common gene expression changes. A stringent comparison (≥2 fold) between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. CONCLUSIONS Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the pathogen whether or not it is actively synthesizing proteins. These findings indicate that C. burnetii modulates the host cell gene expression to avoid the immune response, preserve the host cell from death, and direct the development and maintenance of a replicative PV by controlling vesicle formation and trafficking within the host cell during infection.
Collapse
Affiliation(s)
- Saugata Mahapatra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK, 74078, USA
| | - Patricia Ayoubi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246C Noble Research Center, Stillwater, OK, 74078, USA
| | - Edward I Shaw
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK, 74078, USA
| |
Collapse
|
31
|
Fazio S, Linton MF. High-density lipoprotein therapeutics and cardiovascular prevention. J Clin Lipidol 2010; 4:411-9. [PMID: 21122685 DOI: 10.1016/j.jacl.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/07/2010] [Indexed: 01/30/2023]
Abstract
The field of cardiovascular prevention has long anticipated the evolution of high-density lipoprotein (HDL) therapy from unproven metabolic tweaking to pillar of risk reduction on par with low-density lipoprotein control. However, the convincing epidemiologic data linking HDL cholesterol (HDL-C) and cardiovascular disease risk in an inverse correlation has not yet translated into clinical trial evidence supporting linearity between HDL-C increases and risk reduction, or identifying obvious goals of therapy. Although HDL-C-increasing lifestyle maneuvers and established HDL drugs such as niacin and fibrates are likely to protect the vasculature, the negative results obtained in trials of a cholesteryl ester transfer protein inhibitor remind us that HDL-C increases are not always beneficial. It is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-C levels. The larger objective of improving HDL functionality (with or without HDL-C level changes) is bound to become the guiding principle for pharmaceutical research in this area. Several new compounds currently being tested bridge the classical aim of increasing HDL-C levels with the novel target of improving HDL function.
Collapse
Affiliation(s)
- Sergio Fazio
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Atherosclerosis Research Unit, 383 PRB-2220 Pierce Avenue, Nashville, TN 37232-6300, USA.
| | | |
Collapse
|
32
|
Bibliography. Current world literature. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2008; 19:525-35. [PMID: 18769235 DOI: 10.1097/mol.0b013e328312bffc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|