1
|
Las Heras M, Szenfeld B, Ballout RA, Buratti E, Zanlungo S, Dardis A, Klein AD. Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine. NPJ Genom Med 2023; 8:21. [PMID: 37567876 PMCID: PMC10421955 DOI: 10.1038/s41525-023-00365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
Collapse
Affiliation(s)
- Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Benjamín Szenfeld
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Rami A Ballout
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| |
Collapse
|
2
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
3
|
The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
|
4
|
Dickson EJ. Role of Lysosomal Cholesterol in Regulating PI(4,5)P 2-Dependent Ion Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:193-215. [PMID: 36988882 DOI: 10.1007/978-3-031-21547-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Organ Weights in NPC1 Mutant Mice Partly Normalized by Various Pharmacological Treatment Approaches. Int J Mol Sci 2022; 24:ijms24010573. [PMID: 36614015 PMCID: PMC9820376 DOI: 10.3390/ijms24010573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1, MIM 257220) is a rare, progressive, lethal, inherited autosomal-recessive endolysosomal storage disease caused by mutations in the NPC1 leading to intracellular lipid storage. We analyzed mostly not jet known alterations of the weights of 14 different organs in the BALB/cNctr-Npc1m1N/-J Jackson Npc1 mice in female and male Npc1+/+ and Npc1-/- mice under various treatment strategies. Mice were treated with (i) no therapy, (ii) vehicle injection, (iii) a combination of miglustat, allopregnanolone, and 2-hydroxypropyl-ß-cyclodextrin (HPßCD), (iv) miglustat, and (v) HPßCD alone starting at P7 and repeated weekly throughout life. The 12 respective male and female wild-type mice groups were evaluated in parallel. In total, 351 mice (176 Npc1+/+, 175 Npc1-/-) were dissected at P65. In both sexes, the body weights of None and Sham Npc1-/- mice were lower than those of respective Npc1+/+ mice. The influence of the Npc1 mutation and/or sex on the weights of various organs, however, differed considerably. In males, Npc1+/+ and Npc1-/- mice had comparable absolute weights of lungs, spleen, and adrenal glands. In Npc1-/- mice, smaller weights of hearts, livers, kidneys, testes, vesicular, and scent glands were found. In female Npc1-/- mice, ovaries, and uteri were significantly smaller. In Npc1-/- mice, relative organ weights, i.e., normalized with body weights, were sex-specifically altered to different extents by the different therapies. The combination of miglustat, allopregnanolone, and the sterol chelator HPßCD partly normalized the weights of more organs than miglustat or HPßCD mono-therapies.
Collapse
|
6
|
Whole-exome sequencing analysis to identify novel potential pathogenetic NPC1 mutations in two Chinese families with Niemann–Pick disease type C. Neurol Sci 2022; 43:3957-3966. [DOI: 10.1007/s10072-022-05896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
7
|
Erickson RP, Grossman LI, Aras S. An explanation for the decreased severity of liver malfunction in Niemann-Pick C1 disease with age. J Appl Genet 2022; 63:469-474. [PMID: 35508755 DOI: 10.1007/s13353-022-00695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Niemann-Pick C disease frequently presents as severe cholestatic disease in infants. However, it progressively becomes less of a problem as children age. We have found that, in an appropriate mouse model, liver cholesterol levels, which are initially very high, decrease while mitochondrial function, initially quite compromised, increases with age. The key mitochondrial regulator, MNRR1, increases in parallel with the increase in mitochondrial function. These changes appear to explain the amelioration of the liver disease that occurs with time in this disorder.
Collapse
Affiliation(s)
- Robert P Erickson
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724-5073, USA.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
8
|
Chen F, Guo S, Li X, Liu S, Wang L, Zhang VW, Xu H, Huang Z, Ying Y, Shu S. Case Report: Be Aware of “New” Features of Niemann–Pick Disease: Insights From Two Pediatric Cases. Front Genet 2022; 13:845246. [PMID: 35360843 PMCID: PMC8961870 DOI: 10.3389/fgene.2022.845246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
Niemann–Pick disease is a relatively common lysosomal storage disease. Cholestatic liver disease is a typical clinical phenotype of Niemann–Pick disease in infancy. The diagnosis is traditionally based on Niemann–Pick cells in bone marrow smears or liver biopsies. Treatment for cholestatic liver disease mainly includes ursodeoxycholic acid and liver protection drugs. Here, we reported two cases of Niemann–Pick disease type C, diagnosed by genetic analysis during early infancy. Besides cholestatic jaundice, the two patients also exhibited signs of immune system hyperactivity, such as elevated immunoglobulins or multiple autoantibodies, which might require the application of glucocorticoids. In addition, three novel missense variants of the NPC1 gene were identified. The findings suggest that immune activation should be considered as a “new” clinical phenotype of lysosomal storage diseases.
Collapse
Affiliation(s)
- Fan Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Guo
- Department of Gastroenterology, Wuhan Children’s Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuesong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- AmCare Genomics Lab, Guangzhou, China
| | | | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanqin Ying, ; Sainan Shu,
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanqin Ying, ; Sainan Shu,
| |
Collapse
|
9
|
Abtahi R, Karimzadeh P, Aryani O, Akbarzadeh D, Salehpour S, Rezayi A, Tonekaboni SH, Emameh RZ, Houshmand M. Identification of novel mutations among Iranian NPC1 patients: a bioinformatics approach to predict pathogenic mutations. Hereditas 2022; 159:8. [PMID: 35086560 PMCID: PMC8793247 DOI: 10.1186/s41065-022-00224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Niemann-Pick disease type C (NPC) is a rare lysosomal neurovisceral storage disease caused by mutations in the NPC 1 (95%) or NPC2 (5%) genes. The products of NPC1 and NPC2 genes play considerable roles in glycolipid and cholesterol trafficking, which could consequently lead to NPC disease with variable phenotypes displaying a broad spectrum of symptoms. Materials In the present study 35 Iranian NPC unrelated patients were enrolled. These patients were first analysed by the Filipin Staining test of cholesterol deposits in cells for NPC diagnostics. Genomic DNA was extracted from the samples of peripheral blood leukocytes in EDTA following the manufacturer's protocol. All exon–intron boundaries and coding exons of the NPC1gene were amplified by polymerase chain reaction (PCR) using appropriate sets of primers. Thereafter, the products of PCR were sequenced and analysed using the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The variants were reviewed by some databases including the Human Gene Mutation Database (HGMD) (http://www.hgmd.cf.ac.uk/ac/index.php) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar (. Moreover, all the variants were manually classified in terms of the American College of Medical Genetics and Genomics (ACMG) guideline. Results The sequence analysis revealed 20 different variations, 10 of which are new, including one nonsense mutation (c.406C > T); three small deletions, (c.3126delC, c.2920_2923delCCTG, and c.2037delG); and six likely pathogenic missense mutations, (c.542C > A, c.1970G > A, c.1993C > G, c.2821 T > C, c.2872C > G, and c.3632 T > A). Finally, the pathogenicity of these new variants was determined using the ACMG guidelines. Conclusion The present study aimed to facilitate the prenatal diagnosis of NPC patients in the future. In this regard, we identified 10 novel mutations, and verified that the majority of them occurred in six NPC1 exons (5, 8, 9, 13, 19, and 21), that should be considered with a high priority for Iranian patients' cost-effective evaluation.
Collapse
Affiliation(s)
- Rezvan Abtahi
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, (NIGEB), 14965/161, Tehran, Iran
| | - Parvaneh Karimzadeh
- Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Diba Akbarzadeh
- Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadab Salehpour
- Department of Pediatric Endocrinology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezayi
- Department of Pediatrics Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, (NIGEB), 14965/161, Tehran, Iran. .,Department of Medical Laboratory Science, Knowledge University, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
10
|
Anaplasma phagocytophilum Hijacks Flotillin and NPC1 Complex To Acquire Intracellular Cholesterol for Proliferation, Which Can Be Inhibited with Ezetimibe. mBio 2021; 12:e0229921. [PMID: 34544283 PMCID: PMC8546544 DOI: 10.1128/mbio.02299-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The intracellular cholesterol transport protein Niemann-Pick type C1 (NPC1) and lipid-raft protein flotillin (FLOT) are required for cholesterol uptake by the obligatory intracellular bacterium Anaplasma phagocytophilum and for infection, and each protein localizes to membrane-bound inclusions containing replicating bacteria. Here, we found striking localization of FLOT2 in NPC1-lined vesicles and a physical interaction between FLOT2 and NPC1. This interaction was cholesterol dependent, as a CRAC (cholesterol recognition/interaction amino acid cholesterol-binding) domain mutant of FLOT2 did not interact with NPC1, and the cholesterol-sequestering agent methyl-β-cyclodextrin reduced the interaction. The stomatin-prohibitin-flotillin-HflC/K domain of FLOT2, FLOT21–183, was sufficient for the unique FLOT2 localization and interaction with NPC1. NPC1, FLOT2, and FLOT21–183 trafficked to the lumen of Anaplasma inclusions. A loss-of-function mutant, NPC1P691S (mutation in the sterol-sensing domain), did not colocalize or interact with FLOT2 or with Anaplasma inclusions and inhibited infection. Ezetimibe is a drug that blocks cholesterol absorption in the small intestine by inhibiting plasma membrane Niemann-Pick C1-like 1 interaction with FLOTs. Ezetimibe blocked the interaction between NPC1 and FLOT2 and inhibited Anaplasma infection. Ezetimibe did not directly inhibit Anaplasma proliferation but inhibited host membrane lipid and cholesterol traffic to the bacteria in the inclusion. These data suggest that Anaplasma hijacks NPC1 vesicles containing cholesterol bound to FLOT2 to deliver cholesterol into Anaplasma inclusions to assimilate cholesterol for its proliferation. These results provide insights into mechanisms of intracellular cholesterol transport and a potential approach to inhibit Anaplasma infection by blocking cholesterol delivery into the lumen of bacterial inclusions.
Collapse
|
11
|
Percival BC, Latour YL, Tifft CJ, Grootveld M. Rapid Identification of New Biomarkers for the Classification of GM1 Type 2 Gangliosidosis Using an Unbiased 1H NMR-Linked Metabolomics Strategy. Cells 2021; 10:572. [PMID: 33807817 PMCID: PMC7998791 DOI: 10.3390/cells10030572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/04/2023] Open
Abstract
Biomarkers currently available for the diagnosis, prognosis, and therapeutic monitoring of GM1 gangliosidosis type 2 (GM1T2) disease are mainly limited to those discovered in targeted proteomic-based studies. In order to identify and establish new, predominantly low-molecular-mass biomarkers for this disorder, we employed an untargeted, multi-analyte approach involving high-resolution 1H NMR analysis coupled to a range of multivariate analysis and computational intelligence technique (CIT) strategies to explore biomolecular distinctions between blood plasma samples collected from GM1T2 and healthy control (HC) participants (n = 10 and 28, respectively). The relationship of these differences to metabolic mechanisms underlying the pathogenesis of GM1T2 disorder was also investigated. 1H NMR-linked metabolomics analyses revealed significant GM1T2-mediated dysregulations in ≥13 blood plasma metabolites (corrected p < 0.04), and these included significant upregulations in 7 amino acids, and downregulations in lipoprotein-associated triacylglycerols and alanine. Indeed, results acquired demonstrated a profound distinctiveness between the GM1T2 and HC profiles. Additionally, employment of a genome-scale network model of human metabolism provided evidence that perturbations to propanoate, ethanol, amino-sugar, aspartate, seleno-amino acid, glutathione and alanine metabolism, fatty acid biosynthesis, and most especially branched-chain amino acid degradation (p = 10-12-10-5) were the most important topologically-highlighted dysregulated pathways contributing towards GM1T2 disease pathology. Quantitative metabolite set enrichment analysis revealed that pathological locations associated with these dysfunctions were in the order fibroblasts > Golgi apparatus > mitochondria > spleen ≈ skeletal muscle ≈ muscle in general. In conclusion, results acquired demonstrated marked metabolic imbalances and alterations to energy demand, which are consistent with GM1T2 disease pathogenesis mechanisms.
Collapse
Affiliation(s)
- Benita C. Percival
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232-0252, USA;
| | - Cynthia J. Tifft
- Deputy Clinical Director, National Human Genome Research Institute, Director, National Institutes of Health, Bethesda, MD 20892-1205, USA;
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| |
Collapse
|
12
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
13
|
Wang L, Sun J, Xu X, Tao L, Wu D, Zhang Y. A progressive neurological condition with acquired sea-blue histiocytosis further the diagnosis of Niemann-Pick type C1 in a 10-year-old boy. INDIAN J PATHOL MICR 2021; 63:312-314. [PMID: 32317543 DOI: 10.4103/ijpm.ijpm_728_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Sea-blue histiocytes in bone marrow can be associated with a number of conditions and have indeed often been reported in Niemann-Pick diseases, mostly in Niemann-Pick type B, but also Niemann-Pick type C. Rarely, it was reported to be related to a progressive neurological condition. In this work, early bone marrow aspirations in a boy following the discovery of hepatosplenomegaly at 1 month of age and later isolated splenomegaly did not reveal abnormal cells (which is not uncommon). Numerous sea-blue histiocytes were found in a repeated exam when the child was 10-year old, at a time he had developed a progressive neurological condition with frequent falls, clumsiness, slow and slurred speech, intellectual disability, dystonic movements, and dysphagia. Acquired sea-blue histiocytes should be considered initially on the basis of clinical symptoms. Whole-exome sequencing identified two variants in the NPC1 gene, leading to the diagnosis of Niemann-Pick type C1. This case points out the presence of sea-blue histiocytes in the bone marrow and has helped to reach a diagnosis of NPC1 which was very difficult to establish even after years of study. Given the rarity of this pathology and the variety of clinical presentations, it is important to communicate the possible forms of presentation of this syndrome.
Collapse
Affiliation(s)
- Li Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jingmin Sun
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyan Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Longxiang Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Dubey V, Bozorg B, Wüstner D, Khandelia H. Cholesterol binding to the sterol-sensing region of Niemann Pick C1 protein confines dynamics of its N-terminal domain. PLoS Comput Biol 2020; 16:e1007554. [PMID: 33021976 PMCID: PMC7537887 DOI: 10.1371/journal.pcbi.1007554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal accumulation of cholesterol is a hallmark of Niemann Pick type C (NPC) disease caused by mutations primarily in the lysosomal membrane protein NPC1. NPC1 contains a transmembrane sterol-sensing domain (SSD), which is supposed to regulate protein activity upon cholesterol binding, but the mechanisms underlying this process are poorly understood. Using atomistic simulations, we show that in the absence of cholesterol in the SSD, the luminal domains of NPC1 are highly dynamic, resulting in the disengagement of the NTD from the rest of the protein. The disengaged NPC1 adopts a flexed conformation that approaches the lipid bilayer, and could represent a conformational state primed to receive a sterol molecule from the soluble lysosomal cholesterol carrier NPC2. The binding of cholesterol to the SSD of NPC1 allosterically suppresses the conformational dynamics of the luminal domains resulting in an upright NTD conformation. The presence of an additional 20% cholesterol in the membrane has negligible impact on this process. The additional presence of an NTD-bound cholesterol suppresses the flexing of the NTD. We propose that cholesterol acts as an allosteric effector, and the modulation of NTD dynamics by the SSD-bound cholesterol constitutes an allosteric feedback mechanism in NPC1 that controls cholesterol abundance in the lysosomal membrane. Cholesterol is absorbed from LDL particles in esterified form, and is broken down to free cholesterol in the lysosomes of cells, from where cholesterol must be transported to other cellular compartments such as the plasma membrane. The Niemann Pick type C (NPC) diseases arise from deficient cholesterol transport and result from mutations in the cholesterol transport protein NPC1. Using computer simulations, we show that cholesterol, when bound to one part of NPC1, can control the structural transitions of an 8-nm distant, different part of NPC1 protein called the N-terminal domain (NTD). Such long-range control of protein conformations (allostery), controls a wide range of cellular functions mediated by proteins. Fundamental molecular insights into the function of the NPC1 protein can potentially lead to better pharmaceutical interventions for the NPC diseases.
Collapse
Affiliation(s)
- Vikas Dubey
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Behruz Bozorg
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel Wüstner
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Himanshu Khandelia
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- MEMPHYS: Center for Biomembrane Physics, Odense M, Denmark
- * E-mail:
| |
Collapse
|
15
|
Encarnação M, Coutinho MF, Cho SM, Cardoso MT, Ribeiro I, Chaves P, Santos JI, Quelhas D, Lacerda L, Leão Teles E, Futerman AH, Vilarinho L, Alves S. NPC1 silent variant induces skipping of exon 11 (p.V562V) and unfolded protein response was found in a specific Niemann-Pick type C patient. Mol Genet Genomic Med 2020; 8:e1451. [PMID: 32931663 PMCID: PMC7667330 DOI: 10.1002/mgg3.1451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 01/31/2023] Open
Abstract
Background Niemann‐Pick type C (NPC, MIM #257220) is a neuro‐visceral disease, caused predominantly by pathogenic variants in the NPC1 gene. Here we studied patients with clinical diagnosis of NPC but inconclusive results regarding the molecular analysis. Methods We used a Next‐Generation Sequencing (NGS)‐panel followed by cDNA analysis. Latter, we used massively parallel single‐cell RNA‐seq (MARS‐Seq) to address gene profiling changes and finally the effect of different variants on the protein and cellular levels. Results We identified novel variants and cDNA analysis allowed us to establish the functional effect of a silent variant, previously reported as a polymorphism. We demonstrated that this variant induces the skipping of exon 11 leading to a premature stop codon and identified it in NPC patients from two unrelated families. MARS‐Seq analysis showed that a number of upregulated genes were related to the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in one specific patient. Also, for all analyzed variants, the NPC1 protein was partially retained in the ER. Conclusion We showed that the NPC1 silent polymorphism (p.V562V) is a disease‐causing variant in NPC and that the UPR is upregulated in an NPC patient.
Collapse
Affiliation(s)
- Marisa Encarnação
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.,Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.,Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| | - Maria Francisca Coutinho
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.,Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| | - Soo Min Cho
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Maria Teresa Cardoso
- Centro de Referência de Doenças Metabólicas do Centro Hospitalar, Universitário São João, Porto, Portugal
| | - Isaura Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães - Centro Hospitalar e Universitário do Porto (CHP), Porto, Portugal.,Clinical and Experimental Human Genomics group (CEHG), UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, Porto, Portugal.,MetabERN-European Reference Network for Rare Hereditary Metabolic Disorder, Reference Centre for Diagnosis and Treatment - CHP, Porto, Portugal
| | - Paulo Chaves
- Centro de Referência de Doenças Metabólicas do Centro Hospitalar, Universitário São João, Porto, Portugal
| | - Juliana Inês Santos
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Dulce Quelhas
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães - Centro Hospitalar e Universitário do Porto (CHP), Porto, Portugal.,Clinical and Experimental Human Genomics group (CEHG), UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, Porto, Portugal.,MetabERN-European Reference Network for Rare Hereditary Metabolic Disorder, Reference Centre for Diagnosis and Treatment - CHP, Porto, Portugal
| | - Lúcia Lacerda
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães - Centro Hospitalar e Universitário do Porto (CHP), Porto, Portugal.,Clinical and Experimental Human Genomics group (CEHG), UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, Porto, Portugal.,MetabERN-European Reference Network for Rare Hereditary Metabolic Disorder, Reference Centre for Diagnosis and Treatment - CHP, Porto, Portugal
| | - Elisa Leão Teles
- Centro de Referência de Doenças Metabólicas do Centro Hospitalar, Universitário São João, Porto, Portugal
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Vilarinho
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.,Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.,Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| | - Sandra Alves
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.,Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Soliani L, Salerno GG, Pisani F, Barigazzi I, Rizzi S, Spagnoli C, Frattini D, Zangrandi A, Fusco C. Neuropsychological and behavioral disorders as presentation symptoms in two brothers with early-infantile Niemann-Pick type C. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020075. [PMID: 32921771 PMCID: PMC7716979 DOI: 10.23750/abm.v91i3.9272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/23/2022]
Abstract
Background: Niemann-Pick disease type C (NPC) is a lysosomal storage disease caused by mutations in NPC1 or NPC2 genes. Case presentation: We present two brothers with the same compound heterozygous variants in exon 13 of the NPC1 gene (18q11.2), the first one (c.1955C> G, p. Ser652Trp), inherited from the mother, the second (c.2107T>A p.Phe703Ile) inherited from the father, associated to the classical biochemical phenotype of NPC. The two brothers presented unspecific neurologic symptoms with difference in age of onset: one presented and previously described dyspraxia and motor clumsiness at age 7 years, the other showed a systemic presentation with hepatosplenomegaly noted at the age of two months and neurological symptoms onset at age 4 with speech disturbance. Clinical evolution and neuroimaging data led to the final diagnosis. Systemic signs did not correlate with the onset of neurological symptoms. Miglustat therapy was started in both patients. Conclusions: We highlight the extreme phenotypic heterogeneity of NP-C in the presence of the same genetic variant and the unspecificity of neurologic signs at onset as previously reported. We report some positive effects of miglustat on disease progression assessed also with neuropsychological follow-up, with an age-dependent response.
Collapse
Affiliation(s)
- Luca Soliani
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Grazia Gabriella Salerno
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Francesco Pisani
- Child Neuropsychiatric Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Ilaria Barigazzi
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Susanna Rizzi
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Carlotta Spagnoli
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Daniele Frattini
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Andrea Zangrandi
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Carlo Fusco
- Department of Pediatrics, Child Neurology Unit, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia; Pediatric Neurophysiology Laboratory, Presidio Ospedaliero Provinciale Santa Maria Nuova Azienda USL-IRCCS di Reggio Emilia, Italy.
| |
Collapse
|
17
|
Haploinsufficiency of tau decreases survival of the mouse model of Niemann-Pick disease type C1 but does not alter tau phosphorylation. J Appl Genet 2020; 61:567-570. [PMID: 32794098 DOI: 10.1007/s13353-020-00572-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023]
Abstract
Niemann-Pick C1 (NPC1) mouse models show neurofibrillary tangles as do human patients. A previous study in NPC1/tau double-null mutant mice showed that tau knockout nulls and heterozygotes unexpectedly had decreased survival when compared with NPC1 single mutants (Pacheco et al., Hum Molec Genetics 18:956-965, 2009). This was done in a null model of NPC1 (Npc1-/-). We have extended these results to a hypomorphic model (Npc1nmf164) and additionally studied tau phosphorylation, which has not been previously done in a tau heterozygote. As before, NPC1/tau double-mutant mice had shortened survival when compared with the NPC1 single mutant. Tau dosage was not affected by the Npc1 mutation. The increased phosphorylation of tau-ser396 previously noted in NPC1 mouse models was also present, but unaffected by the tau knockout, indicating that changes in tau phosphorylation are not the cause of decreased survival in NPC1/tau double mutants. Thus, the reason for shortened survival of NPC1 mouse models with concomitant tau haploinsufficiency is uncertain.
Collapse
|
18
|
López de Frutos L, García-González E, García-Rodríguez B, González-Irazabal Y, Lahoz C, Irún P, Cebolla JJ, Giraldo P. Serum protein profile analysis in lysosomal storage disorders patients. Clin Chim Acta 2020; 510:430-436. [PMID: 32745579 DOI: 10.1016/j.cca.2020.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Serum protein electrophoresis (SPE) is a well-established technique to identify alterations in plasma protein profiles, caused by diseases as multiple myeloma (MM). In addition, it could be a cost-effective technique to discover new plasma biomarkers. Relation between MM and lysosomal storage diseases (LSDs) as Gaucher disease has been set out but, it has not been evaluated on other LSDs nor the utility of the SPE as first step on LSDs biomarkers discovery projects. MATERIALS AND METHODS Stored plasma samples at diagnosis from several LSDs patients underwent analysis. Quality control was checked prior to the SPE was analyzed by capillary electrophoresis. The analysis for monoclonal spikes and the differences between each fraction on patients' samples vs the control data previously published, were evaluated. Furthermore, immunoprotein quantification and free light chains ratio were done by nephelometry and turbidimetry. RESULTS Seventy-five samples of LSD patients at diagnosis, were assessed. The frequency of the MGUS on LSDs patients was not higher than in general population whereas one lysosomal acid lipase deficiency infant showed increased IgA and kappa deviation. Regarding to the usefulness of SPE in biomarkers discovery, statistically significant differences were observed on SPE fractions between LSDs and healthy population. DISCUSSION The evaluation of SPE fractions can be a useful tool to understand pathophysiologic aspects in LDSs and, to simplify new marker discovery projects. In some of them, the MGUS appearance is a risk factor for the MM development despite its frequency is not increased on the studied LSDs at diagnosis.
Collapse
Affiliation(s)
- Laura López de Frutos
- GIIS-012. Instituto de Investigación Sanitaria Aragón (IIS Aragón), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain; Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza 50009, Spain.
| | - Elena García-González
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| | | | | | - Carlos Lahoz
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza 50009, Spain
| | - Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), IISCIII, Instituto de Investigación Sanitaria Aragón (IIS Aragón). Zaragoza 50009, Spain
| | - Jorge J Cebolla
- GIIS-012. Instituto de Investigación Sanitaria Aragón (IIS Aragón), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Pilar Giraldo
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza 50009, Spain
| |
Collapse
|
19
|
Lefebvre M, Bruel AL, Tisserant E, Bourgon N, Duffourd Y, Collardeau-Frachon S, Attie-Bitach T, Kuentz P, Assoum M, Schaefer E, El Chehadeh S, Antal MC, Kremer V, Girard-Lemaitre F, Mandel JL, Lehalle D, Nambot S, Jean-Marçais N, Houcinat N, Moutton S, Marle N, Lambert L, Jonveaux P, Foliguet B, Mazutti JP, Gaillard D, Alanio E, Poirisier C, Lebre AS, Aubert-Lenoir M, Arbez-Gindre F, Odent S, Quélin C, Loget P, Fradin M, Willems M, Bigi N, Perez MJ, Blesson S, Francannet C, Beaufrere AM, Patrier-Sallebert S, Guerrot AM, Goldenberg A, Brehin AC, Lespinasse J, Touraine R, Capri Y, Saint-Frison MH, Laurent N, Philippe C, Tran Mau-Them F, Thevenon J, Faivre L, Thauvin-Robinet C, Vitobello A. Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype correlations. J Med Genet 2020; 58:400-413. [PMID: 32732226 DOI: 10.1136/jmedgenet-2020-106867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 11/03/2022]
Abstract
PURPOSE Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses. METHODS We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants. RESULTS sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%). CONCLUSIONS This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.
Collapse
Affiliation(s)
- Mathilde Lefebvre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Laboratoire d'Anatomo-Pathologie, Plateforme de Biologie Hospitalo-Universitaire, CHU de Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Emilie Tisserant
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Nicolas Bourgon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Yannis Duffourd
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | | | - Tania Attie-Bitach
- Laboratoire d'Embryologie et de Génétique des Malformations Congénitales, Hopital Necker, APHP, Paris Cedex 15, France
| | - Paul Kuentz
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Mirna Assoum
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Elise Schaefer
- Service de Génétique Médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Salima El Chehadeh
- Service de Génétique Médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Maria Cristina Antal
- Service de Fœtopathologie, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Valérie Kremer
- Laboratoire de Cytogénétique constitutionnelle et prénatale, CHU de Strasbourg, Strasbourg, France
| | - Françoise Girard-Lemaitre
- Département Médecine translationnelle et neurogénétique, Institut de génétique et de biologie moléculaire et cellulaire, Strasbourg, France
| | - Jean-Louis Mandel
- Département Médecine translationnelle et neurogénétique, Institut de génétique et de biologie moléculaire et cellulaire, Strasbourg, France
| | - Daphne Lehalle
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Nolwenn Jean-Marçais
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Nada Houcinat
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sébastien Moutton
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Nathalie Marle
- Laboratoire de Génétique chromosomique et moléculaire, CHU de Dijon Bourgogne, Dijon, France
| | - Laetita Lambert
- UF de Génétique médicale, Maternité régionale, CHU de Nancy, Nancy, France
| | | | - Bernard Foliguet
- Laboratoire de Biologie de la Reproduction et du Développement Maternité de Nancy, CHU de Nancy, Nancy, France
| | - Jean-Pierre Mazutti
- Laboratoire de Biologie de la Reproduction et du Développement Maternité de Nancy, CHU de Nancy, Nancy, France
| | | | | | | | - Anne-Sophie Lebre
- Service de Génétique et Biologie de la Reproduction, CHU de Reims, Reims, France
| | | | | | - Sylvie Odent
- Service de Génétique Clinique, Hôpital Sud, CLAD Ouest, CNRS UMR6290 Génétique et Pathologies du Développement, Université de Rennes, Rennes, France
| | - Chloé Quélin
- Service de Génétique Clinique, Hôpital Sud, CLAD Ouest, CNRS UMR6290 Génétique et Pathologies du Développement, Université de Rennes, Rennes, France.,Service de Fœtopathologie, CHU de Rennes, Rennes, France
| | - Philippe Loget
- Service de Fœtopathologie, CHU de Rennes, Rennes, France
| | - Melanie Fradin
- Service de Génétique Clinique, Hôpital Sud, CLAD Ouest, CNRS UMR6290 Génétique et Pathologies du Développement, Université de Rennes, Rennes, France
| | - Marjolaine Willems
- Equipe Maladies Génétiques de l'Enfant et de l'Adulte, CHU de Montpellier, Montpellier, France
| | - Nicole Bigi
- Service de Fœtopathologie, CHU de Montpellier, Montpellier, France
| | - Marie-José Perez
- Service de Fœtopathologie, CHU de Montpellier, Montpellier, France
| | | | - Christine Francannet
- Service de Génétique médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | | | | | | | | - Renaud Touraine
- Service de Genetique Clinique, C.H.U. De Saint Etienne-Hopital Nord, Saint Etienne Cedex 2, France
| | - Yline Capri
- Service de génétique clinique, Hôpital Robert Debré - APHP, Paris, France
| | | | - Nicole Laurent
- Laboratoire d'Anatomo-Pathologie, Plateforme de Biologie Hospitalo-Universitaire, CHU de Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran Mau-Them
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Julien Thevenon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Département de Génétique et Procréation, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France .,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital D'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France .,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
20
|
Musalkova D, Majer F, Kuchar L, Luksan O, Asfaw B, Vlaskova H, Storkanova G, Reboun M, Poupetova H, Jahnova H, Hulkova H, Ledvinova J, Dvorakova L, Sikora J, Jirsa M, Vanier MT, Hrebicek M. Transcript, protein, metabolite and cellular studies in skin fibroblasts demonstrate variable pathogenic impacts of NPC1 mutations. Orphanet J Rare Dis 2020; 15:85. [PMID: 32248828 PMCID: PMC7132889 DOI: 10.1186/s13023-020-01360-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background Niemann-Pick type C (NP-C) is a rare neurovisceral genetic disorder caused by mutations in the NPC1 or the NPC2 gene. NPC1 is a multipass-transmembrane protein essential for egress of cholesterol from late endosomes/lysosomes. To evaluate impacts of NPC1 mutations, we examined fibroblast cultures from 26 NP-C1 patients with clinical phenotypes ranging from infantile to adult neurologic onset forms. The cells were tested with multiple assays including NPC1 mRNA expression levels and allele expression ratios, assessment of NPC1 promoter haplotypes, NPC1 protein levels, cellular cholesterol staining, localization of the mutant NPC1 proteins to lysosomes, and cholesterol/cholesteryl ester ratios. These results were correlated with phenotypes of the individual patients. Results Overall we identified 5 variant promoter haplotypes. Three of them showed reporter activity decreased down to 70% of the control sequence. None of the haplotypes were consistently associated with more severe clinical presentation of NP-C. Levels of transcripts carrying null NPC1 alleles were profoundly lower than levels of the missense variants. Low levels of the mutant NPC1 protein were identified in most samples. The protein localised to lysosomes in cultures expressing medium to normal NPC1 levels. Fibroblasts from patients with severe infantile phenotypes had higher cholesterol levels and higher cholesterol/cholesteryl ester ratios. On the contrary, cell lines from patients with juvenile and adolescent/adult phenotypes showed values comparable to controls. Conclusion No single assay fully correlated with the disease severity. However, low residual levels of NPC1 protein and high cholesterol/cholesteryl ester ratios associated with severe disease. The results suggest not only low NPC1 expression due to non-sense mediated decay or low mutant protein stability, but also dysfunction of the stable mutant NPC1 as contributors to the intracellular lipid transport defect.
Collapse
Affiliation(s)
- Dita Musalkova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic.
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Ondrej Luksan
- Laboratory of Experimental Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Befekadu Asfaw
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Hana Vlaskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Gabriela Storkanova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Martin Reboun
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Helena Poupetova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Helena Jahnova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Helena Hulkova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Jana Ledvinova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Lenka Dvorakova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic
| | - Milan Jirsa
- Laboratory of Experimental Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marie T Vanier
- INSERM U820, Lyon, France.,Laboratoire Gillet-Mérieux, Lyon University Hospitals (HCL), Lyon, France
| | - Martin Hrebicek
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 120 00, Prague 2, Czech Republic.
| |
Collapse
|
21
|
Erickson RP, Aras S, Purandare N, Hüttemann M, Liu J, Dragotto J, Fiorenza MT, Grossman LI. Decreased membrane cholesterol in liver mitochondria of the point mutation mouse model of juvenile Niemann-Pick C1, Npc1 nmf164. Mitochondrion 2019; 51:15-21. [PMID: 31862414 DOI: 10.1016/j.mito.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/25/2022]
Abstract
It has long been known that there is decreased mitochondrial function in several tissues of Niemann-Pick C1 model mice and cultured cells. These defects contribute to the accumulation of Reactive Oxygen Species (ROS) and tissue damage. It is also well established that there is increased unesterified cholesterol, stored in late endosomes/lysosomes, in many tissues in mutant humans, mouse models, and mutant cultured cells. Using a mouse model with an NPC1 point mutation that is more typical of the most common form of the disease, and highly purified liver mitochondria, we find markedly decreased mitochondrial membrane cholesterol. This is compared to previous reports of increased mitochondrial membrane cholesterol. We also find that, although in wild-type or heterozygous mitochondria cytochrome c oxidase (COX) activity decreases with age as expected, surprisingly, COX activity in homozygous mutant mice improves with age. COX activity is less than half of wild-type amounts in young mutant mice but later reaches wild-type levels while total liver cholesterol is decreasing. Mutant mice also contain a decreased number of mitochondria that are morphologically abnormal. We suggest that the decreased mitochondrial membrane cholesterol is causative for the mitochondrial energy defects. In addition, we find that the mitochondrial stress regulator protein MNRR1 can stimulate NPC1 synthesis and is deficient in mutant mouse livers. Furthermore, the age curve of MNRR1 deficiency paralleled levels of total cholesterol. The role of such altered mitochondria in initiating the abnormal autophagy and neuroinflammation found in NPC1 mouse models is discussed.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073, United States.
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Jessica Dragotto
- Division of Neuroscience, Dept. of Psychology, Università di Roma La Sapienza, Rome, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Dept. of Psychology, Università di Roma La Sapienza, Rome, Italy
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
22
|
Schultz ML, Fawaz MV, Azaria RD, Hollon TC, Liu EA, Kunkel TJ, Halseth TA, Krus KL, Ming R, Morin EE, McLoughlin HS, Bushart DD, Paulson HL, Shakkottai VG, Orringer DA, Schwendeman AS, Lieberman AP. Synthetic high-density lipoprotein nanoparticles for the treatment of Niemann-Pick diseases. BMC Med 2019; 17:200. [PMID: 31711490 PMCID: PMC6849328 DOI: 10.1186/s12916-019-1423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C is a fatal and progressive neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in late endosomes and lysosomes. We sought to develop new therapeutics for this disorder by harnessing the body's endogenous cholesterol scavenging particle, high-density lipoprotein (HDL). METHODS Here we design, optimize, and define the mechanism of action of synthetic HDL (sHDL) nanoparticles. RESULTS We demonstrate a dose-dependent rescue of cholesterol storage that is sensitive to sHDL lipid and peptide composition, enabling the identification of compounds with a range of therapeutic potency. Peripheral administration of sHDL to Npc1 I1061T homozygous mice mobilizes cholesterol, reduces serum bilirubin, reduces liver macrophage size, and corrects body weight deficits. Additionally, a single intraventricular injection into adult Npc1 I1061T brains significantly reduces cholesterol storage in Purkinje neurons. Since endogenous HDL is also a carrier of sphingomyelin, we tested the same sHDL formulation in the sphingomyelin storage disease Niemann-Pick type A. Utilizing stimulated Raman scattering microscopy to detect endogenous unlabeled lipids, we show significant rescue of Niemann-Pick type A lipid storage. CONCLUSIONS Together, our data establish that sHDL nanoparticles are a potential new therapeutic avenue for Niemann-Pick diseases.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Maria V Fawaz
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Todd C Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Elaine A Liu
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Troy A Halseth
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelsey L Krus
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ran Ming
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Emily E Morin
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - David D Bushart
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Daniel A Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anna S Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Winkler MBL, Kidmose RT, Szomek M, Thaysen K, Rawson S, Muench SP, Wüstner D, Pedersen BP. Structural Insight into Eukaryotic Sterol Transport through Niemann-Pick Type C Proteins. Cell 2019; 179:485-497.e18. [PMID: 31543266 DOI: 10.1016/j.cell.2019.08.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022]
Abstract
Niemann-Pick type C (NPC) proteins are essential for sterol homeostasis, believed to drive sterol integration into the lysosomal membrane before redistribution to other cellular membranes. Here, using a combination of crystallography, cryo-electron microscopy, and biochemical and in vivo studies on the Saccharomyces cerevisiae NPC system (NCR1 and NPC2), we present a framework for sterol membrane integration. Sterols are transferred between hydrophobic pockets of vacuolar NPC2 and membrane-protein NCR1. NCR1 has its N-terminal domain (NTD) positioned to deliver a sterol to a tunnel connecting NTD to the luminal membrane leaflet 50 Å away. A sterol is caught inside this tunnel during transport, and a proton-relay network of charged residues in the transmembrane region is linked to this tunnel supporting a proton-driven transport mechanism. We propose a model for sterol integration that clarifies the role of NPC proteins in this essential eukaryotic pathway and that rationalizes mutations in patients with Niemann-Pick disease type C.
Collapse
Affiliation(s)
- Mikael B L Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Rune T Kidmose
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Shaun Rawson
- School of Biomedical Sciences and The Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences and The Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Bjørn Panyella Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, Aarhus C 8000, Denmark.
| |
Collapse
|
24
|
Dragotto J, Palladino G, Canterini S, Caporali P, Patil R, Fiorenza MT, Erickson RP. Decreased neural stem cell proliferation and olfaction in mouse models of Niemann-Pick C1 disease and the response to hydroxypropyl-β-cyclodextrin. J Appl Genet 2019; 60:357-365. [PMID: 31485950 DOI: 10.1007/s13353-019-00517-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Abstract
The Npc1nih/nih-null model and the Npc1nmf164/nmf164 hypomorph models of Niemann-Pick C1 (NPC1) disease show defects in olfaction. We have tested the effects of the life-prolonging treatment hydroxypropyl-beta-cyclodextrin (HPBCD) on olfaction and neural stem cell numbers when delivered either systemically or by nasal inhalation. Using the paradigm of finding a hidden cube of food after overnight food deprivation, Npc1nih/nih homozygous mice showed a highly significant delay in finding the food compared with wild-type mice. Npc1nmf164/nmf164 homozygous mice showed an early loss of olfaction which was mildly corrected by somatic delivery of HPBCD which also increased the number of neural stem cells in the mutant but did not change the number in wild-type mice. In contrast, nasal delivery of this drug, at 1/5 the dosage used for somatic delivery, to Npc1nmf164/nmf164 mutant mice delayed loss of olfaction but the control of nasal delivered saline did so as well. The nasal delivery of HPBCD to wild-type mice caused loss of olfaction but nasal delivery of saline did not. Neural stem cell counts were not improved by nasal therapy with HPBCD. We credit the delay in olfaction found with the treatment, a delay which was also found for time of death, to a large amount of stimulation the mice received with handling during the nasal delivery.
Collapse
Affiliation(s)
- Jessica Dragotto
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Paola Caporali
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Rutaraj Patil
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy.,IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
25
|
Bräuer AU, Kuhla A, Holzmann C, Wree A, Witt M. Current Challenges in Understanding the Cellular and Molecular Mechanisms in Niemann-Pick Disease Type C1. Int J Mol Sci 2019; 20:ijms20184392. [PMID: 31500175 PMCID: PMC6771135 DOI: 10.3390/ijms20184392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are a heterogeneous group of very different clinical syndromes. Their most common causes are defects in the hereditary material, and they can therefore be passed on to descendants. Rare diseases become manifest in almost all organs and often have a systemic expressivity, i.e., they affect several organs simultaneously. An effective causal therapy is often not available and can only be developed when the underlying causes of the disease are understood. In this review, we focus on Niemann–Pick disease type C1 (NPC1), which is a rare lipid-storage disorder. Lipids, in particular phospholipids, are a major component of the cell membrane and play important roles in cellular functions, such as extracellular receptor signaling, intracellular second messengers and cellular pressure regulation. An excessive storage of fats, as seen in NPC1, can cause permanent damage to cells and tissues in the brain and peripheral nervous system, but also in other parts of the body. Here, we summarize the impact of NPC1 pathology on several organ systems, as revealed in experimental animal models and humans, and give an overview of current available treatment options.
Collapse
Affiliation(s)
- Anja U Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
| | - Carsten Holzmann
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Andreas Wree
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Martin Witt
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| |
Collapse
|
26
|
Degtyareva AV, Proshlyakova TY, Gautier MS, Degtyarev DN, Kamenets EA, Baydakova GV, Rebrikov DV, Zakharova EY. Oxysterol/chitotriosidase based selective screening for Niemann-Pick type C in infantile cholestasis syndrome patients. BMC MEDICAL GENETICS 2019; 20:123. [PMID: 31296176 PMCID: PMC6625024 DOI: 10.1186/s12881-019-0857-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023]
Abstract
Background Niemann-Pick disease type C (NP-C) is an inherited neurodegenerative disease (1 per 100 000 newborns) caused by NPC proteins impairment that leads to unesterified cholesterol accumulation in late endosomal/lysosomal compartments. To date the NP-C diagnostics is usually based on cholesterol detection in fibroblasts using an invasive and time-consuming Filipin staining and we need more arguments to widely introduce oxysterols as a biomarkers in NP-C. Methods Insofar as NP-C represents about 8% of all infant cholestases, in this prospective observational study we tried to re-assess the specificity plasma oxysterol and chitotriosidase as a biochemical screening markers of NP-C in children with cholestasis syndrome of unknown origin. For 108 patients (aged from 2 weeks to 7 years) the levels of cholestane-3β,5α,6β-triol (C-triol) and chitotriosidase (ChT) were measured. For patients with elevated C-triol and/or ChT the NPC1 and NPC2 genes were Sanger-sequenced and 47 additional genes (from the custom liver damage panel) were NGS-sequenced. Results Increased C-triol level (> 50 ng/ml) was detected in 4 (of 108) infants with cholestasis syndrome of unknown origin, with following molecular genetic NP-C diagnosis for one patient. Plasma cholesterol significantly correlates with C-triol (p < 0.05). NGS of high C-triol infants identified three patients with mutations in JAG1 (Alagille syndrome) and ABCB11 (Byler disease) genes. Increased ChT activity was detected in 8 (of 108) patients with various aetiologies, including NP-C, Byler disease and biliary atresia. Conclusion Combined analysis of ChT activity and C-triol levels is an effective method for identifying NP-C.
Collapse
Affiliation(s)
- Anna V Degtyareva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Marina S Gautier
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Dmitry N Degtyarev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Denis V Rebrikov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia. .,Pirogov Russian National Research Medical University, Moscow, Russia.
| | | |
Collapse
|
27
|
Bonnot O, Gama CS, Mengel E, Pineda M, Vanier MT, Watson L, Watissée M, Schwierin B, Patterson MC. Psychiatric and neurological symptoms in patients with Niemann-Pick disease type C (NP-C): Findings from the International NPC Registry. World J Biol Psychiatry 2019; 20:310-319. [PMID: 28914127 DOI: 10.1080/15622975.2017.1379610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: Niemann-Pick disease type C (NP-C) is a rare inherited neurovisceral disease that should be recognised by psychiatrists as a possible underlying cause of psychiatric abnormalities. This study describes NP-C patients who had psychiatric manifestations at enrolment in the international NPC Registry, a unique multicentre, prospective, observational disease registry. Methods: Treating physicians' data entries describing psychiatric manifestations in NPC patients were coded and grouped by expert psychiatrists. Results: Out of 386 NP-C patients included in the registry as of October 2015, psychiatric abnormalities were reported to be present in 34% (94/280) of those with available data. Forty-four patients were confirmed to have identifiable psychiatric manifestations, with text describing these psychiatric manifestations. In these 44 patients, the median (range) age at onset of psychiatric manifestations was 17.9 years (2.5-67.9; n = 15), while the median (range) age at NP-C diagnosis was 23.7 years (0.2-69.8; n = 34). Almost all patients (43/44; 98%) had an occurrence of ≥1 neurological manifestation at enrolment. Conclusions: These data show that substantial delays in diagnosis of NP-C are long among patients with psychiatric symptoms and, moreover, patients presenting with psychiatric features and at least one of cognitive impairment, neurological manifestations, and/or visceral symptoms should be screened for NP-C.
Collapse
Affiliation(s)
- Olivier Bonnot
- a Department of Child and Adolescent Psychiatry , University and CHU of Nantes , Nantes , France
| | - Clarissa S Gama
- b Laboratory of Molecular Psychiatry , Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul , Porto Alegre , Brazil
| | - Eugen Mengel
- c Paediatric and Adolescent Medical Centre , Johannes Gutenberg University , Mainz , Germany
| | - Mercè Pineda
- d Department of Neuropediatrica , Fundacio Hospital Sant Joan de Déu , Barcelona , Spain
| | - Marie T Vanier
- e Metabolomic and Metabolic Diseases , INSERM Unit 820 , Lyon , France
| | | | - Marie Watissée
- g Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | | | - Marc C Patterson
- h Pediatric and Adolescent Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
28
|
Bonnot O, Klünemann HH, Velten C, Torres Martin JV, Walterfang M. Systematic review of psychiatric signs in Niemann-Pick disease type C. World J Biol Psychiatry 2019; 20:320-332. [PMID: 29457916 DOI: 10.1080/15622975.2018.1441548] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objectives: We conducted the first systematic literature review and analysis of psychiatric manifestations in Niemann-Pick disease type C (NPC) to describe: (1) time of occurrence of psychiatric manifestations relative to other disease manifestations; and (2) frequent combinations of psychiatric, neurological and visceral disease manifestations. Methods: A systematic EMBase literature search was conducted to identify, collate and analyze published data from patients with NPC associated with psychiatric symptoms, published between January 1967 and November 2015. Results: Of 152 identified publications 40 were included after screening that contained useable data from 58 NPC patients (mean [SD] age at diagnosis of NPC 27.8 [15.1] years). Among patients with available data, cognitive, memory and instrumental impairments were most frequent (90% of patients), followed by psychosis (62%), altered behavior (52%) and mood disorders (38%). Psychiatric manifestations were reported before or at neurological disease onset in 41 (76%) patients; organic signs (e.g., hepatosplenomegaly, hearing problems) were reported before psychiatric manifestations in 12 (22%). Substantial delays to diagnosis were observed (5-6 years between psychiatric presentation and NPC diagnosis). Conclusions: NPC should be considered as a possible cause of psychiatric manifestations in patients with an atypical disease course, acute-onset psychosis, treatment failure, and/or certain combinations of psychiatric/neurological/visceral symptoms.
Collapse
Affiliation(s)
- Olivier Bonnot
- a Child and Adolescent Psychiatry Department , CHU and University of Nantes , Nantes , France
| | - Hans-Hermann Klünemann
- b University Clinic for Psychiatry and Psychotherapy, Regensburg University , Regensburg , Germany
| | | | | | | |
Collapse
|
29
|
Fog CK, Kirkegaard T. Animal models for Niemann-Pick type C: implications for drug discovery & development. Expert Opin Drug Discov 2019; 14:499-509. [PMID: 30887840 DOI: 10.1080/17460441.2019.1588882] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Niemann-Pick type C (NPC) is a neurovisceral, progressively detrimental lysosomal storage disease with very limited therapeutic options and no approved treatment available in the US. Despite its rarity, NPC has seen increased drug developmental efforts over the past decade, culminating in the completion of two potential registration trials in 2018. Areas covered: This review highlights the many available animal models that have been developed in the field and briefly covers classical and new cell technologies. This review provides a high-level evaluation and prioritization of the various models with regard to efficient and clinically translatable drug development, and briefly discusses the relevant developments and opportunities pertaining to this. Expert opinion: With a number of in vitro and in vivo models available, and with having several drugs, all with various mechanisms of action, either approved or in late stage development, the NPC field is in an exciting time. One of the challenges for researchers and developers will be the ability to make use of the lessons learnt from existing late-stage programs as well as the incorporation not only of the opportunities but also the limitations of the many models into successful drug discovery and translational development programs.
Collapse
|
30
|
Polese-Bonatto M, Bock H, Farias ACS, Mergener R, Matte MC, Gil MS, Nepomuceno F, Souza FTS, Gus R, Giugliani R, Saraiva-Pereira ML. Niemann-Pick Disease Type C: Mutation Spectrum and Novel Sequence Variations in the Human NPC1 Gene. Mol Neurobiol 2019; 56:6426-6435. [PMID: 30820861 DOI: 10.1007/s12035-019-1528-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/15/2019] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C (NP-C) is a rare autosomal recessive disorder characterized by storage of unesterified glycolipids and cholesterol in lysosome and/or late endosome due to mutations in either NPC1 or NPC2 gene. This study aims to identify the spectrum of sequence alterations associated to NP-C in individuals with clinical suspicion of this disease. The entire coding region and flanking sequences of both genes associated to NP-C were evaluated in a total of 265 individuals that were referred to our laboratory. Clinical and/or biochemical suspicion of NP-C was confirmed by molecular analysis in 54 subjects. In this cohort, 33 different sequence alterations were identified in NPC1 and one in NPC2. Among those, 5 novel alterations in NPC1 gene were identified as follows: one deletion (p.Lys38_Tyr40del), one frameshift (p.Asn195Lysfs*2), and three missense mutations (p.Cys238Arg, p.Ser365Pro and, p.Val694Met) that are likely to be pathogenic through different approaches, including in silico tools as well as multiple sequence alignment throughout different species. We have also reported main clinical symptoms of patients with novel alterations and distribution of frequent symptoms in the cohort. Findings reported here contribute to the knowledge of mutation spectrum of NP-C, defining frequent mutations as well as novel sequence alterations associated to the disease.
Collapse
Affiliation(s)
- Márcia Polese-Bonatto
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Bock
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Carolina S Farias
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafaella Mergener
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Cristina Matte
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mirela S Gil
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Felipe Nepomuceno
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda T S Souza
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rejane Gus
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP-Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil
| | - Maria Luiza Saraiva-Pereira
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. .,INAGEMP-Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Lopez AM, Jones RD, Repa JJ, Turley SD. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Am J Physiol Gastrointest Liver Physiol 2018; 315:G454-G463. [PMID: 29878847 PMCID: PMC6230690 DOI: 10.1152/ajpgi.00124.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023]
Abstract
Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase (SOAT) 1 or SOAT2 in various cell types and lecithin cholesterol acyltransferase in plasma. Esterified cholesterol and triacylglycerol contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C (NPC) 2 and NPC 1, unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease, which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7-wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared with their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma alanine aminotransferase and aspartate aminotransferase activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency. NEW & NOTEWORTHY In Niemann-Pick type C1 (NPC1) disease, the entrapment of unesterified cholesterol (UC) in the endosomal/lysosomal compartment of all cells causes multiorgan disease, including neurodegeneration, pulmonary dysfunction, and liver failure. Some of this sequestered UC entered cells initially in the esterified form. When sterol O-acyltransferase 2, a cholesterol esterifying enzyme present in enterocytes and hepatocytes, is eliminated in NPC1-deficient mice, there is a reduction in their hepatomegaly, hepatic UC content, and cellular injury.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
32
|
Lamri A, Pigeyre M, Garver WS, Meyre D. The Extending Spectrum of NPC1-Related Human Disorders: From Niemann-Pick C1 Disease to Obesity. Endocr Rev 2018; 39:192-220. [PMID: 29325023 PMCID: PMC5888214 DOI: 10.1210/er.2017-00176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,INSERM 1190, European Genomics Institute for Diabetes, University of Lille, CHRU Lille, Lille, France
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Ebner L, Gläser A, Bräuer A, Witt M, Wree A, Rolfs A, Frank M, Vollmar B, Kuhla A. Evaluation of Two Liver Treatment Strategies in a Mouse Model of Niemann-Pick-Disease Type C1. Int J Mol Sci 2018; 19:ijms19040972. [PMID: 29587349 PMCID: PMC5979582 DOI: 10.3390/ijms19040972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
Niemann–Pick-disease type C1 (NPC1) is an autosomal-recessive cholesterol-storage disorder. Besides other symptoms, NPC1 patients develop liver dysfunction and hepatosplenomegaly. The mechanisms of hepatomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. Here, we used an NPC1 mouse model to study an additive hepatoprotective effect of a combination of 2-hydroxypropyl-β-cyclodextrin (HPβCD), miglustat and allopregnanolone (combination therapy) with the previously established monotherapy using HPβCD. We examined transgene effects as well as treatment effects on liver morphology and hepatic lipid metabolism, focusing on hepatic cholesterol transporter genes. Livers of Npc1−/− mice showed hepatic cholesterol sequestration with consecutive liver injury, an increase of lipogenetic gene expression, e.g., HMG-CoA, a decrease of lipolytic gene expression, e.g., pparα and acox1, and a decrease of lipid transporter gene expression, e.g., acat1, abca1 and fatp2. Both, combination therapy and monotherapy, led to a reduction of hepatic lipids and an amelioration of NPC1 liver disease symptoms. Monotherapy effects were related to pparα- and acox1-associated lipolysis/β-oxidation and to fatp2-induced fatty acid transport, whereas the combination therapy additionally increased the cholesterol transport via abca1 and apoE. However, HPβCD monotherapy additionally increased cholesterol synthesis as indicated by a marked increase of the HMG-CoA and srebp-2 mRNA expression, probably as a result of increased hepatocellular proliferation.
Collapse
Affiliation(s)
- Lynn Ebner
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
| | - Anne Gläser
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Anja Bräuer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht Kossel Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
| |
Collapse
|
34
|
Abstract
BACKGROUND AND AIMS Hepatic cholesterol deposition drives inflammation and fibrosis in non-alcoholic steatohepatitis (NASH). The Niemann-Pick type C2 (NPC2) protein plays an important role in regulating intracellular cholesterol trafficking and homeostasis. We hypothesized that intravenous NPC2 supplementation reduces cholesterol accumulation, hepatic inflammation and fibrogenesis in a nutritional NASH rat model. METHODS Rats were fed a high-fat, high-cholesterol (HFHC) diet for four weeks resulting in moderately severe NASH. Animals were treated with intravenous NPC2 or placebo twice weekly for either the last two weeks or the entire four weeks. End-points were liver/body- and spleen/body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, cholesterol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic gene expression related to cholesterol metabolism, inflammation, and fibrosis. RESULTS HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory element binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were down-regulated compared with rats on standard chow. NPC2 did not improve liver weight, histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α (TNFα), Interleukin (IL)-6, or IL-1β in HFHC rats. Two weeks of NPC2 treatment lowered hepatic TNFα and COL1A1 mRNA expression. However, this effect was ultimately reversed following additional two weeks of treatment. Four weeks NPC2 treatment of rats raised ATP-binding cassette A1 (ABCA1) and low-density lipoprotein receptor (LDLR) mRNAs in the liver, concurrent with a strong tendency towards higher serum high-density lipoprotein (HDL). Furthermore, the peroxisome proliferator activated receptor-ɣ (PPARG) gene expression was reduced. CONCLUSIONS NPC2 proved inefficient at modifying robust hepatic NASH end-points in a HFHC NASH model. Nonetheless, our data suggest that hepatic ABCA1 expression and reverse cholesterol transport were upregulated by NPC2 treatment, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism.
Collapse
|
35
|
Probable Diagnosis of a Patient with Niemann-Pick Disease Type C: Managing Pitfalls of Exome Sequencing. JIMD Rep 2018. [PMID: 29453517 DOI: 10.1007/8904_2018_90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] Open
Abstract
Here, we present a case of a 31-year-old man with progressive cognitive decline, ataxia, and dystonia. Extensive laboratory, radiographic, and targeted genetic studies over the course of several years failed to yield a diagnosis. Initial whole exome sequencing through a commercial laboratory identified several variants of uncertain significance; however, follow-up clinical examination and testing ruled each of these out. Eventually, repeat whole exome sequencing identified a known pathogenic intronic variant in the NPC1 gene (NM_000271.4, c.1554-1009G>A) and an additional heterozygous exonic variant of uncertain significance in the NPC1 gene (NM_000271.4, c.2524T>C). Follow-up biochemical testing was consistent with a diagnosis of probable Niemann-Pick disease Type C (NP-C). This case illustrates the potential of whole exome sequencing for diagnosing rare complex neurologic diseases. It also identifies several potential common pitfalls that must be navigated by clinicians when interpreting commercial whole exome sequencing results.
Collapse
|
36
|
Gumus E, Haliloglu G, Karhan AN, Demir H, Gurakan F, Topcu M, Yuce A. Niemann-Pick disease type C in the newborn period: a single-center experience. Eur J Pediatr 2017; 176:1669-1676. [PMID: 28951965 DOI: 10.1007/s00431-017-3020-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
UNLABELLED Niemann-Pick disease type C (NPC) is a neurovisceral lysosomal storage disorder with a great variation in clinical spectrum and age at presentation. Clinical features of 10 NPC patients who presented in the newborn period between 1993 and 2015 at our center were retrospectively analyzed. Males and females were equally distributed; there was a history of parental consanguinity (n = 8) and first-degree relative with NPC (n = 3). Patients were symptomatic between 1 and 10 days (mean 3.6 ± 2.6 days). Age at diagnosis was between 1 and 30 days (mean 14.6 ± 13.3 days). Laboratory work-up included bone marrow aspiration (n = 8) and/or filipin staining (n = 4). Confirmation was done by molecular analysis, indicating NPC1 (n = 8) and NPC2 (n = 2) mutations. All patients had neonatal cholestasis and hepatosplenomegaly. Pulmonary involvement (n = 9) and fetal ascites (n = 2) were additional accompanying features. All but one died due to pulmonary complications (n = 6) and liver insufficiency (n = 3) between 1.5 and 36 months of age (mean 8.1 ± 10.8 months). Currently, one patient is alive at the age of 11 months without any neurological deficit. CONCLUSIONS Neonatal presentation is a rare form of NPC with exclusively visceral involvement in the newborn period and poor prognosis leading to premature death due to pulmonary complications and liver failure. What is known: • Neonatal presentation is a rare form of NPC with exclusively visceral involvement in the newborn period and poor prognosis leading to premature death. • Progressive liver disease is the most common cause of death among neonatal-onset NPC patients. What is new: • Natural course of neonatal-onset NPC may show variations. • Pulmonary involvement should be considered as an important cause of death in neonatal-onset cases, and appropriate precautions should be taken to prevent complications of respiratory insufficiency and airway infections.
Collapse
Affiliation(s)
- Ersin Gumus
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey.
| | - Goknur Haliloglu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Asuman Nur Karhan
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey
| | - Hulya Demir
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey
| | - Figen Gurakan
- Department of Pediatrics, VKV American Hospital, Istanbul, Turkey
| | - Meral Topcu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Aysel Yuce
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
37
|
Dougherty M, Lazar J, Klein JC, Diaz K, Gobillot T, Grunblatt E, Hasle N, Lawrence D, Maurano M, Nelson M, Olson G, Srivatsan S, Shendure J, Keene CD, Bird T, Horwitz MS, Marshall DA. Genome sequencing in a case of Niemann-Pick type C. Cold Spring Harb Mol Case Stud 2017; 2:a001222. [PMID: 27900365 PMCID: PMC5111003 DOI: 10.1101/mcs.a001222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adult-onset Niemann–Pick disease type C (NPC) is an infrequent presentation of a rare neurovisceral lysosomal lipid storage disorder caused by autosomal recessive mutations in NPC1 (∼95%) or NPC2 (∼5%). Our patient was diagnosed at age 33 when he presented with a 10-yr history of difficulties in judgment, concentration, speech, and coordination. A history of transient neonatal jaundice and splenomegaly with bone marrow biopsy suggesting a lipid storage disorder pointed to NPC; biochemical (“variant” level cholesterol esterification) and ultrastructural studies in adulthood confirmed the diagnosis. Genetic testing revealed two different missense mutations in the NPC1 gene—V950M and N1156S. Symptoms progressed over >20 yr to severe ataxia and spasticity, dementia, and dysphagia with aspiration leading to death. Brain autopsy revealed mild atrophy of the cerebrum and cerebellum. Microscopic examination showed diffuse gray matter deposition of balloon neurons, mild white matter loss, extensive cerebellar Purkinje cell loss with numerous “empty baskets,” and neurofibrillary tangles predominantly in the hippocampal formation and transentorhinal cortex. We performed whole-genome sequencing to examine whether the patient harbored variants outside of the NPC1 locus that could have contributed to his late-onset phenotype. We focused analysis on genetic modifiers in pathways related to lipid metabolism, longevity, and neurodegenerative disease. We identified no rare coding variants in any of the pathways examined nor was the patient enriched for genome-wide association study (GWAS) single-nucleotide polymorphisms (SNPs) associated with longevity or altered lipid metabolism. In light of these findings, this case provides support for the V950M variant being sufficient for adult-onset NPC disease.
Collapse
Affiliation(s)
- Max Dougherty
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA;; Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | - John Lazar
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA;; Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Jason C Klein
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA;; Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Karina Diaz
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Theodore Gobillot
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Eli Grunblatt
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Nicholas Hasle
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Daniel Lawrence
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Megan Maurano
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Maria Nelson
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Gregory Olson
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Sanjay Srivatsan
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA;; Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle, Washington 98105, USA;; Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Marshall S Horwitz
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Desiree A Marshall
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
38
|
Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. MICROBIAL CELL 2017; 4:278-293. [PMID: 28913343 PMCID: PMC5597791 DOI: 10.15698/mic2017.09.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Stephen L Sturley
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
39
|
Probert F, Ruiz-Rodado V, Vruchte DT, Nicoli ER, Claridge TDW, Wassif CA, Farhat N, Porter FD, Platt FM, Grootveld M. NMR analysis reveals significant differences in the plasma metabolic profiles of Niemann Pick C1 patients, heterozygous carriers, and healthy controls. Sci Rep 2017; 7:6320. [PMID: 28740230 PMCID: PMC5524790 DOI: 10.1038/s41598-017-06264-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a rare autosomal recessive, neurodegenerative lysosomal storage disorder, which presents with a range of clinical phenotypes and hence diagnosis remains a challenge. In view of these difficulties, the search for a novel, NPC1-specific biomarker (or set of biomarkers) is a topic of much interest. Here we employed high-resolution 1H nuclear magnetic resonance spectroscopy coupled with advanced multivariate analysis techniques in order to explore and seek differences between blood plasma samples acquired from NPC1 (untreated and miglustat treated), heterozygote, and healthy control subjects. Using this approach, we were able to identify NPC1 disease with 91% accuracy confirming that there are significant differences in the NMR plasma metabolic profiles of NPC1 patients when compared to healthy controls. The discrimination between NPC1 (both miglustat treated and untreated) and healthy controls was dominated by lipoprotein triacylglycerol 1H NMR resonances and isoleucine. Heterozygote plasma samples displayed also increases in the intensities of selected lipoprotein triacylglycerol 1H NMR signals over those of healthy controls. The metabolites identified could represent useful biomarkers in the future and provide valuable insight in to the underlying pathology of NPC1 disease.
Collapse
Affiliation(s)
- Fay Probert
- Department of Pharmacology, De Montfort University, Leicester, UK.,Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | | | - Christopher A Wassif
- Department of Pharmacology, University of Oxford, Oxford, UK.,Section of Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Nicole Farhat
- Section of Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Forbes D Porter
- Section of Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Martin Grootveld
- Department of Pharmacology, De Montfort University, Leicester, UK.
| |
Collapse
|
40
|
Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca 2+ storage. Sci Rep 2017; 7:43575. [PMID: 28262793 PMCID: PMC5337937 DOI: 10.1038/srep43575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) lyase irreversibly cleaves S1P, thereby catalysing the ultimate step of sphingolipid degradation. We show here that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs), in which S1P and sphingosine accumulate, have features of Niemann-Pick disease type C (NPC) cells. In the presence of serum, overall cholesterol content was elevated in Sgpl1−/−-MEFs, due to upregulation of the LDL receptor and enhanced cholesterol uptake. Despite this, activation of sterol regulatory element-binding protein-2 was increased in Sgpl1−/−-MEFs, indicating a local lack of cholesterol at the ER. Indeed, free cholesterol was retained in NPC1-containing vesicles, which is a hallmark of NPC. Furthermore, upregulation of amyloid precursor protein in Sgpl1−/−-MEFs was mimicked by an NPC1 inhibitor in Sgpl1+/+-MEFs and reduced by overexpression of NPC1. Lysosomal pH was not altered by S1P lyase deficiency, similar to NPC. Interestingly, lysosomal Ca2+ content and bafilomycin A1-induced [Ca2+]i increases were enhanced in Sgpl1−/−-MEFs, contrary to NPC. These results show that both a primary defect in cholesterol trafficking and S1P lyase deficiency cause overlapping phenotypic alterations, and challenge the present view on the role of sphingosine in lysosomal Ca2+ homeostasis.
Collapse
|
41
|
Ruiz-Rodado V, Nicoli ER, Probert F, Smith DA, Morris L, Wassif CA, Platt FM, Grootveld M. 1H NMR-Linked Metabolomics Analysis of Liver from a Mouse Model of NP-C1 Disease. J Proteome Res 2016; 15:3511-3527. [PMID: 27503774 DOI: 10.1021/acs.jproteome.6b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clinical manifestations of Niemann-Pick type C1 (NP-C1) disease include neonatal hepatosplenomegaly and in some patients progressive liver dysfunction and failure. This study involved a 1H NMR-linked metabolomics analysis of liver samples collected from a NP-C1 disease mutant mouse model in order to explore time-dependent imbalances in metabolic pathways associated with NP-C1 liver dysfunction, including fibrosis. NP-C1 mutant (Npc1-/-; NP-C1), control (Npc1+/+; WT), and NP-C1 heterozygous mice (Npc1+/-; HET) were generated from heterozygote matings. Aqueous extracts of these liver samples collected at time points of 3, 6, 9, and 11 weeks were subjected to high-resolution NMR analysis, and multivariate (MV) metabolomics analyses of data sets acquired were performed. A MV random forests (RFs) model effectively discriminated between NP-C1 and a combined WT/HET hepatic NMR profiles with very high predictive accuracy and reliability. Key distinguishing features included significant upregulations in the hepatic concentrations of phenylalanine, tyrosine, glutamate, lysine/ornithine, valine, threonine, and hypotaurine/methionine, and diminished levels of nicotinate/niacinamide, inosine, phosphoenolpyruvate, and 3-hydroxyphenylacetate. Quantitative pathway topological analysis confirmed that imbalances in tyrosine biosynthesis, and hepatic phenylalanine, tyrosine, glutamate/glutamine, and nicotinate/niacinamide metabolism were involved in the pathogenesis of NP-C1 disease-associated liver dysfunction/damage. 1H NMR-linked metabolomics analysis provides valuable biomarker information regarding hepatic dysfunction or damage in NP-C1 disease.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Leicester School of Pharmacy, De Montfort University , The Gateway, Leicester LE1 9BH, United Kingdom
| | - Elena-Raluca Nicoli
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Fay Probert
- Leicester School of Pharmacy, De Montfort University , The Gateway, Leicester LE1 9BH, United Kingdom
| | - David A Smith
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Lauren Morris
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Christopher A Wassif
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom.,Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH , Bethesda, Maryland 20892, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University , The Gateway, Leicester LE1 9BH, United Kingdom
| |
Collapse
|
42
|
Pontremoli C, Forni D, Cagliani R, Filippi G, De Gioia L, Pozzoli U, Clerici M, Sironi M. Positive Selection Drives Evolution at the Host-Filovirus Interaction Surface. Mol Biol Evol 2016; 33:2836-2847. [PMID: 27512112 DOI: 10.1093/molbev/msw158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).
Collapse
Affiliation(s)
- Chiara Pontremoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
43
|
Sedel F, Chabrol B, Audoin B, Kaphan E, Tranchant C, Burzykowski T, Tourbah A, Vanier MT, Galanaud D. Normalisation of brain spectroscopy findings in Niemann-Pick disease type C patients treated with miglustat. J Neurol 2016; 263:927-936. [PMID: 26984608 PMCID: PMC4859844 DOI: 10.1007/s00415-016-8051-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/24/2023]
Abstract
Niemann-Pick disease type C (NP-C) is a fatal progressive neurolipidosis involving neuronal storage of cholesterol and gangliosides. Miglustat, an inhibitor of glycosphingolipid synthesis, has been approved to treat neurological manifestations in adults and children with NP-C. This open-label observational study in adults with confirmed NP-C evaluated the efficacy of miglustat (200 mg t.i.d.) based on composite functional disability (CFD) scores and brain proton magnetic resonance spectroscopy (H-MRS) measurement of choline (Cho)/N-acetyl aspartate (NAA) ratio in the centrum ovale. Overall, 16 patients were included and received miglustat for a mean period of 30.6 months: 12 continued on miglustat throughout follow up, and 4 discontinued miglustat because of adverse effects (n = 2) or perceived lack of efficacy (n = 2). In the 'continued' subgroup, the mean (SD) annual progression of CFD scores decreased from 0.75 (0.94) before treatment to 0.29 (1.29) during the period between miglustat initiation and last follow-up. In the discontinued subgroup, CFD progression increased from 0.48 (0.44) pre-treatment to 1.49 (1.31) at last follow up (off treatment). Mean (SD) Cho/NAA ratio [normal level 0.48 (0.076)] decreased during miglustat treatment in the continued subgroup: 0.64 (0.12) at baseline (miglustat initiation), 0.59 (0.17) at 12-month follow up, and 0.48 (0.09) at 24-month follow up. Cho/NAA ratio remained relatively stable in the discontinued subgroup: 0.57 (0.15), 0.53 (0.04) and 0.55 (0.09), respectively. In conclusion, H-MRS Cho/NAA ratio might serve as an objective, quantitative neurological marker of brain dysfunction in NP-C, allowing longitudinal analysis of the therapeutic effect of miglustat.
Collapse
Affiliation(s)
- Frédéric Sedel
- Department of Neurology, AP-HP, Federation of Nervous System Diseases, Salpêtrière Hospital, 47 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
- Neuro-Metabolic Unit and Reference Center for Lysosomal Diseases, GRC13UPMC, Pierre and Marie Curie University, AP-HP, Salpêtrière Hospital, Paris, France.
| | - Brigitte Chabrol
- Department of Pediatrics, La Timone Hospital, CHU of Marseille, Marseille, France
| | - Bertrand Audoin
- Department of Neurology, Division of Clinical Neuroscience, Aix-Marseille University, CNRS, CRMBM UMR 7339, AP-HM, Timone Hospital, Marseille, France
| | - Elsa Kaphan
- Department of Neurology, Division of Clinical Neuroscience, CHU Timone, AP-HM, Marseille, France
| | | | - Tomasz Burzykowski
- International Drug Development Institute (IDDI), Louvain-la-Neuve and Hasselt University, Hasselt, Belgium
| | - Ayman Tourbah
- Department of Neurology, Central University Hospital, Faculté de Médecine de Reims URCA and EA 2027, Université Paris VIII, Sant-Denis, France
| | | | - Damien Galanaud
- Department of Neuroradiology, Pierre and Marie Curie University, Paris, France
| |
Collapse
|
44
|
Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:517-23. [DOI: 10.1016/j.ajpath.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/23/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022]
|
45
|
Sadananda SN, Foo JN, Toh MT, Cermakova L, Trigueros-Motos L, Chan T, Liany H, Collins JA, Gerami S, Singaraja RR, Hayden MR, Francis GA, Frohlich J, Khor CC, Brunham LR. Targeted next-generation sequencing to diagnose disorders of HDL cholesterol. J Lipid Res 2015; 56:1993-2001. [PMID: 26255038 DOI: 10.1194/jlr.p058891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/01/2023] Open
Abstract
A low level of HDL cholesterol (HDL-C) is a common clinical scenario and an important marker for increased cardiovascular risk. Many patients with very low or very high HDL-C have a rare mutation in one of several genes, but identification of the molecular abnormality in patients with extreme HDL-C is rarely performed in clinical practice. We investigated the accuracy and diagnostic yield of a targeted next-generation sequencing (NGS) assay for extreme levels of HDL-C. We developed a targeted NGS panel to capture the exons, intron/exon boundaries, and untranslated regions of 26 genes with highly penetrant effects on plasma lipid levels. We sequenced 141 patients with extreme HDL-C levels and prioritized variants in accordance with medical genetics guidelines. We identified 35 pathogenic and probably pathogenic variants in HDL genes, including 21 novel variants, and performed functional validation on a subset of these. Overall, a molecular diagnosis was established in 35.9% of patients with low HDL-C and 5.2% with high HDL-C, and all prioritized variants identified by NGS were confirmed by Sanger sequencing. Our results suggest that a molecular diagnosis can be identified in a substantial proportion of patients with low HDL-C using targeted NGS.
Collapse
Affiliation(s)
- Singh N Sadananda
- Translational Laboratory in Genetic Medicine, Agency for Science Technology and Research (ASTAR) and National University of Singapore, Singapore
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, Agency for Science Technology and Research (ASTAR), Singapore
| | - Meng Tiak Toh
- Translational Laboratory in Genetic Medicine, Agency for Science Technology and Research (ASTAR) and National University of Singapore, Singapore
| | - Lubomira Cermakova
- Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Vancouver, Canada
| | - Laia Trigueros-Motos
- Translational Laboratory in Genetic Medicine, Agency for Science Technology and Research (ASTAR) and National University of Singapore, Singapore
| | - Teddy Chan
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Herty Liany
- Human Genetics, Genome Institute of Singapore, Agency for Science Technology and Research (ASTAR), Singapore
| | - Jennifer A Collins
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Sima Gerami
- Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Vancouver, Canada
| | - Roshni R Singaraja
- Translational Laboratory in Genetic Medicine, Agency for Science Technology and Research (ASTAR) and National University of Singapore, Singapore
| | - Michael R Hayden
- Translational Laboratory in Genetic Medicine, Agency for Science Technology and Research (ASTAR) and National University of Singapore, Singapore Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gordon A Francis
- Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Vancouver, Canada Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada Departments of Medicine University of British Columbia, Vancouver, Canada
| | - Jiri Frohlich
- Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Vancouver, Canada Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, Agency for Science Technology and Research (ASTAR), Singapore
| | - Liam R Brunham
- Translational Laboratory in Genetic Medicine, Agency for Science Technology and Research (ASTAR) and National University of Singapore, Singapore Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Vancouver, Canada Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Departments of Medicine University of British Columbia, Vancouver, Canada
| |
Collapse
|
46
|
Jelinek D, Castillo JJ, Heidenreich RA, Garver WS. The C57BL/6J Niemann-Pick C1 mouse model with decreased gene dosage is susceptible to increased weight gain when fed a high-fat diet: Confirmation of a gene-diet interaction. Gene 2015; 568:112-3. [PMID: 25979674 DOI: 10.1016/j.gene.2015.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 02/05/2023]
Affiliation(s)
- David Jelinek
- Department of Biochemistry and Molecular Biology, School of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Joseph J Castillo
- Department of Biochemistry and Molecular Biology, School of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Randall A Heidenreich
- Department of Pediatrics, School of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
47
|
Recent advances in the diagnosis and treatment of niemann-pick disease type C in children: a guide to early diagnosis for the general pediatrician. Int J Pediatr 2015; 2015:816593. [PMID: 25784942 PMCID: PMC4345273 DOI: 10.1155/2015/816593] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/03/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022] Open
Abstract
Niemann-Pick disease (NP-C) is a lysosomal storage disease in which impaired intracellular lipid transport leads to accumulation of cholesterol and glycosphingolipids in various neurovisceral tissues. It is an autosomal recessive disorder, caused by mutations in the NPC1 or NPC2 genes. The clinical spectrum is grouped by the age of onset and onset of neurological manifestation: pre/perinatal; early infantile; late infantile; and juvenile periods. The NP-C Suspicion Index (SI) screening tool was developed to identify suspected patients with this disease. It is especially good at recognizing the disease in patients older than four years of age. Biochemical tests involving genetic markers and Filipin staining of skin fibroblast are being employed to assist diagnosis. Therapy is mostly supportive and since 2009, the first specific therapy approved for use was Miglustat (Zavesca) aimed at stabilizing the rate of progression of neurological manifestation. The prognosis correlates with age at onset of neurological signs; patients with early onset form progress faster. The NP-C disease has heterogeneous neurovisceral manifestations. A SI is a screening tool that helps in diagnostic process. Filipin staining test is a specific biomarker diagnostic test. Miglustat is the first disease-specific therapy.
Collapse
|
48
|
Dubland JA, Francis GA. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front Cell Dev Biol 2015; 3:3. [PMID: 25699256 PMCID: PMC4313778 DOI: 10.3389/fcell.2015.00003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023] Open
Abstract
Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL) plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL) and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.
Collapse
Affiliation(s)
- Joshua A Dubland
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
49
|
Garver WS, de la Torre L, Brennan MC, Luo L, Jelinek D, Castillo JJ, Meyre D, Orlando RA, Heidenreich RA, Rayburn WF. Differential Association of Niemann-Pick C1 Gene Polymorphisms with Maternal Prepregnancy Overweight and Gestational Diabetes. ACTA ACUST UNITED AC 2015; 2. [PMID: 26120596 PMCID: PMC4482482 DOI: 10.15436/2376-0494.15.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A genome-wide association study (GWAS) and subsequent replication studies in diverse ethnic groups indicate that common Niemann-Pick C1 gene (NPC1) polymorphisms are associated with morbid-adult obesity or diabetes independent of body weight. The objectives for this prospective cross-sectional study were to determine allele frequencies for NPC1 polymorphisms (644A>G, 1926C>G, 2572A>G, and 3797G>A) and association with metabolic disease phenotypes in an ethnically diverse New Mexican obstetric population. Allele frequencies for 1926C>G, 2572A>G, and 3797G>A were significantly different between race/ethnic groups (non-Hispanic white, Hispanic, and Native American). The results also indicated a significant pairwise linkage-disequilibrium between each of the four NPC1 polymorphisms in race/ethnic groups. Moreover, the derived and major allele for 1926C>G was associated (OR 2.11, 95% CI 1.10–3.96, P = 0.022) with increased risk for maternal prepregnancy overweight (BMI 25.0–29.9kg/m2) while the ancestral and major allele for 2572A>G was associated (OR 4.68, 95% CI 1.23–17.8, P = 0.024) with increased risk for gestational diabetes in non-Hispanic whites, but not Hispanics or Native Americans. In summary, this is the first transferability study to investigate common NPC1 polymorphisms in a multiethnic population and demonstrate a differential association with increased risk for maternal prepregnancy overweight and gestational diabetes.
Collapse
Affiliation(s)
- William S Garver
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lesley de la Torre
- Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Matthew C Brennan
- Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Li Luo
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David Jelinek
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joseph J Castillo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
| | - Robert A Orlando
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Randall A Heidenreich
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - William F Rayburn
- Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
50
|
Jahnova H, Dvorakova L, Vlaskova H, Hulkova H, Poupetova H, Hrebicek M, Jesina P. Observational, retrospective study of a large cohort of patients with Niemann-Pick disease type C in the Czech Republic: a surprisingly stable diagnostic rate spanning almost 40 years. Orphanet J Rare Dis 2014; 9:140. [PMID: 25236789 PMCID: PMC4193985 DOI: 10.1186/s13023-014-0140-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background Niemann-Pick disease type C (NPC) is a rare, fatal neurovisceral disorder with autosomal recessive inheritance, and featuring striking clinical variability dependent on the age at onset of neurological symptoms. We report data from a large cohort of 56 Czech patients with NPC diagnosed over a period of 37 years. Methods An observational, retrospective analysis of historic and current clinical and laboratory information was performed among all NPC patients originating from the area of the contemporary Czech Republic and diagnosed between 1975 and 2012. All patients with ≥1 positive diagnostic test and relevant clinical information were included. Data on diagnostic methods (histopathological and/or ultrastructural; biochemical; genetic), clinical status and general information on treatment were collated. Data were examined in accordance with international guidelines for the management of NPC. Results Between 1975 and 1985 diagnoses were based exclusively on specific histopathological findings, often at autopsy. Bone marrow smear (BMS) analyses have proved to be a very specific indicator for NPC and have become an important part of our diagnostic algorithm. Filipin staining and cholesterol esterification assays became the definitive diagnostic tests after 1985 and were applied in 24 of our patients. Since 2005, more and more patients have been assessed using NPC1/NPC2 gene sequencing. Twelve patients were diagnosed with neonatal/early-infantile onset NPC, 13 with the late-infantile onset form, 20 with the juvenile onset form, and nine with the adolescent/adult onset form. Two diagnosed patients remained neurologically asymptomatic at study completion. Nineteen patients were siblings. Causal NPC1 mutations were determined in 38 patients; two identical NPC2 mutations were identified in one patient. In total, 30 different mutations were identified, 14 of which have been confirmed as novel. The frequency of individual mutated NPC1 alleles in our cohort differs compared with previous published data: the most frequent mutant NPC1 allele was p.R1186H (n = 13), followed by p.P1007A (n = 8), p.S954L (n = 8) and p.I1061T (n = 4). Conclusions These data demonstrate the evolution of the diagnostic process in NPC over the last four decades. We estimate the contemporary birth prevalence of NPC in the Czech Republic at 0.93 per 100,000.
Collapse
Affiliation(s)
- Helena Jahnova
- Institute of Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|