1
|
Van Dijck E, Diels S, Fransen E, Cremers TC, Verrijken A, Dirinck E, Hoischen A, Vandeweyer G, Vanden Berghe W, Van Gaal L, Francque S, Van Hul W. A Case-Control Study Supports Genetic Contribution of the PON Gene Family in Obesity and Metabolic Dysfunction Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:1051. [PMID: 39334710 PMCID: PMC11440101 DOI: 10.3390/antiox13091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The paraoxonase (PON) gene family (including PON1, PON2, and PON3), is known for its anti-oxidative and anti-inflammatory properties, protecting against metabolic diseases such as obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the influence of common and rare PON variants on both conditions was investigated. A total of 507 healthy weight individuals and 744 patients with obesity including 433 with histological liver assessment, were sequenced with single-molecule molecular inversion probes (smMIPs), allowing the identification of genetic contributions to obesity and MASLD-related liver features. Polymorphisms rs705379 and rs854552 in the PON1 gene displayed significant association with MASLD stage and fibrosis, respectively. Additionally, rare PON1 variants were strongly associated with obesity. This study thereby reinforces the genetic foundation of PON1 in obesity and various MASLD-related liver features, by extending previous findings from common variants to include rare variants. Additionally, rare and very rare variants in PON2 were discovered to be associated with MASLD-related hepatic fibrosis. Notably, we are the first to report an association between naturally occurring rare PON2 variants and MASLD-related liver fibrosis. Considering the critical role of liver fibrosis in MASLD outcome, PON2 emerges as a possible candidate for future research endeavors including exploration of biomarker potential.
Collapse
Affiliation(s)
- Evelien Van Dijck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sara Diels
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Tycho Canter Cremers
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Alexander Hoischen
- Department of Human Genetics and Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert Vandeweyer
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling–Epigenetics Lab, Department Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Luc Van Gaal
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
2
|
Mahrooz A. Pleiotropic functions and clinical importance of circulating HDL-PON1 complex. Adv Clin Chem 2024; 121:132-171. [PMID: 38797541 DOI: 10.1016/bs.acc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High density lipoprotein (HDL) functions are mostly mediated through a complex proteome, particularly its enzymes. HDL can provide a scaffold for the assembly of several proteins that affect each other's function. HDL particles, particularly small, dense HDL3, are rich in paraoxonase 1 (PON1), which is an important enzyme in the functionality of HDL, so the antioxidant and antiatherogenic properties of HDL are largely attributed to this enzyme. There is an increasing need to represent a valid, reproducible, and reliable method to assay HDL function in routine clinical laboratories. In this context, HDL-associated proteins may be key players; notably PON1 activity (its arylesterase activity) may be a proper candidate because its decreased activity can be considered an important risk factor for HDL dysfunctionality. Of note, automated methods have been developed for the measurement of serum PON1 activity that facilitates its assay in large sample numbers. Arylesterase activity is proposed as a preferred activity among the different activities of PON1 for its assay in epidemiological studies. The binding of PON1 to HDL is critical for the maintenance of its activity and it appears apolipoprotein A-I plays an important role in HDL-PON1 interaction as well as in the biochemical and enzymatic properties of PON1. The interrelationships between HDL, PON1, and HDL's other components are complex and incompletely understood. The purpose of this review is to discuss biochemical and clinical evidence considering the interactions of PON1 with HDL and the role of this enzyme as an appropriate biomarker for HDL function as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Investigation of Genetic Causes in Patients with Congenital Heart Disease in Qatar: Findings from the Sidra Cardiac Registry. Genes (Basel) 2022; 13:genes13081369. [PMID: 36011280 PMCID: PMC9407366 DOI: 10.3390/genes13081369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Congenital heart disease (CHD) is one of the most common forms of birth defects worldwide, with a prevalence of 1–2% in newborns. CHD is a multifactorial disease partially caused by genetic defects, including chromosomal abnormalities and single gene mutations. Here, we describe the Sidra Cardiac Registry, which includes 52 families and a total of 178 individuals, and investigate the genetic etiology of CHD in Qatar. We reviewed the results of genetic tests conducted in patients as part of their clinical evaluation, including chromosomal testing. We also performed whole exome sequencing (WES) to identify potential causative variants. Sixteen patients with CHD had chromosomal abnormalities that explained their complex CHD phenotype, including six patients with trisomy 21. Moreover, using exome analysis, we identified potential CHD variants in 24 patients, revealing 65 potential variants in 56 genes. Four variants were classified as pathogenic/likely pathogenic based on the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) classification; these variants were detected in four patients. This study sheds light on several potential genetic variants contributing to the development of CHD. Additional functional studies are needed to better understand the role of the identified variants in the pathogenesis of CHD.
Collapse
|
4
|
Wysocka A, Zwolak A. The Relevance of Noncoding DNA Variations of Paraoxonase Gene Cluster in Atherosclerosis-Related Diseases. Int J Mol Sci 2021; 22:ijms22042137. [PMID: 33670025 PMCID: PMC7926863 DOI: 10.3390/ijms22042137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
The human paraoxonase (PON) gene cluster is comprised of three contiguous genes (PON1, PON2 and PON3) of presumably common origin coding three lactonases of highly similar structure and substrate specificity. The catalytic activity of PON proteins is directed toward artificial organophosphates and in physiological conditions toward thiolactones and oxidized phospholipids. Consequently, PON enzymes are regarded as an effective defense against oxidative stress and, as a result, against atherosclerosis development. Additionally, both PON's serum activity and its concentration are influenced by several polymorphic variations in coding and noncoding DNA regions of the PON gene cluster remaining in linkage disequilibrium. Hence, the genetic polymorphism of the PON gene cluster may contribute to atherosclerotic process progression or deceleration. In this review the authors analyzed the relevance of noncoding DNA polymorphic variations of PON genes in atherosclerosis-related diseases involving coronary and peripheral artery disease, stroke, diabetes mellitus, dementia and renal disease and concluded that the effect of PON gene cluster' polymorphism has a considerable impact on the course and outcome in these conditions. The following PON genetic variations may serve as additional predictors of the risk of atherosclerosis in selected populations and individuals.
Collapse
Affiliation(s)
- Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Chair and Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland
- Correspondence: ; Tel.: +48-814487720
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Chair and Department of Endocrinology, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
5
|
Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr A, Kashi Z, Bahar A, Bagheri A, Mahrooz A. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res Clin Pract 2020; 161:108067. [PMID: 32044348 DOI: 10.1016/j.diabres.2020.108067] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/13/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Oxidant-antioxidant imbalance is involved in the etiology of different diseases, including cardiovascular diseases (CVDs), liver disorders, kidney diseases, cancers and diabetes mellitus. Antioxidant enzymes play a key role in striking an oxidant-antioxidant balance. Moreover, paraoxonase 1 (PON1) is an antioxidant enzyme that binds with high-density lipoprotein (HDL) in the circulation, and antioxidant and antiaterogenic properties of this lipoprotein are significantly associated with PON1. Research suggests PON1 contributes to the pathogenesis of certain human diseases such as type 2 diabetes (T2D). The association between PON1 and T2D appear to be reciprocal so that the disease significantly decreases PON1 levels and in turn, the genetics of PON1 may have a role the risk of susceptibility to T2D. Several factors that reduce the activity and concentration of PON1 in patients with T2D include increased glycation and loss-of-function polymorphisms. The genotypic and phenotypic evaluations of PON1 are therefore crucial for assessing the risk of cardiovascular complications in these patients, and strategies for increasing or restoring PON1 levels are useful for reducing or preventing their cardiovascular complications as their main cause of mortality. The present review aimed at discussing and emphasizing the key role of PON1 in T2D as a silent and dangerous disease.
Collapse
Affiliation(s)
- Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atena Variji
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, Faculty of Advanced Madical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Kashi
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adele Bahar
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Mahrooz A, Mackness M, Bagheri A, Ghaffari-Cherati M, Masoumi P. The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clin Biochem 2019; 73:1-10. [PMID: 31351988 DOI: 10.1016/j.clinbiochem.2019.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Paraoxonase 1 (PON1) is an important antiatherogenic and antioxidant enzyme in the circulation that has been associated with adverse health outcomes particularly cardiovascular disease (CVD) and other metabolic disorders. PON1 is a highly promiscuous enzyme and can hydrolyse a large variety of substrates, however, detailed structure/function studies have concluded that the natural substrates for PON1 are lipophilic lactones. The interindividual variability in PON1 activity has been mainly attributed to genetic determinants; however, it appears that the contribution of epigenetics has been ignored as a result of the lack of adequate research. CONTENT Epigenetic processes, including the histone modifications in the PON1 gene, the methylation of CpG sites in the promoter region of the PON1 gene and the microRNA modulation of PON1 expression can be responsible for the under researched gap between the environmental and genetic regulation of PON1. Environmental factors, including diet, pollution and lifestyle-related factors widely differ between individuals and populations and can cause large differences in the distribution of PON1 and it is important to note that their effects may be exerted through the epigenetic processes. This review discusses and emphasizes the importance of the epigenetic regulation of PON1 as a less-studied subject to highlight future research landscapes. SUMMARY Epigenetic regulation is known as an important contributor to the pathogenesis of human diseases, particularly multifactorial diseases such as CVD, which is life-threatening. Due to the importance of PON1 in the functionality of high-density lipoprotein (HDL) and its association with CVD, further explorations of its epigenetic regulation using advanced methods such as Methyl-Seq may lead to the identification of new epigenetic contributors that in turn may lead to targeted therapies.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mike Mackness
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghaffari-Cherati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parisa Masoumi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Paraoxonase 1 (PON1)-L55M among common variants in the coding region of the paraoxonase gene family may contribute to the glycemic control in type 2 diabetes. Clin Chim Acta 2018; 484:40-46. [DOI: 10.1016/j.cca.2018.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/12/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022]
|
8
|
Jackson VE, Ntalla I, Sayers I, Morris R, Whincup P, Casas JP, Amuzu A, Choi M, Dale C, Kumari M, Engmann J, Kalsheker N, Chappell S, Guetta-Baranes T, McKeever TM, Palmer CNA, Tavendale R, Holloway JW, Sayer AA, Dennison EM, Cooper C, Bafadhel M, Barker B, Brightling C, Bolton CE, John ME, Parker SG, Moffat MF, Wardlaw AJ, Connolly MJ, Porteous DJ, Smith BH, Padmanabhan S, Hocking L, Stirrups KE, Deloukas P, Strachan DP, Hall IP, Tobin MD, Wain LV. Exome-wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and SERPINA12. Thorax 2016; 71:501-9. [PMID: 26917578 PMCID: PMC4893124 DOI: 10.1136/thoraxjnl-2015-207876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Background Several regions of the genome have shown to be associated with COPD in genome-wide association studies of common variants. Objective To determine rare and potentially functional single nucleotide polymorphisms (SNPs) associated with the risk of COPD and severity of airflow limitation. Methods 3226 current or former smokers of European ancestry with lung function measures indicative of Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2 COPD or worse were genotyped using an exome array. An analysis of risk of COPD was carried out using ever smoking controls (n=4784). Associations with %predicted FEV1 were tested in cases. We followed-up signals of interest (p<10−5) in independent samples from a subset of the UK Biobank population and also undertook a more powerful discovery study by meta-analysing the exome array data and UK Biobank data for variants represented on both arrays. Results Among the associated variants were two in regions previously unreported for COPD; a low frequency non-synonymous SNP in MOCS3 (rs7269297, pdiscovery=3.08×10−6, preplication=0.019) and a rare SNP in IFIT3, which emerged in the meta-analysis (rs140549288, pmeta=8.56×10−6). In the meta-analysis of % predicted FEV1 in cases, the strongest association was shown for a splice variant in a previously unreported region, SERPINA12 (rs140198372, pmeta=5.72×10−6). We also confirmed previously reported associations with COPD risk at MMP12, HHIP, GPR126 and CHRNA5. No associations in novel regions reached a stringent exome-wide significance threshold (p<3.7×10−7). Conclusions This study identified several associations with the risk of COPD and severity of airflow limitation, including novel regions MOCS3, IFIT3 and SERPINA12, which warrant further study.
Collapse
Affiliation(s)
| | - Ioanna Ntalla
- Department of Health Sciences, University of Leicester, Leicester, UK William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Richard Morris
- School of Social & Community Medicine, University of Bristol, Bristol, UK Department of Primary Care & Population Health, UCL, London, UK
| | - Peter Whincup
- Population Health Research Institute, St George's, University of London, London, UK
| | - Juan-Pablo Casas
- University College London, Farr Institute of Health Informatics, London, UK Cochrane Heart Group, London, UK
| | - Antoinette Amuzu
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Minkyoung Choi
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Caroline Dale
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Meena Kumari
- ISER, University of Essex, Colchester, Essex, UK Department of Epidemiology and Public Health, UCL, London, UK
| | | | - Noor Kalsheker
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Sally Chappell
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Tricia M McKeever
- Division of Epidemiology and Public Health, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Colin N A Palmer
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Roger Tavendale
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | - Avan A Sayer
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK Victoria University, Wellington, New Zealand
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bethan Barker
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Chris Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Charlotte E Bolton
- Nottingham Respiratory Research Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Michelle E John
- Nottingham Respiratory Research Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Stuart G Parker
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Miriam F Moffat
- Department of Molecular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew J Wardlaw
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Martin J Connolly
- Freemasons' Department of Geriatric Medicine, University of Auckland, New Zealand
| | - David J Porteous
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Blair H Smith
- Division of Population Health Sciences, University of Dundee, Dundee, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Lynne Hocking
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK Department of Haematology, University of Cambridge, Cambridge, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
9
|
Kim DS, Burt AA, Ranchalis JE, Vuletic S, Vaisar T, Li WF, Rosenthal EA, Dong W, Eintracht JF, Motulsky AG, Brunzell JD, Albers JJ, Furlong CE, Jarvik GP. PLTP activity inversely correlates with CAAD: effects of PON1 enzyme activity and genetic variants on PLTP activity. J Lipid Res 2015; 56:1351-62. [PMID: 26009633 DOI: 10.1194/jlr.p058032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 01/07/2023] Open
Abstract
Recent studies have failed to demonstrate a causal cardioprotective effect of HDL cholesterol levels, shifting focus to the functional aspects of HDL. Phospholipid transfer protein (PLTP) is an HDL-associated protein involved in reverse cholesterol transport. This study sought to determine the genetic and nongenetic predictors of plasma PLTP activity (PLTPa), and separately, to determine whether PLTPa predicted carotid artery disease (CAAD). PLTPa was measured in 1,115 European ancestry participants from a case-control study of CAAD. A multivariate logistic regression model was used to elucidate the relationship between PLTPa and CAAD. Separately, a stepwise linear regression determined the nongenetic clinical and laboratory characteristics that best predicted PLTPa. A final stepwise regression considering both nongenetic and genetic variables identified the combination of covariates that explained maximal PLTPa variance. PLTPa was significantly associated with CAAD (7.90 × 10(-9)), with a 9% decrease in odds of CAAD per 1 unit increase in PLTPa (odds ratio = 0.91). Triglyceride levels (P = 0.0042), diabetes (P = 7.28 × 10(-5)), paraoxonase 1 (PON1) activity (P = 0.019), statin use (P = 0.026), PLTP SNP rs4810479 (P = 6.38 × 10(-7)), and PCIF1 SNP rs181914932 (P = 0.041) were all significantly associated with PLTPa. PLTPa is significantly inversely correlated with CAAD. Furthermore, we report a novel association between PLTPa and PON1 activity, a known predictor of CAAD.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Amber A Burt
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jane E Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Wan-Fen Li
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Weijiang Dong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Human Anatomy and Histology and Embryology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | - Jason F Eintracht
- Department of General Medicine, Virginia Mason Medical Center, Seattle, WA
| | - Arno G Motulsky
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - John D Brunzell
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Gail P Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
10
|
Holland N, Lizarraga D, Huen K. Recent progress in the genetics and epigenetics of paraoxonase: why it is relevant to children's environmental health. Curr Opin Pediatr 2015; 27:240-7. [PMID: 25635583 PMCID: PMC4431624 DOI: 10.1097/mop.0000000000000192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Children are more susceptible to exposures in utero and during early childhood that may result in developmental problems and chronic diseases. Novel discoveries in the field of molecular epidemiology that can help explain susceptibility to exposures and disease will be demonstrated using the multifunctional enzyme paraoxonase 1 (PON1) as an example. RECENT FINDINGS The broad PON1 variability in humans, partly due to differences in genetics and age, can confer differential susceptibility because this enzyme can detoxify organophosphate pesticides and has antioxidant properties. Epigenetics plays a significant role in the mediation of the effects of environmental exposure on human health and is hypothesized to be a major contributing factor to the early-life origins of adult disease. Studies highlighted in this review demonstrate the relationship of PON1 polymorphisms with microRNA binding in addition to a link between DNA methylation in the transcriptional regulatory region with changes in PON1 enzyme levels. Other important methodologies such as ancestry informative markers and lactonase activity can enhance studies involving PON1. SUMMARY This PON1 model demonstrates that integrating genetic and epigenetic factors, as well as other novel methodologies, can improve our understanding of important susceptibility factors linked to pediatric disease.
Collapse
Affiliation(s)
- Nina Holland
- Environmental Health Sciences Division and the Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
11
|
Kim DS, Burt AA, Rosenthal EA, Ranchalis JE, Eintracht JF, Hatsukami TS, Furlong CE, Marcovina S, Albers JJ, Jarvik GP. HDL-3 is a superior predictor of carotid artery disease in a case-control cohort of 1725 participants. J Am Heart Assoc 2014; 3:e000902. [PMID: 24965026 PMCID: PMC4309059 DOI: 10.1161/jaha.114.000902] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Recent data suggest that high‐density lipoprotein cholesterol (HDL‐C) levels are likely not in the causative pathway of atheroprotection, shifting focus from HDL‐C to its subfractions and associated proteins. This study's goal was to determine which HDL phenotype was the better predictor of carotid artery disease (CAAD). Methods and Results HDL‐2 and HDL‐3 were measured in 1725 participants of European ancestry in a prevalent case‐control cohort study of CAAD. Stratified analyses were conducted for men (n=1201) and women (n=524). Stepwise linear regression was used to determine whether HDL‐C, HDL‐2, HDL‐3, or apolipoprotein A1 was the best predictor of CAAD, while adjusting for the confounders of censored age, diabetes, and current smoking status. In both men and women, HDL‐3 was negatively associated with CAAD (P=0.0011 and 0.033 for men and women, respectively); once HDL‐3 was included in the model, no other HDL phenotype was significantly associated with CAAD. Addition of paraoxonase 1 activity to the aforementioned regression model showed a significant and independent (of HDL‐3) association with CAAD in men (P=0.001) but not in the smaller female subgroup. Conclusions This study is the first to contrast the associations of HDL‐2 and HDL‐3 with CAAD. We found that HDL‐3 levels were more predictive of CAAD status than HDL‐2, HDL‐C, or apolipoprotein A1. In addition, for men, paraoxonase 1 activity improved the overall model prediction for CAAD independently and additively with HDL‐3 levels. Further investigation into the molecular mechanisms through which HDL‐3 is associated with protection from CAAD is warranted.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA (D.S.K., A.A.B., E.A.R., J.E.R., C.E.F., G.P.J.) Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA (D.S.K., C.E.F., G.P.J.)
| | - Amber A Burt
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA (D.S.K., A.A.B., E.A.R., J.E.R., C.E.F., G.P.J.)
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA (D.S.K., A.A.B., E.A.R., J.E.R., C.E.F., G.P.J.)
| | - Jane E Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA (D.S.K., A.A.B., E.A.R., J.E.R., C.E.F., G.P.J.)
| | - Jason F Eintracht
- Department of General Medicine, Virginia Mason Medical Center, Seattle, WA (J.F.E.)
| | - Thomas S Hatsukami
- Division of Vascular Surgery, Department of Surgery, University of Washington School of Medicine, Seattle, WA (T.S.H.)
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA (D.S.K., A.A.B., E.A.R., J.E.R., C.E.F., G.P.J.) Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA (D.S.K., C.E.F., G.P.J.)
| | - Santica Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA (S.M., J.J.A.) Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA (S.M., J.J.A.)
| | - John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA (S.M., J.J.A.) Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA (S.M., J.J.A.)
| | - Gail P Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA (D.S.K., A.A.B., E.A.R., J.E.R., C.E.F., G.P.J.) Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA (D.S.K., C.E.F., G.P.J.)
| |
Collapse
|
12
|
Yan Q, Tiwari HK, Yi N, Lin WY, Gao G, Lou XY, Cui X, Liu N. Kernel-machine testing coupled with a rank-truncation method for genetic pathway analysis. Genet Epidemiol 2014; 38:447-56. [PMID: 24849109 DOI: 10.1002/gepi.21813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/09/2023]
Abstract
Traditional genome-wide association studies (GWASs) usually focus on single-marker analysis, which only accesses marginal effects. Pathway analysis, on the other hand, considers biological pathway gene marker hierarchical structure and therefore provides additional insights into the genetic architecture underlining complex diseases. Recently, a number of methods for pathway analysis have been proposed to assess the significance of a biological pathway from a collection of single-nucleotide polymorphisms. In this study, we propose a novel approach for pathway analysis that assesses the effects of genes using the sequence kernel association test and the effects of pathways using an extended adaptive rank truncated product statistic. It has been increasingly recognized that complex diseases are caused by both common and rare variants. We propose a new weighting scheme for genetic variants across the whole allelic frequency spectrum to be analyzed together without any form of frequency cutoff for defining rare variants. The proposed approach is flexible. It is applicable to both binary and continuous traits, and incorporating covariates is easy. Furthermore, it can be readily applied to GWAS data, exome-sequencing data, and deep resequencing data. We evaluate the new approach on data simulated under comprehensive scenarios and show that it has the highest power in most of the scenarios while maintaining the correct type I error rate. We also apply our proposed methodology to data from a study of the association between bipolar disorder and candidate pathways from Wellcome Trust Case Control Consortium (WTCCC) to show its utility.
Collapse
Affiliation(s)
- Qi Yan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim DS, Marsillach J, Furlong CE, Jarvik GP. Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease. Pharmacogenomics 2014; 14:1495-515. [PMID: 24024900 DOI: 10.2217/pgs.13.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PON1 is a key component of high-density lipoproteins (HDLs) and is at least partially responsible for HDL's antioxidant/atheroprotective properties. PON1 is also associated with numerous human diseases, including cardiovascular disease, Parkinson's disease and cancer. In addition, PON1 metabolizes a broad variety of substrates, including toxic organophosphorous compounds, statin adducts, glucocorticoids, the likely atherogenic L-homocysteine thiolactone and the quorum-sensing factor of Pseudomonas aeruginosa. Numerous cardiovascular and antidiabetic pharmacologic agents, dietary macronutrients, lifestyle factors and antioxidant supplements affect PON1 expression and enzyme activity levels. Owing to the importance of PON1 to HDL function and its individual association with diverse human diseases, pharmacogenomic interactions between PON1 and the various factors that alter its expression and activity may represent an important therapeutic target for future investigation.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA
| | | | | | | |
Collapse
|
14
|
Kim DS, Maden SK, Burt AA, Ranchalis JE, Furlong CE, Jarvik GP. Dietary fatty acid intake is associated with paraoxonase 1 activity in a cohort-based analysis of 1,548 subjects. Lipids Health Dis 2013; 12:183. [PMID: 24330840 PMCID: PMC3878825 DOI: 10.1186/1476-511x-12-183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/07/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Paraoxonase 1 (PON1) is a cardioprotective, HDL-associated glycoprotein enzyme with broad substrate specificity. Our previous work found associations between dietary cholesterol and vitamin C with PON1 activity. The goal of this study was to determine the effect of specific dietary fatty acid (DFA) intake on PON1 activity. METHODS 1,548 participants with paraoxonase activity measures completed the Harvard Standardized Food Frequency Questionnaire to determine their daily nutrient intake over the past year. Eight saturated, 3 monounsaturated, and 6 polyunsaturated DFAs were measured by the questionnaire. To reduce the number of observations tested, only specific fatty acids that were not highly correlated (r < 0.8) with other DFAs or that were representative of other DFAs through high correlation within each respective group (saturated, monounsaturated, or polyunsaturated) were retained for analysis. Six specific DFA intakes - myristic acid (14 carbon atoms, no double bonds - 14:0), oleic acid (18:1), gadoleic acid (20:1), α-linolenic acid (18:3), arachidonic acid (20:4), and eicosapentaenoic acid (20:5) - were carried forward to stepwise linear regression, which evaluated the effect of each specific DFA on covariate-adjusted PON1 enzyme activity. RESULTS Four of the 6 tested DFA intakes - myristic acid (p = 0.038), gadoleic acid (p = 6.68 × 10(-7)), arachidonic acid (p = 0.0007), and eicosapentaenoic acid (p = 0.013) - were independently associated with covariate-adjusted PON1 enzyme activity. Myristic acid, a saturated fat, and gadoleic acid, a monounsaturated fat, were both positively associated with PON1 activity. Both of the tested polyunsaturated fats, arachidonic acid and eicosapentaenoic acid, were negatively associated with PON1 activity. CONCLUSIONS This study presents the largest cohort-based analysis of the relationship between dietary lipids and PON1 enzyme activity. Further research is necessary to elucidate and understand the specific biological mechanisms, whether direct or regulatory, through which DFAs affect PON1 activity.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195-7720, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sean K Maden
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195-7720, USA
| | - Amber A Burt
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195-7720, USA
| | - Jane E Ranchalis
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195-7720, USA
| | - Clement E Furlong
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195-7720, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gail P Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195-7720, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
15
|
Morange PE, Trégouët DA. Current knowledge on the genetics of incident venous thrombosis. J Thromb Haemost 2013; 11 Suppl 1:111-21. [PMID: 23809115 DOI: 10.1111/jth.12233] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genetic burden underlying venous thrombosis (VT) is characterized by a sibling relative risk of 2.5 and a strong heritability whose estimates varied from 35% to 60% according to different studies. However, the genetic factors identified so far only explain about 5% of VT heritability and just 16 genes have been robustly associated with the susceptibility to VT, most of them affecting the coagulation cascade. Eight of these have been identified during the last 5 years, thanks to the development of high-throughput micro-array genotyping technologies, which have radically changed the research landscape in human genetics. The present work is aimed at providing a historical review of the known genetic factors contributing to VT risk, as well as discussing future research strategies to follow to disentangle the whole spectrum of genetic variants associated with VT.
Collapse
Affiliation(s)
- P-E Morange
- INSERM, UMR_S1062, Nutrition Obesity and Risk of Thrombosis, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
16
|
Kim DS, Burt AA, Ranchalis JE, Jarvik ER, Rosenthal EA, Hatsukami TS, Furlong CE, Jarvik GP. Novel gene-by-environment interactions: APOB and NPC1L1 variants affect the relationship between dietary and total plasma cholesterol. J Lipid Res 2013; 54:1512-20. [PMID: 23482652 PMCID: PMC3622343 DOI: 10.1194/jlr.p035238] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/09/2013] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in developed countries. Plasma cholesterol level is a key risk factor in CVD pathogenesis. Genetic and dietary variation both influence plasma cholesterol; however, little is known about dietary interactions with genetic variants influencing the absorption and transport of dietary cholesterol. We sought to determine whether gut expressed variants predicting plasma cholesterol differentially affected the relationship between dietary and plasma cholesterol levels in 1,128 subjects (772/356 in the discovery/replication cohorts, respectively). Four single nucleotide polymorphisms (SNPs) within three genes (APOB, CETP, and NPC1L1) were significantly associated with plasma cholesterol in the discovery cohort. These were subsequently evaluated for gene-by-environment (GxE) interactions with dietary cholesterol for the prediction of plasma cholesterol, with significant findings tested for replication. Novel GxE interactions were identified and replicated for two variants: rs1042034, an APOB Ser4338Asn missense SNP and rs2072183 (in males only), a synonymous NPC1L1 SNP in linkage disequilibrium with SNPs 5' of NPC1L1. This study identifies the presence of novel GxE and gender interactions implying that differential gut absorption is the basis for the variant associations with plasma cholesterol. These GxE interactions may account for part of the "missing heritability" not accounted for by genetic associations.
Collapse
Affiliation(s)
- Daniel S. Kim
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA
- Department of Genome Sciences, and University of Washington School of Medicine, Seattle, WA
| | - Amber A. Burt
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA
| | - Jane E. Ranchalis
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA
| | - Ella R. Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA
| | - Elisabeth A. Rosenthal
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA
| | - Thomas S. Hatsukami
- Department of Surgery, Division of Vascular Surgery, University of Washington School of Medicine, Seattle, WA
| | - Clement E. Furlong
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA
- Department of Genome Sciences, and University of Washington School of Medicine, Seattle, WA
| | - Gail P. Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA
- Department of Genome Sciences, and University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
17
|
Wagner MJ. Rare-variant genome-wide association studies: a new frontier in genetic analysis of complex traits. Pharmacogenomics 2013; 14:413-24. [DOI: 10.2217/pgs.13.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have, in the last few years, identified thousands of common genetic variants associated with common complex traits and diseases, implicating many genes not previously known to be involved in the biology of those traits. However, these variants have so far explained little of the population variance in trait values or disease susceptibility. As large-scale genome sequencing efforts have revealed the extent of genetic variation at the low end of the frequency range in human populations, the effects of rare variants have been proposed as an explanation of the ‘missing genetic variance.’ Improved technologies for genotyping rare variants, including inexpensive whole-genome and whole-exome sequencing and rare-variant genotyping chips, coupled with novel analytical methods, are making genome-wide scans for the effects of rare variants possible, and seem likely to usher in a new era in the genetic analysis of complex traits.
Collapse
Affiliation(s)
- Michael J Wagner
- Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7361, USA
| |
Collapse
|