1
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
2
|
Kamińska K, Świderska B, Malinowska A, Grzesiak M. Tandem mass tag-based proteomic analysis of granulosa and theca interna cells of the porcine ovarian follicle following in vitro treatment with vitamin D 3 and insulin alone or in combination. J Proteomics 2025; 310:105318. [PMID: 39284438 DOI: 10.1016/j.jprot.2024.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This study was performed to investigate the proteomic basis underlying the interaction between vitamin D3 (VD) and insulin (I) within ovarian follicle using the pig as a model. Porcine antral follicles were incubated in vitro for 12 h with VD alone and I alone or in combination (VD + I) or with no treatment as the control (C). In total, 7690 and 7467 proteins were identified in the granulosa and theca interna compartments, respectively. Comparative proteomic analysis revealed 97 differentially abundant proteins (DAPs) within the granulosa layer and 11 DAPs within the theca interna layer. In the granulosa compartment, VD affected proteome leading to the promotion of cell proliferation, whereas I influenced mainly proteins related to cellular adhesion. The VD + I treatment induced granulosa cell proliferation probably via the DAPs involved in DNA synthesis and the cell cycle regulation. In the theca interna layer, VD alone or in co-treatment with I affected DAPs associated with cholesterol transport and lipid and steroid metabolic processes that was further confirmed by diminished lipid droplet accumulation. SIGNIFICANCE: The application of quantitative proteomics demonstrated for the first time the complexity of VD and I interactions in porcine ovarian follicle, providing a framework for understanding the molecular mechanisms underlying their cross-talk. Although identified DAPs were related to crucial ovarian processes, including the granulosa cell proliferation and cholesterol transport in the theca interna layer, novel molecular pathways underlying these processes have been proposed. The identified unique proteins may serve as indicators of VD and I interactions in both follicle layers, and could be useful biomarkers of ovarian pathologies characterized by impaired VD and I levels, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Kinga Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
3
|
Shams AA, Vesal S, Karoii DH, Vesali S, Alizadeh A, Shahhoseini M. Paternal trans fatty acid and vitamin E diet affect the expression pattern of androgen signaling pathway genes in the testis of rat offspring. Theriogenology 2025; 231:1-10. [PMID: 39378727 DOI: 10.1016/j.theriogenology.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Numerous studies have shown that an improper diet in parents has a negative impact on offspring's health. Furthermore, the negative effects of trans fatty acids (TFA) in maternal diets on fertility and health and their impact on future generations have been documented. However, there is limited research on the negative effects of TFA in paternal diets on male children. The current work used qRT-PCR to investigate the effects of trans fatty acids and vitamin E in the paternal diet on the expression pattern of androgen signaling pathway genes such as STAR, CYP11a1, HSD3B, SRD5a2, and SCARB1 in offspring testes. In this experiment, parental rats were randomly separated into four groups, each with ten father rats, and were fed for eight weeks (60 days) as follows. 1: Standard diet group plus liquid sunflower oil (control). 2: Standard diet group containing trans fatty acids (CTH). 3: The regular diet group received 2.5 times the recommended quantity of vitamin E supplement. 4: Standard diet group with vitamin E and trans fatty acid supplementation (ETH). The testis tissue samples from 35 offspring were then used. Following RNA extraction from tissues and cDNA synthesis, quantitative real-time PCR was used to evaluate the expression levels of androgen signaling pathway genes such as STAR, CYP11A1, HSD3B, SCARB1, and SRD5A2. Our findings showed that the expression of CYP11A1 was considerably reduced in the progeny of paternal rats given ETH compared to the CTH group. The expression levels of the STAR gene were significantly lower in the progeny of paternal rats administered TFA, ETH, and vitamin E compared to the controls. Although the CTH group had lower SCARB1 expression than the other groups, the difference was not statistically significant. Paternal vitamin E consumption substantially affected SRD5A2 expression when compared to offspring of paternal rats fed vitamin E + trans fatty acid or those fed a conventional diet containing trans fatty acid. Furthermore, the vitamin E group showed a statistically significant increase in HSD3B expression compared to the other groups. Bioinformatics analyses, such as protein-protein interaction networks and gene ontology term enrichment, revealed that these genes play roles in lipid biosynthesis, hormone metabolism, male sex differentiation, reproductive development, and steroid biosynthesis. Our data indicate that paternal trans fatty acid consumption influences the expression of particular androgen signaling pathway genes in offspring testis, with vitamin E potentially mitigating some of these effects.
Collapse
Affiliation(s)
- Amir Abbas Shams
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Soheil Vesal
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science University of Tehran, Tehran, Iran
| | - Samira Vesali
- Department of Basic and Population Based Studies in NCD, Reproductive Epidemiology Research Centre, Royan Institute, ACECR, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Cell and Molecular Biology, School of Biology, College of Science University of Tehran, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Depta L, Bryce-Rogers HP, Dekker NJ, Bønke AW, Camporese N, Qian M, Xu Y, Covey DF, Laraia L. Endogenous and fluorescent sterols reveal the molecular basis for ligand selectivity of human sterol transporters. J Lipid Res 2024:100738. [PMID: 39746449 DOI: 10.1016/j.jlr.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 42 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Hogan P Bryce-Rogers
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nienke J Dekker
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Anna Wiehl Bønke
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nicolo' Camporese
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Yuanjian Xu
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Li F, Chen L, Shi S, Hong WJ, Li M, Guo LH. Perfluorobutanoic acid: A short-chain perfluoroalkyl substance exhibiting estrogenic effects through the estrogen-related receptor γ pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136947. [PMID: 39708599 DOI: 10.1016/j.jhazmat.2024.136947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Perfluorobutanoic acid (PFBA) is an emerging contaminant that was demonstrated to exhibit estrogen effects via action on classic estrogen receptors (ERs) in a low-activity manner. The purpose of the present study is to reveal the estrogen disruption effect and mechanism of PFBA via estrogen-related receptor γ (ERRγ) pathways. In vivo experiment indicated that PFBA accumulated in zebrafish ovary and caused ovarian injury, with disturbing sex hormone levels and interfering gene expression related to estrogen synthesis and follicle regulation. In vitro, with cell proliferation assay, PFBA could promote estrogen-sensitive endometrial cancer cell Ishikawa proliferation at lowest observed effective concentrations (LOEC) 10 nM, which was close to human exposure levels. And cell proliferation was inhibited by ERRγ antagonist GSK5182. By fluorescence competitive binding assay, molecular docking and luciferase reporter gene assays, it demonstrated that PFBA could directly bind with ERRγ and activate ERRγ transcriptional activities with a LOEC of 10 nM. Furthermore, PFBA up-regulated the proliferation-related factors downstream of ERRγ and inhibited by PI3K/Akt inhibitor LY294002, which also suppressed the cell proliferation induced by PFBA. Taken together, the results revealed that PFBA had estrogen effects at the human-related exposure concentration, and demonstrated a new estrogen effects mechanism of PFBA via ERRγ pathway.
Collapse
Affiliation(s)
- Fangfang Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Lu Chen
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Sha Shi
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Wen-Jun Hong
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
6
|
Chen Y, Zhang J, Zhang T, Wu Y, Xi Y, Wu T, Li M, Li Y, Zhou S, Wu M, Wang S. Circulating Interleukin-6 Mediates PM 2.5-Induced Ovarian Injury by Suppressing the PPARγ Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0538. [PMID: 39639885 PMCID: PMC11617621 DOI: 10.34133/research.0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Exposure to airborne fine particulate matter (PM2.5) is strongly associated with poor fertility and ovarian damage. However, the mechanism underlying this remains largely unclear. Here, we found that PM2.5 markedly impaired murine ovarian reserve, decreased hormone levels, and aggravated ovarian inflammation. Circulating interleukin-6 (IL-6) was elevated in PM2.5-exposed mice and was further confirmed to mediate this damage by IL-6 recombinant protein intervention. PM2.5 exposure led to increased alveolar macrophage infiltration in the lungs. However, alveolar macrophage clearance with clodronate liposomes could not fully reverse the elevated IL-6 levels and ovarian injury, suggesting that alveolar macrophages were probably not the only source of circulating IL-6. Further experiments indicated that IL-6 mainly targeted ovarian theca-interstitial cells and impaired testosterone synthesis via suppressing the peroxisome proliferator-activated receptor γ (PPARγ) pathway. In addition, apoptosis of granulosa cells and restriction of follicular growth were observed in co-cultures with IL-6-treated theca-interstitial cells, which could be further reversed by the PPARγ agonist. Moreover, IL-6-neutralizing antibodies ameliorated PM2.5-induced ovarian damage. Notably, increased levels of circulating IL-6 were observed in premature ovarian aging patients and were inversely associated with their ovarian function. In summary, our findings offer a mechanistic explanation for PM2.5-induced ovarian dysfunction and verify IL-6 as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou University, Zhengzhou, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Mo Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Manna PR, Yang S, Manna C, Waters H, Md Ariful I, Reddy AP, Rawat P, Reddy PH. Steroidogenic acute regulatory protein mediated variations of gender-specific sex neurosteroids in Alzheimer's disease: Relevance to hormonal and neuronal imbalance. Neurosci Biobehav Rev 2024; 169:105969. [PMID: 39631487 DOI: 10.1016/j.neubiorev.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-liming step in neuro/steroid biosynthesis. Multifaceted and delicate changes during aging, disrupting hormonal and neuronal homeostasis, constitute human senescence, an inevitable phenomenon that attributes to increased morbidity and mortality. Aging, along with progressive decreases in bioactive neurosteroids, is the primary risk factor for Alzheimer's disease (AD), which preferentially impacts two-thirds of women and one-third of men. AD is neuropathologically characterized by the accumulation of extracellular amyloid-β and intracellular phosphorylated Tau containing neurofibrillary tangles, resulting in dementia. Postmortem brains pertaining to gender-specific AD patients exhibit varied suppression of StAR and sex neurosteroid levels compared with age-matched cognitively healthy subjects, in which the attenuation of StAR is inversely correlated with the AD pathological markers. Interestingly, retinoid signaling upregulates StAR-motivated neurosteroid biosynthesis and reinstates various neurodegenerative vulnerabilities that promote AD pathogenesis. This review summarizes current understanding of StAR-driven alterations of sex neurosteroids in gender-specific AD risks and provides biochemical and molecular insights into therapeutic interventions for preventing and/or alleviating dementia for healthy aging.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Chayan Manna
- Baylor College of Medicine, Ben Taub Research Center, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Hope Waters
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Islam Md Ariful
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
8
|
Turpeenniemi T. The ultrastructural identity of some cells in Sphaerolaimus gracilis de Man, 1876. Tissue Cell 2024; 91:102625. [PMID: 39579739 DOI: 10.1016/j.tice.2024.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
The fine structure of fibroblasts, lymphocytes, neurosecretory cells, stem cells, and steroidogenic cells in the nematode Sphaerolaimus gracilis was studied by transmission electron microscopy. Fibroblasts, lymphocytes, and stem cells were found in the lateral position at the level of the renette pore (ventral pore). Fibroblasts were characterized by long cellular processes. The cytoplasm consisted of a network of irregularly arranged microscopic filaments. The nucleus was large, triangular, rectangular, or oval. Occasionally, small, oval, or basket-shaped mitochondria and some cisternae of rough endoplasmic reticulum were observed in the periphery of the cell. Lymphocytes were round and had a large round nucleus encircled by a thin cytoplasmic rim. Indistinct cisternae of rough endoplasmic reticulum, an oval mitochondrion, and several ribosomes were observed in the cytoplasm. A large rectangular stem cell dorsally abutted lymphocytes on both sides of the esophagus. The cytoplasm of stem cells had tiny cisternae of the rough endoplasmic reticulum and small vesicles in the periphery of the cell. The nucleus was large and rectangular, and the nucleolus was characterized by a granular structure. Steroidogenic cells were embedded into the lateral epidermal cord of the midbody. The cell was characterized by a large nucleus, a voluminous vacuole, a mitochondrion of tubules, and several vesicles in the cytoplasm. Neurosecretory cells and interneurons were found in the lateral midbody close to the steroidogenic cells. The present study aimed to characterize the ultrastructure of the cells of Shaerolaimus gracilis with their close structural resemblance to fibroblasts, lymphocytes, stem cells, steroidogenic cells, and neurosecretory cells in other animals and evaluate their possible function when considering their morphology.
Collapse
Affiliation(s)
- Tuomo Turpeenniemi
- University of Eastern Finland (UEF), Department of Environmental and Biological Sciences, Yliopistokatu 7, Joensuu FI-80101, Finland.
| |
Collapse
|
9
|
Ijaz MU, Imtiaz S, Hayat MF, Batool M, Al-Ghanim KA, Riaz MN. Sudachitin Alleviates Paraquat Instigated Testicular Toxicity in Albino Rats via Regulating Nrf-2/Keap-1, Inflammatory, Steroidogenic, and Histological Profile. ENVIRONMENTAL TOXICOLOGY 2024; 39:5284-5295. [PMID: 39179512 DOI: 10.1002/tox.24408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Paraquat (PQ) is a noxious herbicide which adversely affects the vital organs including male reproductive system. Sudachitin (SCN) is a naturally occurring flavonoid that demonstrates a wide range of biological potentials. The current study was designed to investigate the alleviative potential of SCN to avert PQ-induced testicular toxicity in rats. Forty-eight male rats (Rattus norvegicus) were apportioned into four groups including control, PQ (5 mg/kg), PQ + SCN (5 mg/kg + 30 mg/kg), and SCN (30 mg/kg) only treated group. Our findings elucidated that PQ treatment reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and its antioxidant genes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSR) and glutathione peroxidase (GPx), while elevating the levels of reactive oxygen species (ROS), and malondialdehyde (MDA). Furthermore, PQ intoxication upregulated the expressions of Keap-1 while downregulating the expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD), 17-beta hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (StAR). Moreover, sperm anomalies were increased following the exposure to PQ. Besides, PQ exposure decreased the levels of plasma testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) while increasing the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), interleukin-1beta (IL-1β), and cyclooxygenase-2 (COX-2). Additionally, PQ treatment escalated the expressions of cysteinyl aspartate-specific proteases-3 (Caspase-3) and Bcl-2-associated X-protein (Bax) while downregulating the expressions of B-cell lymphoma-2 (Bcl-2). Furthermore, PQ exposure disrupted the normal architecture of testicular tissues. However, SCN treatment remarkably protected the testicular tissues via regulating the aforementioned disruptions owing to its antioxidant, anti-inflammatory, and androgenic potential.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sana Imtiaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Moazama Batool
- Department of Zoology, Govt. College Women University, Sialkot, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
10
|
Yang X, Hu J, Gao Q, Deng Y, Liu Y, He X, Li C, Yu X, Wan Y, Pi C, Wei Y, Li C. Advances in nano-delivery systems based on diagnosis and theranostics strategy for atherosclerosis. J Drug Target 2024:1-16. [PMID: 39601425 DOI: 10.1080/1061186x.2024.2433560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Atherosclerosis (AS) is a chronic systemic inflammatory disease, where early diagnosis and theranostics strategy for AS are crucial for improving outcomes. However, conventional diagnostic techniques are limited in identifying early AS lesions, failing to stop the progression of AS in time. Nano-delivery systems have shown significant potential in AS diagnosis and treatment, offering distinct advantages in plaque identification and enhancing drugs concentration at lesion sites, thereby advancing new-generation theranostics strategy. This review discusses the application of nano-delivery systems based on imaging technology in AS diagnosis, and we further explore recent advancements in combining different imaging technologies with emerging theranostics strategy. In addition, we also discuss the challenges faced by nano-delivery systems for AS diagnosis and theranostics in clinical translation, such as nanoparticle targeting efficiency, cytotoxicity and long-term accumulation, immune clearance and inaccurate disease modelling. Finally, we also provide prospects on nano-delivery systems based on diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Hu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Quanle Gao
- Department of Neurology, Geriatrics, Hejiang County People's Hospital, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Pi
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yumeng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Saleh DO, Abo El Nasr NME, Hussien YA, El-Baset MA, Ahmed KA. Cyclophosphamide-induced testicular injury: the role of chrysin in mitigating iron overload and ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03519-4. [PMID: 39565397 DOI: 10.1007/s00210-024-03519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
This study evaluated the beneficial effects of chrysin against cyclophosphamide (CP)-induced testicular toxicity in rats across several parameters, including hormones, oxidative stress, inflammation, apoptosis, and protein expression. Rats were pretreated with oral doses of chrysin at 25, 50, or 100 mg/kg daily for 7 days. On the 8th day, all groups except controls received CP (200 mg/kg) injection. Chrysin doses continued for 7 more days. Hormones, oxidative stress markers, inflammatory cytokines, apoptosis regulators, and iron regulatory proteins were assessed. CP decreased testosterone, inhibin B, GSH, and GPx4 and increased FSH, cholesterol, MDA, IL-6, and BAX. It also drastically reduced TfR1, liprin, and IREB2. Chrysin dose-dependently counteracted these effects. The highest 100 mg/kg chrysin dose increased testosterone, inhibin B, GSH, GPx4, BCL2, TfR1, liprin, and IREB2 while decreasing FSH, cholesterol, MDA, IL-6, and BAX close to control levels. There were also significant incremental benefits for testosterone, inhibin B, and other parameters with higher chrysin doses. Chrysin dose-dependently attenuated CP-induced hormonal dysfunction, oxidative stress, inflammation, apoptosis, and iron-regulatory protein suppression. The maximum dose showed the most optimal protective effects in restoring the testicular toxicity markers. These results validate the promising spermatoprotective properties of chrysin against chemotherapeutic germ cell damage.
Collapse
Affiliation(s)
- Dalia O Saleh
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Nesma M E Abo El Nasr
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Yosra A Hussien
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marawan Abd El-Baset
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Kawata S, Obata Y, Akai-Samoto A, Mukai K, Miyashita K, Shimomura I. Atypical Imaging Findings in a Cortisol-producing Adrenal Adenoma Predominantly Composed of Lipid-poor Compact Cells. JCEM CASE REPORTS 2024; 2:luae189. [PMID: 39430734 PMCID: PMC11487292 DOI: 10.1210/jcemcr/luae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 10/22/2024]
Abstract
Cortisol-producing adrenal adenomas consist of a mixture of lipid-rich clear and lipid-poor compact cells in varying proportions. Most adenomas are mainly composed of lipid-rich clear cells and typically exhibit low computed tomography (CT) attenuation values, high uptake on 131I-adosterol scintigraphy, and mild accumulation on 18F-fluorodeoxyglucose positron emission tomography/CT. However, adenomas predominantly composed of lipid-poor compact cells are rare, with limited evidence regarding their imaging characteristics. A 27-year-old woman with weight gain and a moon face was referred to our hospital. She presented with hypertension, dyslipidemia, low plasma ACTH levels, and autonomous cortisol secretion. We diagnosed this patient with ACTH-independent Cushing syndrome with a left adrenal tumor. The adrenal tumor exhibited imaging findings atypical for an adenoma, including high CT attenuation values, negative uptake on 131I-adosterol scintigraphy, and strong accumulation on 18F-fluorodeoxyglucose positron emission tomography/CT. Histopathological analysis indicated that the tumor was a rare type of adenoma, predominantly composed of lipid-poor compact cells. These findings and recent reports suggest that the proportion of compact cells can influence the imaging findings. Therefore, in the differential diagnosis, it is important to recognize that cortisol-producing adrenal adenomas predominantly composed of compact cells can present with atypical imaging findings.
Collapse
Affiliation(s)
- Satoshi Kawata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshinari Obata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Aya Akai-Samoto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kosuke Mukai
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuyuki Miyashita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Zırh S, Bahador Zırh E, Erol S, Karakoç Sökmensüer L, Bozdağ G, Müftüoğlu SF. Investigation of FF-MAS oxysterole's role in follicular development and its relation to hedgehog signal pathway. Sci Rep 2024; 14:24863. [PMID: 39438722 PMCID: PMC11496726 DOI: 10.1038/s41598-024-76281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The Hedgehog signaling pathway plays a crucial role in folliculogenesis; however, the association between FF-MAS oxysterol activity in folliculogenesis and the Hedgehog signaling pathway has not been revealed. The evaluation of FF-MAS activity in polycystic ovary syndrome (PCOS) with folliculogenesis disorder might provide a new approach to tackle follicular and oocyte maturation failure. The question is: does FF-MAS oxysterol affect granulosa cell (GC) proliferation? If so, is this effect facilitated through the Hedgehog pathway? To answer these questions, GCs were isolated from follicle fluids obtained from patients undergoing oocyte retrieval during in vitro fertilization (IVF) treatment. After the isolated GCs were incubated in different cell culture media, the levels of Hedgehog pathway components (SMO, Gli1) were measured by using immunohistochemical methods, cytoELISA, and qRT-PCR. Meanwhile, cell proliferation rates were determined. Significant increases (p < 0.001) in SMO and Gli1 expressions and cell proliferation were observed in the FF-MAS-treated subgroups of both PCOS and male factor participants compared to the FF-MAS deficient subgroup. Remarkably, FF-MAS positively affected the pathway components despite the pathway inhibitor cyclopamine. Although the increase in Hedgehog pathway components was slightly higher in the male factor group (MF), it was not statistically significant. In our study, we demonstrated for the first time the molecular effect of FF-MAS on human GCs in folliculogenesis. Since FF-MAS is already used in assisted reproductive techniques in animals and is known to be synthesized in the human body, it could be considered a new approach in human IVF treatments.
Collapse
Affiliation(s)
- Selim Zırh
- Faculty of Medicine, Department of Histology and Embryology, Erzincan Binali Yıldırım University, Erzincan, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Elham Bahador Zırh
- Faculty of Medicine, Department of Histology and Embryology, TOBB Economy and Technology University, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Süleyman Erol
- Ankara Etlik Lady Zübeyde Gynaecology Education and Research Hospital, Assisted Reproductive Techniques, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Lale Karakoç Sökmensüer
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Gürkan Bozdağ
- Faculty of Medicine, Obstetrics and Gynecology, Koç University, Ankara, Turkey
| | - Sevda Fatma Müftüoğlu
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
14
|
Lou Y, Jiang F, Guan J. The effect of lipidomes on the risk of endometrioid endometrial cancer: a Mendelian randomization study. Front Oncol 2024; 14:1436955. [PMID: 39493450 PMCID: PMC11527595 DOI: 10.3389/fonc.2024.1436955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Objective This study aimed to explore the potential effects between various human plasma lipidomes and endometrioid endometrial cancer (EEC) by using Mendelian randomization (MR) methods. Methods This study designated a total of 179 human plasma lipidomes from the genome-wide association study (GWAS) database as the exposure variable. An EEC-related dataset from the GWAS (GCST006465) served as the outcome variable. MR analyses used the inverse variance-weighted method (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods for regression calculations, accounting for possible biases induced by linkage disequilibrium and weak instrument variables. Any lipidomes failing to pass heterogeneity and horizontal pleiotropy tests were deemed to lack significant causal impact on the outcome. Results The results of IVW analysis disclosed that a variety of human plasma lipidomes (n = 15) exhibited a significant causal effect on EEC (p < 0.05). A subset of these lipidomes (n = 13) passed heterogeneity and horizontal pleiotropy tests, which demonstrated consistent and viable causal effects (p < 0.05) including glycerophospholipids, glycerolipids, and sterols. Specifically, phosphatidylcholine (odds ratio [OR]: 1.065-1.129, p < 0.05) exhibited a significant positive causal effect on the occurrence of EEC. Conversely, sterol ester (OR = 0.936, p = 0.007), diacylglycerol (OR = 0.914, p = 0.036), phosphatidylcholine (OR: 0.903-0.927, p < 0.05), phosphatidylethanolamine (OR = 0.907, p = 0.046) and triacylglycerol (OR: 0.880-0.924, p < 0.05) showed a notable negative causal association with EEC, suggesting their inhibitory effects on the EEC occurrence. Conclusions The study revealed that human plasma lipidomes have complex impacts on EEC through Mendelian randomization. This indicated that the diversity of structural changes in lipidomes could show different effects on subtypes and then affect EEC occurrence. Although these lipids had the potential to be promising biomarkers, they needed to be further clinically validated nevertheless.
Collapse
Affiliation(s)
- Yaochen Lou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jun Guan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
15
|
Khalil EM, Rady MI, Darwish SF, Abd-Allah ER. Nano Spirulina platensis countered cisplatin-induced repro-toxicity by reversing the expression of altered steroid hormones and downregulation of the StAR gene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03483-z. [PMID: 39414699 DOI: 10.1007/s00210-024-03483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
Cisplatin is a commonly utilized chemotherapy medication for treating different sarcomas and carcinomas. Its ability interferes with cancer cells' DNA repair pathways and postpones unfavorable outcomes in cancer patients. The current investigation's goal was to ascertain if nano Spirulina platensis (NSP) might shield rat testicles from cisplatin damage by assessing the expression of the StAR and SOD genes, sex hormones, 17ß-hydroxysteroid dehydrogenase(17ß-HSD), sperm profile picture, oxidative condition of testes, testicular histology, and DNA damage. Four equal and random groups of 28 adult male Wistar rats were created; the control group was given saline for 8 weeks. An extraction of NSP at a concentration of 2500 mg/kg body weight was administered orally for 8 weeks to the NSP group. For the first 4 weeks, the cisplatin group was intraperitoneally injected with 2 mg/kg/body weight of cisplatin, and for the next 4 weeks, they were given a dosage of 4 mg/kg/body weight. The cisplatin + NSP group was given both NSP and cisplatin. The results of the experiment showed that intake of NSP and cisplatin improved sperm profile; re-established the balance of oxidizing agents and antioxidant state; enhanced testicular histology; promoted the histometric parameters of seminiferous tubules including epithelial height, their diameter, and Johnsen's score, decreasing DNA breakage in testicular tissue; increased testosterone level; decreased 17ß-HSD concentration; and upregulated both the StAR and SOD gene expression in testicles compared to rats exposed to cisplatin alone. These results demonstrate that NSP is a promising agent for improving cisplatin-induced testicular injury and infertility.
Collapse
Affiliation(s)
- Eman M Khalil
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt
| | - Mohamed I Rady
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Samah F Darwish
- Biotechnology Research Unit, Animal Reproduction Research Institute, Giza, Egypt
| | - Entsar R Abd-Allah
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt.
| |
Collapse
|
16
|
Wazir G, Wajid A, Wahid A, Batool A, Parveen A, Maqsood Q, Zahid A, Aslam S, Malkani N. Genomic association of SNPs rs4077582 of CYP11A1 and rs700519 of CYP19A1 genes with polycystic ovarian syndrome. Endocrine 2024:10.1007/s12020-024-04065-y. [PMID: 39400775 DOI: 10.1007/s12020-024-04065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Polycystic Ovarian Syndrome (PCOS) is a complex endocrine disorder that affects women of reproductive age. Several candidate genes have been shown to be associated with PCOS. Previous studies have shown that variations in CYP11A1 and CYP19A1 genes are associated with hormonal dysregulation associated with PCOS in different ethnic populations. This study aims to investigate the genomic association between SNPs rs4077582 of CYP11A1 and rs700519 of CYP19A1 and the development of PCOS in Pakistani population. METHODS A total of 280 subjects were recruited for the study, including 142 PCOS cases diagnosed based on Rotterdam criteria and 138 age-matched controls. The anthropometric, hormonal and biochemical parameters of all subjects were analyzed. Genomic DNA was extracted and genotyping of the selected SNPs was performed using Sanger sequencing. Further, we also examined the genotypic-phenotypic correlation analysis for various clinical and biochemical parameters for SNP rs4077582 of CYP11A1. RESULTS We found significant differences in allele frequency (OR = 0.42, 95% CI = 0.30-0.60, χ2 = 16.3693, p = 0.000052) and genotypic frequency (χ2 = 26.4376, p = 0.00001) between PCOS women and controls for SNP rs4077582 of CYP11A1. Genotype-phenotype correlation analysis showed a significant difference in FAI (p = 0.005), testosterone (p = 0.001), androstenedione (p = 0.005) and urea (p = 0.049) levels between the three genotypes. No association between SNP rs700519 of CYP19A1 and PCOS was observed. CONCLUSION Our results suggest the role of SNP rs4077582 of CYP11A1 gene in the clinical manifestation of PCOS in Pakistani women.
Collapse
Affiliation(s)
- Gulnaz Wazir
- Department of Molecular Biology, Virtual University, Lahore, 54000, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, FLS&I, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Pakistan.
| | - Abdul Wahid
- Department of Biotechnology, FLS&I, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Andleeb Batool
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Asia Parveen
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aqsa Zahid
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaista Aslam
- Faculty of Biological Science, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Naila Malkani
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
17
|
Nowak Z, Preizner-Rzucidło E, Gawlik J, Starzyk JB, Januś D. Primary Adrenal Insufficiency, Complete Sex Reversal, and Unique Clinical Phenotype in a Patient with Severe CYP11A1 (P450scc) Deficiency-Case Report and Literature Overview. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1231. [PMID: 39457196 PMCID: PMC11505906 DOI: 10.3390/children11101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) is a group of genetic disorders that lead to the dysfunction of the steroidogenesis pathway, resulting in steroid hormone deficiency of varied intensity. The cholesterol side-chain cleavage enzyme (P450scc), coded by the CYP11A1 gene, is vital to the first step in the biosynthesis of steroid hormones, which is the conversion of cholesterol to pregnenolone. Therefore, its deficiency causes a general steroid hormone shortage. OBJECTIVE We report a case of CAH caused by P450scc deficiency with complete 46, XY sex reversal, characteristic facial features (narrow middle section of the face, small ears with thick helix, fleshy upturned lobules), and dysmorphic macrocephaly along with shortened upper and lower extremities. RESULTS Our patient carries a compound heterozygotic pathogenic variant of the CYP11A1 gene, with two frameshift pathogenic variants NM_000781.3(CYP11A1):c.358del (p.Arg120Aspfs*18) in exon 2 and NM_000781.3(CYP11A1):c.835del (p.Ile279Tyrfs*10) in exon 5. To date, only around 50 cases with CYP11A1 pathogenic variants have been reported worldwide. We believe this is the first described case of a newborn with severe, classic P450scc deficiency in Poland. CONCLUSIONS CYP11A1 (P450scc) deficiency is a rare and complex disorder that leads to primary adrenal insufficiency and may present with 46, XY disorders of sex development (DSD), phenotypic variations, and associated endocrinological abnormalities. This case, along with others cited, highlights the diverse presentations of DSD in individuals with pathogenic CYP11A1 variants. Optimal management necessitates a multidisciplinary approach by a specialized DSD team. Gonadectomy is a key consideration to decrease the teratogenic risk associated with intra-abdominal gonadal tissue.
Collapse
Affiliation(s)
- Zuzanna Nowak
- Hospital of the Brothers Hospitallers of Saint John of God, 31-061 Krakow, Poland;
- Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ewelina Preizner-Rzucidło
- Department of Genetics, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | | | - Jerzy B. Starzyk
- Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Department of Pediatric and Adolescent Endocrinology, University Children Hospital in Krakow, 30-663 Krakow, Poland
| | - Dominika Januś
- Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Department of Pediatric and Adolescent Endocrinology, University Children Hospital in Krakow, 30-663 Krakow, Poland
| |
Collapse
|
18
|
Tripathi S, Maurya S, Singh A. Adropin promotes testicular functions by modulating redox homeostasis in adult mouse. Endocrine 2024; 86:428-440. [PMID: 38878191 DOI: 10.1007/s12020-024-03921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE Adropin is an emerging metabolic hormone that has a role in regulating energy homeostasis. The present study aimed to explore the impact of adropin on redox homeostasis and its possible role in testicular functions in adult mouse testis. METHODS Western blot, flow-cytometry, and TUNEL assay were performed to explore the impact of intra-testicular treatment of adropin (0.5 μg/testis) on testicular functions of adult mice. Hormonal assay was done by ELISA. Further, antioxidant enzyme activities were measured. RESULTS Adropin treatment significantly increased the sperm count and testicular testosterone by increasing the expression of GPR19 and steroidogenic proteins. Also, adropin treatment reduced the oxidative/nitrosative stress by facilitating the translocation of NRF2 and inhibiting NF-κB into the nucleus of germ cells. Enhanced nuclear translocation of NRF2 leads to elevated biosynthesis of antioxidant enzymes, evident by increased HO-1, SOD, and catalase activity that ultimately resulted into declined LPO levels in adropin-treated mice testes. Furthermore, adropin decreased nuclear translocation of NF-κB in germ cells, that resulted into decreased NO production leading to decreased nitrosative stress. Adropin/GPR19 signaling significantly increased its differentiation, proliferation, and survival of germ cells by elevating the expression of PCNA and declining caspase 3, cleaved caspase 3 expression, Bax/Bcl2 ratio, and TUNEL-positive cells. FACS analysis revealed that adropin treatment enhances overall turnover of testicular cells leading to rise in production of advanced germ cells, notably spermatids. CONCLUSION The present study indicated that adropin improves testicular steroidogenesis, spermatogenesis via modulating redox potential and could be a promising target for treating testicular dysfunctions.
Collapse
Affiliation(s)
- Shashank Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shweta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Sic A, Cvetkovic K, Manchanda E, Knezevic NN. Neurobiological Implications of Chronic Stress and Metabolic Dysregulation in Inflammatory Bowel Diseases. Diseases 2024; 12:220. [PMID: 39329889 PMCID: PMC11431196 DOI: 10.3390/diseases12090220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic stress is a significant factor affecting modern society, with profound implications for both physical and mental health. Central to the stress response is cortisol, a glucocorticoid hormone produced by the adrenal glands. While cortisol release is adaptive in acute stress, prolonged exposure to elevated levels can result in adverse effects. This manuscript explores the neurobiological implications of chronic stress and its impact on metabolic dysregulation, particularly in the context of inflammatory bowel diseases (IBDs). The hypothalamic-pituitary-adrenal (HPA) axis regulates cortisol production, which influences metabolism, immune response, and neurobiology. Elevated cortisol levels are associated with the development and exacerbation of metabolic disorders like IBD and contribute to neurodegenerative processes, including cognitive impairments and increased susceptibility to psychiatric conditions. The interaction between cortisol and its receptors, particularly glucocorticoid receptors, underscores the complexity of these effects. This review aims to elucidate the mechanisms through which chronic stress and cortisol dysregulation impact metabolic health and neurobiological function, providing insights into potential therapeutic strategies for mitigating these effects.
Collapse
Affiliation(s)
- Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Kiana Cvetkovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Eshanika Manchanda
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Zhang Y, Wang G, Shao Y, Zheng P, Guo C, Liu Z, Shen L, Liu Z, Ding J, Zhang H. Simultaneous determination of 18 steroids in the hypothalamic pituitary gonadal axis based on UPLC-MS/MS with multimode ionization. Analyst 2024; 149:4663-4674. [PMID: 39073090 DOI: 10.1039/d4an00524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
To objectively quantify changes in steroid hormones in organisms caused by adverse environmental loads, we developed a simple and sensitive UPLC-MS/MS (ultra-performance liquid chromatography triple quadrupole mass spectrometry) method for the simultaneous determination of 18 steroid hormones on the HPG axis. This analytical method was based on liquid extraction and a multimode electrospray and atmospheric pressure chemical ionization (ESCi) source, which was optimized by mass spectrometry, liquid phase and pretreatment for the quantification of cholesterol (CH), aldosterone (A), cortisone (E), hydrocortisone (F), 21-deoxycortisol (21-DF), corticosterone (B), 11-deoxycortisol (11-DF), androstenedione (A2), estradiol (E2), estrone (E1), 2-methoxyestradiol (2-MeE2), 21-hydroxyprogesterone (21-OHP), 17-α hydroxyprogesterone (17α-OHP), testosterone (T), dehydroepiandrosterone (DHEA), progesterone (P4), dihydrotestosterone (DHT), and pregnenolone (P5). The method exhibits linearity in the analyte-concentration range 0.03-1000 μg mL-1 (r2 > 0.99), the spiked recoveries for the concentration range tested are 76.22-113.66%, and the relevant parameters of precision are 7.52-1.14%. Compared to other methods, this new method not only uses a small amount of serum (only 100 μL), but also permits the analysis of the challenging steroid, cholesterol. Furthermore, the method was successfully applied to the determination of steroids in Mus musculus, Carassius auratus, Rana catesbeiana Shaw, and Rana nigromaculata serum samples from randomly selected individuals. Therefore, this method is efficient and a very useful tool for assessing changes in steroid hormones.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Guanghui Wang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Yongjian Shao
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Pei Zheng
- Daishan Branch of Ecological Environment Bureau, 316299, Zhoushan, Zhejiang, China
| | - Chunyan Guo
- Zhejiang Radiation Environment Monitoring Station (Technical Center for Radiation Environment Monitoring, Ministry of Ecology and Environment), 310012, Hangzhou, Zhejiang, China
| | - Zhiqun Liu
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Lilai Shen
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Zhiquan Liu
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Jiafeng Ding
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Varik I, Zou R, Bellavia A, Rosenberg K, Sjunnesson Y, Hallberg I, Holte J, Lenters V, Van Duursen M, Pedersen M, Svingen T, Vermeulen R, Salumets A, Damdimopoulou P, Velthut-Meikas A. Reduced ovarian cholesterol and steroid biosynthesis along with increased inflammation are associated with high DEHP metabolite levels in human ovarian follicular fluids. ENVIRONMENT INTERNATIONAL 2024; 191:108960. [PMID: 39173238 DOI: 10.1016/j.envint.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is known to have endocrine-disrupting properties mediated by its many metabolites that form upon exposure in biological systems. In a previous study, we reported an inverse association between DEHP metabolites in the human ovarian follicular fluid (FF) and the responsiveness of the follicles to controlled ovarian stimulation during in vitro fertilization (IVF) treatments. Here, we explored this association further through molecular analysis of the ovarian FF samples. Ninety-six IVF patients from Swedish (N = 48) and Estonian (N = 48) infertility clinics were selected from the previous cohort (N = 333) based on the molar sum of DEHP metabolites in their FF samples to arrive at "high" (mean 7.7 ± SD 2.3 nM, N = 48) and "low" (0.8 ± 0.4 nM, N = 48) exposure groups. Extracellular miRNA levels and concentrations of 15 steroid hormones were measured across FF samples. In addition, FF somatic cells, available for the Estonian patients, were used for RNA sequencing. Differential expression (DE) and interactions between miRNA and mRNA networks revealed that the expression levels of genes in the cholesterol biosynthesis and steroidogenesis pathways were significantly decreased in the high compared to the low DEHP group. In addition, the DE miRNAs were predicted to target key enzymes within these pathways (FDR < 0.05). A decreased 17-OH-progesterone to progesterone ratio was observed in the FF of the high DEHP group (p < 0.05). Additionally, the expression levels of genes associated with inflammatory processes were elevated in the FF somatic cells, and a computational cell-type deconvolution analysis suggested an increased immune cell infiltration into the high DEHP follicles (p < 0.05). In conclusion, elevated DEHP levels in FF were associated with a significantly altered follicular milieu within human ovaries, involving a pro-inflammatory environment and reduced cholesterol metabolism, including steroid synthesis. These results contribute to our understanding of the molecular mechanisms of female reprotoxic effects of DEHP.
Collapse
Affiliation(s)
- Inge Varik
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Runyu Zou
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kristine Rosenberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Nova Vita Clinic, Tallinn, Estonia
| | - Ylva Sjunnesson
- Department of Clinical Sciences, Division of Reproduction, The Center for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Hallberg
- Department of Clinical Sciences, Division of Reproduction, The Center for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Animal Biosciences, Division of Reproduction, The Center for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Holte
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Carl von Linné Clinic, Uppsala, Sweden
| | - Virissa Lenters
- Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Majorie Van Duursen
- Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andres Salumets
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Competence Center on Health Technologies, Tartu, Estonia; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Sweden; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
22
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
23
|
Depta L, Bryce-Rogers HP, Dekker NJ, Bønke AW, Camporese N, Qian M, Xu Y, Covey DF, Laraia L. Endogenous and fluorescent sterols reveal the molecular basis for ligand selectivity of human sterol transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604041. [PMID: 39091845 PMCID: PMC11291047 DOI: 10.1101/2024.07.22.604041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 41 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Hogan P. Bryce-Rogers
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nienke J. Dekker
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Anna Wiehl Bønke
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nicolo’ Camporese
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Yuanjian Xu
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Wang X, Rowan-Carroll A, Meier MJ, Yauk CL, Wade MG, Robaire B, Hales BF. House dust-derived mixtures of organophosphate esters alter the phenotype, function, transcriptome, and lipidome of KGN human ovarian granulosa cells. Toxicol Sci 2024; 200:95-113. [PMID: 38603619 PMCID: PMC11199920 DOI: 10.1093/toxsci/kfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Organophosphate esters (OPEs), used as flame retardants and plasticizers, are present ubiquitously in the environment. Previous studies suggest that exposure to OPEs is detrimental to female fertility in humans. However, no experimental information is available on the effects of OPE mixtures on ovarian granulosa cells, which play essential roles in female reproduction. We used high-content imaging to investigate the effects of environmentally relevant OPE mixtures on KGN human granulosa cell phenotypes. Perturbations to steroidogenesis were assessed using ELISA and qRT-PCR. A high-throughput transcriptomic approach, TempO-Seq, was used to identify transcriptional changes in a targeted panel of genes. Effects on lipid homeostasis were explored using a cholesterol assay and global lipidomic profiling. OPE mixtures altered multiple phenotypic features of KGN cells, with triaryl OPEs in the mixture showing higher potencies than other mixture components. The mixtures increased basal production of steroid hormones; this was mediated by significant changes in the expression of critical transcripts involved in steroidogenesis. Further, the total-OPE mixture disrupted cholesterol homeostasis and the composition of intracellular lipid droplets. Exposure to complex mixtures of OPEs, similar to those found in house dust, may adversely affect female reproductive health by altering a multitude of phenotypic and functional endpoints in granulosa cells. This study provides novel insights into the mechanisms of actions underlying the toxicity induced by OPEs and highlights the need to examine the effects of human relevant chemical mixtures.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, H3G 1Y6, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 9A7, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Quebec, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
25
|
Bose HS. Dry molten globule conformational state of CYP11A1 (SCC) regulates the first step of steroidogenesis in the mitochondrial matrix. iScience 2024; 27:110039. [PMID: 38868187 PMCID: PMC11167429 DOI: 10.1016/j.isci.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple metabolic events occur in mitochondria. Mitochondrial protein translocation from the cytoplasm across compartments depends on the amino acid sequence within the precursor. At the mitochondria associated-ER membrane, misfolding of a mitochondrial targeted protein prior to import ablates metabolism. CYP11A1, cytochrome P450 cholesterol side chain cleavage enzyme (SCC), is imported from the cytoplasm to mitochondrial matrix catalyzing cholesterol to pregnenolone, an essential step for metabolic processes and mammalian survival. Multiple steps regulate the availability of an actively folded SCC; however, the mechanism is unknown. We identified that a dry molten globule state of SCC exists in the matrix by capturing intermediate protein folding steps dictated by its C-terminus. The intermediate dry molten globule state in the mitochondrial matrix of living cells is stable with a limited network of interaction and is inactive. The dry molten globule is activated with hydrogen ions availability, triggering cleavage of cholesterol sidechain, and initiating steroidogenesis.
Collapse
Affiliation(s)
- Himangshu S. Bose
- Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- Anderson Cancer Institute, Memorial University Medical Center, Savannah, GA 31404, USA
| |
Collapse
|
26
|
Kelson VC, Kiser JN, Davenport KM, Suarez EM, Murdoch BM, Neibergs HL. Identifying Regions of the Genome Associated with Conception Rate to the First Service in Holstein Heifers Bred by Artificial Insemination and as Embryo Transfer Recipients. Genes (Basel) 2024; 15:765. [PMID: 38927701 PMCID: PMC11202900 DOI: 10.3390/genes15060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10-5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss.
Collapse
Affiliation(s)
- Victoria C. Kelson
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Jennifer N. Kiser
- Washington Animal Disease Diagnostics Laboratory, Pullman, WA 99164, USA;
| | - Kimberly M. Davenport
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Emaly M. Suarez
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Holly L. Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| |
Collapse
|
27
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
28
|
Anderson T, Sharma S, Kelberman MA, Ware C, Guo N, Qin Z, Weinshenker D, Parent MB. Obesity during preclinical Alzheimer's disease development exacerbates brain metabolic decline. J Neurochem 2024; 168:801-821. [PMID: 37391269 DOI: 10.1111/jnc.15900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Obesity in middle age increases AD risk and severity, which is alarming given that obesity prevalence peaks at middle age and obesity rates are accelerating worldwide. Midlife, but not late-life obesity increases AD risk, suggesting that this interaction is specific to preclinical AD. AD pathology begins in middle age, with accumulation of amyloid beta (Aβ), hyperphosphorylated tau, metabolic decline, and neuroinflammation occurring decades before cognitive symptoms appear. We used a transcriptomic discovery approach in young adult (6.5 months old) male and female TgF344-AD rats that overexpress mutant human amyloid precursor protein and presenilin-1 and wild-type (WT) controls to determine whether inducing obesity with a high-fat/high-sugar "Western" diet during preclinical AD increases brain metabolic dysfunction in dorsal hippocampus (dHC), a brain region vulnerable to the effects of obesity and early AD. Analyses of dHC gene expression data showed dysregulated mitochondrial and neurotransmission pathways, and up-regulated genes involved in cholesterol synthesis. Western diet amplified the number of genes that were different between AD and WT rats and added pathways involved in noradrenergic signaling, dysregulated inhibition of cholesterol synthesis, and decreased intracellular lipid transporters. Importantly, the Western diet impaired dHC-dependent spatial working memory in AD but not WT rats, confirming that the dietary intervention accelerated cognitive decline. To examine later consequences of early transcriptional dysregulation, we measured dHC monoamine levels in older (13 months old) AD and WT rats of both sexes after long-term chow or Western diet consumption. Norepinephrine (NE) abundance was significantly decreased in AD rats, NE turnover was increased, and the Western diet attenuated the AD-induced increases in turnover. Collectively, these findings indicate obesity during prodromal AD impairs memory, potentiates AD-induced metabolic decline likely leading to an overproduction of cholesterol, and interferes with compensatory increases in NE transmission.
Collapse
Affiliation(s)
- Thea Anderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Sumeet Sharma
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Ware
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Nanxi Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
- Department of Psychology, Georgia State University, Georgia, USA
| |
Collapse
|
29
|
Tateiwa H, Evers AS. Neurosteroids and their potential as a safer class of general anesthetics. J Anesth 2024; 38:261-274. [PMID: 38252143 PMCID: PMC10954990 DOI: 10.1007/s00540-023-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.
Collapse
Affiliation(s)
- Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
31
|
Zhang R, Pan Y, Wang M, Wang J, Zhang T, Zhao L, Xu R, Wang Y, Han X, Ye X, Cui Y, Yu S. CIRBP Increases the synthesis and secretion of steroid hormones by in yak granulaso cells. J Steroid Biochem Mol Biol 2024; 238:106449. [PMID: 38143009 DOI: 10.1016/j.jsbmb.2023.106449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
As a regulatory protein that upregulates transcription in response to various stresses, cold-induced RNA-binding protein (CIRBP) is involved in a variety of physiological pathological processes in cells. However, little is known about the role of CIRBP in regulating autophagy and the synthesis and secretion of ovarian steroid hormones (estradiol E2 and progesterone P4). This study aimed to explore whether the synthetic secretion of ovarian steroid hormones is related to CIRBP-regulated autophagy. We detected the differential expression of CIRBP, LC3, E2 and P4 in YGCs cultured at mild low temperature (32 °C) for 6 and 12 h. CIRBP, LC3, E2 and P4 expression was increased in response to low temperature in YGCs. In order to illustrate that the changes in secretion of E2/P4 and autophagy might be caused by CIRBP induced by low temperature, we overexpressed CIRBP in YGCs cultured in vitro to detect its effects on autophagy and steroid hormone synthesis and secretion. We found that overexpression of CIRBP can induce autophagy of YGCs and enhance the synthesis and secretion of E2 and P4, suggesting that mild hypothermia may activate autophagy by inducing the expression of CIRBP and enhance the synthesis and secretion of E2 and P4. To further explore the relationship between CIRBP regulated autophagy and steroid hormone synthesis and secretion, we verified it by regulating autophagy. The results showed that Inhibition of autophagy significantly reversed CIRBP overexpression-enhanced autophagy and synthetic secretion of E2, P4 in YGCs, while activated autophagy showed similar results to overexpression of CIRBP. In conclusion, our data suggest that autophagy is involved in the synthesis and secretion of YGCs E2 and P4 and is associated with overexpression of CIRBP.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ruihua Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yaying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Ye
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China.
| |
Collapse
|
32
|
Hasan M, Reyer H, Oster M, Trakooljul N, Ponsuksilli S, Magowan E, Fischer DC, Wimmers K. Exposure to artificial ultraviolet-B light mediates alterations on the hepatic transcriptome and vitamin D metabolism in pigs. J Steroid Biochem Mol Biol 2024; 236:106428. [PMID: 37984748 DOI: 10.1016/j.jsbmb.2023.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
In the currently prevailing pig husbandry systems, the vitamin D status is almost exclusively dependent on dietary supply. Additional endogenous vitamin D production after exposure to ultraviolet-B (UVB) light might allow the animals to utilize minerals in a more efficient manner, as well as enable the production of functional vitamin D-enriched meat for human consumption. In this study, growing pigs (n = 16) were subjected to a control group or to a daily narrowband UVB exposure of 1 standard erythema dose (SED) for a period of 9 weeks until slaughter at a body weight of 105 kg. Transcriptomic profiling of liver with emphasis on the associated effects on vitamin D metabolism due to UVB exposure were evaluated via RNA sequencing. Serum was analyzed for vitamin D status and health parameters such as minerals and biochemical markers. The serum concentration of calcidiol, but not calcitriol, was significantly elevated in response to UVB exposure after 17 days on trial. No effects of UVB exposure were observed on growth performance and blood test results. At slaughter, the RNA sequencing analyses following daily UVB exposure revealed 703 differentially expressed genes (DEGs) in liver tissue (adjusted p-value < 0.01). Results showed that molecular pathways for vitamin D synthesis (CYP2R1) rather than cholesterol synthesis (DHCR7) were preferentially initiated in liver. Gene enrichment (p < 0.05) was observed for reduced cholesterol/steroid biosynthesis, SNARE interactions in vesicular transport, and CDC42 signaling. Taken together, dietary vitamin D supply can be complemented via endogenous production after UVB exposure in pig husbandry, which could be considered in the development of functional foods.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Elizabeth Magowan
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, Co Down, BT26 6DR, United Kingdom
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany.
| |
Collapse
|
33
|
Yiallouris A, Filippou C, Themistocleous SC, Menelaou K, Kalodimou V, Michaeloudes C, Johnson EO. Aging of the adrenal gland and its impact on the stress response. VITAMINS AND HORMONES 2024; 124:341-366. [PMID: 38408802 DOI: 10.1016/bs.vh.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This article discusses the physiological and anatomical changes of adrenal gland with age and the effects this has overall on how the organ responds to stress. Physiological changes entail a decrease in adrenocorticoid hormone secretion however cortisol levels remain intact leading to a disruptive stress response. Additionally, loss of zonation of the organ also occurs. Both characteristics in combination with chronic stress affect overall health. Complex interplay between adrenal aging and stress responsiveness is confounded further by the impact they expel on other systems, such as the thyroid hormone. The body undergoes age-related transformations modifying rate of cellular growth, differentiation, senescence, and hormone production. Given the multiplicity and complexity of hormones, their production must be considered to develop appropriate interventions to mitigate its effect on age related diseases in health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalampos Filippou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Sophia C Themistocleous
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Katerina Menelaou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Vasiliki Kalodimou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalambos Michaeloudes
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Elizabeth O Johnson
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus.
| |
Collapse
|
34
|
Tripathi S, Maurya S, Singh A. Adropin, a novel hepatokine: localization and expression during postnatal development and its impact on testicular functions of pre-pubertal mice. Cell Tissue Res 2024; 395:171-187. [PMID: 38087073 DOI: 10.1007/s00441-023-03852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Adropin, a multifaceted peptide, was identified as a new metabolic hormone responsible for regulating gluco-lipid homeostasis. However, its role in the testicular function is not yet understood. We aimed to investigate the localization and expression of adropin and GPR19 during different phases of postnatal development. Immunohistochemical study revealed the intense reactivity of adropin in the Leydig cells during all phases of postnatal development, while GPR19 showed intense immunoreactivity in the pachytene spermatocytes and mild immunoreactivity in Leydig cells as well as primary and secondary spermatocytes. Western blot study revealed maximum expression of GPR19 in pre-pubertal mouse testis that clearly indicates maximum responsiveness of adropin during that period. So, we hypothesized that adropin may act as an autocrine/paracrine factor that regulates pubertal changes in mouse testis. To examine the effect of adropin on pubertal onset, we gave bilateral intra-testicular doses (0.5 and 1.5 µg/testis) to pre-pubertal mice. Adropin treatment promoted testicular testosterone synthesis by increasing the expression of StAR, 3β-HSD, and 17β-HSD. Adropin also promoted germ cell survival and proliferation by upregulating the expression of PCNA and downregulating the Bax/Bcl2 ratio and Caspase 3 expression resulting in fewer TUNEL-positive cells in adropin-treated groups. FACS analysis demonstrated that adropin treatment not only increases 1C to 4C ratio but also significantly increases the 1C (spermatid) and 1C to 2C ratio which demarcates accelerated germ cell differentiation and turnover of testicular cells. In conclusion, adropin promotes steroidogenesis, germ cell survival, as well as the proliferation in the pre-pubertal mouse testis that may hasten the pubertal transition in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Shashank Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shweta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
35
|
Kolnikaj TS, Herman R, Janež A, Jensterle M. The Current and Emerging Role of Statins in the Treatment of PCOS: The Evidence to Date. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:244. [PMID: 38399531 PMCID: PMC10890374 DOI: 10.3390/medicina60020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) manifests a multifactorial pathology characterized by polycystic ovaries, menstrual cycle disorders, varying degrees of hyperandrogenism, and an ad-verse metabolic risk profile. The position of hyperandrogenism in this syndrome has been extensively studied. A multitude of mechanisms place it in the position of cause but also of consequence; therefore, ongoing research efforts are focused on identifying medications that can effectively reduce levels of androgens in women with PCOS. Moreover, lipid abnormalities are common in this population, with up to 70% of patients having dyslipidemia. Statins may have potential therapeutic benefits for women with PCOS, as they have been shown to improve insulin resistance and reduce the risk of cardiovascular disease. In addition, their role in accelerated steroidogenesis by limiting one source of cholesterol, influencing enzymatic activity, and providing several other beneficial mechanisms is widely investigated. This review aimed to provide a comprehensive overview of the pathogenesis of androgen excess and dyslipidemia in PCOS, as well as the therapeutic potential of statins.
Collapse
Affiliation(s)
- Tea Shehu Kolnikaj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University of Medicine Tirana, 1000 Tirana, Albania;
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (R.H.); (A.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (R.H.); (A.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (R.H.); (A.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Kelly E, Petersen LH, Huggett D, Hala D. Reaction thermodynamics as a constraint on piscine steroidogenesis flux distributions. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111533. [PMID: 37844836 DOI: 10.1016/j.cbpa.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
While a considerable amount is known of the dynamics of piscine steroidogenesis during reproduction, the influence of thermodynamics constraints on its control has not been studied. In this manuscript, Gibbs free energy change of reactions was calculated for piscine steroidogenesis using the in silico eQuilibrator thermodynamics calculator. The analysis identified cytochrome P450 (cyp450) oxidoreductase reactions to have more negative Gibbs free energy changes relative to hydroxysteroid (HSD) and transferase reactions. In addition, a more favorable Gibbs free energy change was predicted for the Δ5 (cyp450 catalyzed) vs. Δ4 (HSD catalyzed) steroidogenesis branch-point, which converts pregnenolone to 17α-hydroxypregnenolone or progesterone respectively. Comparison of in silico predictions with in vivo experimentally measured flux across the Δ5 vs. Δ4 branch-point showed higher flux through the thermodynamically more favorable Δ5 pathway in reproducing or spawning vs. non-spawning fathead minnows (Pimephales promelas). However, the exposure of fish to endocrine stressors such as hypoxia or the synthetic estrogen 17α-ethinylestradiol (EE2), resulted in increased flux through both Δ5 and Δ4 pathways, indicating an adaptive response to increase steroidogenic redundancy. The correspondence of elevated flux through the Δ5 branch-point in spawning fish indicated the use of a thermodynamically favorable pathway to optimize steroid hormone productions during reproduction. We hypothesize that such selective use of a thermodynamically favorable steroidogenesis pathway may conserve reduced equivalents or transcriptional costs for investment to other biosynthetic or catabolic reactions to support reproduction. If generalizable, such an approach can provide novel insights into the structural principles and regulation of steroidogenesis or other metabolic pathways.
Collapse
Affiliation(s)
- E Kelly
- Binghamton University, 4400 Vestal Parkway E, Binghamton, NY, USA; Department of Marine Biology, Texas A&M University at Galveston, TX, USA
| | - L H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, TX, USA
| | - D Huggett
- University of North Texas, Denton, TX, USA
| | - D Hala
- Department of Marine Biology, Texas A&M University at Galveston, TX, USA.
| |
Collapse
|
37
|
Gore IR, Gould E. Developmental and adult stress: effects of steroids and neurosteroids. Stress 2024; 27:2317856. [PMID: 38563163 PMCID: PMC11046567 DOI: 10.1080/10253890.2024.2317856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.
Collapse
Affiliation(s)
- Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
38
|
Vallée M. Advances in steroid research from the pioneering neurosteroid concept to metabolomics: New insights into pregnenolone function. Front Neuroendocrinol 2024; 72:101113. [PMID: 37993022 DOI: 10.1016/j.yfrne.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.
Collapse
Affiliation(s)
- Monique Vallée
- University Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
39
|
Taleb MA, Kumar R, Barakat MA. Multifunctional carboxymethyl cellulose/graphene oxide/polyaniline hybrid thin film for adsorptive removal of Cu(II) and oxytetracycline antibiotic from wastewater. Int J Biol Macromol 2023; 253:126699. [PMID: 37673146 DOI: 10.1016/j.ijbiomac.2023.126699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The antibiotics and metal ions in the contaminated water bodies must be removed using appropriate methods for sustainable development. In this study, the multifunctional carboxymethyl cellulose/graphene oxide/polyaniline (CMC/GO/PANI) hybrid thin film was synthesized and utilized for adsorptive scavenging of (Cu(II) and oxytetracycline (OTC) from wastewater. The prepared thin films' morphology, chemical compositions, functionality, and surface charge were analyzed by well-known physicochemical techniques. The adsorption process of the selected model pollutants was examined as a function of reaction time, Cu(II), and OTC solution pH, concentrations, and temperatures. Results showed that CMC/GO/PANI hybrid thin film had higher Cu(II) and OTC adsorption than CMC, GO/CMC, and PANI/CMP thin films due to the multifunctional synergetic effect. The adsorption kinetic data were fitted to the pseudo-second-order model. Redlich-Peterson isotherm model well interpreted Cu(II) and OTC scavenging equilibrium data. Energetically, the adsorption was spontaneous and endothermic for both pollutants. The multifunctional CMC/GO/PANI thin film was recycled and reused seven times during adsorption-desorption cycles. The study outcomes demonstrated that CMC/GO/PANI thin film could be reused multiple times for large-scale wastewater purification.
Collapse
Affiliation(s)
- Md Abu Taleb
- Department of Environmental Sciences, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M A Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
40
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
41
|
Chen L, Lin X, Shi S, Li M, Mortimer M, Fang W, Li F, Guo LH. Activation of estrogen-related receptor: An alternative mechanism of hexafluoropropylene oxide homologs estrogenic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166257. [PMID: 37574057 DOI: 10.1016/j.scitotenv.2023.166257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) alternatives such as hexafluoropropylene oxide homologs (HFPOs) cause concern due to increased occurrence in the environment as well as potential bioaccumulation and toxicity. HFPOs have been demonstrated to activate the estrogen receptor (ER) pathway. The ER pathway is homologous and connected to the estrogen-related receptor (ERR) pathway, but HFPOs effects on the ERR pathway have not been studied. Hence, we assessed the potential estrogenic effects of HFPOs via ERRγ pathway. In vitro assays revealed that HFPO dimeric, trimeric, and tetrameric acids (HFPO-DA, -TA, and -TeA, respectively), acted as ERRγ agonists, activating the transcription of both human and zebrafish ERRγ at low concentrations, but inhibiting zebrafish ERRγ at high concentrations. We also found that HFPO-TA promoted the human endometrial cancer cells (Ishikawa cells) proliferation via ERRγ/EGF, Cyclin D1 pathway. The HFPO-TA-induced proliferation of Ishikawa cells was inhibited by co-exposure with a specific antagonist of ERRγ, GSK5182. In vivo exposure of female zebrafish to HFPO-TA disturbed sex hormone levels, interfered with the gene expression involved in estrogen synthesis and follicle regulation, and caused histopathological lesions in the ovaries, which were similar to those induced by a known ERRγ agonist GSK4716. Taken together, this study revealed a new mechanism concerning the estrogenic effect of HFPOs via activation of the ERRγ pathway.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Xicha Lin
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Sha Shi
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Wendi Fang
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
42
|
Azhar S, Shen WJ, Hu Z, Kraemer FB. MicroRNA regulation of adrenal glucocorticoid and androgen biosynthesis. VITAMINS AND HORMONES 2023; 124:1-37. [PMID: 38408797 DOI: 10.1016/bs.vh.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Steroid hormones are derived from a common precursor molecule, cholesterol, and regulate a wide range of physiologic function including reproduction, salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function, and various metabolic processes. Among the steroids synthesized by the adrenal and gonadal tissues, adrenal mineralocorticoids, and glucocorticoids are essential for life. The process of steroidogenesis is regulated at multiple levels largely by transcriptional, posttranscriptional, translational, and posttranslational regulation of the steroidogenic enzymes (i.e., cytochrome P450s and hydroxysteroid dehydrogenases), cellular compartmentalization of the steroidogenic enzymes, and cholesterol processing and transport proteins. In recent years, small noncoding RNAs, termed microRNAs (miRNAs) have been recognized as major post-transcriptional regulators of gene expression with essential roles in numerous biological processes and disease pathologies. Although their role in the regulation of steroidogenesis is still emerging, several recent studies have contributed significantly to our understanding of the role miRNAs play in the regulation of the steroidogenic process. This chapter focuses on the recent developments in miRNA regulation of adrenal glucocorticoid and androgen production in humans and rodents.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States.
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
43
|
Ruiz-Babot G, Eceiza A, Abollo-Jiménez F, Malyukov M, Carlone DL, Borges K, Da Costa AR, Qarin S, Matsumoto T, Morizane R, Skarnes WC, Ludwig B, Chapple PJ, Guasti L, Storr HL, Bornstein SR, Breault DT. Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100627. [PMID: 37924815 PMCID: PMC10694497 DOI: 10.1016/j.crmeth.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Adrenal insufficiency is a life-threatening condition resulting from the inability to produce adrenal hormones in a dose- and time-dependent manner. Establishing a cell-based therapy would provide a physiologically responsive approach for the treatment of this condition. We report the generation of large numbers of human-induced steroidogenic cells (hiSCs) from human pluripotent stem cells (hPSCs). Directed differentiation of hPSCs into hiSCs recapitulates the initial stages of human adrenal development. Following expression of steroidogenic factor 1, activation of protein kinase A signaling drives a steroidogenic gene expression profile most comparable to human fetal adrenal cells, and leads to dynamic secretion of steroid hormones, in vitro. Moreover, expression of the adrenocorticotrophic hormone (ACTH) receptor/co-receptor (MC2R/MRAP) results in dose-dependent ACTH responsiveness. This protocol recapitulates adrenal insufficiency resulting from loss-of-function mutations in AAAS, which cause the enigmatic triple A syndrome. Our differentiation protocol generates sufficient numbers of hiSCs for cell-based therapy and offers a platform to study disorders causing adrenal insufficiency.
Collapse
Affiliation(s)
- Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Ariane Eceiza
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Maria Malyukov
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Kleiton Borges
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexandra Rodrigues Da Costa
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shamma Qarin
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Takuya Matsumoto
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ryuji Morizane
- Harvard Stem Cell Institute, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - William C Skarnes
- Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Barbara Ludwig
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Paul J Chapple
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefan R Bornstein
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany; Division of Endocrinology, Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
44
|
Siri B, D'Alessandro A, Maiorana A, Porzio O, Ravà L, Dionisi-Vici C, Cappa M, Martinelli D. Adrenocortical function in patients with Single Large Scale Mitochondrial DNA Deletions: a retrospective single centre cohort study. Eur J Endocrinol 2023; 189:485-494. [PMID: 37815532 DOI: 10.1093/ejendo/lvad137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Single Large Scale Mitochondrial DNA Deletions (SLSMDs), Pearson Syndrome (PS) and Kearns-Sayre Syndrome (KSS), are systemic diseases with multiple endocrine abnormalities. The adrenocortical function has not been systematically investigated with a few anecdotal reports of overt adrenal insufficiency (AI). The study aimed to assess the adrenocortical function in a large cohort of SLSMDs. DESIGN AND METHODS A retrospective monocentric longitudinal study involved a cohort of 18 SLSMDs patients. Adrenocortical function was evaluated by baseline adrenocorticotrophic hormone (ACTH) and cortisol measurements and by high- (HDT) and low-dose (LDT) ACTH stimulation tests and compared with 92 healthy controls (HC). RESULTS Baseline adrenocortical function was impaired in 39% of patients and by the end of the study, 66% of PS and 25% of KSS showed an insufficient increase after ACTH stimulation, with cortisol deficiency due to primary AI in most PS and subclinical AI in KSS. Symptomatic AI was recorded in 44% of patients. Peak cortisol levels after ACTH stimulation tests were significantly lower in patients than in HC (P < .0001), with a more reduced response to LDT vs HDT (P < .05). CONCLUSIONS Our study highlights that cortisol deficiency due to primary AI represents a relevant part of the clinical spectrum in SLSMDs, with more severe impairment in PS than in KSS. Basal and after-stimulus assessment of adrenocortical axis should be early and regularly investigated to identify any degree of adrenocortical dysfunction. The study allowed the elaboration of a diagnostic process designed for the diagnosis, treatment, and follow-up of adrenocortical abnormalities in SLSMDs.
Collapse
Affiliation(s)
- Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Paediatrics, Città della Salute e della Scienza, OIRM, University of Turin, 10126 Turin, Italy
| | - Annamaria D'Alessandro
- Clinical Biochemistry Laboratory, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Arianna Maiorana
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Lucilla Ravà
- Clinical Epidemiology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marco Cappa
- Research Area of Innovative Therapies in Endocrinopathies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
45
|
Hu Y, Wang L, Yang G, Wang S, Guo M, Lu H, Zhang T. VDR promotes testosterone synthesis in mouse Leydig cells via regulation of cholesterol side chain cleavage cytochrome P450 (Cyp11a1) expression. Genes Genomics 2023; 45:1377-1387. [PMID: 37747642 DOI: 10.1007/s13258-023-01444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND The vitamin D receptor (VDR) mediates the pleiotropic biological actions that include osteoporosis, immune responses and androgen synthesis.VDR is widely expressed in testis cells such as Leydig cells, Sertoli cells, and sperm. The levels of steroids are critical for sexual development. In the early stage of steroidogenesis, cholesterol is converted to pregnenolone (precursor of most steroid hormones) by cholesterol side-chain lyase (CYP11A1), which eventually synthesizes the male hormone testosterone. OBJECTIVE This study aims to reveal how VDR regulates CYP11A1 expression and affects testosterone synthesis in murine Leydig cells. METHODS The levels of VDR, CYP11A1 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) or western blot. Targeted relationship between VDR and Cyp11a1 was evaluated by dual-luciferase reporter assay. The levels of testosterone concentrations in cell culture media serum by enzyme-linked immunosorbent assay (ELISA). RESULTS Phylogenetic and motif analysis showed that the Cyp11a1 family had sequence loss, which may have special biological functions during evolution. The results of promoter prediction showed that vitamin D response element (VDRE) existed in the upstream promoter region of murine Cyp11a1. Dual-luciferase assay confirmed that VDR could bind candidate VDREs in upstream region of Cyp11a1, and enhance gene expression. Tissue distribution and localizatio analysis showed that Cyp11a1 was mainly expressed in testis, and dominantly existed in murine Leydig cells. Furthermore, over-expression VDR and CYP11A1 significantly increased testosterone synthesis in mice Leydig cells. CONCLUSIONS Active vitamin D3 (VD3) and Vdr interference treatment showed that VD3/VDR had a positive regulatory effect on Cyp11a1 expression and testosterone secretion. VDR promotes testosterone synthesis in male mice by up-regulating Cyp11a1 expression, which played an important role for male reproduction.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ge Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Miaomiao Guo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China.
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|
46
|
Snider AP, Gomes RS, Summers AF, Tenley SC, Abedal-Majed MA, McFee RM, Wood JR, Davis JS, Cupp AS. Identification of Lipids and Cytokines in Plasma and Follicular Fluid before and after Follicle-Stimulating Hormone Stimulation as Potential Markers for Follicular Maturation in Cattle. Animals (Basel) 2023; 13:3289. [PMID: 37894013 PMCID: PMC10603728 DOI: 10.3390/ani13203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.
Collapse
Affiliation(s)
- Alexandria P. Snider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Renata S. Gomes
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | | | - Sarah C. Tenley
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198, USA;
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| |
Collapse
|
47
|
Kim K, Song JE, Joo JB, Park HA, Choi CH, Je CY, Kim OK, Park SW, Do YJ, Hur TY, Park SI, Lee CM. Genome-wide association study of mammary gland tumors in Maltese dogs. Front Vet Sci 2023; 10:1255981. [PMID: 37859946 PMCID: PMC10583716 DOI: 10.3389/fvets.2023.1255981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Background A genome-wide association study (GWAS) is a valuable tool for investigating genetic and phenotypic variation in many diseases. Objective The objective of this study was to identify variations in the genomes of Maltese dogs that are associated with the mammary gland tumor (MGT) phenotype and to assess the association between each biological condition and MGT phenotype in Maltese dogs. Methods DNA was extracted from 22 tumor samples and 11 whole blood samples from dogs with MGTs. Genome-wide single-nucleotide polymorphism (SNP) genotyping was performed, and the top 20 SNPs associated with various conditions and genetic variations were mapped to their corresponding gene locations. Results The genotyping process successfully identified 173,662 loci, with an overall genotype completion rate of 99.92%. Through the quality control analysis, 46,912 of these SNPs were excluded. Allelic tests were conducted to generate Manhattan plots, which showed several significant SNPs associated with MGT phenotype in intergenic region. The most prominent SNP, located within a region associated with transcription and linked to the malignancy grade of MGT, was identified on chromosome 5 (p = 0.00001) though there may be lack of statistical significance. Other SNPs were also found in several genes associated with oncogenesis, including TNFSF18, WDR3, ASIC5, STAR, and IL1RAP. Conclusion To our knowledge, this is the first GWAS to analyze the genetic predisposition to MGT in Maltese dogs. Despite the limited number of cases, these analyzed data could provide the basis for further research on the genetic predisposition to MGTs in Maltese dogs.
Collapse
Affiliation(s)
- Keon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jung Eun Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
- Gwangju Animal Medical Center, Gwangju, Republic of Korea
| | - Jae Beom Joo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon A Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Hyeon Choi
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Yun Je
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Ock Kyu Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sin Wook Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
48
|
Zhang JL, Lv M, Yang CF, Zhu YX, Li CJ. Mevalonate pathway and male reproductive aging. Mol Reprod Dev 2023; 90:774-781. [PMID: 37733694 DOI: 10.1002/mrd.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Male fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis. Since the mevalonate pathway has an important role in spermatogenesis, we attempted to explore the association between male reproductive aging and the mevalonate pathway to explain the mechanism of male reproductive aging. Alterations in the mevalonate pathway may affect male reproductive aging by decreasing cholesterol synthesis and altering testis protein prenylation. Decreased cholesterol levels affect cholesterol modification, testosterone production, and remodeling of germ cell membranes. Aging-related metabolic disorders also affect the metabolic coupling between somatic cells and spermatogenic cells, leading to male fertility decline. Therefore, we hypothesized that alterations in the mevalonate pathway represent one of the metabolic causes of reproductive aging.
Collapse
Affiliation(s)
- Jia-Le Zhang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Lv
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Fan Yang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying-Xi Zhu
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Maritz-Olivier C, Ferreira M, Olivier NA, Crafford J, Stutzer C. Mining gene expression data for rational identification of novel drug targets and vaccine candidates against the cattle tick, Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:291-317. [PMID: 37755526 PMCID: PMC10562289 DOI: 10.1007/s10493-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Control of complex parasites via vaccination remains challenging, with the current combination of vaccines and small drugs remaining the choice for an integrated control strategy. Studies conducted to date, are providing evidence that multicomponent vaccines will be needed for the development of protective vaccines against endo- and ectoparasites, though multicomponent vaccines require an in-depth understanding of parasite biology which remains insufficient for ticks. With the rapid development and spread of acaricide resistance in ticks, new targets for acaricide development also remains to be identified, along with novel targets that can be exploited for the design of lead compounds. In this study, we analysed the differential gene expression of Rhipicephalus microplus ticks that were fed on cattle vaccinated with a multi-component vaccine (Bm86 and 3 putative Bm86-binding proteins). The data was scrutinised for the identification of vaccine targets, small drug targets and novel pathways that can be evaluated in future studies. Limitations associated with targeting novel proteins for vaccine and/or drug design is also discussed and placed into the context of challenges arising when targeting large protein families and intracellular localised proteins. Lastly, this study provide insight into how Bm86-based vaccines may reduce successful uptake and digestion of the bloodmeal and overall tick fecundity.
Collapse
Affiliation(s)
- Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Mariëtte Ferreira
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nicholas A Olivier
- DNA Microarray Laboratory, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jan Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Christian Stutzer
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
50
|
Sidhu SK, Mishra S. A cholesterol-centric outlook on steroidogenesis. VITAMINS AND HORMONES 2023; 124:405-428. [PMID: 38408806 DOI: 10.1016/bs.vh.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cholesterol, an essential and versatile lipid, is the precursor substrate for the biosynthesis of steroid hormones, and a key structural and functional component of organelle membranes in eukaryotic cells. Consequently, the framework of steroidogenesis across main steroidogenic cell types is built around cholesterol, including its cellular uptake, mobilization from intracellular storage, and finally, its transport to the mitochondria where steroidogenesis begins. This setup, which is controlled by different trophic hormones in their respective target tissues, allows steroidogenic cells to meet their steroidogenic need of cholesterol effectively without impinging on the basic need for organelle membranes and their functions. However, our understanding of the basal steroidogenesis (i.e., independent of trophic hormone stimulation), which is a cell-intrinsic trait, remains poor. Particularly, the role that cholesterol itself plays in the regulation of steroidogenic factors and events in steroid hormone-producing cells remains largely unexplored. This is likely because of challenges in selectively targeting the steroidogenic intracellular cholesterol pool in studies. New evidence suggests that cholesterol plays a role in steroidogenesis. These new findings have created new opportunities to advance our understanding in this field. In this book chapter, we will provide a cholesterol-centric view on steroidogenesis and emphasize the importance of the interplay between cholesterol and the mitochondria in steroidogenic cells. Moreover, we will discuss a novel mitochondrial player, prohibitin-1, in this context. The overall goal is to provide a stimulating perspective on cholesterol as an important regulator of steroidogenesis (i.e., more than just a substrate for steroid hormones) and present the mitochondria as a potential cell-intrinsic factor in regulating steroidogenic cholesterol homeostasis.
Collapse
Affiliation(s)
- Simarjit Kaur Sidhu
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suresh Mishra
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Internal Medicine, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|