1
|
Teiba II, Mamdouh I, Yousef MI, Hussein A, El-Bilawy EH. Antimicrobial activity of Monascus purpureus-derived red pigments against Salmonella typhimurium, Escherichia coli, and Enterococcus faecalis. AMB Express 2025; 15:6. [PMID: 39755819 DOI: 10.1186/s13568-024-01801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923. The dye was extracted from the Monascus purpureus ATCC16436 strain, using 1 mg of red dye in 1 ml of DMSO to achieve a concentration of 1000 µg/ml. The chemical profile of the red dye extract was analyzed using GC-MS analysis, confirming the presence of several bioactive antimicrobial compounds, including aspidospermidin-17-ol, 1-acetyl-16-methoxy, octanoic acid, and hexadecanoic acid methyl ester. The extract was tested against the bacterial strains at varying concentrations to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). The results demonstrated significant antibacterial activity, with the highest MIC and MBC values of 6.25/12.5 µg/ml against S. typhimurium. The antibacterial activity of the red dye was compared to five conventional antibiotics using the disc diffusion method, revealing superior effectiveness, particularly against S. typhimurium, with an inhibition zone measuring 20 ± 0.22 mm. Scanning electron microscopy was employed to explore the mechanism of action of the red dye extract, highlighting its impact on bacterial plasma membrane permeability and its interference with cellular energy production. These findings suggest that the Monascus purpureus-derived red dye extract represents a promising natural alternative to conventional antibiotics, demonstrating potent antibacterial activity and potential as a novel therapeutic agent in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt.
| | - Islam Mamdouh
- Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed Hussein
- Biotechnology Department Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Emad H El-Bilawy
- Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
| |
Collapse
|
2
|
Houtsaeger C, Pasmans F, Claes I, Vandenabeele S, Haesebrouck F, Lebeer S, Boyen F. The role of the microbiome in allergic dermatitis-related otitis externa: a multi-species comparative review. Front Vet Sci 2024; 11:1413684. [PMID: 39736936 PMCID: PMC11683847 DOI: 10.3389/fvets.2024.1413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization. We propose a pathogenetic model in which allergic conditions disrupt the antimicrobial environment of the EEC, creating circumstances favorable for facultative pathogenic micro-organisms like Staphylococcus and Malassezia species, leading to otitis externa (OE). A better understanding of the underpinning mechanisms may lead to innovative approaches to disease mitigation.
Collapse
Affiliation(s)
- Cyrelle Houtsaeger
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- YUN NV, Niel, Belgium
| | - Frank Pasmans
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingmar Claes
- YUN NV, Niel, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sophie Vandenabeele
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Boyen
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Del Rosso JQ, Kircik L. The primary role of sebum in the pathophysiology of acne vulgaris and its therapeutic relevance in acne management. J DERMATOL TREAT 2024; 35:2296855. [PMID: 38146664 DOI: 10.1080/09546634.2023.2296855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Sebum physiology and its contributions to acne vulgaris (AV) pathophysiology have been long debated. Within the pilosebaceous unit, androgens drive sebocyte production of sebum, comprising mono-, di-, and triglycerides (the latter converted to fatty acids); squalene; cholesterol; cholesterol esters; and wax esters. Upon release to the skin surface, human sebum has important roles in epidermal water retention, antimicrobial defenses, and innate immune responses. AIMS Alterations in sebum alone and with other pathogenic factors (inflammation, follicular hyperkeratinization, and Cutibacterium acnes [C. acnes] proliferation) contribute to AV pathophysiology. Androgen-driven sebum production, mandatory for AV development, propagates C. acnes proliferation and upregulates inflammatory and comedogenic cascades. RESULTS Some sebum lipids have comedogenic effects in isolation, and sebum content alterations (including elevations in specific fatty acids) contribute to AV pathogenesis. Regional differences in facial sebum production, coupled with patient characteristics (including sex and age), help exemplify this link between sebum alterations and AV lesion formation. CONCLUSIONS To date, only combined oral contraceptives and oral spironolactone (both limited to female patients), oral isotretinoin and topical clascoterone (cortexolone 17α-propionate) modulate sebum production in patients with AV. A better understanding of mechanisms underlying sebaceous gland changes driving AV development is needed to expand the AV treatment armamentarium.
Collapse
Affiliation(s)
- James Q Del Rosso
- Touro University Nevada, Henderson, NV, USA
- JDR Dermatology Research, Las Vegas, NV, USA
- Advanced Dermatology and Cosmetic Surgery, Maitland, FL, USA
| | - Leon Kircik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Physicians Skin Care, PLLC, Louisville, KY, USA
- DermResearch, PLLC, Louisville, KY, USA
| |
Collapse
|
4
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
5
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Xu J, Tse MW, Pacheco JA, Kim JS, Pierce K, Deik A, Hussain FA, Elsherbini J, Hussain S, Xulu N, Khan N, Pillay V, Mitchell CM, Dong KL, Ndung'u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a metabolite-targeted strategy for bacterial vaginosis treatment. Cell 2024; 187:5413-5430.e29. [PMID: 39163861 PMCID: PMC11429459 DOI: 10.1016/j.cell.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Matthew W Frank
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | - Jiawu Xu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Megan W Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jae Sun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Salina Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Caroline M Mitchell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Krista L Dong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Health Systems Trust, Durban, South Africa; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles O Rock
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Seth M Bloom
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
De Pessemier B, López CD, Taelman S, Verdonck M, Chen Y, Stockman A, Lambert J, Van de Wiele T, Callewaert C. Comparative Whole Metagenome Analysis in Lesional and Nonlesional Scalp Areas of Patients with Psoriasis Capitis and Healthy Individuals. J Invest Dermatol 2024:S0022-202X(24)01984-5. [PMID: 39128495 DOI: 10.1016/j.jid.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024]
Abstract
Psoriasis is an immune-mediated inflammatory disorder, where the majority of the patients suffer from psoriasis capitis or scalp psoriasis. Current therapeutics remain ineffective to treat scalp lesions. In this study, we present a whole-metagenome characterization of the scalp microbiome in psoriasis capitis. We investigated how changes in the homeostatic cutaneous microbiome correlate with the condition and identified metagenomic biomarkers (taxonomic, functional, virulence factors, antimicrobial resistance genes) that could partly explain its emergence. Within this study, 83 top and back scalp samples from healthy individuals and 64 lesional and nonlesional scalp samples from subjects with untreated psoriasis capitis were analyzed. Using qPCR targeting the 16S and 18S ribosomal RNA genes, we found a significant decrease in microbial load within scalp regions affected by psoriasis compared with that in their nonlesional counterparts. Metagenomic analysis revealed that psoriatic lesions displayed significant lower Cutibacterium species (including C. modestum, C. namnetense, C. granulosum, C. porci), along with an elevation in Staphylococcus aureus. A heightened relative presence of efflux pump protein-encoding genes was detected, suggesting potential antimicrobial resistance mechanisms. These mechanisms are known to specifically target human antimicrobial peptides (including cathelicidin LL-37), which are frequently encountered within psoriasis lesions. These shifts in microbial community dynamics may contribute to psoriasis disease pathogenesis.
Collapse
Affiliation(s)
- Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Celia Díez López
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Steff Taelman
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium; BIOLIZARD, Ghent, Belgium
| | - Merel Verdonck
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Yang Chen
- Department of Dermatology, School of Medicine, University of California San Diego, California, USA; Department of Pediatrics, School of Medicine, University of California San Diego, California, USA; Biomedical Sciences Graduate Program, University of California San Diego, California, USA
| | | | - Jo Lambert
- Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Bonney JR, Prentice BM. Structural Elucidation and Relative Quantification of Fatty Acid Double Bond Positional Isomers in Biological Tissues Enabled by Gas-Phase Charge Inversion Ion/Ion Reactions. ANALYSIS & SENSING 2024; 4:e202300063. [PMID: 38827423 PMCID: PMC11139046 DOI: 10.1002/anse.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/04/2024]
Abstract
Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
8
|
Belagal P. Current alternative therapies for treating drug-resistant Neisseria gonorrhoeae causing ophthalmia neonatorum. Future Microbiol 2024; 19:631-647. [PMID: 38512111 PMCID: PMC11229588 DOI: 10.2217/fmb-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/03/2024] [Indexed: 03/22/2024] Open
Abstract
Ophthalmia neonatorum is a microbial contraction, damaging eyesight, occurring largely among neonates. Infants are particularly vulnerable to bacterial infections acquired during birth from infected mothers, especially from Neisseria gonorrhoeae and Chlamydia trachomatis. Over the decades, N. gonorrhoeae is alarmingly developing a resistance to most antibiotics currently prescribed. To counter this challenge, it is imperative to find potent and cost-effective therapeutic agents for prophylaxis and treatment, to which the N. gonorrhoeae cannot easily develop resistance. This review showcases alternate therapies such as antimicrobial-fatty acids, -peptides, -nano-formulations etc., currently evident against N. gonorrhoeae-mediated ophthalmia neonatorum, which remains a major cause of ocular morbidity, blindness and even death among neonates in developing countries.
Collapse
|
9
|
Jamecna D, Höglinger D. The use of click chemistry in sphingolipid research. J Cell Sci 2024; 137:jcs261388. [PMID: 38488070 DOI: 10.1242/jcs.261388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.
Collapse
Affiliation(s)
- Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| |
Collapse
|
10
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
11
|
Lai X, Chow SH, Le Brun AP, Muir BW, Bergen PJ, White J, Yu HH, Wang J, Danne J, Jiang JH, Short FL, Han ML, Strugnell RA, Song J, Cameron NR, Peleg AY, Li J, Shen HH. Polysaccharide-Targeting Lipid Nanoparticles to Kill Gram-Negative Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305052. [PMID: 37798622 DOI: 10.1002/smll.202305052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Indexed: 10/07/2023]
Abstract
The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Seong Hoong Chow
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales, 2232, Australia
| | | | - Phillip J Bergen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacinta White
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Heidi H Yu
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jiping Wang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jill Danne
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, A Node of Microscopy Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Francesca L Short
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mei-Ling Han
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jian Li
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
12
|
Morris G, Goodman S, Sorzabal Bellido I, Milanese C, Girella A, Pallavicini P, Taglietti A, Gaboardi M, Jäckel F, Diaz Fernandez YA, Raval R. Temperature and pH Stimuli-Responsive System Delivers Location-Specific Antimicrobial Activity with Natural Products. ACS APPLIED BIO MATERIALS 2024; 7:131-143. [PMID: 38079569 PMCID: PMC10792665 DOI: 10.1021/acsabm.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Smart materials with controlled stimuli-responsive functions are at the forefront of technological development. In this work, we present a generic strategy that combines simple components, physicochemical responses, and easy fabrication methods to achieve a dual stimuli-responsive system capable of location-specific antimicrobial cargo delivery. The encapsulated system is fabricated by combining a biocompatible inert polymeric matrix of poly(dimethylsiloxane) (PDMS) and a bioactive cargo of saturated fatty acids. We demonstrate the effectiveness of our approach to deliver antimicrobial activity for the model bacteria Escherichia coli. The system responds to two control variables, temperature and pH, delivering two levels of antimicrobial response under distinct combinations of stimuli: one response toward the planktonic media and another response directly at the surface for sessile bacteria. Spatially resolved Raman spectroscopy alongside thermal and structural material analysis reveals that the system not only exhibits ON/OFF states but can also control relocation and targeting of the active cargo toward either the surface or the liquid media, leading to different ON/OFF states for the planktonic and sessile bacteria. The approach proposed herein is technologically simple and scalable, facing low regulatory barriers within the food and healthcare sectors by using approved components and relying on fundamental chemical processes. Our results also provide a proof-of-concept platform for the design and easy fabrication of delivery systems capable of operating as Boolean logic gates, delivering different responses under different environmental conditions.
Collapse
Affiliation(s)
- Gareth Morris
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
- Department
of Physics and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Sean Goodman
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Ioritz Sorzabal Bellido
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Chiara Milanese
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Alessandro Girella
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | | | - Angelo Taglietti
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Mattia Gaboardi
- Materials
Physics Center, CSIC-UPV/EHU, Donostia - San Sebastian 20018, Spain
| | - Frank Jäckel
- Department
of Physics and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Yuri A. Diaz Fernandez
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Rasmita Raval
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
13
|
Mijaljica D, Townley JP, Spada F, Harrison IP. The heterogeneity and complexity of skin surface lipids in human skin health and disease. Prog Lipid Res 2024; 93:101264. [PMID: 37940006 DOI: 10.1016/j.plipres.2023.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The outermost epidermal layer of the skin, the stratum corneum, is not simply a barrier that safeguards skin integrity from external insults and invaders, it is also a delicately integrated interface composed of firm, essentially dead corneocytes and a distinctive lipid matrix. Together, the stratum corneum lipid matrix and sebum lipids derived from sebaceous glands give rise to a remarkably complex but quite unique blend of skin surface lipids that demonstrates tremendous heterogeneity and provides the skin with its indispensable protective coating. The stratum corneum lipid matrix is composed primarily of three major lipid classes: ceramides, non-esterified fatty acids and cholesterol, whereas sebum is a waxy mixture predominantly composed of acylglycerols, wax esters, non-esterified fatty acids, squalene, cholesterol and cholesterol esters. The balance of these skin surface lipids in terms of their relative abundance, composition, molecular organisation and dynamics, and their intricate interactions play a crucial role in the maintenance of healthy skin. For that reason, even minuscule alterations in skin surface lipid properties or overall lipid profile have been implicated in the aetiology of many common skin diseases including atopic dermatitis, psoriasis, xerosis, ichthyosis and acne. Novel lipid-based interventions aimed at correcting the skin surface lipid abnormalities have the potential to repair skin barrier integrity and the symptoms associated with such skin diseases, even though the exact mechanisms of lipid restoration remain elusive.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Joshua P Townley
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Fabrizio Spada
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Ian P Harrison
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| |
Collapse
|
14
|
Dessì A, Di Maria C, Pintus R, Fanos V, Bosco A. Lipidomics and Metabolomics in Infant Atopic Dermatitis: What's the Correlation with Early Nutrition? Curr Pediatr Rev 2024; 20:510-524. [PMID: 37055903 DOI: 10.2174/1573396320666230411093122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/15/2023]
Abstract
To date, the complex picture of atopic dermatitis (AD) has not yet been fully clarified, despite the important prevalence of this disease in the pediatric population (20%) and the possibility of persistence into adulthood, with important implications for the quality of life of those affected, as well as significant social and financial costs. The most recent scientific evidence suggests a new interpretation of AD, highlighting the important role of the environment, particularly that of nutrition in the early stages of development. In fact, the new indications seem to point out the harmful effect of elimination diets, except in rare cases, the uselessness of chrono-insertions during complementary feeding and some benefits, albeit weak, of breastfeeding in those at greater risk. In this context, metabolomics and lipidomics can be necessary for a more in-depth knowledge of the complex metabolic network underlying this pathology. In fact, an alteration of the metabolic contents in children with AD has been highlighted, especially in correlation to the intestinal microbiota. While preliminary lipidomic studies showed the usefulness of a more in-depth knowledge of the alterations of the skin barrier to improve the development of baby skin care products. Therefore, investigating the response of different allergic phenotypes could be useful for better patient management and understanding, thus providing an early intervention on dysbiosis necessary to regulate the immune response from the earliest stages of development.
Collapse
Affiliation(s)
- Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Camilla Di Maria
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Alice Bosco
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Tse MW, Pacheco JA, Pierce K, Deik A, Xu J, Hussain S, Hussain FA, Xulu N, Khan N, Pillay V, Dong KL, Ndung’u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a novel strategy for bacterial vaginosis treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573720. [PMID: 38234804 PMCID: PMC10793477 DOI: 10.1101/2023.12.30.573720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew W. Frank
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
| | | | - Megan W. Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiawu Xu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Salina Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Krista L. Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Health Systems Trust, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | | | - Charles O. Rock
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- passed away on September 22, 2023
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth M. Bloom
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Liu F, Greenwood AI, Xiong Y, Miceli RT, Fu R, Anderson KW, McCallum SA, Mihailescu M, Gross R, Cotten ML. Host Defense Peptide Piscidin and Yeast-Derived Glycolipid Exhibit Synergistic Antimicrobial Action through Concerted Interactions with Membranes. JACS AU 2023; 3:3345-3365. [PMID: 38155643 PMCID: PMC10751773 DOI: 10.1021/jacsau.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 12/30/2023]
Abstract
Developing new antimicrobials as alternatives to conventional antibiotics has become an urgent race to eradicate drug-resistant bacteria and to save human lives. Conventionally, antimicrobial molecules are studied independently even though they can be cosecreted in vivo. In this research, we investigate two classes of naturally derived antimicrobials: sophorolipid (SL) esters as modified yeast-derived glycolipid biosurfactants that feature high biocompatibility and low production cost; piscidins, which are host defense peptides (HDPs) from fish. While HDPs such as piscidins target the membrane of pathogens, and thus result in low incidence of resistance, SLs are not well understood on a mechanistic level. Here, we demonstrate that combining SL-hexyl ester (SL-HE) with subinhibitory concentration of piscidins 1 (P1) and 3 (P3) stimulates strong antimicrobial synergy, potentiating a promising therapeutic window. Permeabilization assays and biophysical studies employing circular dichroism, NMR, mass spectrometry, and X-ray diffraction are performed to investigate the mechanism underlying this powerful synergy. We reveal four key mechanistic features underlying the synergistic action: (1) P1/3 binds to SL-HE aggregates, becoming α-helical; (2) piscidin-glycolipid assemblies synergistically accumulate on membranes; (3) SL-HE used alone or bound to P1/3 associates with phospholipid bilayers where it induces defects; (4) piscidin-glycolipid complexes disrupt the bilayer structure more dramatically and differently than either compound alone, with phase separation occurring when both agents are present. Overall, dramatic enhancement in antimicrobial activity is associated with the use of two membrane-active agents, with the glycolipid playing the roles of prefolding the peptide, coordinating the delivery of both agents to bacterial surfaces, recruiting the peptide to the pathogenic membranes, and supporting membrane disruption by the peptide. Given that SLs are ubiquitously and safely used in consumer products, the SL/peptide formulation engineered and mechanistically characterized in this study could represent fertile ground to develop novel synergistic agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Fei Liu
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Alexander I. Greenwood
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Yawei Xiong
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rebecca T. Miceli
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Riqiang Fu
- Center
of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Kyle W. Anderson
- National
Institute of Standards and Technology, Rockville, Maryland 20850, United States
| | - Scott A. McCallum
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mihaela Mihailescu
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Richard Gross
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Myriam L. Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
17
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
19
|
Szabó K, Bolla BS, Erdei L, Balogh F, Kemény L. Are the Cutaneous Microbiota a Guardian of the Skin's Physical Barrier? The Intricate Relationship between Skin Microbes and Barrier Integrity. Int J Mol Sci 2023; 24:15962. [PMID: 37958945 PMCID: PMC10647730 DOI: 10.3390/ijms242115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The skin is a tightly regulated, balanced interface that maintains our integrity through a complex barrier comprising physical or mechanical, chemical, microbiological, and immunological components. The skin's microbiota affect various properties, one of which is the establishment and maintenance of the physical barrier. This is achieved by influencing multiple processes, including keratinocyte differentiation, stratum corneum formation, and regulation of intercellular contacts. In this review, we summarize the potential contribution of Cutibacterium acnes to these events and outline the contribution of bacterially induced barrier defects to the pathogenesis of acne vulgaris. With the combined effects of a Westernized lifestyle, microbial dysbiosis, epithelial barrier defects, and inflammation, the development of acne is very similar to that of several other multifactorial diseases of barrier organs (e.g., inflammatory bowel disease, celiac disease, asthma, atopic dermatitis, and chronic rhinosinusitis). Therefore, the management of acne requires a complex approach, which should be taken into account when designing novel treatments that address not only the inflammatory and microbial components but also the maintenance and strengthening of the cutaneous physical barrier.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Beáta Szilvia Bolla
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Lilla Erdei
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| |
Collapse
|
20
|
Almoughrabie S, Cau L, Cavagnero K, O’Neill AM, Li F, Roso-Mares A, Mainzer C, Closs B, Kolar MJ, Williams KJ, Bensinger SJ, Gallo RL. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function. SCIENCE ADVANCES 2023; 9:eadg6262. [PMID: 37595033 PMCID: PMC10438445 DOI: 10.1126/sciadv.adg6262] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Lipid synthesis is necessary for formation of epithelial barriers and homeostasis with external microbes. An analysis of the response of human keratinocytes to several different commensal bacteria on the skin revealed that Cutibacterium acnes induced a large increase in essential lipids including triglycerides, ceramides, cholesterol, and free fatty acids. A similar response occurred in mouse epidermis and in human skin affected with acne. Further analysis showed that this increase in lipids was mediated by short-chain fatty acids produced by Cutibacterium acnes and was dependent on increased expression of several lipid synthesis genes including glycerol-3-phosphate-acyltransferase-3. Inhibition or RNA silencing of peroxisome proliferator-activated receptor-α (PPARα), but not PPARβ and PPARγ, blocked this response. The increase in keratinocyte lipid content improved innate barrier functions including antimicrobial activity, paracellular diffusion, and transepidermal water loss. These results reveal that metabolites from a common commensal bacterium have a previously unappreciated influence on the composition of epidermal lipids.
Collapse
Affiliation(s)
- Samia Almoughrabie
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
- SILAB, Brive, France
| | | | - Kellen Cavagnero
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Alan M. O’Neill
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Andrea Roso-Mares
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | | | | | - Matthew J. Kolar
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Kevin J. Williams
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA Lipidomics Lab, UCLA, Los Angeles, CA, USA
| | - Steven J. Bensinger
- UCLA Lipidomics Lab, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| |
Collapse
|
21
|
Manyawi M, Mozirandi WY, Tagwireyi D, Mukanganyama S. Fractionation and Antibacterial Evaluation of the Surface Compounds from the Leaves of Combretum zeyheri on Selected Pathogenic Bacteria. ScientificWorldJournal 2023; 2023:2322068. [PMID: 37520845 PMCID: PMC10382245 DOI: 10.1155/2023/2322068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/28/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023] Open
Abstract
Combretum zeyheri is traditionally used for the treatment of many infections, including bacterial infections. The aim of this study was to fractionate and evaluate antibacterial activity of the crude extract of C. zeyheri, as well as the surface compounds from the leaves of C. zeyheri, in two pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. The antibacterial activities of fractions obtained from chromatographic separations were determined using broth microdilution assay on the laboratory and clinical strains of S. aureus and P. aeruginosa. The fractionation of the compounds on the leaf surface yielded 262 fractions. The fractionated compounds with similar TLC profiles were pooled together to yield 47 pools. The extract and pooled fractions CZSC151154, CZSC155160, and CZSC209213 showed significant antibacterial activity with MIC values ranging from 12.5 μg/ml to 100 μg/ml. The clinical strain of S. aureus had MIC greater than 100 μg/ml for CZSC151154 and CZSC155160. The minimum bactericidal concentration values for these fractions were also in the range of 12.5 μg/ml to 100 μg/ml. The extract and fractions CZSC151154, CZSC155160, and CZSC209213 showed a concentration-dependent inhibition of growth in S. aureus. Analyses of the CZSC209213 pool by LC-MS showed the presence of nine compounds which are (3R,7R)-1,3,7-octanetriol, (-)-tortuosamine, 11-aminoundecanoic acid, 1-piperidinecarboxaldehyde, 3-hydroxy-4-isopropylbenzyl alcohol 3-glucoside, hydroxy-isocaproic acid, oleamide, palmitic amide, phytospingosine, and sphinganine. In conclusion, C. zeyheri leaf surface compounds exhibited antibacterial activity. The crude extract and the pooled fractions showed concentration-dependent inhibition of growth on S. aureus. Results from this study indicate the potential of C. zeyheri as a source of lead compounds that may be further developed into antibacterial drugs.
Collapse
Affiliation(s)
- Monica Manyawi
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Winnie Yevai Mozirandi
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Dexter Tagwireyi
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| |
Collapse
|
22
|
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. MLIFE 2023; 2:107-120. [PMID: 38817619 PMCID: PMC10989898 DOI: 10.1002/mlf2.12064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2024]
Abstract
As the largest organ of the body, the skin acts as a barrier to prevent diseases and harbors a variety of beneficial bacteria. Furthermore, the skin bacterial microbiota plays a vital role in health and disease. Disruption of the barrier or an imbalance between symbionts and pathogens can lead to skin disorders or even systemic diseases. In this review, we first provide an overview of research on skin bacterial microbiota and human health, including the composition of skin bacteria in a healthy state, as well as skin bacterial microbiota educating the immune system and preventing the invasion of pathogens. We then discuss the diseases that result from skin microbial dysbiosis, including atopic dermatitis, common acne, chronic wounds, psoriasis, viral transmission, cutaneous lupus, cutaneous lymphoma, and hidradenitis suppurativa. Finally, we highlight the progress that utilizes skin microorganisms for disease therapeutics, such as bacteriotherapy and skin microbiome transplantation. A deeper knowledge of the interaction between human health and disease and the homeostasis of the skin bacterial microbiota will lead to new insights and strategies for exploiting skin bacteria as a novel therapeutic target.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Xi Yu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Gong Cheng
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| |
Collapse
|
23
|
Flori E, Mastrofrancesco A, Ottaviani M, Maiellaro M, Zouboulis CC, Camera E. Desaturation of sebaceous-type saturated fatty acids through the SCD1 and the FADS2 pathways impacts lipid neosynthesis and inflammatory response in sebocytes in culture. Exp Dermatol 2023. [PMID: 36843338 DOI: 10.1111/exd.14780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Sebum is a lipid-rich mixture secreted by the sebaceous gland (SG) onto the skin surface. By penetrating through the epidermis, sebum may be involved in the regulation of epidermal and dermal cells in both healthy and diseased skin conditions. Saturated and monounsaturated fatty acids (FAs), found as free FAs (FFAs) and in bound form in neutral lipids, are essential constituents of sebum and key players of the inflammatory processes occurring in the pilosebaceous unit in acne-prone skin. Little is known on the interplay among uptake of saturated FFAs, their biotransformation, and induction of proinflammatory cytokines in sebocytes. In the human SG, palmitate (C16:0) is the precursor of sapienate (C16:1n-10) formed by insertion of a double bond (DB) at the Δ6 position catalysed by the fatty acid desaturase 2 (FADS2) enzyme. Conversely, palmitoleate (C16:1n-7) is formed by insertion of a DB at the Δ9 position catalysed by the stearoyl coenzyme A desaturase 1 (SCD1) enzyme. Other FFAs processed in the SG, also undergo these main desaturation pathways. We investigated lipogenesis and release of IL-6 and IL-8 pro-inflammatory cytokines in SZ95 sebocytes in vitro after treatment with saturated FFAs, that is, C16:0, margarate (C17:0), and stearate (C18:0) with or without specific inhibitors of SCD1 and FADS2 desaturase enzymes, and a drug with mixed inhibitory effects on FADS1 and FADS2 activities. C16:0 underwent extended desaturation through both SCD1 and FADS2 catalysed pathways and displayed the strongest lipoinflammatory effects. Inhibition of desaturation pathways proved to enhance lipoinflammation induced by SFAs in SZ95 sebocytes. Palmitate (C16:0), margarate (C17:0), and stearate (C18:0) are saturated fatty acids that induce different arrays of neutral lipids (triglycerides) and dissimilar grades of inflammation in sebocytes.
Collapse
Affiliation(s)
- Enrica Flori
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Emanuela Camera
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| |
Collapse
|
24
|
Swaney MH, Nelsen A, Sandstrom S, Kalan LR. Sweat and Sebum Preferences of the Human Skin Microbiota. Microbiol Spectr 2023; 11:e0418022. [PMID: 36602383 PMCID: PMC9927561 DOI: 10.1128/spectrum.04180-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The microorganisms inhabiting human skin must overcome numerous challenges that typically impede microbial growth, including low pH, osmotic pressure, and low nutrient availability. Yet the skin microbiota thrive on the skin and have adapted to these stressful conditions. The limited nutrients available for microbial use in this unique niche include those from host-derived sweat, sebum, and corneocytes. Here, we have developed physiologically relevant, synthetic skin-like growth media composed of compounds present in sweat and sebum. We find that skin-associated bacterial species exhibit unique growth profiles at different concentrations of artificial sweat and sebum. Most strains evaluated demonstrate a preference for high sweat concentrations, while the sebum preference is highly variable, suggesting that the capacity for sebum utilization may be a driver of the skin microbial community structure. In particular, the prominent skin commensal Staphylococcus epidermidis exhibits the strongest preference for sweat while growing equally well across sebum concentrations. Conversely, the growth of Corynebacterium kefirresidentii, another dominant skin microbiome member, is dependent on increasing concentrations of both sweat and sebum but only when sebum is available, suggesting a lipid requirement of this species. Furthermore, we observe that strains with similar growth profiles in the artificial media cluster by phylum, suggesting that phylogeny is a key factor in sweat and sebum use. Importantly, these findings provide an experimental rationale for why different skin microenvironments harbor distinct microbiome communities. In all, our study further emphasizes the importance of studying microorganisms in an ecologically relevant context, which is critical for our understanding of their physiology, ecology, and function on the skin. IMPORTANCE The human skin microbiome is adapted to survive and thrive in the harsh environment of the skin, which is low in nutrient availability. To study skin microorganisms in a system that mimics the natural skin environment, we developed and tested a physiologically relevant, synthetic skin-like growth medium that is composed of compounds found in the human skin secretions sweat and sebum. We find that most skin-associated bacterial species tested prefer high concentrations of artificial sweat but that artificial sebum concentration preference varies from species to species, suggesting that sebum utilization may be an important contributor to skin microbiome composition. This study demonstrates the utility of a skin-like growth medium, which can be applied to diverse microbiological systems, and underscores the importance of studying microorganisms in an ecologically relevant context.
Collapse
Affiliation(s)
- Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Amanda Nelsen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Lee SM, Keum HL, Sul WJ. Bacterial Crosstalk via Antimicrobial Peptides on the Human Skin: Therapeutics from a Sustainable Perspective. J Microbiol 2023; 61:1-11. [PMID: 36719618 DOI: 10.1007/s12275-022-00002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023]
Abstract
The skin's epidermis is an essential barrier as the first guard against invading pathogens, and physical protector from external injury. The skin microbiome, which consists of numerous bacteria, fungi, viruses, and archaea on the epidermis, play a key role in skin homeostasis. Antibiotics are a fast-acting and effective treatment method, however, antibiotic use is a nuisance that can disrupt skin homeostasis by eradicating beneficial bacteria along with the intended pathogens and cause antibiotic-resistant bacteria spread. Increased numbers of antimicrobial peptides (AMPs) derived from humans and bacteria have been reported, and their roles have been well defined. Recently, modulation of the skin microbiome with AMPs rather than artificially synthesized antibiotics has attracted the attention of researchers as many antibiotic-resistant strains make treatment mediation difficult in the context of ecological problems. Herein, we discuss the overall insights into the skin microbiome, including its regulation by different AMPs, as well as their composition and role in health and disease.
Collapse
Affiliation(s)
- Seon Mi Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
26
|
Jong T, Mudgil P. Exploring antimicrobial properties of cholesterol esters: a systematic literature review. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2085816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Timothy Jong
- School of Science, Western Sydney University, Penrith, Australia
| | - Poonam Mudgil
- School of Medicine, Western Sydney University, Penrith, Australia
| |
Collapse
|
27
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
28
|
Ahmed NS, Foote JB, Singh KK. Impaired Mitochondria Promote Aging-Associated Sebaceous Gland Dysfunction and Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1546-1558. [PMID: 35948081 PMCID: PMC9667715 DOI: 10.1016/j.ajpath.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/05/2023]
Abstract
Mitochondrial dysfunction is one of the hallmarks of aging. Changes in sebaceous gland (SG) function and sebum production have been reported during aging. This study shows the direct effects of mitochondrial dysfunction on SG morphology and function. A mitochondrial DNA (mtDNA) depleter mouse was used as a model for introducing mitochondrial dysfunction in the whole animal. The effects on skin SGs and modified SGs of the eyelid, lip, clitoral, and preputial glands were characterized. The mtDNA depleter mice showed gross morphologic and histopathologic changes in SGs associated with increased infiltration by mast cells, neutrophils, and polarized macrophages. Consistently, there was increased expression of proinflammatory cytokines. The inflammatory changes were associated with abnormal sebocyte accumulation of lipid, defective sebum delivery at the skin surface, and the up-regulation of key lipogenesis-regulating genes and androgen receptor. The mtDNA depleter mice expressed aging-associated senescent marker. Increased sebocyte proliferation and aberrant expression of stem cell markers were observed. These studies provide, for the first time, a causal link between mitochondrial dysfunction and abnormal sebocyte function within sebaceous and modified SGs throughout the whole body of the animal. They suggest that mtDNA depleter mouse may serve as a novel tool to develop targeted therapeutics to address SG disorders in aging humans.
Collapse
Affiliation(s)
- Noha S Ahmed
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Zagazig University, Zagazig, Egypt
| | - Jeremy B Foote
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Animal Resources Program, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Keshav K Singh
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
29
|
Lee HJ, Kim M. Skin Barrier Function and the Microbiome. Int J Mol Sci 2022; 23:13071. [PMID: 36361857 PMCID: PMC9654002 DOI: 10.3390/ijms232113071] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Human skin is the largest organ and serves as the first line of defense against environmental factors. The human microbiota is defined as the total microbial community that coexists in the human body, while the microbiome refers to the collective genome of these microorganisms. Skin microbes do not simply reside on the skin but interact with the skin in a variety of ways, significantly affecting the skin barrier function. Here, we discuss recent insights into the symbiotic relationships between the microbiome and the skin barrier in physical, chemical, and innate/adaptive immunological ways. We discuss the gut-skin axis that affects skin barrier function. Finally, we examine the effects of microbiome dysbiosis on skin barrier function and the role of these effects in inflammatory skin diseases, such as acne, atopic dermatitis, and psoriasis. Microbiome cosmetics can help restore skin barrier function and improve these diseases.
Collapse
Affiliation(s)
| | - Miri Kim
- Department of Dermatology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, #10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea
| |
Collapse
|
30
|
Risk Factors for Antimicrobial Resistance of Staphylococcus Species Isolated from Dogs with Superficial Pyoderma and Their Owners. Vet Sci 2022; 9:vetsci9070306. [PMID: 35878323 PMCID: PMC9325117 DOI: 10.3390/vetsci9070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
The microbial communities on the skin of dogs include several species of bacteria, which contribute to skin health and disease. Staphylococcus pseudintermedius, cultured at high frequency from the skin of dogs, is an opportunistic pathogen causing superficial pyoderma. Effective treatment against S. pseudintermedius infections is an important issue in veterinary medicine. However, multiple antibiotic-resistant mechanisms gradually developed by bacteria make treatment more challenging nowadays. Drug-resistant genes may have the chance to be transferred from infected dogs to other staphylococci in humans. The objective of this survey is to investigate the bacterial species that cause canine superficial pyoderma and characterize the antibiotic-resistant profiles and drug-resistant genes of isolated S. pseudintermedius. In addition, the possible risk factors causing S. pseudintermedius colonizing owners were also evaluated by a questionnaire survey. Sixty-five bacteria were isolated from dogs with superficial pyoderma, which included 47 S. pseudintermedius (72.3%), 12 other staphylococci (18.5%), 4 other Gram-positive bacteria (6.2%) and 2 Gram-negative bacteria (3.1%). Strains containing mecA and blaZ genes showed multiple-drug resistance characteristics. Dogs that received antimicrobial treatment within a recent month were at significantly higher risk of MRSP infections. Only five S. pseudintermedius strains (8.33%) were isolated from 60 samples of owners. Risk factor analysis indicated there was no significant association between S. pseudintermedius isolated from dogs and owners, but the “Keeping three or more dogs” and “Dogs can lick the owner’s face” have high odds ratios of 3.503 and 5.712, respectively. MRSP isolates belonged to three different dru types, including dt11y (29.41%), dt11a (47.06%) and dt10cp (23.53%). In conclusion, the major pathogen of canine superficial pyoderma is found to be S. pseudintermedius in Taiwan, and isolates which are mecA- or blaZ-positive are generally more resistant to commonly used antibiotics. Although S. pseudintermedius isolated from the owners might be transferred from their dogs, definite risk factors should be examined in the future study.
Collapse
|
31
|
Jiao Q, Zhi L, Qi Y, Yang J, Jia Y. Studies on stratum corneum metabolism: function, molecular mechanism and influencing factors. J Cosmet Dermatol 2022; 21:3256-3264. [DOI: 10.1111/jocd.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Qian Jiao
- Key Laboratory of Cosmetic of China National Light Industry College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
| | - Leilei Zhi
- Shandong Huawutang Biological Technology Co., Ltd. Shandong China
| | - Yufeng Qi
- Shandong Huawutang Biological Technology Co., Ltd. Shandong China
| | - Jie Yang
- Shandong Huawutang Biological Technology Co., Ltd. Shandong China
| | - Yan Jia
- Key Laboratory of Cosmetic of China National Light Industry College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
| |
Collapse
|
32
|
Mudgil P. Antimicrobial Tear Lipids in the Ocular Surface Defense. Front Cell Infect Microbiol 2022; 12:866900. [PMID: 35433501 PMCID: PMC9008483 DOI: 10.3389/fcimb.2022.866900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
The concept of antimicrobial lipids as effectors of innate host defense is an emerging field. There is limited knowledge on the antimicrobial role of lipids in the ocular environment. Tears act as first line of defense to protect the ocular surface from infections. Antimicrobial effects of tear lipids have been demonstrated using meibomian lipids that are the source of majority of lipids in tears. This article describes the knowledge available on the antimicrobial role of tear lipids at the ocular surface and the antimicrobial potential of various lipid classes present in tears that can contribute to antimicrobial protection of the eye. Like other mucosal secretions, tears contain many proteins and lipids with known antimicrobial effects. The antimicrobial defense of tears is far stronger than can be demonstrated by the effects of individual compounds many of which are present in low concentrations but synergistic and additive interactions between them provide substantial antimicrobial protection to the ocular surface. It is inferred that antimicrobial lipids play important role in innate defense of tears, and cooperative interactions between various antimicrobial lipids and proteins in tears provide a potent host defense mechanism that is effective against a broad spectrum of pathogens and renders self-sterilizing properties to tears for keeping the microbial load low at the ocular surface.
Collapse
|
33
|
Mapping the Lipids of Skin Sebaceous Glands and Hair Follicles by High Spatial Resolution MALDI Imaging Mass Spectrometry. Pharmaceuticals (Basel) 2022; 15:ph15040411. [PMID: 35455408 PMCID: PMC9031257 DOI: 10.3390/ph15040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a technology that utilizes the high sensitivity and specificity of mass spectrometry, combined with a high spatial resolution to characterize the molecular species present in skin tissue. In this article, we use MALDI IMS to map specific lipids characteristic of two important skin appendages in minipig skin: the sebaceous glands and hair follicles. A set of specific lipid markers linked to the synthesis of sebum, stages of sebum production, and the secretion of sebum for two different sebaceous gland subzones, the peripheral and central necrotic, were identified. Furthermore, biochemical pathway analysis of the identified markers provides potential drug-targeting strategies to reduce sebum overproduction in pathological conditions. In addition, specific lipid markers characteristic of the different layers in the hair follicle bulge area, including the outer root sheath, the inner root sheath, and the medulla that are associated with the growth cycles of the hair, were determined. This research highlights the ability of MALDI IMS to link a molecular distribution not only to the morphological features in skin tissue but to the physiological state as well. Thus, this platform can provide a basis for the investigation of biochemical pathways as well as the mechanisms of disease and pharmacology in the skin, which will ultimately be critical for drug discovery and the development of dermatology-related illnesses.
Collapse
|
34
|
Ruan SF, Hu Y, Wu WF, Du QQ, Wang ZX, Chen TT, Shen Q, Liu L, Jiang CP, Li H, Yi Y, Shen CY, Zhu HX, Liu Q. Explore the Anti-Acne Mechanism of Licorice Flavonoids Based on Metabonomics and Microbiome. Front Pharmacol 2022; 13:832088. [PMID: 35211023 PMCID: PMC8861462 DOI: 10.3389/fphar.2022.832088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acne vulgaris is one of the most common inflammatory dermatoses in dermatological practice and can affect any gender or ethnic group. Although in previous studies, we had found that licorice flavonoids (LCF) play an anti-acne role by inhibiting PI3K-Akt signaling pathways and mitochondrial activity, the mechanism of LCF regulating skin metabolism, serum metabolism and skin microbes is still unclear. Here, we performed a full spectrum analysis of metabolites in the skin and serum using UHPLC-Triple TOF-MS. The results showed that LCF could treat acne by regulating the metabolic balance of amino acids, lipids and fatty acids in serum and skin. Similarly, we performed Illumina Hiseq sequencing of DNA from the skin microbes using 16S ribosomal DNA identification techniques. The results showed that LCF could treat acne by regulating the skin microbes to interfere with acne and make the microecology close to the normal skin state of rats. In summary, this study confirmed the anti-acne mechanism of LCF, namely by regulating metabolic balance and microbial balance. Therefore, this discovery will provide theoretical guidance for the preparation development and clinical application of the drug.
Collapse
Affiliation(s)
- Shi-Fa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wen-Feng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun-Qun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhu-Xian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting-Ting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Xia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022; 11:pathogens11020121. [PMID: 35215065 PMCID: PMC8879973 DOI: 10.3390/pathogens11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.
Collapse
|
36
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
37
|
Abstract
Staphylococcus aureus is an important pathogen that relies on a variety of mechanisms to evade and counteract the immune system. We show that S. aureus uses oleate hydratase (OhyA) to convert host cis-9 unsaturated fatty acids to their 10-hydroxy derivatives in human serum and at the infection site in a mouse neutropenic thigh model. Wild-type and ΔohyA strains were equally infective in the neutropenic thigh model, but recovery of the ΔohyA strain was 2 orders of magnitude lower in the immunocompetent skin infection model. Despite the lower bacterial abundance at the infection site, the levels of interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), IL-1β, and tumor necrosis factor alpha (TNF-α) elicited by the ΔohyA strain were as robust as those of either the wild-type or the complemented strain, indicating that the immune system was more highly activated by the ΔohyA strain. Thus, OhyA functions to promote S. aureus virulence. IMPORTANCE The oleate hydratase protein family was discovered in commensal bacteria that utilize host unsaturated fatty acids as the substrates to produce a spectrum of hydroxylated products. These hydroxy fatty acids are thought to act as signaling molecules that suppress the inflammatory response to create a more tolerant environment for the microbiome. S. aureus is a significant human pathogen, and defining the mechanisms used to evade the immune response is critical to understanding pathogenesis. S. aureus expresses an OhyA that produces at least three 10-hydroxy fatty acids from host unsaturated fatty acids at the infection site, and an S. aureus strain lacking the ohyA gene has compromised virulence in an immunocompetent infection model. These data suggest that OhyA plays a role in immune modulation in S. aureus pathogenesis similar to that in commensal bacteria.
Collapse
|
38
|
Howard B, Bascom CC, Hu P, Binder RL, Fadayel G, Huggins TG, Jarrold BB, Osborne R, Rocchetta HL, Swift D, Tiesman JP, Song Y, Wang Y, Wehmeyer K, Kimball AB, Isfort RJ. Aging Associated Changes in the Adult Human Skin Microbiome and the Host Factors That Affect Skin Microbiome Composition. J Invest Dermatol 2021; 142:1934-1946.e21. [PMID: 34890626 DOI: 10.1016/j.jid.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Understanding changes in the skin microbiome and their relationship to host skin factors during aging remains largely unknown. To better understand this phenomenon, we collected samples for metagenomic and host skin factor analyses from forearm, buttock, and facial skin from 158 Caucasian females at 20-24, 30-34, 40-44, 50-54, 60-64, and 70-74 years of age. Metagenomics analysis was performed using 16S rRNA gene sequencing, while host sebocyte gland area, skin lipids, natural moisturizing factors (NMFs) and anti-microbial peptides (AMPs) measurements were also performed. These analyses demonstrated that skin bacterial diversity increased at all the skin sites with increasing age. Of the bacterial genera with average relative abundance of >1%, only Lactobacillus and Cutibacterium demonstrated a significant change (decrease) in abundance at all sampled skin sites with increasing age. Additional bacterial genera demonstrated significant age and site-specific changes in abundance. Analysis of sebocyte area, NMFs, lipids and AMPs demonstrated an age-related decrease in sebocyte area and increases in NMFs/AMPs/skin lipids, all which correlated with changes in specific bacterial genera. In conclusion, the human skin microbiome undergoes age-associated alterations that may reflect underlying age-related changes in cutaneous biology.
Collapse
Affiliation(s)
- Brian Howard
- The Procter & Gamble Company, Cincinnati, OH USA
| | | | - Ping Hu
- The Procter & Gamble Company, Cincinnati, OH USA
| | | | - Gina Fadayel
- The Procter & Gamble Company, Cincinnati, OH USA
| | | | | | | | | | - Dionne Swift
- The Procter & Gamble Company, Cincinnati, OH USA
| | | | - Yuli Song
- The Procter & Gamble Company, Cincinnati, OH USA
| | - Yu Wang
- The Procter & Gamble Company, Cincinnati, OH USA
| | | | | | | |
Collapse
|
39
|
Briganti S, Truglio M, Angiolillo A, Lombardo S, Leccese D, Camera E, Picardo M, Di Costanzo A. Application of Sebum Lipidomics to Biomarkers Discovery in Neurodegenerative Diseases. Metabolites 2021; 11:metabo11120819. [PMID: 34940576 PMCID: PMC8708591 DOI: 10.3390/metabo11120819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Lipidomics is strategic in the discovery of biomarkers of neurodegenerative diseases (NDDs). The skin surface lipidome bears the potential to provide biomarker candidates in the detection of pathological processes occurring in distal organs. We investigated the sebum composition to search diagnostic and, possibly, prognostic, biomarkers of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The observational study included 64 subjects: 20 characterized as “probable AD with documented decline”, 20 as “clinically established PD”, and 24 healthy subjects (HS) of comparable age. The analysis of sebum by GCMS and TLC retrieved the amounts (µg) of 41 free fatty acids (FFAs), 7 fatty alcohols (FOHs), vitamin E, cholesterol, squalene, and total triglycerides (TGs) and wax esters (WEs). Distributions of sebum lipids in NDDs and healthy conditions were investigated with multivariate ANOVA-simultaneous component analysis (ASCA). The deranged sebum composition associated with the PD group showed incretion of most composing lipids compared to HS, whereas only two lipid species (vitamin E and FOH14:0) were discriminant of AD samples and presented lower levels than HS sebum. Thus, sebum lipid biosynthetic pathways are differently affected in PD and AD. The characteristic sebum bio-signatures detected support the value of sebum lipidomics in the biomarkers search in NDDs.
Collapse
Affiliation(s)
- Stefania Briganti
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute—IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy; (S.B.); (M.T.); (M.P.)
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute—IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy; (S.B.); (M.T.); (M.P.)
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science “V. Tiberio”, University of Molise, Via De Santis, 86100 Campobasso, Italy; (A.A.); (S.L.); (D.L.); (A.D.C.)
| | - Salvatore Lombardo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science “V. Tiberio”, University of Molise, Via De Santis, 86100 Campobasso, Italy; (A.A.); (S.L.); (D.L.); (A.D.C.)
| | - Deborah Leccese
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science “V. Tiberio”, University of Molise, Via De Santis, 86100 Campobasso, Italy; (A.A.); (S.L.); (D.L.); (A.D.C.)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute—IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy; (S.B.); (M.T.); (M.P.)
- Correspondence: ; Tel.: +39-06-5266-6241; Fax: +39-06-5266-6247
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute—IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy; (S.B.); (M.T.); (M.P.)
| | - Alfonso Di Costanzo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science “V. Tiberio”, University of Molise, Via De Santis, 86100 Campobasso, Italy; (A.A.); (S.L.); (D.L.); (A.D.C.)
| |
Collapse
|
40
|
Transcriptional Differences in Lipid-Metabolizing Enzymes in Murine Sebocytes Derived from Sebaceous Glands of the Skin and Preputial Glands. Int J Mol Sci 2021; 22:ijms222111631. [PMID: 34769061 PMCID: PMC8584257 DOI: 10.3390/ijms222111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Sebaceous glands are adnexal structures, which critically contribute to skin homeostasis and the establishment of a functional epidermal barrier. Sebocytes, the main cell population found within the sebaceous glands, are highly specialized lipid-producing cells. Sebaceous gland-resembling tissue structures are also found in male rodents in the form of preputial glands. Similar to sebaceous glands, they are composed of lipid-specialized sebocytes. Due to a lack of adequate organ culture models for skin sebaceous glands and the fact that preputial glands are much larger and easier to handle, previous studies used preputial glands as a model for skin sebaceous glands. Here, we compared both types of sebocytes, using a single-cell RNA sequencing approach, to unravel potential similarities and differences between the two sebocyte populations. In spite of common gene expression patterns due to general lipid-producing properties, we found significant differences in the expression levels of genes encoding enzymes involved in the biogenesis of specialized lipid classes. Specifically, genes critically involved in the mevalonate pathway, including squalene synthase, as well as the sphingolipid salvage pathway, such as ceramide synthase, (acid) sphingomyelinase or acid and alkaline ceramidases, were significantly less expressed by preputial gland sebocytes. Together, our data revealed tissue-specific sebocyte populations, indicating major developmental, functional as well as biosynthetic differences between both glands. The use of preputial glands as a surrogate model to study skin sebaceous glands is therefore limited, and major differences between both glands need to be carefully considered before planning an experiment.
Collapse
|
41
|
Tsao CH, Hsieh WC, Yang RY, Lo YH, Tu TJ, Ke LY, Zouboulis CC, Liu FT. Galectin-12 modulates sebocyte proliferation and cell cycle progression by regulating cyclin A1 and CDK2. Glycobiology 2021; 32:73-82. [PMID: 34791227 DOI: 10.1093/glycob/cwab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Enhanced sebocyte proliferation is associated with the pathogenesis of human skin diseases related to sebaceous gland hyperfunction and androgens, which are known to induce sebocyte proliferation, are key mediators of this process. Galectin-12, a member of the β-galactoside-binding lectin family that is preferentially expressed by adipocytes and functions as an intrinsic negative regulator of lipolysis, has been shown to be expressed by human sebocytes. In this study, we identified galectin-12 as an important intracellular regulator of sebocyte proliferation. Galectin-12 knockdown in the human SZ95 sebocyte line suppressed cell proliferation, and its overexpression promoted cell cycle progression. Inhibition of galectin-12 expression reduced the androgen-induced SZ95 sebocyte proliferation and growth of sebaceous glands in mice, respectively. The mRNA expression of the key cell cycle regulators cyclin A1 (CCNA1) and cyclin-dependent kinase 2CDK2 was reduced in galectin-12 knockdown SZ95 sebocytes, suggesting a pathway of galectin-12 regulation of sebocyte proliferation. Further, galectin-12 enhanced peroxisome proliferator-activated receptor gamma (PPARγ) expression and transcriptional activity in SZ95 sebocytes, consistent with our previous studies in adipocytes. Rosiglitazone, a PPARγ ligand, induced CCNA1 levels, suggesting that galectin-12 may upregulate CCNA1 expression via PPARγ. Our findings suggest the possibility of targeting galectin-12 to treat human sebaceous gland hyperfunction and androgen-associated skin diseases.
Collapse
Affiliation(s)
- Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica
| | - Wei-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan
| | - Ri-Yao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yuan-Hsin Lo
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Road, New Taipei City 24352, Taiwan
| | - Ting-Jui Tu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Auenweg 38, Dessau 06847, Germany
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan.,Department of Dermatology, School of Medicine, University of California-Davis, 3301 C Street Suite 1300 - 1400, Sacramento, CA 95816, USA
| |
Collapse
|
42
|
Fischer N, Darmstadt GL, Shahunja KM, Crowther JM, Kendall L, Gibson RA, Ahmed T, Relman DA. Topical emollient therapy with sunflower seed oil alters the skin microbiota of young children with severe acute malnutrition in Bangladesh: A randomised, controlled study. J Glob Health 2021; 11:04047. [PMID: 34386216 PMCID: PMC8325932 DOI: 10.7189/jogh.11.04047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Topical emollient therapy with sunflower seed oil (SSO) reduces risk of sepsis and mortality in very preterm infants in low- or middle-income countries (LMICs). Proposed mechanisms include modulation of skin and possibly gut barrier function. The skin and gut microbiota play important roles in regulating barrier function, but the effects of emollient therapy on these microbiotas are poorly understood. Methods We characterised microbiota structure and diversity with 16S rRNA gene amplicon sequence data and ecological statistics in 20 children with severe acute malnutrition (SAM) aged 2-24 months, at four skin sites and in stool, during a randomised, controlled trial of emollient therapy with SSO in Bangladesh. Microbes associated with therapy were identified with tree-based sparse discriminant analysis. Results The skin microbiota of Bangladeshi children with SAM was highly diverse and displayed significant variation in structure as a function of physical distance between sites. Microbiota structure differed between the study groups (P = 0.005), was more diverse in emollient-treated subjects–including on the forehead which did not receive direct treatment–and changed with each day (P = 0.005) at all skin sites. Overall, Prevotellaceae were the most differentially affected by emollient treatment; several genera within this family became more abundant in the emollient group than in the controls across several skin sites. Gut microbiota structure was associated with sample day (P = 0.045) and subject age (P = 0.045), but was not significantly affected by emollient treatment (P = 0.060). Conclusions Emollient therapy altered the skin microbiota in a consistent and temporally coherent manner. We speculate that therapy with SSO enhances skin barrier function in part through alterations in the microbiota, and through systemic mechanisms. Strategies to strengthen skin and gut barrier function in populations at risk, such as children in LMICs like Bangladesh, might include deliberate manipulation of their skin microbiota. Trial registration ClinicalTrials.gov: NCT02616289.
Collapse
Affiliation(s)
- Natalie Fischer
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Gary L Darmstadt
- Prematurity Research Center, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - K M Shahunja
- Nutrition and Clinical Services Division, International Centre for Diarroheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarroheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - David A Relman
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Nutrition and Clinical Services Division, International Centre for Diarroheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh.,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.,Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System 154T, Palo Alto, California, USA
| |
Collapse
|
43
|
Rossi A, Martins MP, Bitencourt TA, Peres NTA, Rocha CHL, Rocha FMG, Neves-da-Rocha J, Lopes MER, Sanches PR, Bortolossi JC, Martinez-Rossi NM. Reassessing the Use of Undecanoic Acid as a Therapeutic Strategy for Treating Fungal Infections. Mycopathologia 2021; 186:327-340. [PMID: 33835367 DOI: 10.1007/s11046-021-00550-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Treating fungal infections is challenging and frequently requires long-term courses of antifungal drugs. Considering the limited number of existing antifungal drugs, it is crucial to evaluate the possibility of repositioning drugs with antifungal properties and to revisit older antifungals for applications in combined therapy, which could widen the range of therapeutic possibilities. Undecanoic acid is a saturated medium-chain fatty acid with known antifungal effects; however, its antifungal properties have not been extensively explored. Recent advances indicate that the toxic effect of undecanoic acid involves modulation of fungal metabolism through its effects on the expression of fungal genes that are critical for virulence. Additionally, undecanoic acid is suitable for chemical modification and might be useful in synergic therapies. This review highlights the use of undecanoic acid in antifungal treatments, reinforcing its known activity against dermatophytes. Specifically, in Trichophyton rubrum, against which the activity of undecanoic acid has been most widely studied, undecanoic acid elicits profound effects on pivotal processes in the cell wall, membrane assembly, lipid metabolism, pathogenesis, and even mRNA processing. Considering the known antifungal activities and associated mechanisms of undecanoic acid, its potential use in combination therapy, and the ability to modify the parent compound structure, undecanoic acid shows promise as a novel therapeutic against fungal infections.
Collapse
Affiliation(s)
- Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Tamires A Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Nalu T A Peres
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos H L Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Flaviane M G Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Marcos E R Lopes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Júlio C Bortolossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
44
|
Human brain activity reflecting facial attractiveness from skin reflection. Sci Rep 2021; 11:3412. [PMID: 33619295 PMCID: PMC7900112 DOI: 10.1038/s41598-021-82601-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/06/2020] [Indexed: 11/30/2022] Open
Abstract
Facial attraction has a great influence on our daily social interactions. Previous studies have mainly focused on the attraction from facial shape and expression. We recently found that faces with radiant skin appear to be more attractive than those with oily-shiny or matte skin. In the present study, we conducted functional magnetic resonance imaging (fMRI) and psychological experiments to determine the human brain activity that reflects facial attractiveness modulated by these skin reflection types. In the fMRI experiment, female subjects were shown successive images of unfamiliar female faces with matte, oily-shiny, or radiant skin. The subjects compared each face with the immediately preceding face in terms of attractiveness, age, and skin reflection, all based on the skin. The medial part of the orbitofrontal cortex (mOFC) was significantly more active when comparing attractiveness than when comparing skin reflection, suggesting that the mOFC is involved in processing facial attractiveness from skin reflection. In the psychological experiment, attractiveness rating was highest for radiant skin, followed by oily-shiny, and then matte skin. Comparison of the results of these experiments showed that mOFC activation level increased with attractiveness rating. These results suggest that the activation level of the mOFC reflects facial attractiveness from skin reflection.
Collapse
|
45
|
Peters S, Kaiser L, Fink J, Schumacher F, Perschin V, Schlegel J, Sauer M, Stigloher C, Kleuser B, Seibel J, Schubert-Unkmeir A. Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria. Sci Rep 2021; 11:4300. [PMID: 33619350 PMCID: PMC7900124 DOI: 10.1038/s41598-021-83813-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce ‘click-AT-CLEM’, a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Lena Kaiser
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Julian Fink
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Jürgen Seibel
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
46
|
Leung DYM, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol 2021; 145:1485-1497. [PMID: 32507227 DOI: 10.1016/j.jaci.2020.02.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/08/2023]
Abstract
The fundamental defect(s) that drives atopic dermatitis (AD) remains controversial. "Outside in" proponents point to the important association of filaggrin gene mutations and other skin barrier defects with AD. The "inside out" proponents derive support from evidence that AD occurs in genetic animal models with overexpression of type 2 immune pathways in their skin, and humans with gain-of-function mutations in their type 2 response develop severe AD. The observation that therapeutic biologics, targeting type 2 immune responses, can reverse AD provides compelling support for the importance of "inside out" mechanisms of AD. In this review, we propose a central role for epithelial cell dysfunction that accounts for the dual role of skin barrier defects and immune pathway activation in AD. The complexity of AD has its roots in the dysfunction of the epithelial barrier that allows the penetration of allergens, irritants, and microbes into a cutaneous milieu that facilitates the induction of type 2 immune responses. The AD phenotypes and endotypes that result in chronic skin inflammation and barrier dysfunction are modified by genes, innate/adaptive immune responses, and different environmental factors that cause skin barrier dysfunction. There is also compelling evidence that skin barrier dysfunction can alter the course of childhood asthma, food allergy, and allergic rhinosinusitis. Effective management of AD requires a multipronged approach, not only restoring cutaneous barrier function, microbial flora, and immune homeostasis but also enhancing skin epithelial differentiation.
Collapse
Affiliation(s)
| | | | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo
| |
Collapse
|
47
|
Knox S, O'Boyle NM. Skin lipids in health and disease: A review. Chem Phys Lipids 2021; 236:105055. [PMID: 33561467 DOI: 10.1016/j.chemphyslip.2021.105055] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Our skin is the interface between us and our environment - a flexible barrier that has evolved for protection, immunity, regulation and sensation. Once regarded as inert, we now know that it is a dynamic environment. Skin lipids are crucial to the structure and function of skin. From deep in the hypodermis, through the ceramide-rich epidermis, to the lipids of the skin surface, there are a vast array of different lipids with important roles to play. This review firstly discusses the lipid composition of human skin and secondly, changes that have been found in skin lipid composition in different skin diseases. Further research into skin lipids facilitated by ever-improving methodologies will no doubt generate new knowledge, paving the way for diagnosis, prevention and treatment of skin disorders and diseases.
Collapse
Affiliation(s)
- Sophie Knox
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40, Ireland.
| |
Collapse
|
48
|
Shamloul G, Khachemoune A. An updated review of the sebaceous gland and its role in health and diseases Part 1: Embryology, evolution, structure, and function of sebaceous glands. Dermatol Ther 2021; 34:e14695. [PMID: 33354858 DOI: 10.1111/dth.14695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Sebaceous glands are sebum-secreting components of pilosebaceous units. The embryological development of the sebaceous gland follows that of the hair follicle and epidermal tissue, beginning between weeks 13 and 16 of fetal development. New sebaceous glands do not normally develop following birth, but their size increases with age. Sebocytes express a multitude of hormone receptors and are heavily regulated to secrete sebum by androgens. There is a large increase of sebum excretion at birth and again at puberty, until approximately age 17. In adulthood, sebum production remains stable and declines to zero in postmenopausal women and in men aged 60-70. Besides the production and release of sebum, sebaceous glands function to lubricate the skin and hair, provide thermoregulation, and exhibit antimicrobial activity. Research has shown sebaceous glands to possess the cellular capability to transcribe genes necessary for androgen metabolism. Dysfunction of the sebaceous gland can be seen primarily in steatocystoma simplex and multiplex, sebaceous gland hyperplasia, sebaceoma, sebaceous adenoma, sebaceous carcinoma, nevus sebaceus, and folliculosebaceous cystic hamartoma. Sebaceous glands are secondarily involved in acne vulgaris, seborrheic dermatitis, and androgenic alopecia.
Collapse
Affiliation(s)
- Gelan Shamloul
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Amor Khachemoune
- Veterans Affairs Hospital and SUNY Downstate Dermatology Service, Brooklyn, New York, USA
| |
Collapse
|
49
|
DeVore SB, Gonzalez T, Sherenian MG, Herr AB, Khurana Hershey GK. On the surface: Skin microbial exposure contributes to allergic disease. Ann Allergy Asthma Immunol 2020; 125:628-638. [PMID: 32853786 PMCID: PMC11656525 DOI: 10.1016/j.anai.2020.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To discuss the skin microbiome modulates immunity by interactions between skin immunology with keratinocytes to combat pathogens. Allergic disorders are classified by immunoglobulin E sensitivity and aberrant TH2 cell responses, and an increasing number of studies have described the associations with skin microbiome fluctuations. In this review, we discuss commensal-epidermal homeostasis and its influence on allergic disease. DATA SOURCES All included references were obtained from the PubMed database. STUDY SELECTIONS Studies addressing relevant aspects of commensal-epidermal homeostasis, skin microbiome dysbiosis, microbiome-targeted therapeutics, and prevention in allergy were included. RESULTS Homeostasis between the commensal microbiome and the epidermis is important in protecting against allergic disease. Commensals promote antiallergic TH1 and TH17 immunophenotypes within the skin and induce keratinocytes to secrete antimicrobial peptides and alarmins that enhance barrier function and antagonize proallergic organisms. Perturbations in this homeostasis, however, is associated with allergic disease development. Atopic dermatitis is associated with decreases in skin commensals and increases in the pathogen, Staphylococcus aureus. Fluctuations in the skin microbiome contributes to decreased barrier dysfunction, allergic sensitization, and TH2 cytokine secretion. Little is known about how the skin microbiome affects food allergy, allergic rhinitis, and asthma, and it is poorly understood how cutaneous inflammation influences systemic allergic responses. Therapies are targeted toward maintenance of the skin barrier, replacement of healthy commensals, and anti-TH2 biologic therapy. CONCLUSION Although the effects of commensal-epidermal homeostasis on allergy within the skin are becoming increasingly clear, future studies are necessary to assess its effects on extracutaneous allergic disorders and explore potential therapeutics targeting the skin microbiome.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tammy Gonzalez
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael G Sherenian
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew B Herr
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
50
|
Gao L, Wang Z, van der Veen S. Gonococcal Adaptation to Palmitic Acid Through farAB Expression and FadD Activity Mutations Increases In Vivo Fitness in a Murine Genital Tract Infection Model. J Infect Dis 2020; 224:141-150. [PMID: 33170275 DOI: 10.1093/infdis/jiaa701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae is a bacterial pathogen that colonizes mucosal epithelia that are rich in antimicrobial molecules such as long-chain fatty acids. Here we studied the mechanisms involved in palmitic acid resistance and their impact on in vivo biological fitness in a murine genital tract infection model. A stable palmitic acid-resistant derivative was obtained by serial passage with incremental palmitic acid concentrations. This derivative outcompeted its parent strain for colonization and survival in the murine infection model. Subsequent whole-genome sequencing resulted in the identification of the 3 resistance-related SNPs ihfAC5T, fadDC772T, and farAG-52T (promoter) that were verified for resistance against palmitic acid. Subsequent characterization of the associated resistance determinants showed that ihfAC5T and farAG-52T induced gene expression of the FarAB efflux pump, whereas fadDC772T increased the maximum enzyme activity of the FadD long-chain fatty acid-coenzyme A ligase. Our results highlight the mechanisms involved in gonococcal adaptation to the murine host environment.
Collapse
Affiliation(s)
- Lingyu Gao
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhemin Wang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|