1
|
Valero-Ochando J, Cantó A, López-Pedrajas R, Almansa I, Miranda M. Role of Gonadal Steroid Hormones in the Eye: Therapeutic Implications. Biomolecules 2024; 14:1262. [PMID: 39456195 PMCID: PMC11506707 DOI: 10.3390/biom14101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gonadal steroid hormones are critical regulatory substances involved in various developmental and physiological processes from fetal development through adulthood. These hormones, derived from cholesterol, are synthesized primarily by the gonads, adrenal cortex, and placenta. The synthesis of these hormones involves a series of enzymatic steps starting in the mitochondria and includes enzymes such as cytochrome P450 and aromatase. Beyond their genomic actions, which involve altering gene transcription over hours, gonadal steroids also exhibit rapid, nongenomic effects through receptors located on the cell membrane. Additionally, recent research has highlighted the role of these hormones in the central nervous system (CNS). However, the interactions between gonadal steroid hormones and the retina have received limited attention, though it has been suggested that they may play a protective role in retinal diseases. This review explores the synthesis of gonadal hormones, their mechanisms of action, and their potential implications in various retinal and optic nerve diseases, such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), or retinitis pigmentosa (RP), discussing both protective and risk factors associated with hormone levels and their therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Valencia, Spain; (J.V.-O.); (A.C.); (R.L.-P.); (I.A.)
| |
Collapse
|
2
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
3
|
Izumi Y, Ishikawa M, Nakazawa T, Kunikata H, Sato K, Covey DF, Zorumski CF. Neurosteroids as stress modulators and neurotherapeutics: lessons from the retina. Neural Regen Res 2023; 18:1004-1008. [PMID: 36254981 PMCID: PMC9827771 DOI: 10.4103/1673-5374.355752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurosteroids are rapidly emerging as important new therapies in neuropsychiatry, with one such agent, brexanolone, already approved for treatment of postpartum depression, and others on the horizon. These steroids have unique properties, including neuroprotective effects that could benefit a wide range of brain illnesses including depression, anxiety, epilepsy, and neurodegeneration. Over the past 25 years, our group has developed ex vivo rodent models to examine factors contributing to several forms of neurodegeneration in the retina. In the course of this work, we have developed a model of acute closed angle glaucoma that involves incubation of ex vivo retinas under hyperbaric conditions and results in neuronal and axonal changes that mimic glaucoma. We have used this model to determine neuroprotective mechanisms that could have therapeutic implications. In particular, we have focused on the role of both endogenous and exogenous neurosteroids in modulating the effects of acute high pressure. Endogenous allopregnanolone, a major stress-activated neurosteroid in the brain and retina, helps to prevent severe pressure-induced retinal excitotoxicity but is unable to protect against degenerative changes in ganglion cells and their axons under hyperbaric conditions. However, exogenous allopregnanolone, at a pharmacological concentration, completely preserves retinal structure and does so by combined effects on gamma-aminobutyric acid type A receptors and stimulation of the cellular process of macroautophagy. Surprisingly, the enantiomer of allopregnanolone, which is inactive at gamma-aminobutyric acid type A receptors, is equally retinoprotective and acts primarily via autophagy. Both enantiomers are also equally effective in preserving retinal structure and function in an in vivo glaucoma model. These studies in the retina have important implications for the ongoing development of allopregnanolone and other neurosteroids as therapeutics for neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Makoto Ishikawa
- Department of Ophthalmic Imaging and Information Analytics; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmic Imaging and Information Analytics; Department of Ophthalmology; Department of Retinal Disease Control; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmic Imaging and Information Analytics; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Douglas F Covey
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Gender and Neurosteroids: Implications for Brain Function, Neuroplasticity and Rehabilitation. Int J Mol Sci 2023; 24:ijms24054758. [PMID: 36902197 PMCID: PMC10003563 DOI: 10.3390/ijms24054758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Neurosteroids are synthesized de novo in the nervous system; they mainly moderate neuronal excitability, and reach target cells via the extracellular pathway. The synthesis of neurosteroids occurs in peripheral tissues such as gonads tissues, liver, and skin; then, because of their high lipophilia, they cross the blood-brain barrier and are stored in the brain structure. Neurosteroidogenesis occurs in brain regions such as the cortex, hippocampus, and amygdala by enzymes necessary for the in situ synthesis of progesterone from cholesterol. Neurosteroids could be considered the main players in both sexual steroid-induced hippocampal synaptic plasticity and normal transmission in the hippocampus. Moreover, they show a double function of increasing spine density and enhancing long term potentiation, and have been related to the memory-enhancing effects of sexual steroids. Estrogen and progesterone affect neuronal plasticity differently in males and females, especially regarding changes in the structure and function of neurons in different regions of the brain. Estradiol administration in postmenopausal women allowed for improving cognitive performance, and the combination with aerobic motor exercise seems to enhance this effect. The paired association between rehabilitation and neurosteroids treatment could provide a boosting effect in order to promote neuroplasticity and therefore functional recovery in neurological patients. The aim of this review is to investigate the mechanisms of action of neurosteroids as well as their sex-dependent differences in brain function and their role in neuroplasticity and rehabilitation.
Collapse
|
5
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
6
|
Galindez SM, Keightley A, Koulen P. Differential distribution of steroid hormone signaling networks in the human choroid-retinal pigment epithelial complex. BMC Ophthalmol 2022; 22:406. [PMID: 36266625 PMCID: PMC9583547 DOI: 10.1186/s12886-022-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The retinal pigment epithelium (RPE), a layer of pigmented cells that lies between the neurosensory retina and the underlying choroid, plays a critical role in maintaining the functional integrity of photoreceptor cells and in mediating communication between the neurosensory retina and choroid. Prior studies have demonstrated neurotrophic effects of select steroids that mitigate the development and progression of retinal degenerative diseases via an array of distinct mechanisms of action. Methods Here, we identified major steroid hormone signaling pathways and their key functional protein constituents controlling steroid hormone signaling, which are potentially involved in the mitigation or propagation of retinal degenerative processes, from human proteome datasets with respect to their relative abundances in the retinal periphery, macula, and fovea. Results Androgen, glucocorticoid, and progesterone signaling networks were identified and displayed differential distribution patterns within these three anatomically distinct regions of the choroid-retinal pigment epithelial complex. Classical and non-classical estrogen and mineralocorticoid receptors were not identified. Conclusion Identified differential distribution patterns suggest both selective susceptibility to chronic neurodegenerative disease processes, as well as potential substrates for drug target discovery and novel drug development focused on steroid signaling pathways in the choroid-RPE.
Collapse
Affiliation(s)
- Sydney M Galindez
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Andrew Keightley
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Peter Koulen
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
7
|
Benlloch-Navarro S, Trachsel-Moncho L, Fernández-Carbonell Á, Olivar T, Soria JM, Almansa I, Miranda M. Progesterone anti-inflammatory properties in hereditary retinal degeneration. J Steroid Biochem Mol Biol 2019; 189:291-301. [PMID: 30654106 DOI: 10.1016/j.jsbmb.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 01/20/2023]
Abstract
The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
Collapse
Affiliation(s)
- Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Laura Trachsel-Moncho
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | | | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José Miguel Soria
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|
8
|
Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants (Basel) 2019; 8:antiox8030053. [PMID: 30832304 PMCID: PMC6466531 DOI: 10.3390/antiox8030053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been documented to be a key factor in the cause and progression of different retinal diseases. Oxidative cellular unbalance triggers a sequence of reactions which prompt cell degeneration and retinal dysfunction, both hallmarks of several retinal pathologies. There is no effective treatment, yet, for many retinal diseases. Antioxidant treatment have been pointed out to be an encouraging palliative treatment; the beneficial effects documented involve slowing the progression of the disease, a reduction of cell degeneration, and improvement of retinal functions. There is a vast information corpus on antioxidant candidates. In this review, we expose three of the main antioxidant treatments, selected for their promising results that has been reported to date. Recently, the sulforaphane, an isothiocyanate molecule, has been unveiled as a neuroprotective candidate, by its antioxidant properties. Progesterone, a neurosteroid has been proposed to be a solid and effective neuroprotective agent. Finally, the lipoic acid, an organosulfur compound, is a well-recognized antioxidant. All of them, have been tested and studied on different retinal disease models. In this review, we summarized the published results of these works, to offer a general view of the current antioxidant treatment advances, including the main effects and mechanisms described.
Collapse
|
9
|
Nuzzi R, Scalabrin S, Becco A, Panzica G. Sex Hormones and Optic Nerve Disorders: A Review. Front Neurosci 2019; 13:57. [PMID: 30804741 PMCID: PMC6378504 DOI: 10.3389/fnins.2019.00057] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/21/2019] [Indexed: 01/31/2023] Open
Abstract
Aim: This review article presents a comprehensive overview of the literature on sex hormones (estrogens, androgens, progesterone) and optic nerve disorders, with a discussion of the implications for therapy and prevention. Methods: Epidemiological, pre-clinical and clinical studies were reviewed. Results: Analysis of the biological basis for a relationship between eye diseases and sex hormones showed that some types of hormones can exert a protective effect either directly on the retina and optic nerve or indirectly by modulating ocular blood flow. For example, it seems that estrogen exposure has a protective effect against glaucoma, whereas its deficit may lead to early onset of the disease. If further studies confirm the data in the literature, estrogen therapy, because of its antioxidant action, may be effective in the treatment of Leber's hereditary optic neuropathy, whereas, in the light of current studies, there does not seem to be an influence of estrogen on non-arteritic anterior ischemic optic neuritis (NAION). Conclusions: Although there is some evidence that in some optic nerve pathologies the sex hormones seem to play an important role there are still too few studies providing evidence for its wider use in clinical practice.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, AOU Città della Salute e della Scienza, Ophtalmic Clinic, University of Turin, Turin, Italy
| | - Simona Scalabrin
- Eye Clinic, Department of Surgical Sciences, AOU Città della Salute e della Scienza, Ophtalmic Clinic, University of Turin, Turin, Italy
| | - Alice Becco
- Eye Clinic, Department of Surgical Sciences, AOU Città della Salute e della Scienza, Ophtalmic Clinic, University of Turin, Turin, Italy
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri-Ottolenghi, Orbassano, Italy
| |
Collapse
|
10
|
Inoue-Yanagimachi M, Himori N, Sato K, Kokubun T, Asano T, Shiga Y, Tsuda S, Kunikata H, Nakazawa T. Association between mitochondrial DNA damage and ocular blood flow in patients with glaucoma. Br J Ophthalmol 2018; 103:1060-1065. [DOI: 10.1136/bjophthalmol-2018-312356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 02/03/2023]
Abstract
Background/AimsWe determined the relationship between tissue mean blur rate (MT) and mitochondrial dysfunction, represented by the mitochondrial/nuclear DNA (mtDNA/nDNA) ratio. We also investigated the usefulness of these biomarkers.MethodsWe assessed ocular blood flow in 123 eyes of 123 patients with open-angle glaucoma (OAG) and 37 control eyes of 37 healthy subjects by measuring MT in the optic nerve head with laser speckle flowgraphy. We measured mtDNA and nDNA with PCR, calculated the mtDNA/nDNA ratio and compared this ratio with MT using Spearman’s rank test. We used multiple regression analysis to further investigate the association between MT and glaucoma in the most severe group.ResultsThe control and the patients with glaucoma had significant differences in the mtDNA/nDNA ratio, circumpapillary retinal nerve fibre layer thickness and MT. There was no significant relationship between the mtDNA/nDNA ratio and MT in patients with OAG overall or the female patients with OAG, but there was a significant relationship between the mtDNA/nDNA ratio and MT, temporal-MT and superior-MT in male patients with severe OAG (r=−0.46, p=0.03; r=−0.51, p=0.02; r=−0.61, p<0.01, respectively). Furthermore, we found that the mtDNA/nDNA ratio was an independent contributor to temporal-MT and superior-MT in these patients (p<0.01 and p=0.03, respectively).ConclusionWe found that there was a significant relationship between the mtDNA/nDNA ratio and MT in male patients with severe OAG, suggesting that the mtDNA/nDNA ratio may be a new biomarker in glaucoma and may help research on the vulnerability of these patients to mitochondrial dysfunction.
Collapse
|
11
|
Ramírez-Lamelas DT, Benlloch-Navarro S, López-Pedrajas R, Gimeno-Hernández R, Olivar T, Silvestre D, Miranda M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front Pharmacol 2018; 9:469. [PMID: 29867476 PMCID: PMC5954235 DOI: 10.3389/fphar.2018.00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinopathies characterized by photoreceptors death. Our group has shown the positive progesterone (P4) actions on cell death progression in an experimental model of RP. In an effort to enhance the beneficial effects of P4, the aim of this study was to combine P4 treatment with an antioxidant [lipoic acid (LA)] in the rd1 mice. rd1 and control mice were treated with 100 mg/kg body weight of P4, LA, or a combination of both on postnatal day 7 (PN7), 9, and 11, and were sacrificed at PN11. The administration of LA and/or P4 diminishes cell death in rd1 retinas. The effect obtained after the combined administration of LA and P4 is higher than the one obtained with LA or P4 alone. The three treatments decreased GFAP staining, however, in the far peripheral retina, and the two treatments that offered better results were LA and LA plus P4. LA or LA plus P4 increased retinal glutathione (GSH) concentration in the rd1 mice. Although LA and P4 are able to protect photoreceptors from death in rd1 mice retinas, a better effectiveness is achieved when administering LA and P4 at the same time.
Collapse
Affiliation(s)
- Dolores T Ramírez-Lamelas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Rosa López-Pedrajas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Roberto Gimeno-Hernández
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Dolores Silvestre
- Departamento Farmacia, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
12
|
Nishikawa Y, Morishita S, Horie T, Fukumoto M, Sato T, Kida T, Oku H, Sugasawa J, Ikeda T, Nakamura K. A comparison of sex steroid concentration levels in the vitreous and serum of patients with vitreoretinal diseases. PLoS One 2017; 12:e0180933. [PMID: 28704441 PMCID: PMC5509246 DOI: 10.1371/journal.pone.0180933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/24/2017] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to compare steroid hormone concentration levels in the vitreous and serum of vitreoretinal disease patients to elucidate the possibility of neurosteroid production in the retina. Serum and vitreous samples were collected from vitrectomy patients, and estradiol (E2) and testosterone (T) concentrations were measured using electro-chemiluminescence immunoassay. We measured E2 in epiretinal membrane (ERM, n = 14), macular hole (MH, n = 18), proliferative diabetic retinopathy (PDR, n = 20), and retinal detachment (RD, n = 19) cases, and T in ERM (n = 14), MH (n = 17), PDR (n = 13), and RD (n = 17) cases. No statistically significant age differences existed among the groups. Mean respective E2 concentrations (pg/ml) in the male/female vitreous were ERM: 6.67±4.04/18.82±7.10, MH: 10.3±7.02/17.00±4.8, PDR: 4.2±3.05/15.83±3.46, and RD: 10.00±4.58/16.06±4.57, while those in serum were ERM: 31.67±5.51/5.82±1.08, MH: 21.00±8.89/7.53±3.2, PDR: 29.20±7.07/12.75±10.62, and RD: 24.33±6.51/7.5±4.42. E2 concentrations were significantly higher (P<0.001) in the male serum than vitreous, yet significantly higher in the female vitreous than serum. Mean respective T concentrations (ng/ml) in the male/female vitreous were ERM: 0.15±0.03/0.15±0.01, MH: 0.15±0.01/0.15±0.01, PDR: 0.15±0.03/0.16±0.12, and RD: 0.14±0.01/0.17±0.08, while those in serum were ERM: 4.54±1.46/0.16±0.01, MH: 8.04±2.29/0.16±0.10, PDR: 5.14±1.54/0.22±0.11, and RD: 3.24±0.75/0.17±0.10. T concentrations were high in the male serum, yet extremely low in the male and female vitreous and female serum. High concentrations of E2 were found in the vitreous, and women, in particular, exhibited significantly higher concentrations in the vitreous than in the serum. This finding suggests the possibility that in vitreoretinal disease cases, the synthesis of E2 is increased locally only in female eyes.
Collapse
Affiliation(s)
- Yuko Nishikawa
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Seita Morishita
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Takaki Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Jun Sugasawa
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
- * E-mail:
| | | |
Collapse
|
13
|
Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neuroscience 2016; 332:53-60. [PMID: 27373906 DOI: 10.1016/j.neuroscience.2016.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022]
Abstract
Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways.
Collapse
|
14
|
Sarzi E, Seveno M, Angebault C, Milea D, Rönnbäck C, Quilès M, Adrian M, Grenier J, Caignard A, Lacroux A, Lavergne C, Reynier P, Larsen M, Hamel CP, Delettre C, Lenaers G, Müller A. Increased steroidogenesis promotes early-onset and severe vision loss in females with OPA1 dominant optic atrophy. Hum Mol Genet 2016; 25:2539-2551. [PMID: 27260406 DOI: 10.1093/hmg/ddw117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/26/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022] Open
Abstract
OPA1 mutations are responsible for autosomal dominant optic atrophy (ADOA), a progressive blinding disease characterized by retinal ganglion cell (RGC) degeneration and large phenotypic variations, the underlying mechanisms of which are poorly understood. OPA1 encodes a mitochondrial protein with essential biological functions, its main roles residing in the control of mitochondrial membrane dynamics as a pro-fusion protein and prevention of apoptosis. Considering recent findings showing the importance of the mitochondrial fusion process and the involvement of OPA1 in controlling steroidogenesis, we tested the hypothesis of deregulated steroid production in retina due to a disease-causing OPA1 mutation and its contribution to the visual phenotypic variations. Using the mouse model carrying the human recurrent OPA1 mutation, we disclosed that Opa1 haploinsufficiency leads to very high circulating levels of steroid precursor pregnenolone in females, causing an early-onset vision loss, abolished by ovariectomy. In addition, steroid production in retina is also increased which, in conjunction with high circulating levels, impairs estrogen receptor expression and mitochondrial respiratory complex IV activity, promoting RGC apoptosis in females. We further demonstrate the involvement of Muller glial cells as increased pregnenolone production in female cells is noxious and compromises their role in supporting RGC survival. In parallel, we analyzed ophthalmological data of a multicentre OPA1 patient cohort and found that women undergo more severe visual loss at adolescence and greater progressive thinning of the retinal nerve fibres than males. Thus, we disclosed a gender-dependent effect on ADOA severity, involving for the first time steroids and Müller glial cells, responsible for RGC degeneration.
Collapse
Affiliation(s)
- Emmanuelle Sarzi
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France,
| | - Marie Seveno
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France
| | - Claire Angebault
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France
| | - Dan Milea
- Département de Biochimie et Génétique, UMR CNRS 6214-INSERM 1083, Centre Hospitalier Universitaire, Angers, France.,Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS, Singapore
| | - Cecilia Rönnbäck
- Department of Ophthalmology, Glostrup Hospital, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Quilès
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier - Faculté de Pharmacie-Montpellier, France
| | - Mathias Adrian
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France
| | - Joanna Grenier
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France.,Centre de référence des affections sensorielles d'origine génétique, Hôpital Gui de Chauliac, Montpellier, France
| | - Angélique Caignard
- Département de Biochimie et Génétique, UMR CNRS 6214-INSERM 1083, Centre Hospitalier Universitaire, Angers, France
| | - Annie Lacroux
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France.,Centre de référence des affections sensorielles d'origine génétique, Hôpital Gui de Chauliac, Montpellier, France
| | - Christian Lavergne
- Institut Montpelliérain Alexander Grothendieck. Université Montpellier 3, France and
| | - Pascal Reynier
- Département de Biochimie et Génétique, UMR CNRS 6214-INSERM 1083, Centre Hospitalier Universitaire, Angers, France
| | - Michael Larsen
- Department of Ophthalmology, Glostrup Hospital, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian P Hamel
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France.,Centre de référence des affections sensorielles d'origine génétique, Hôpital Gui de Chauliac, Montpellier, France
| | - Cécile Delettre
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France,
| | - Guy Lenaers
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France.,PREMMI, UMR CNRS 6214-INSERM 1083, Université d'Angers, France
| | - Agnès Müller
- INSERM U1051 - Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier - Faculté de Pharmacie-Montpellier, France
| |
Collapse
|
15
|
Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol. Neurochem Res 2016; 41:1700-12. [DOI: 10.1007/s11064-016-1886-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 02/28/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023]
|
16
|
Cascio C, Deidda I, Russo D, Guarneri P. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids 2015; 103:31-41. [PMID: 26265586 DOI: 10.1016/j.steroids.2015.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
These last two decades have seen an explosion of clinical and epidemiological research, and basic research devoted to envisage the influence of gender and hormonal fluctuations in the retina/ocular diseases. Particular attention has been paid to age-related disorders because of the overlap of endocrine and neuronal dysfunction with aging. Hormonal withdrawal has been considered among risk factors for diseases such as glaucoma, diabetic retinopathy and age-related macular disease (AMD), as well as, for Alzheimer's disease, Parkinson's disease, or other neurodegenerative disorders. Sex hormones and aging have been also suggested to drive the incidence of ocular surface diseases such as dry eye and cataract. Hormone therapy has been approached in several clinical trials. The discovery that the retina is another CNS tissue synthesizing neurosteroids, among which neuroactive steroids, has favored these studies. However, the puzzling data emerged from clinical, epidemiological and experimental studies have added several dimensions of complexity; the current landscape is inherently limited to the weak information on the influence and interdependence of endocrine, paracrine and autocrine regulation in the retina, but also in the brain. Focusing on the estrogenic retina, we here review our knowledge on local 17β-oestradiol (E2) synthesis from cholesterol-based neurosteroidogenic path and testosterone aromatization, and presence of estrogen receptors (ERα and ERβ). The first cholesterol-limiting step and the final aromatase-limiting step are discussed as possible check-points of retinal functional/dysfunctional E2. Possible E2 neuroprotection is commented as a group of experimental evidence on excitotoxic and oxidative retinal paradigms, and models of retinal neurodegenerative diseases, such as glaucoma, diabetic retinopathy and AMD. These findings may provide a framework to support clinical studies, although further basic research is needed.
Collapse
Affiliation(s)
- Caterina Cascio
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Irene Deidda
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Domenica Russo
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Patrizia Guarneri
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy.
| |
Collapse
|
17
|
Sánchez-Vallejo V, Benlloch-Navarro S, López-Pedrajas R, Romero FJ, Miranda M. Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa. Pharmacol Res 2015; 99:276-88. [PMID: 26158501 DOI: 10.1016/j.phrs.2015.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 11/27/2022]
Abstract
Progesterone has been shown to have neuroprotective effects in experimental acute brain injury models, but little is known about the effects of steroid sex hormones in models of retinitis pigmentosa (RP). The aim of this study was to asses whether progesterone had a protective effect in one animal model of RP (the rd1 mice), and whether its action was due at least in part, to its ability to reduce free radical damage or to increase antioxidant defences. Rd1 and wild type (wt) mice received an oral administration of 100 mg/kg body/weight of progesterone on alternate days starting at postnatal day 7 (PN7) and were sacrificed at different postnatal days. Our results show that progesterone decreases cell death, as the number of TUNEL-positive cells were decreased in the ONL of the retina from treated rd1 mice. At PN15, treatment with progesterone increased values of ERG b-wave amplitude (p<0,5) when compared with untreated mice. Progesterone also decreased the observed gliosis in RP, though this effect was transient. Treatment with progesterone significantly reduced retinal glutamate concentrations at PN15 and PN17. To clarify the mechanism by which progesterone is able to decrease retinal glutamate concentration, we examined expression levels of glutamine synthase (GS). Our results showed a significant increase in GS in rd1 treated retinas at PN13. Treatment with progesterone, significantly increase not only GSH but also oxidized glutathione retinal concentrations, probably because progesterone is able to partially increase glutamate cysteine ligase c subunit (GCLC) at PN15 and PN17 (p<0,05). In summary, our results demonstrate that oral administration of progesterone appears to act on multiple levels to delay photoreceptor death in this model of RP.
Collapse
Affiliation(s)
- V Sánchez-Vallejo
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - S Benlloch-Navarro
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - R López-Pedrajas
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - F J Romero
- Facultad de Medicina, Universidad Católica de Valencia 'San Vicente Mártir', Valencia, Spain
| | - M Miranda
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain.
| |
Collapse
|
18
|
Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y. Neurosteroids are endogenous neuroprotectants in an ex vivo glaucoma model. Invest Ophthalmol Vis Sci 2014; 55:8531-41. [PMID: 25406290 DOI: 10.1167/iovs.14-15624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Allopregnanolone is a neurosteroid and powerful modulator of neuronal excitability. The neuroprotective effects of allopregnanolone involve potentiation of γ-aminobutyric acid (GABA) inhibitory responses. Although glutamate excitotoxicity contributes to ganglion cell death in glaucoma, the role of GABA in glaucoma remains uncertain. The aim of this study was to determine whether allopregnanolone synthesis is induced by high pressure in the retina and whether allopregnanolone modulates pressure-mediated toxicity. METHODS Ex vivo rat retinas were exposed to hydrostatic pressure (10, 35, and 75 mm Hg) for 24 hours. Endogenous allopregnanolone production was determined by liquid chromatography and tandem mass spectrometry (LC-MS/MS) and immunochemistry. We also examined the effects of allopregnanolone, finasteride, and dutasteride (inhibitors of 5α-reductase), picrotoxin (a GABA(A) receptor antagonist), and D-2-amino-5-phosphonovalerate (APV, a broad-spectrum N-methyl-D-aspartate receptor [NMDAR] antagonist). RESULTS Pressure loading at 75 mm Hg significantly increased allopregnanolone levels as measured by LC-MS/MS. Elevated hydrostatic pressure also increased neurosteroid immunofluorescence, especially in the ganglion cell layer and inner nuclear layers. Staining was negligible at lower pressures. Enhanced allopregnanolone levels and immunostaining were substantially blocked by finasteride, but more effectively inhibited by dutasteride and APV. Administration of exogenous allopregnanolone suppressed pressure-induced axonal swelling in a concentration-dependent manner, while picrotoxin overcame these neuroprotective effects. CONCLUSIONS These results indicate that the synthesis of allopregnanolone is enhanced mainly via NMDARs in the pressure-loaded retina, and that allopregnanolone diminishes pressure-mediated retinal degeneration via GABAA receptors. Allopregnanolone and other related neurosteroids may serve as potential novel therapeutic targets for the prevention of pressure-induced retinal damage in glaucoma.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
19
|
Feng Y, Wang B, Du F, Li H, Wang S, Hu C, Zhu C, Yu X. The involvement of PI3K-mediated and L-VGCC-gated transient Ca2+ influx in 17β-estradiol-mediated protection of retinal cells from H2O2-induced apoptosis with Ca2+ overload. PLoS One 2013; 8:e77218. [PMID: 24223708 PMCID: PMC3818527 DOI: 10.1371/journal.pone.0077218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) plays an important role in regulating most cellular processes, including apoptosis and survival, but its alterations are different and complicated under diverse conditions. In this study, we focused on the [Ca2+]i and its control mechanisms in process of hydrogen peroxide (H2O2)-induced apoptosis of primary cultured Sprague-Dawley (SD) rat retinal cells and 17β-estradiol (βE2) anti-apoptosis. Fluo-3AM was used as a Ca2+ indicator to detect [Ca2+]i through fluorescence-activated cell sorting (FACS), cell viability was assayed using MTT assay, and apoptosis was marked by Hoechst 33342 and annexin V/Propidium Iodide staining. Besides, PI3K activity was detected by Western blotting. Results showed: a) 100 μM H2O2-induced retinal cell apoptosis occurred at 4 h after H2O2 stress and increased in a time-dependent manner, but [Ca2+]i increased earlier at 2 h, sustained to 12 h, and then recovered at 24 h after H2O2 stress; b) 10 μM βE2 treatment for 0.5-24 hrs increased cell viability by transiently increasing [Ca2+]i, which appeared only at 0.5 h after βE2 application; c) increased [Ca2+]i under 100 µM H2O2 treatment for 2 hrs or 10 µM βE2 treatment for 0.5 hrs was, at least partly, due to extracellular Ca2+ stores; d) importantly, the transiently increased [Ca2+]i induced by 10 µM βE2 treatment for 0.5 hrs was mediated by the phosphatidylinositol-3-kinase (PI3K) and gated by the L-type voltage-gated Ca2+ channels (L-VGCC), but the increased [Ca2+]i induced by 100 µM H2O2 treatment for 2 hrs was not affected; and e) pretreatment with 10 µM βE2 for 0.5 hrs effectively protected retinal cells from apoptosis induced by 100 µM H2O2, which was also associated with its transient [Ca2+]i increase through L-VGCC and PI3K pathway. These findings will lead to better understanding of the mechanisms of βE2-mediated retinal protection and to exploration of the novel therapeutic strategies for retina degeneration.
Collapse
Affiliation(s)
- Yan Feng
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Baoying Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Fangying Du
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hongbo Li
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shaolan Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chenghu Hu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chunhui Zhu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaorui Yu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment-and-Gene Related Diseases of the Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| |
Collapse
|
20
|
Panzica GC, Balthazart J, Frye CA, Garcia-Segura LM, Herbison AE, Mensah-Nyagan AG, McCarthy MM, Melcangi RC. Milestones on Steroids and the Nervous System: 10 years of basic and translational research. J Neuroendocrinol 2012; 24:1-15. [PMID: 22188420 DOI: 10.1111/j.1365-2826.2011.02265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last 10 years, the conference on 'Steroids and Nervous System' held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang XJ, Liu LL, Wu Y, Jiang SX, Zhong YM, Yang XL. σ receptor 1 is preferentially involved in modulation of N-methyl-D-aspartate receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neurosignals 2011; 19:110-116. [PMID: 21555866 DOI: 10.1159/000326784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/25/2011] [Indexed: 01/05/2025] Open
Abstract
Using patch-clamp whole-cell recording, we investigated how activation of the sigma receptor 1 (σR1) modulates light-evoked excitatory postsynaptic currents (eEPSCs) of ganglion cells (GCs) in rat retinal slice preparations. Bath application of the σR1 agonist SKF10047 (SKF) suppressed N-methyl-D-aspartate (NMDA) receptor-mediated eEPSCs at different holding potentials in ON, OFF and ON-OFF GCs, and the effects were blocked when the preparations were pre-incubated with the σR1 antagonist BD1047. In contrast, SKF had no effects on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated eEPSCs of these GCs. Furthermore, application of SKF did not affect AMPA receptor-mediated miniature EPSCs of GCs, suggesting that activation of σR1 did not change the release of glutamate from bipolar cells. These results suggest that σR1 may be involved in the regulation of output signaling of GCs by preferentially modulating NMDA receptor-mediated eEPSCs of these retinal neurons.
Collapse
Affiliation(s)
- Xin-Jun Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
22
|
D'Anna C, Cascio C, Cigna D, Galizzi G, Deidda I, Bianchi L, Russo D, Passantino R, Bini L, Guarneri P. A retinal proteomics-based study identifies αA-crystallin as a sex steroid-regulated protein. Proteomics 2011; 11:986-90. [PMID: 21337702 DOI: 10.1002/pmic.201000561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/18/2010] [Accepted: 11/29/2010] [Indexed: 12/16/2022]
Abstract
Sex steroids influence the structural and functional organization of ocular tissues, promote survival in several pathological conditions including retinal neurodegeneration and have a prominent role in age-related eye diseases as well as neurodegenerative diseases. However, their underlying mechanisms are still elusive. We explored proteomic profiling of rat retinas following intravitreal injection of the bioactive 17β-estradiol or androgen dihydrotestosterone. Using narrow range 2-DE gels and MALDI-TOF-MS analysis, we identified three sex steroid-regulated proteins: the galectin-related-inter-fiber (GRIFIN) which is a galectin family member protein of unknown function, the fatty acid-binding protein epidermal-5 (FABP5) protein responsible for the fatty acid uptake and transport and the small heat shock αA-crystallin (CRYAA) protein involved in preventing aggregation of denatured or unfolded proteins. Changes in the expression of these proteins revealed a predominant estrogenic effect and the multiple CRYAA protein species reflected posttranslational modifications. Sex steroid-mediated modifications of CRYAA were confirmed by Western blotting analysis. This study provides new target proteins for sex steroids with a potential link to age-related diseases associated with proteotoxic stress.
Collapse
Affiliation(s)
- Claudia D'Anna
- CNR Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang XJ, Liu LL, Jiang SX, Zhong YM, Yang XL. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience 2011; 177:12-22. [PMID: 21211548 DOI: 10.1016/j.neuroscience.2010.12.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 12/30/2022]
Abstract
The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.
Collapse
Affiliation(s)
- X-J Zhang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
24
|
Liao WL, Heo GY, Dodder NG, Pikuleva IA, Turko IV. Optimizing the conditions of a multiple reaction monitoring assay for membrane proteins: quantification of cytochrome P450 11A1 and adrenodoxin reductase in bovine adrenal cortex and retina. Anal Chem 2010; 82:5760-7. [PMID: 20521825 DOI: 10.1021/ac100811x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Approximately 30% of naturally occurring proteins are predicted to be embedded in biological membranes. Nevertheless, this group of proteins is traditionally understudied due to limitations of the available analytical tools. To facilitate the analysis of membrane proteins, the analytical methods for their soluble counterparts must be optimized or modified. Multiple reaction monitoring (MRM) assays have proven successful for the absolute quantification of proteins and for profiling protein modifications in cell lysates and human plasma/serum but have found little application in the analysis of membrane proteins. We report on the optimization of sample preparation conditions for the quantification of two membrane proteins, cytochrome P450 11A1 (CYP11A1) and adrenodoxin reductase (AdR). These conditions can be used for the analysis of other membrane proteins. We have demonstrated that membrane proteins that are tightly associated with the membrane, such as CYP11A1, can be quantified in the total tissue membrane pellet obtained after high-speed centrifugation, whereas proteins that are weakly associated with the membrane, such as AdR, must be quantified in the whole tissue homogenate. We have compared quantifications of CYP11A1 using two different detergents, RapiGest SP and sodium cholate, and two different trypsins, sequencing grade modified trypsin and trypsin, type IX-S from porcine pancreas. The measured concentrations in these experiments were similar and encouraged the use of either combination of detergent/trypsin for quantification of other membrane proteins. Overall, the CYP11A1 and AdR quantified in this work ranged from 110 pmol to 10 fmol per milligram of tissue protein.
Collapse
Affiliation(s)
- Wei-Li Liao
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
25
|
Liu LL, Wang L, Zhong YM, Yang XL. Expression of sigma receptor 1 mRNA and protein in rat retina. Neuroscience 2010; 167:1151-9. [PMID: 20223280 DOI: 10.1016/j.neuroscience.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Sigma receptor (sigmaR), known as a unique nonopiate, nonphencyclidine brain receptor, can bind diverse classes of psychotropic drugs, neurosteroids and other synthetic compounds, such as (+)pentazocine, etc. Two types of sigmaRs have been identified: sigmaR1 and sigmaR2. In this work, we examined the expression of sigmaR1 in rat retina by reverse transcription-polymerase chain reactive (RT-PCR) analysis and immunofluorescence double labeling. RT-PCR analysis showed that sigmaR1 mRNA was present in rat retina. Furthermore, labeling for sigmaR1 was diffusely distributed in the outer and inner plexiform layers. The sigmaR1-immunoreactivity (IR) was also observed in many cells in the inner nuclear layer and the ganglion cell layer. In the outer retina sigmaR1 was expressed in all horizontal cells labeled by calbindin. In contrast, no sigmaR1-IR was detected in several subtypes of bipolar cells, including rod-dominant ON-type bipolar cells, types 2, 3, 5 and 8 bipolar cells, labeled by protein kinase C (PKC), recoverin and hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) respectively. In the inner retina, most of GABAergic amacrine cells, including dopaminergic and cholinergic ones, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively, expressed sigmaR1. Some glycinergic amacrine cells were also labeled by sigmaR1, but glycinergic AII amacrine cells were not labeled. In addition, sigmaR1-IR was seen in almost all somata of the ganglion cells retrogradely labeled by fluorogold. These results suggest that sigmaR1 may have neuromodulatory and neuroprotective roles in the retina.
Collapse
Affiliation(s)
- L L Liu
- Institute of Neurobiology, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | |
Collapse
|
26
|
Charalampopoulos I, Remboutsika E, Margioris AN, Gravanis A. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends Endocrinol Metab 2008; 19:300-7. [PMID: 18771935 DOI: 10.1016/j.tem.2008.07.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022]
Abstract
Neurons and glia in the central nervous system express the necessary enzymes for the synthesis of neurosteroids that are produced in concentrations high enough to exert paracrine effects. Synthesis of brain neurosteroids declines with age, during stressful conditions (including major depression, chronic psychological stress), and in chronic inflammatory and neurodegenerative diseases. Recent reports associate the decrease of brain neurosteroids to neuronal dysfunction and degeneration. This review summarizes the recent findings on how the most studied neurosteroids (dehydroepiandrosterone, pregnenolone and their sulphate esters, progesterone and allopregnanolone) affect neuronal survival, neurite outgrowth and neurogenesis; furthermore, this review discusses potential applications of these neurosteroids in the therapeutic management of neurodegenerative conditions, including that of age-related brain atrophy.
Collapse
|
27
|
Mellon SH, Gong W, Schonemann MD. Endogenous and synthetic neurosteroids in treatment of Niemann-Pick Type C disease. BRAIN RESEARCH REVIEWS 2008; 57:410-20. [PMID: 17629950 PMCID: PMC2323675 DOI: 10.1016/j.brainresrev.2007.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/24/2007] [Accepted: 05/28/2007] [Indexed: 01/30/2023]
Abstract
The functions for neurosteroids during development and in response to nervous system injury are beginning to be identified. We focused on a mouse model in which we believed neurosteroid production would be altered, and which had a neurodegenerative phenotype. Niemann-Pick Type-C (NP-C) is an autosomal recessive neurodegenerative disease caused by mutations in NPC1 (95%) or NPC2 (5%), resulting in lysosomal accumulation of unesterified cholesterol and glycolipids. The NIH mouse model of NP-C has a mutation in the NPC1 gene, and exhibits several pathological features of the most severe NP-C patients. How lysosomal storage and trafficking defects lead to neurodegeneration is unknown. We found that these mice had normal neurosteroidogenic enzyme activity during development, but lost this activity in the early neonatal period, prior to onset of neurological symptoms. Neurons that expressed P450scc, 3beta HSD, as well as those that expressed 3alpha HSD and 5alpha reductase were lost in adult NP-C brains, resulting in diminished concentrations of allopregnanolone. We treated NP-C mice with allopregnanolone and found that a single dose in the neonatal period resulted in a doubling of life span, substantial delay in onset of neurological symptoms, survival of cerebellar Purkinje and granule cell neurons, and reduction in cholesterol and ganglioside accumulation. The mechanism by which allopregnanolone elicited these effects is unknown. Our in vitro studies showed that Purkinje cell survival promoted by allopregnanolone was lost by treatment with bicuculline, suggesting GABA(A) receptors may play a role. We treated NP-C mice with a synthetic GABA(A) neurosteroid, ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one). Ganaxolone treatment of NP-C mice produced beneficial neurological effects, but these effects were not as robust as those obtained using allopregnanolone. Thus, allopregnanolone may elicit its effects through GABA(A) receptors and through other mechanisms. Additional studies also suggest that allopregnanolone may elicit its effects through pregnane-X-receptors (PXR). Our data suggest that mouse models of neurodegeneration may be beneficial in establishing both physiologic and pharmacologic actions of neurosteroids. These animal models further establish the wide range of functions of these compounds, which may ultimately be useful for treatment of human diseases.
Collapse
Affiliation(s)
- Synthia H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, The Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
28
|
Mellon SH. Neurosteroid regulation of central nervous system development. Pharmacol Ther 2007; 116:107-24. [PMID: 17651807 PMCID: PMC2386997 DOI: 10.1016/j.pharmthera.2007.04.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 12/28/2022]
Abstract
Neurosteroids are a relatively new class of neuroactive compounds brought to prominence in the past 2 decades. Despite knowing of their presence in the nervous system of various species for over 20 years and knowing of their functions as GABA(A) and N-methyl-d-aspartate (NMDA) ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of 4 distinct neurosteroids: pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone (DHEA).
Collapse
Affiliation(s)
- Synthia H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, Box 0556, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
29
|
Swiatek-De Lange M, Stampfl A, Hauck SM, Zischka H, Gloeckner CJ, Deeg CA, Ueffing M. Membrane-initiated effects of progesterone on calcium dependent signaling and activation of VEGF gene expression in retinal glial cells. Glia 2007; 55:1061-73. [PMID: 17551930 DOI: 10.1002/glia.20523] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurosteroids, such as progesterone, influence central nervous system development and function by regulating a broad spectrum of physiological processes. Here, we investigated membrane-initiated actions of progesterone in the retina and identified the membrane-associated progesterone receptor component 1 (PGRMC1). We found PGRMC1 expressed mainly in retinal Muller glia (RMG) and retinal pigment epithelium, and localized uniquely to microsomal and plasma membrane fractions. In RMG, membrane-impermeable progesterone conjugate induced calcium influx and subsequent phosphatidylinositol 3-kinase-mediated phosphorylation of PKC and ERK-1/2. Induction by progesterone also led to PKC-dependent activation of VEGF gene expression and protein synthesis, suggesting a contribution of membrane-initiated hormone effects to VEGF induced neovascularization within retina.
Collapse
Affiliation(s)
- Magdalena Swiatek-De Lange
- Institute of Human Genetics, GSF National-Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Cascio C, Russo D, Drago G, Galizzi G, Passantino R, Guarneri R, Guarneri P. 17beta-estradiol synthesis in the adult male rat retina. Exp Eye Res 2007; 85:166-72. [PMID: 17466975 DOI: 10.1016/j.exer.2007.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 11/21/2022]
Abstract
17beta-Estradiol (E2) exerts neurotrophic and neuroprotective effects in the retina as well as in other CNS structures, independently of sex. Retinal effects, however, have not been supported by evidence on local synthesis, and whether CNS 17beta-estradiol is formed in a neurosteroidogenic pathway starting from cholesterol conversion into pregnenolone is a question still left unanswered. In the adult male rat retina, we have previously showed localization and activity of the P450 side chain cleavage (P450scc) enzyme, which is involved in pregnenolone synthesis. Here, we demonstrate both the mRNA and protein expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450aromatase and also of P450scc, but only the protein expression of P450 17alpha-hydroxylase/lyase (P450c17). Using radiolabeled pregnenolone and testosterone as precursors, in the isolated and intact retina of adult male rats, E2 is produced in a large amount by each precursor within 1-4h, suggesting a highly active metabolic pathway towards its formation. The immunolocalization pattern shows enzymes and estrogen receptor subtypes (ERalpha, ERbeta) scattered in the retina with different intensities throughout the layers. The results point to the adult male rat retina as a neurosteroidogenic structure where E2 synthesis via a progesterone pathway and the presence of estrogen receptors provide important clues for understanding the neurotrophic and neuroprotective effects of the steroid hormone.
Collapse
Affiliation(s)
- C Cascio
- Istituto di Biomedicina e Immunologia Molecolare, IBIM - CNR, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Souli C, Avlonitis N, Calogeropoulou T, Tsotinis A, Maksay G, Bíró T, Politi A, Mavromoustakos T, Makriyannis A, Reis H, Papadopoulos M. Novel 17β-Substituted Conformationally Constrained Neurosteroids that Modulate GABAA Receptors. J Med Chem 2005; 48:5203-14. [PMID: 16078839 DOI: 10.1021/jm050271q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The goal of this study was to develop a series of allopregnanolone analogues substituted by conformationally constrained 17beta side chains to obtain additional information about the structure-activity relationship of 5alpha-reduced steroids to modulate GABA(A) receptors. Specifically, we introduced alkynyl-substituted 17beta side chains in which the triple bond is either directly attached to the 17beta-position or to the 21-position of the steroid skeleton. Furthermore, we investigated the effects of C22 and C20 modification. The in vitro binding affinity for the GABA(A) receptor of the new analogues was measured by allosteric displacement of the specific binding of [(3)H]4'-ethynyl-4-n-propyl-bicycloorthobenzoate (EBOB) to GABA(A) receptors on synaptosomal membranes of rat cerebellum. An allosteric binding model that has been successfully applied to ionotropic glycine receptors was employed. The most active derivative is (20R)-17beta-(1-hydroxy-2,3-butadienyl)-5alpha-androstane-3-ol (20), which possesses low nanomolar potency to modulate cerebellar GABA(A) receptors and is 71 times more active than the control compound allopregnanolone. Theoretical conformational analysis was employed in an attempt to correlate the in vitro results with the active conformations of the most potent of the new analogues.
Collapse
Affiliation(s)
- Charikleia Souli
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Many functions have been attributed to neurosteroids including actions as anxiolytics, roles in myelination, inhibitors of neuronal toxicity and ischemia, and roles in neuronal growth and differentiation. To understand the functions of neurosteroids during nervous system development, we used two mouse models: one, in which the cyp17 gene was ablated, thus ablating synthesis of the neurosteroid DHEA, and a second, in a mouse model of a human childhood fatal neurodegenerative disease, Niemann-Pick Type C (NP-C). Cyp17-/- mice died unexpectedly approximately embryonic day 7. Cyp17 was expressed in the embryonic endoderm at E7, where 17alpha hydroxylase and c17,20 lyase activities were found. Hormonal replacement was ineffective in rescuing the embryos. The function of P450c17 and/or its steroid products in early mouse development is unknown. In the second model, we used a naturally-occurring NP-C mutant mouse. Mutations in the npc1 gene results in lysosomal accumulation of cholesterol and gangliosides in humans and in the mouse, which also recapitulates the onset of neurological deficits, neuronal loss and death typical of the most severe form of the human disease. We showed that there is a substantial reduction in the synthesis of the neurosteroid allopregnanolone (ALLO) at birth, which may lead to abnormal neural development. ALLO treatment was highly effective; ALLO-treated NP-C mice had substantially increased survival and delays in neurologic impairments, coinciding with marked improvements in neuronal survival, and reduction of gangliosides. These data suggest that neurosteroids play an important role in brain development and maturation and may be an effective therapy for NP-C and perhaps other lysosomal storage diseases.
Collapse
Affiliation(s)
- Synthia Mellon
- Department of Ob, Gyn, and Reproductive Sciences, University of California-San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0556, USA
| | | | | |
Collapse
|