1
|
Qin C, Gong S, Liang T, Zhang Z, Thomas J, Deng J, Liu Y, Hu P, Zhu B, Song S, Ortiz MF, Ikeno Y, Wang E, Lechleiter J, Weintraub ST, Bai Y. HADHA Regulates Respiratory Complex Assembly and Couples FAO and OXPHOS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405147. [PMID: 39488787 DOI: 10.1002/advs.202405147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) are key bioenergetics pathways. The machineries for both processes are localized in mitochondria. Secondary OXPHOS defects have been documented in patients with primary FAO deficiencies, and vice versa. However, the underlying mechanisms remain unclear. Intrigued by the observations that regulation of supercomplexes (SCs) assembly in a mouse OXPHOS deficient cell line and its derivatives is associated with the changes in lipid metabolism, a proteomics analysis is carried out and identified mitochondrial trifunctional protein (MTP) subunit alpha (hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha, HADHA) as a potential regulatory factor for SCs assembly. HADHA-Knockdown cells and mouse embryonic fibroblasts (MEFs) derived from HADHA-Knockout mice displayed both reduced SCs assembly and defective OXPHOS. Stimulation of OXPHOS induced in cell culture by replacing glucose with galactose and of lipid metabolism in mice with a high-fat diet (HFD) both exhibited increased HADHA expression. HADHA Heterozygous mice fed with HFD showed enhanced steatosis associated with a reduction of SCs assembly and OXPHOS function. The results indicate that HADHA participates in SCs assembly and couples FAO and OXPHOS.
Collapse
Affiliation(s)
- Chaoying Qin
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shasha Gong
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Taizhou Central Hospital (Taizhou University Hospital), Medical School, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Ting Liang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhenbo Zhang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jessie Thomas
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Janice Deng
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yaguang Liu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Peiqing Hu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Bi Zhu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shujie Song
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Marisol Fernández Ortiz
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yuji Ikeno
- Barshop Institute of Aging Research and Longevity and Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Exing Wang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - James Lechleiter
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yidong Bai
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Population Science and Prevention Program, Mays Cancer Center, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
2
|
Ulhaq ZS, Bittencourt GB, Soraya GV, Istifiani LA, Pamungkas SA, Ogino Y, Nurputra DK, Tse WKF. Association between glaucoma susceptibility with combined defects in mitochondrial oxidative phosphorylation and fatty acid beta oxidation. Mol Aspects Med 2024; 96:101238. [PMID: 38215610 DOI: 10.1016/j.mam.2023.101238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia; Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
Xu Q, Sun P, Feng C, Chen Q, Sun X, Chen Y, Tian G. Varying Clinical Phenotypes of Mitochondrial DNA T12811C Mutation: A Case Series Report. Front Med (Lausanne) 2022; 9:912103. [PMID: 35860740 PMCID: PMC9291510 DOI: 10.3389/fmed.2022.912103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The T12811C mitochondrial DNA (mtDNA) mutation has been reported in Leber hereditary optic neuropathy (LHON) previously, with vision loss as the main manifestation. The involvement of other organ systems, including the central and peripheral nervous system, heart, and extraocular muscles, has not been well described. This case series report investigated four patients with T12811C mtDNA mutation, verified through a next generation sequencing. Two male patients presented with bilateral subacute visual decrease combined with involvement of multiple organ systems: leukoencephalopathy, hypertrophic cardiomyopathy, neurosensory deafness, spinal cord lesion and peripheral neuropathies. Two female patients presented with progressive ptosis and ophthalmoplegia, one of whom also manifested optic atrophy. This study found out that patients harboring T12811C mtDNA mutation manifested not only as vision loss, but also as a multi-system disorder affecting the nervous system, heart, and extraocular muscles.
Collapse
Affiliation(s)
- Qingdan Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ping Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chaoyi Feng
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qian Chen
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- *Correspondence: Yuhong Chen,
| | - Guohong Tian
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- Guohong Tian,
| |
Collapse
|
4
|
Mposhi A, Liang L, Mennega KP, Yildiz D, Kampert C, Hof IH, Jellema PG, de Koning TJ, Faber KN, Ruiters MHJ, Niezen-Koning KE, Rots MG. The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? Int J Mol Sci 2022; 23:ijms23042197. [PMID: 35216315 PMCID: PMC8879787 DOI: 10.3390/ijms23042197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies.
Collapse
Affiliation(s)
- Archibold Mposhi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Lin Liang
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Kevin P. Mennega
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Dilemin Yildiz
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Crista Kampert
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Ingrid H. Hof
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Pytrick G. Jellema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Tom J. de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Department of Clinical Sciences, Lund University, Lasarettgatan 40, 221 85 Lund, Sweden
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Marcel H. J. Ruiters
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Klary E. Niezen-Koning
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Correspondence:
| |
Collapse
|
5
|
Rose JJ, Bocian KA, Xu Q, Wang L, DeMartino AW, Chen X, Corey CG, Guimarães DA, Azarov I, Huang XN, Tong Q, Guo L, Nouraie M, McTiernan CF, O'Donnell CP, Tejero J, Shiva S, Gladwin MT. A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning. J Biol Chem 2020; 295:6357-6371. [PMID: 32205448 PMCID: PMC7212636 DOI: 10.1074/jbc.ra119.010593] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC-treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning.
Collapse
Affiliation(s)
- Jason J Rose
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Kaitlin A Bocian
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Qinzi Xu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ling Wang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Anthony W DeMartino
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Xiukai Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Catherine G Corey
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Danielle A Guimarães
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ivan Azarov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Xueyin N Huang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Qin Tong
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Lanping Guo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Charles F McTiernan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Christopher P O'Donnell
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jesús Tejero
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Sruti Shiva
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
6
|
Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. Orphanet J Rare Dis 2019; 14:236. [PMID: 31665043 PMCID: PMC6821020 DOI: 10.1186/s13023-019-1185-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Complex I (CI or NADH:ubiquinone oxidoreductase) deficiency is the most frequent cause of mitochondrial respiratory chain defect. Successful attempts to rescue CI function by introducing an exogenous NADH dehydrogenase, such as the NDI1 from Saccharomyces cerevisiae (ScNDI1), have been reported although with drawbacks related to competition with CI. In contrast to ScNDI1, which is permanently active in yeast naturally devoid of CI, plant alternative NADH dehydrogenases (NDH-2) support the oxidation of NADH only when the CI is metabolically inactive and conceivably when the concentration of matrix NADH exceeds a certain threshold. We therefore explored the feasibility of CI rescue by NDH-2 from Arabidopsis thaliana (At) in human CI defective fibroblasts. RESULTS We showed that, other than ScNDI1, two different NDH-2 (AtNDA2 and AtNDB4) targeted to the mitochondria were able to rescue CI deficiency and decrease oxidative stress as indicated by a normalization of SOD activity in human CI-defective fibroblasts. We further demonstrated that when expressed in human control fibroblasts, AtNDA2 shows an affinity for NADH oxidation similar to that of CI, thus competing with CI for the oxidation of NADH as opposed to our initial hypothesis. This competition reduced the amount of ATP produced per oxygen atom reduced to water by half in control cells. CONCLUSIONS In conclusion, despite their promising potential to rescue CI defects, due to a possible competition with remaining CI activity, plant NDH-2 should be regarded with caution as potential therapeutic tools for human mitochondrial diseases.
Collapse
|
7
|
Chen YF, Dugas TR. Endothelial mitochondrial senescence accelerates cardiovascular disease in antiretroviral-receiving HIV patients. Toxicol Lett 2019; 317:13-23. [PMID: 31562912 DOI: 10.1016/j.toxlet.2019.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Combination antiretroviral therapy (cART) has been hugely successful in reducing the mortality associated with human immunodeficiency virus (HIV) infection, resulting in a growing population of people living with HIV (PLWH). Since PLWH now have a longer life expectancy, chronic comorbidities have become the focus of the clinical management of HIV. For example, cardiovascular complications are now one of the most prevalent causes of death in PLWH. Numerous epidemiological studies show that antiretroviral treatment increases cardiovascular disease (CVD) risk and early onset of CVD in PLWH. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of cART, and two NRTIs are typically used in combination with one drug from another drug class, e.g., a fusion inhibitor. NRTIs are known to induce mitochondrial dysfunction, contributing to toxicity in numerous tissues, such as myopathy, lipoatrophy, neuropathy, and nephropathy. In in vitro studies, short-term NRTI treatment induces an endothelial dysfunction with an increased reactive oxygen species (ROS) production; long-term NRTI treatment decreases cell replication capacity, while increasing mtROS production and senescent cell accumulation. These findings suggest that a mitochondrial oxidative stress is involved in the pathogenesis of NRTI-induced endothelial dysfunction and premature senescence. Mitochondrial dysfunction, defined by a compromised mitochondrial quality control via biogenesis and mitophagy, has a causal role in premature endothelial senescence and can potentially initiate early cardiovascular disease (CVD) development in PLWH. In this review, we explore the hypothesis and present literature supporting that long-term NRTI treatment induces vascular dysfunction by interfering with endothelial mitochondrial homeostasis and provoking mitochondrial genomic instability, resulting in premature endothelial senescence.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States
| | - Tammy R Dugas
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States.
| |
Collapse
|
8
|
Vartak R, Deng J, Fang H, Bai Y. Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1531-9. [PMID: 25887158 DOI: 10.1016/j.bbadis.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 02/03/2023]
Abstract
Respiratory Complex I deficiency is implicated in numerous degenerative and metabolic diseases. In particular, mutations in several mitochondrial DNA (mtDNA)-encoded Complex I subunits including ND4, ND5 and ND6 have been identified in several neurological diseases. We previously demonstrated that these subunits played essential roles in Complex I assembly which in turn affected mitochondrial function. Here, we carried out a comprehensive study of the Complex I assembly pathway. We identified a new Complex I intermediate containing both membrane and matrix arms at an early assembly stage. We find that lack of the ND6 subunit does not hinder membrane arm formation; instead it recruits ND1 and ND5 enters the intermediate. While ND4 is important for the formation of the newly identified intermediate, the addition of ND5 stabilizes the complex and is required for the critical transition from Complex I to supercomplex assembly. As a result, the Complex I assembly pathway has been redefined in this study.
Collapse
Affiliation(s)
- Rasika Vartak
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Janice Deng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hezhi Fang
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Vartak RS, Semwal MK, Bai Y. An update on complex I assembly: the assembly of players. J Bioenerg Biomembr 2014; 46:323-8. [PMID: 25030182 DOI: 10.1007/s10863-014-9564-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pathway. In particularly, we focus on the known as well as novel assembly factors and their role in assembly of Complex I and human disease.
Collapse
Affiliation(s)
- Rasika S Vartak
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
10
|
Li H, Sharma LK, Li Y, Hu P, Idowu A, Liu D, Lu J, Bai Y. Comparative bioenergetic study of neuronal and muscle mitochondria during aging. Free Radic Biol Med 2013; 63:30-40. [PMID: 23643721 PMCID: PMC3786194 DOI: 10.1016/j.freeradbiomed.2013.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 04/11/2013] [Accepted: 04/23/2013] [Indexed: 12/28/2022]
Abstract
Mitochondrial respiratory chain defects have been associated with various diseases and with normal aging, particularly in tissues with high energy demands, including brain and skeletal muscle. Tissue-specific manifestation of mitochondrial DNA (mtDNA) mutations and mitochondrial dysfunction are hallmarks of mitochondrial diseases although the underlying mechanisms are largely unclear. Previously, we and others have established approaches for transferring mtDNA from muscle and synaptosomes of mice at various ages to cell cultures. In this study, we carried out a comprehensive bioenergetic analysis of cells bearing mitochondria derived from young, middle-aged, and old mouse skeletal muscles and synaptosomes. Significant age-associated alterations in oxidative phosphorylation and regulation during aging were observed in cybrids carrying mitochondria from both skeletal muscle and synaptosomes. Our results also revealed that loss of oxidative phosphorylation capacity may occur at various ages in muscle and brain. These findings indicate the existence of a tissue-specific regulatory mechanism for oxidative phosphorylation.
Collapse
Affiliation(s)
- Hongzhi Li
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lokendra Kumar Sharma
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- School of Life Science, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Peiqing Hu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Abimbola Idowu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Danhui Liu
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lu
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Yidong Bai
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Corresponding author at: Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA. Fax: +210 567 3803. (Y. Bai)
| |
Collapse
|
11
|
Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob Agents Chemother 2012; 56:4046-51. [PMID: 22615289 DOI: 10.1128/aac.00678-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This minireview explores mitochondria as a site for antibiotic-host interactions that lead to pathophysiologic responses manifested as nonantibacterial side effects. Mitochondrion-based side effects are possibly related to the notion that these organelles are archaic bacterial ancestors or commandeered remnants that have co-evolved in eukaryotic cells; thus, this minireview focuses on mitochondrial damage that may be analogous to the antibacterial effects of the drugs. Special attention is devoted to aminoglycosides, chloramphenicol, and fluoroquinolones and their respective single side effects related to mitochondrial disturbances. Linezolid/oxazolidinone multisystemic toxicity is also discussed. Aminoglycosides and oxazolidinones are inhibitors of bacterial ribosomes, and some of their side effects appear to be based on direct inhibition of mitochondrial ribosomes. Chloramphenicol and fluoroquinolones target bacterial ribosomes and gyrases/topoisomerases, respectively, both of which are present in mitochondria. However, the side effects of chloramphenicol and the fluoroquinolones appear to be based on idiosyncratic damage to host mitochondria. Nonetheless, it appears that mitochondrion-associated side effects are a potential aspect of antibiotics whose targets are shared by prokaryotes and mitochondria-an important consideration for future drug design.
Collapse
|
12
|
Mark FC, Lucassen M, Strobel A, Barrera-Oro E, Koschnick N, Zane L, Patarnello T, Pörtner HO, Papetti C. Mitochondrial function in Antarctic nototheniids with ND6 translocation. PLoS One 2012; 7:e31860. [PMID: 22363756 PMCID: PMC3283701 DOI: 10.1371/journal.pone.0031860] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/13/2012] [Indexed: 12/02/2022] Open
Abstract
Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system.This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH:Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts.During acute thermal challenge (0-15°C), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish.
Collapse
Affiliation(s)
- Felix C Mark
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li H, Liu D, Lu J, Bai Y. Physiology and pathophysiology of mitochondrial DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:39-51. [PMID: 22399417 DOI: 10.1007/978-94-007-2869-1_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are the only organelles in animal cells which possess their own genomes. Mitochondrial DNA (mtDNA) alterations have been associated with various human conditions. Yet, their role in pathogenesis remains largely unclear. This review focuses on several major features of mtDNA: (1) mtDNA haplogroup, (2) mtDNA common deletion, (3) mtDNA mutations in the control region or D-loop, (4) mtDNA copy number alterations, (5) mtDNA mutations in translational machinery, (6) mtDNA mutations in protein coding genes (7) mtDNA heteroplasmy. We will also discuss their implications in various human diseases.
Collapse
Affiliation(s)
- Hongzhi Li
- Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | |
Collapse
|
14
|
Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 2011; 20:4605-16. [PMID: 21890492 DOI: 10.1093/hmg/ddr395] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previously, we have shown that a heteroplasmic mutation in mitochondrial DNA-encoded complex I ND5 subunit gene resulted in an enhanced tumorigenesis through increased resistance to apoptosis. Here we report that the tumorigenic phenotype associated with complex I dysfunction could be reversed by introducing a yeast NADH quinone oxidoreductase (NDI1) gene. The NDI1 mediated electron transfer from NADH to Co-Q, bypassed the defective complex I and restored oxidative phosphorylation in the host cells. Alternatively, suppression of complex I activity by a specific inhibitor, rotenone or induction of oxidative stress by paraquat led to an increase in the phosphorylation of v-AKT murine thymoma viral oncogene (AKT) and enhanced the tumorigenesis. On the other hand, antioxidant treatment can ameliorate the reactive oxygen species-mediated AKT activation and reverse the tumorigenicity of complex I-deficient cells. Our results suggest that complex I defects could promote tumorigenesis through induction of oxidative stress and activation of AKT pathway.
Collapse
Affiliation(s)
- Lokendra Kumar Sharma
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
15
|
Shen L, Fang H, Chen T, He J, Zhang M, Wei X, Xin Y, Jiang Y, Ding Z, Ji J, Lu J, Bai Y. Evaluating mitochondrial DNA in cancer occurrence and development. Ann N Y Acad Sci 2010; 1201:26-33. [PMID: 20649535 DOI: 10.1111/j.1749-6632.2010.05635.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abnormal mitochondria have long been hypothesized to be involved in tumorigenesis. Mitochondrial DNA (mtDNA) mutations have been found in various cancer cells, yet their role in tumorigenesis remains largely unknown. Our long-term goal is to understand the role of mtDNA polymorphism and mtDNA mutations in tumorigenesis. We focused on the role of the mtDNA haplogroup; a 4,977 bp common mtDNA deletion; mtDNA mutations in the main control region of mtDNA or displacement loop; and mtDNA heteroplasmy in cancer occurrence and cancer development. Our results indicate that qualitative and quantitative changes in mtDNA play an important role in cancer development.
Collapse
Affiliation(s)
- Lijun Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Li HZ, Hu P, Deng J, Banoei MM, Sharma LK, Bai Y. Generation and bioenergetic analysis of cybrids containing mitochondrial DNA from mouse skeletal muscle during aging. Nucleic Acids Res 2009; 38:1913-21. [PMID: 20022917 PMCID: PMC2847227 DOI: 10.1093/nar/gkp1162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiratory chain defects have been associated with various diseases and normal aging, particularly in tissues with high energy demands including skeletal muscle. Muscle-specific mitochondrial DNA (mtDNA) mutations have also been reported to accumulate with aging. Our understanding of the molecular processes mediating altered mitochondrial gene expression to dysfunction associated with mtDNA mutations in muscle would be greatly enhanced by our ability to transfer muscle mtDNA to established cell lines. Here, we report the successful generation of mouse cybrids carrying skeletal muscle mtDNA. Using this novel approach, we performed bioenergetic analysis of cells bearing mtDNA derived from young and old mouse skeletal muscles. A significant decrease in oxidative phosphorylation coupling and regulation capacity has been observed with cybrids carrying mtDNA from skeletal muscle of old mice. Our results also revealed decrease growth capacity and cell viability associated with the mtDNA derived from muscle of old mice. These findings indicate that a decline in mitochondrial function associated with compromised mtDNA quality during aging leads to a decrease in both the capacity and regulation of oxidative phosphorylation.
Collapse
Affiliation(s)
- Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 2009; 18:1578-89. [PMID: 19208652 DOI: 10.1093/hmg/ddp069] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dlasková A, Hlavatá L, Jezek J, Jezek P. Mitochondrial Complex I superoxide production is attenuated by uncoupling. Int J Biochem Cell Biol 2008; 40:2098-109. [PMID: 18358763 DOI: 10.1016/j.biocel.2008.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 12/16/2022]
Abstract
Complex I, i.e. proton-pumping NADH:quinone oxidoreductase, is an essential component of the mitochondrial respiratory chain but produces superoxide as a side-reaction. However, conditions for maximum superoxide production or its attenuation are not well understood. Unlike for Complex III, it has not been clear whether a Complex I-derived superoxide generation at forward electron transport is sensitive to membrane potential or protonmotive force. In order to investigate this, we used Amplex Red for H(2)O(2) monitoring, assessing the total mitochondrial superoxide production in isolated rat liver mitochondria respiring at state 4 as well as at state 3, namely with exclusive Complex I substrates or with Complex I substrates plus succinate. We have shown for the first time, that uncoupling diminishes rotenone-induced H(2)O(2) production also in state 3, while similar attenuation was observed in state 4. Moreover, we have found that 5-(N-ethyl-N-isopropyl) amiloride is a real inhibitor of Complex I H(+) pumping (IC(50) of 27 microM) without affecting respiration. It also partially prevented suppression by FCCP of rotenone-induced H(2)O(2) production with Complex I substrates alone (glutamate and malate), but nearly completely with Complexes I and II substrates. Sole 5-(N-ethyl-N-isopropyl) amiloride alone suppressed 20% and 30% of total H(2)O(2) production, respectively, under these conditions. Our data suggest that Complex I mitochondrial superoxide production can be attenuated by uncoupling, which means by acceleration of Complex I H(+) pumping due to the respiratory control. However, when this acceleration is prevented by 5-(N-ethyl-N-isopropyl) amiloride inhibition, no attenuation of superoxide production takes place.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, Prague 14220, Czech Republic.
| | | | | | | |
Collapse
|
19
|
Oxidative stress caused by blocking of mitochondrial complex I H(+) pumping as a link in aging/disease vicious cycle. Int J Biochem Cell Biol 2008; 40:1792-805. [PMID: 18291703 DOI: 10.1016/j.biocel.2008.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 12/16/2022]
Abstract
Vulnerability of mitochondrial Complex I to oxidative stress determines an organism's lifespan, pace of aging, susceptibility to numerous diseases originating from oxidative stress and certain mitopathies. The mechanisms involved, however, are largely unknown. We used confocal microscopy and fluorescent probe MitoSOX to monitor superoxide production due to retarded forward electron transport in HEPG2 cell mitochondrial Complex I in situ. Matrix-released superoxide production, the un-dismuted surplus (J(m)) was low in glucose-cultivated cells, where an uncoupler (FCCP) reduced it to half. Rotenone caused a 5-fold J(m) increase (AC(50) 2 microM), which was attenuated by uncoupling, membrane potential (DeltaPsi(m)), and DeltapH-collapse, since addition of FCCP (IC(50) 55 nM), valinomycin, and nigericin prevented this increase. J(m) doubled after cultivation with galactose/glutamine (i.e. at obligatory oxidative phosphorylation). A hydrophobic amiloride that acts on the ND5 subunit and inhibits Complex I H(+) pumping enhanced J(m) and even countered the FCCP effect (AC(50) 0.3 microM). Consequently, we have revealed a new principle predicting that Complex I produces maximum superoxide only when both electron transport and H(+) pumping are retarded. H(+) pumping may be attenuated by high protonmotive force or inhibited by oxidative stress-related mutations of ND5 (ND2, ND4) subunit. We predict that in a vicious cycle, when oxidative stress leads to higher fraction of, e.g. mutated ND5 subunits, it will be accelerated more and more. Thus, inhibition of Complex I H(+) pumping, which leads to oxidative stress, appears to be a missing link in the theory of mitochondrial aging and in the etiology of diseases related to oxidative stress.
Collapse
|
20
|
Yadava N, Potluri P, Scheffler IE. Investigations of the potential effects of phosphorylation of the MWFE and ESSS subunits on complex I activity and assembly. Int J Biochem Cell Biol 2007; 40:447-60. [PMID: 17931954 DOI: 10.1016/j.biocel.2007.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 11/18/2022]
Abstract
There have been several reports on the phosphorylation of various subunits of NADH-ubiquinone oxidoreductase (complex I) in mammalian mitochondria. The effects of phosphorylation on assembly or activity of these subunits have not been investigated directly. The cAMP-dependent phosphorylation of the MWFE and ESSS subunits in isolated bovine heart mitochondria has been recently reported. We have investigated the significance of potential phosphorylation of these two subunits in complex I assembly and function by mutational analysis of the phosphorylation sites. Chinese hamster mutant cell lines missing either the MWFE or the ESSS subunits were transfected and complemented with the corresponding wild type and mutant cDNAs made by site-directed mutagenesis. In MWFE the serine 55 was substituted by alanine, glutamate, glutamine, and aspartate (S55A, S55E, S55Q, and S55D, respectively). The glutamate substitutions might be expected to mimic the phosphorylated state of the protein. With the exception of the MWFE(S55A) mutant protein the assembly of complex I was completely blocked, and no activity could be detected. Various substitutions in the ESSS protein (S2A, S2E, S8A, S8E, T21A, T21E, S30A, S30E) appeared to cause lower levels of mature protein and a significantly reduced complex I activity measured polarographically. The ESSS (S2/8A) double mutant protein caused a complete failure to assemble. These mutational analyses suggest that if phosphorylation occurs in vivo, the effects on complex I activity are significant.
Collapse
Affiliation(s)
- N Yadava
- Buck Institute for Age Research, Novato, CA 94945, United States
| | | | | |
Collapse
|
21
|
Li Y, D'Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y. An Assembled Complex IV Maintains the Stability and Activity of Complex I in Mammalian Mitochondria. J Biol Chem 2007; 282:17557-62. [PMID: 17452320 DOI: 10.1074/jbc.m701056200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian mitochondrial electron transfer system, the majority of electrons enter at complex I, go through complexes III and IV, and are finally delivered to oxygen. Previously we generated several mouse cell lines with suppressed expression of the nuclearly encoded subunit 4 of complex IV. This led to a loss of assembly of complex IV and its defective function. Interestingly, we found that the level of assembled complex I and its activity were also significantly reduced, whereas levels and activity of complex III were normal or up-regulated. The structural and functional dependence of complex I on complex IV was verified using a human cell line carrying a nonsense mutation in the mitochondrially encoded complex IV subunit 1 gene. Our work documents that, although there is no direct electron transfer between them, an assembled complex IV helps to maintain complex I in mammalian cells.
Collapse
Affiliation(s)
- Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Park JS, Li YF, Bai Y. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation. Biochim Biophys Acta Mol Basis Dis 2007; 1772:533-42. [PMID: 17320357 PMCID: PMC1905846 DOI: 10.1016/j.bbadis.2007.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/21/2006] [Accepted: 01/16/2007] [Indexed: 12/26/2022]
Abstract
G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
23
|
Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 2006; 38:283-91. [PMID: 17091399 PMCID: PMC1885940 DOI: 10.1007/s10863-006-9052-z] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c oxidase or complex IV, catalyzes the final step in mitochondrial electron transfer chain, and is regarded as one of the major regulation sites for oxidative phosphorylation. This enzyme is controlled by both nuclear and mitochondrial genomes. Among its 13 subunits, three are encoded by mitochondrial DNA and ten by nuclear DNA. In this work, an RNA interference approach was taken which led to the generation of mouse A9 cell derivatives with suppressed expression of nuclear-encoded subunit IV (COX IV) of this complex. The amounts of this subunit are decrease by 86% to 94% of normal level. A detail biosynthetic and functional analysis of several cell lines with suppressed COX IV expression revealed a loss of assembly of cytochrome c oxidase complex and, correspondingly, a reduction in cytochrome c oxidase-dependent respiration and total respiration. Furthermore, dysfunctional cytochrome c oxidase in the cells leads to a compromised mitochondrial membrane potential, a decreased ATP level, and failure to grow in galactose medium. Interestingly, suppression of COX IV expression also sensitizes the cells to apoptosis. These observations provide the evidence of the essential role of the COX IV subunit for a functional cytochrome c oxidase complex and also demonstrate a tight control of cytochrome c oxidase over oxidative phosphorylation. Finally, our results further shed some insights into the pathogenic mechanism of the diseases caused by dysfunctional cytochrome c oxidase complex.
Collapse
Affiliation(s)
- Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
24
|
Deng JH, Li Y, Park JS, Wu J, Hu P, Lechleiter J, Bai Y. Nuclear suppression of mitochondrial defects in cells without the ND6 subunit. Mol Cell Biol 2006; 26:1077-86. [PMID: 16428459 PMCID: PMC1347011 DOI: 10.1128/mcb.26.3.1077-1086.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we characterized a mouse cell line, 4A, carrying a mitochondrial DNA mutation in the subunit for respiratory complex I, NADH dehydrogenase, in the ND6 gene. This mutation abolished the complex I assembly and disrupted the respiratory function of complex I. We now report here that a galactose-resistant clone, 4AR, was isolated from the cells carrying the ND6 mutation. 4AR still contained the homoplasmic mutation, and apparently there was no ND6 protein synthesis, whereas the assembly of other complex I subunits into complex I was recovered. Furthermore, the respiratory activity and mitochondrial membrane potential were fully recovered. To investigate the genetic origin of this compensation, the mitochondrial DNA (mtDNA) from 4AR was transferred to a new nuclear background. The transmitochondrial lines failed to grow in galactose medium. We further transferred mtDNA with a nonsense mutation at the ND5 gene to the 4AR nuclear background, and a suppression for mitochondrial deficiency was observed. Our results suggest that change(s) in the expression of a certain nucleus-encoded factor(s) can compensate for the absence of the ND6 or ND5 subunit.
Collapse
Affiliation(s)
- Jian-Hong Deng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jun Wu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Peiqing Hu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - James Lechleiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Corresponding author. Mailing address: Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229. Phone: (210) 567-0561. Fax: (210) 567-3803. E-mail:
| |
Collapse
|
25
|
Bai Y, Park JS, Deng JH, Li Y, Hu P. Restoration of Mitochondrial Function in Cells with Complex I Deficiency. Ann N Y Acad Sci 2006; 1042:25-35. [PMID: 15965042 DOI: 10.1196/annals.1338.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mammalian mitochondrial NADH dehydrogenase (complex I) is the major entry point for the electron transport chain. It is the largest and most complicated respiratory complex consisting of at least 46 subunits, 7 of which are encoded by mitochondrial DNA (mtDNA). Deficiency in complex I function has been associated with various human diseases including neurodegenerative diseases and the aging process. To explore ways to restore mitochondrial function in complex I-deficient cells, various cell models with mutations in genes encoding subunits for complex I have been established. In this paper, we discuss various approaches to recover mitochondrial activity, the complex I activity in particular, in cultured cells.
Collapse
Affiliation(s)
- Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
26
|
Parker WD, Parks JK. Mitochondrial ND5 mutations in idiopathic Parkinson's disease. Biochem Biophys Res Commun 2005; 326:667-9. [PMID: 15596151 DOI: 10.1016/j.bbrc.2004.11.093] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Indexed: 11/23/2022]
Abstract
Idiopathic Parkinson's disease (PD) is characterized by a systemic loss of activity of complex I (NADH:ubiquinone oxidoreductase), the target enzyme of the parkinsonism producing neurotoxin, MPTP. Cybrid experiments strongly suggest that the loss of complex I activity arises from mitochondrial DNA. We prospectively evaluated low frequency, amino acid changing, heteroplasmic mutations in a narrow region of ND5, a mitochondrial gene encoding a complex I subunit, in brain tissue from PD and controls. The presence or absence of amino acid changing mutations correctly classified 15 of 16 samples. Heteroplasmic mutations in a specific region of ND5 largely segregate PD from controls and may be of major pathogenic importance in idiopathic PD.
Collapse
Affiliation(s)
- W Davis Parker
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
27
|
Quintanilla ME, Tampier L, Valle-Prieto A, Sapag A, Israel Y. Complex I regulates mutant mitochondrial aldehyde dehydrogenase activity and voluntary ethanol consumption in rats. FASEB J 2005; 19:36-42. [PMID: 15629893 DOI: 10.1096/fj.04-2172com] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Animals selectively bred for a desirable trait retain wanted genes but exclude genes that may counteract the expression of the former. The possible interactions between selected and excluded genes cannot be readily studied in transgenic or knockout animals but may be addressed by crossing animals bred for opposite traits and studying the F2 offspring. Ninety-seven percent of Wistar-derived rats selectively bred for their voluntary low-alcohol consumption display a mutated nuclear allele of aldehyde dehydrogenase Aldh22 that encodes an enzyme with a low affinity for NAD+, whereas rats bred for high-alcohol consumption do not present the Aldh22 allele. This enzyme is inserted into mitochondria, where NADH-ubiquinone oxidoreductase (complex I) regenerates NAD+. The possible influence of complex I on ALDH2 activity and voluntary ethanol intake was investigated. Homozygous Aldh22/Aldh22 rats derived from a line of high-drinker F0 females (and low-drinker F0 males) showed a markedly higher ethanol consumption (3.9=/-0.5 g x kg(-1) x day(-1)) than homozygous animals derived from a line of low-drinker F0 females (and high-drinker F0 males) (1.8+/-0.4 g x kg(-1) x day(-1)). Mitochondria of F2 rats derived from high alcohol-consuming females were more active in oxidizing substrates that generate NADH for complex I than were mitochondria derived from low alcohol-consuming females, leading in the former to higher rates of acetaldehyde metabolism and to a reduced aversion to ethanol. This is the first demonstration that maternally derived genes can either allow or counteract the phenotypic expression of a mutated gene in the context of alcohol abuse or alcoholism
Collapse
Affiliation(s)
- María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
28
|
Smith PM, Ross GF, Taylor RW, Turnbull DM, Lightowlers RN. Strategies for treating disorders of the mitochondrial genome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1659:232-9. [PMID: 15576056 DOI: 10.1016/j.bbabio.2004.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/01/2004] [Accepted: 09/08/2004] [Indexed: 11/22/2022]
Abstract
Defects of the mitochondrial genome are a significant cause of disease. Patients suffer from a wide variety of clinical presentations, ranging from fatal infantile disease to mild muscle weakness. Most disorders, however, are characterized by inexorable progression. As mutations often cause defects in several components of the complexes that couple oxidative phosphorylation, this terminal state of oxidative metabolism cannot be readily bypassed by dietary means, leading to the search for novel therapies. In this article, we present the theory behind several concepts and report progress. We also discuss some of the recent difficulties encountered in the progress towards an antigenomc approach to treating mtDNA disorders.
Collapse
Affiliation(s)
- Paul M Smith
- Mitochondrial Research Group, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|