1
|
Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, Poole EM, Tamimi R, Tworoger SS, Giovannucci E, Rosner B, Ogino S. Statistical methods for studying disease subtype heterogeneity. Stat Med 2015; 35:782-800. [PMID: 26619806 DOI: 10.1002/sim.6793] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
A fundamental goal of epidemiologic research is to investigate the relationship between exposures and disease risk. Cases of the disease are often considered a single outcome and assumed to share a common etiology. However, evidence indicates that many human diseases arise and evolve through a range of heterogeneous molecular pathologic processes, influenced by diverse exposures. Pathogenic heterogeneity has been considered in various neoplasms such as colorectal, lung, prostate, and breast cancers, leukemia and lymphoma, and non-neoplastic diseases, including obesity, type II diabetes, glaucoma, stroke, cardiovascular disease, autism, and autoimmune disease. In this article, we discuss analytic options for studying disease subtype heterogeneity, emphasizing methods for evaluating whether the association of a potential risk factor with disease varies by disease subtype. Methods are described for scenarios where disease subtypes are categorical and ordinal and for cohort studies, matched and unmatched case-control studies, and case-case study designs. For illustration, we apply the methods to a molecular pathological epidemiology study of alcohol intake and colon cancer risk by tumor LINE-1 methylation subtypes. User-friendly software to implement the methods is publicly available.
Collapse
Affiliation(s)
- Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Donna Spiegelman
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A
| | - Aya Kuchiba
- Department of Biostatistics, National Cancer Center, Tokyo, Japan
| | - Paul Lochhead
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Sehee Kim
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, U.S.A
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Rulla Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Bernard Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| |
Collapse
|
3
|
Sheibanie AF, Khayrullina T, Safadi FF, Ganea D. Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. ACTA ACUST UNITED AC 2007; 56:2608-19. [PMID: 17665454 DOI: 10.1002/art.22794] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Recently, Th17 cells, a new subset of CD4+ T cells, emerged as major players in inflammation/autoimmunity. Maintenance of the Th17 phenotype requires interleukin-23 (IL-23), whereas the Th1-promoting cytokine IL-12p70 exerts a negative effect on Th17 cell differentiation. The lipid mediator prostaglandin E(2) (PGE(2)) acts primarily as a proinflammatory agent in autoimmune conditions, through mechanisms that remain to be elucidated. The aim of this study was to investigate whether PGE(2) released in inflammatory foci activates resident dendritic cells (DCs) to express IL-23 (at the expense of IL-12) and IL-6, resulting in a shift toward Th17 cell responses. METHODS The effect of PGE(2) on IL-23 production by DCs and subsequent induction of T cell-derived IL-17 was assessed in vitro and in vivo. The effect of the stable PGE analog misoprostol was evaluated in a murine model of rheumatoid arthritis, in conjunction with IL-23 and IL-17 expression in affected joints and draining lymph nodes. RESULTS In vivo administration of PGE(2) induced IL-23-dependent IL-17 production. Administration of misoprostol exacerbated collagen-induced arthritis (CIA). CIA exacerbation was associated with increased levels of IL-23p19/p40 messenger RNA and reduced expression of IL-12p35, and with increased levels of the proinflammatory cytokines IL-17, IL-1beta, IL-6, and tumor necrosis factor in the affected joint. Following ex vivo restimulation, draining lymph node cells from misoprostol-treated mice secreted higher levels of IL-17 and lower levels of interferon-gamma. CONCLUSION Our results indicate that PGE(2) enhances DC-derived IL-6 production and induces a shift in the IL-23/IL-12 balance in favor of IL-23, resulting in increased IL-17 production, presumably through the amplification of self-reactive Th17 cells.
Collapse
Affiliation(s)
- Amir F Sheibanie
- Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Analysis of blood samples from patients suffering from autoimmune diseases remains a mainstay in the clinic for initial diagnosis, prognostication, and clinical decision making. In particular, testing for the presence of serum autoantibodies has proved to be one of the most useful confirmatory assays for many different diseases. Recent genomic and transcript profiling studies have implicated certain cytokines, surface receptors, signaling pathways, and cell types in the pathogenesis of inflammatory diseases. The next obvious step is to delve into the much more complex level that follows the genome and transcriptome-the expressed proteome. This review focuses on several proteomics technologies being applied and/or developed by our laboratory for the study of autoimmunity, cancer, and cardiovascular disease, all of which are known to be associated with defects in immunity and inflammation. The findings of other participants in the recent Human Immunology Conference hosted by the Dana Foundation and the New York Academy of Sciences (May 17 & 18, 2005) are included. In particular, major pitfalls in the study of the human proteome are pointed out, and important areas for immediate investigation to move the field forward as rapidly as possible are proposed.
Collapse
Affiliation(s)
- Steven M Chan
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University of Medicine, CCSR Building, Room 2215A, 269 Campus Dr., Stanford, CA 94305, USA
| | | |
Collapse
|