1
|
Shavit E, Menascu S, Achiron A, Gurevich M. Age-related blood transcriptional regulators affect disease progression in pediatric multiple sclerosis. Neurobiol Dis 2023; 176:105953. [PMID: 36493973 DOI: 10.1016/j.nbd.2022.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pediatric onset multiple sclerosis patients (POMS) are defined as multiple sclerosis with an onset before the age of 18 years. Compared to adult onset multiple sclerosis (AOMS), POMS has more severe disease activity at onset, but better recovery. Little is known about the molecular mechanism responsible for the differences in the clinical presentations. METHODS Peripheral Blood Mononuclear Cells samples were taken from 22 POMS patients (mean age 14.1 ± 2.4 years, 15 females, 7 male), and 16 AOMS patients, (mean age 30.8 ± 6.1 years,10 females, 6 males), and gene-expression were analyzed using Affymetrix Inc. HU-133-A2 microarrays. Differentially Expressed Genes (DEGs) that significantly distinguished between POMS and AOMS with pvalue <0.05 after false discovery rate correction were evaluated using Partek software. Twenty-one matched age and gender control was applied to clarify age-related changes. Clinical assessment was performed by analysis of expanded disability status scale (EDSS) and brain MRI lesion loads. Gene functional analysis was performed by Ingenuity Pathway Analysis software. RESULTS Compared to AOMS, POMS had higher EDSS (3.0 IQR 2.0-3.0 and 2.0 IQR 2.0-3.0, p = 0.005), volume of T1 (2.72 mm3, IQR 0.44-8.39 mm3 and 0.5 mm3 IQR 0-1.29 mm3 respectively, p = 0.04) and T2 (3.70 mm3, IQR 1.3-9.6 and 0.96 mm3, IQR 0.24-4.63 respectively, p = 0.02) brain MRI lesions. The POMS transcriptional profile was characterized by 551 DEGs, enriched by cell cycling, B lymphocyte signaling and senescent pathways (p < 0.02). Of these, 183 DEGs significantly correlated with T2 lesions volume. The POMS MRI correlated DEGs (n = 183) and their upstream regulators (n = 718) has overlapped with age related DEGs obtained from healthy subjects (n = 497). This evaluated common DEGs (n = 29) defined as POMS age-related regulators, suggesting to promote effect on disease severity. CONCLUSION Our finding of higher transcriptional levels of genes involved in cell cycle, cell migration and B cell proliferation that promoted by transcriptional level of age-associated genes and transcription factors allows better understanding of the more aggressive clinical course that defines the POMS.
Collapse
Affiliation(s)
- Eitan Shavit
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; St. George's Hospital Medical School, University of London, London, United Kingdom; Arrow project for medical research education, Sheba Medical Center, Ramat-Gan, Israel.
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Apoptotic protease activating factor-1 gene and MicroRNA-484: A possible interplay in relapsing remitting multiple sclerosis. Mult Scler Relat Disord 2022; 58:103502. [PMID: 35030371 DOI: 10.1016/j.msard.2022.103502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Emerging evidence suggests that dysregulated apoptosis might be implicated in the pathogenesis of multiple sclerosis (MS). The aim of the current study was to evaluate the expression of Apoptotic protease activating factor-1 (APAF1) mRNA and its potential regulator miR-484 in relapsing remitting MS patients (RRMS) and to investigate their role as potential disease biomarkers. METHODS After Bioinformatic analysis was conducted and revealed miR-484 involvement in the regulation of APAF-1 gene expression. Reverse Transcription-quantitative Real-Time PCR (RT-qPCR) was performed to detect the expression levels of APAF-1 and miR-484 in the peripheral blood mononuclear cells (PBMCs) of 34 RRMS patients recruited from the MS clinic of kasr al ainy hospital- faculty of medicine-Egypt and 34 healthy controls. RESULTS APAF-1 mRNA was significantly downregulated in patients whereas miR-484 expression was upregulated compared to controls (p < 0.01). Sensitivity and specificity of APAF-1 and miR-484 to diagnose MS was (85.3%, 76.5%) and (88.2% and 86.7%) respectively. CONCLUSION APAF-1 and miR-484 could play a role as potential MS diagnostic biomarkers. However, absence of a control group of patients with other inflammatory diseases in our study warrants further research to corroborate our findings.
Collapse
|
3
|
Oktelik FB, Yilmaz V, Turkoglu R, Akbayir E, Tuzun E, Deniz G, Cinar S. Expression of Akt1 and p-Akt1 in peripheral T cell subsets of multiple sclerosis patients. Acta Neurol Belg 2021; 121:1777-1782. [PMID: 33034831 DOI: 10.1007/s13760-020-01518-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis is an autoimmune disorder induced by the infiltration of autoreactive immune cells into the central nervous system. Akt/PKB signaling pathway is crucially involved in T cell development and survival. We aimed to determine whether Akt1 expression levels of regulatory T (Treg) cells are altered in MS and are associated with disease activity. Relapsing-remitting multiple sclerosis (RR-MS, n = 17) patients and healthy individuals (n = 20) were enrolled. Peripheral blood mononuclear cells were isolated and anti-CD3, -CD4, -CD8, -CD25, -CD127 monoclonal antibodies were used to identify the T cell subsets. After stimulation with phorbol myristate acetate/ionomycin, the Akt1 and phosphorylated-Akt1 (p-Akt1) levels of T cell subsets were detected with intracellular staining using flow cytometry. Total Akt1 and p-Akt1 expression levels were found to be suppressed in CD4+ T cell and Treg populations of RR-MS patients. Progression indices were positively correlated with Akt1 expression levels of Tregs indicating that the Akt pathway might partake in the progression of multiple sclerosis. Flow cytometry may effectively be used for the evaluation of the Akt pathway activity. Our findings suggest that the magnitude of suppression of the Akt pathway might serve as a biomarker for the prognosis of multiple sclerosis.
Collapse
Affiliation(s)
- Fatma Betul Oktelik
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Vakif Gureba C. Fatih, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuro Science, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Recai Turkoglu
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Ece Akbayir
- Department of Neuro Science, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuro Science, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Vakif Gureba C. Fatih, Istanbul, Turkey
| | - Suzan Cinar
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Vakif Gureba C. Fatih, Istanbul, Turkey.
| |
Collapse
|
4
|
Menascu S, Khavkin Y, Zilkha‐Falb R, Dolev M, Magalashvili D, Achiron A, Gurevich M. Clinical and transcriptional recovery profiles in pediatric and adult multiple sclerosis patients. Ann Clin Transl Neurol 2021; 8:81-94. [PMID: 33197148 PMCID: PMC7818128 DOI: 10.1002/acn3.51244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 10/18/2020] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE To determine whether pediatric-onset multiple sclerosis (POMS) and adults-onset multiple sclerosis (AOMS) patients are different in initial disease severity and recovery and to investigate the associations with peripheral blood mononuclear cells (PBMCs) transcriptional profiles. METHODS Clinical and radiological severity of first and second relapses and 6-month recovery were analyzed in 2153 multiple sclerosis (MS) patients and compared between POMS (onset at 8-18years old) and AOMS (onset at 19-40 years old) patients. PBMCs transcriptomes of 15 POMS and 15 gender-matched AOMS patients were analyzed 6 months after the first relapse and compared to 55 age-matched healthy controls. Differentially Expressed Genes (DEGs) with a false discovery rate ≤ 10% were evaluated using the Partek software. RESULTS POMS had increased Expanded Disability Status Scale (EDSS) score at first and second relapses, higher brain gadolinium-enhancing T1-lesions volume at first relapse, and more complete recovery after both relapses compared to AOMS. POMS patients, who recovered completely from the first relapse, were characterized by 19 DEGs that were mainly related to suppression of antigen presentation. Six upstream regulators of these genes were differentially expressed between pediatric and adult healthy controls. POMS patients, who showed no recovery from the first relapse, were characterized by 28 DEGs that were mainly associated with B-cell activation. Five upstream regulators of these genes were differentially expressed between pediatric and adult healthy controls. INTERPRETATION POMS patients may have more severe first and second relapses than AOMS. However, most often, POMS have better recovery that may be attributed to PBMCs age-related transcriptional profiles associated with antigen presentation and B-cell activation.
Collapse
Affiliation(s)
- Shay Menascu
- Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Yulia Khavkin
- Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | | | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | | | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
5
|
B-cell related biomarkers associated with severity of the first demyelinating event of acute optic neuritis. Eye (Lond) 2019; 34:954-959. [PMID: 31601977 DOI: 10.1038/s41433-019-0614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/27/2019] [Accepted: 07/28/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Optic neuritis (ON) is the most common cause of acute unilateral visual loss in young adults and frequently occurs as the presenting symptom of multiple sclerosis (MS). Recently, we reported activation of peripheral blood CD19 + B-cells in the early stage of ON. In the current study we aimed to identify peripheral blood B-cell molecular markers associated with ON severity and visual outcome. METHODS Expression of B-cell related biomarkers were analysed in patients with the first clinical presentation of acute unilateral ON. Logarithm of the Minimum Angle of Resolution (LogMAR). visual acuity, Optical Coherence Tomography (OCT) imaging, Expanded Disability Status Scale (EDSS) visual score and visual evoked responses were evaluated at onset and visual acuity and EDSS visual score were repeated at 6 months post-ON. RESULTS Thirty patients with acute unilateral ON, 77% female, mean age 33 ± 2.0 years, were enroled in the study. Expression of CD19, CD79A and CD20 B-cell markers significantly correlated with LogMAR visual acuity of the affected eye (r = 0.44, p = 0.01, r = 0.37, p = 0.01 and r = 0.36, p = 0.04, respectively). The marker levels were elevated between 1.5 and 2.2-folds in the group with worse visual acuity (LogMAR>1.0) at onset (CD79A:×1.5, p = 0.013; CD19:×2.25, p = 0.007; CD20:×1.5, p = 0.015) and not correlated with 6 month visual outcome. CONCLUSIONS Among patient with a first event of acute ON, expression of B-cell biomarkers correlated with the severity of the disease. These results could add information on the role of B-cell dysfunction in the early stages of ON.
Collapse
|
6
|
Yan J, Winterford CM, Catts VS, Pat BK, Pender MP, McCombe PA, Greer JM. Increased constitutive activation of NF-κB p65 (RelA) in peripheral blood cells of patients with progressive multiple sclerosis. J Neuroimmunol 2018; 320:111-116. [DOI: 10.1016/j.jneuroim.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
|
7
|
Morales P, Isawi I, Reggio PH. Towards a better understanding of the cannabinoid-related orphan receptors GPR3, GPR6, and GPR12. Drug Metab Rev 2018; 50:74-93. [PMID: 29390908 DOI: 10.1080/03602532.2018.1428616] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GPR3, GPR6, and GPR12 are three orphan receptors that belong to the Class A family of G-protein-coupled receptors (GPCRs). These GPCRs share over 60% of sequence similarity among them. Because of their close phylogenetic relationship, GPR3, GPR6, and GPR12 share a high percentage of homology with other lipid receptors such as the lysophospholipid and the cannabinoid receptors. On the basis of sequence similarities at key structural motifs, these orphan receptors have been related to the cannabinoid family. However, further experimental data are required to confirm this association. GPR3, GPR6, and GPR12 are predominantly expressed in mammalian brain. Their high constitutive activation of adenylyl cyclase triggers increases in cAMP levels similar in amplitude to fully activated GPCRs. This feature defines their physiological role under certain pathological conditions. In this review, we aim to summarize the knowledge attained so far on the understanding of these receptors. Expression patterns, pharmacology, physiopathological relevance, and molecules targeting GPR3, GPR6, and GPR12 will be analyzed herein. Interestingly, certain cannabinoid ligands have been reported to modulate these orphan receptors. The current debate about sphingolipids as putative endogenous ligands will also be addressed. A special focus will be on their potential role in the brain, particularly under neurological conditions such as Parkinson or Alzheimer's disease. Reported physiological roles outside the central nervous system will also be covered. This critical overview may contribute to a further comprehension of the physiopathological role of these orphan GPCRs, hopefully attracting more research towards a future therapeutic exploitation of these promising targets.
Collapse
Affiliation(s)
- Paula Morales
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Israa Isawi
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Patricia H Reggio
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| |
Collapse
|
8
|
Sen P, Kemppainen E, Orešič M. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells. Front Mol Biosci 2018; 4:96. [PMID: 29376056 PMCID: PMC5767226 DOI: 10.3389/fmolb.2017.00096] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models.
Collapse
Affiliation(s)
- Partho Sen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Esko Kemppainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
9
|
Menezes SM, Leal FE, Dierckx T, Khouri R, Decanine D, Silva-Santos G, Schnitman SV, Kruschewsky R, López G, Alvarez C, Talledo M, Gotuzzo E, Nixon DF, Vercauteren J, Brassat D, Liblau R, Vandamme AM, Galvão-Castro B, Van Weyenbergh J. A Fas hi Lymphoproliferative Phenotype Reveals Non-Apoptotic Fas Signaling in HTLV-1-Associated Neuroinflammation. Front Immunol 2017; 8:97. [PMID: 28261198 PMCID: PMC5306374 DOI: 10.3389/fimmu.2017.00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 01/13/2023] Open
Abstract
Human T-cell lymphotropic virus (HTLV)-1 was the first human retrovirus to be associated to cancer, namely adult T-cell leukemia (ATL), but its pathogenesis remains enigmatic, since only a minority of infected individuals develops either ATL or the neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A functional FAS -670 polymorphism in an interferon (IFN)-regulated STAT1-binding site has been associated to both ATL and HAM/TSP susceptibility. Fashi T stem cell memory (Tscm) cells have been identified as the hierarchical apex of ATL, but have not been investigated in HAM/TSP. In addition, both FAS and STAT1 have been identified in an IFN-inducible HAM/TSP gene signature, but its pathobiological significance remains unclear. We comprehensively explored Fas expression (protein/mRNA) and function in lymphocyte activation, apoptosis, proliferation, and transcriptome, in PBMC from a total of 47 HAM/TSP patients, 40 asymptomatic HTLV-1-infected individuals (AC), and 58 HTLV-1 -uninfected healthy controls. Fas surface expression followed a two-step increase from HC to AC and from AC to HAM/TSP. In HAM/TSP, Fas levels correlated positively to lymphocyte activation markers, but negatively to age of onset, linking Fashi cells to earlier, more aggressive disease. Surprisingly, increased lymphocyte Fas expression in HAM/TSP was linked to decreased apoptosis and increased lymphoproliferation upon in vitro culture, but not to proviral load. This Fashi phenotype is HAM/TSP-specific, since both ex vivo and in vitro Fas expression was increased as compared to multiple sclerosis (MS), another neuroinflammatory disorder. To elucidate the molecular mechanism underlying non-apoptotic Fas signaling in HAM/TSP, we combined transcriptome analysis with functional assays, i.e., blocking vs. triggering Fas receptor in vitro with antagonist and agonist-, anti-Fas mAb, respectively. Treatment with agonist anti-Fas mAb restored apoptosis, indicating biased, but not defective Fas signaling in HAM/TSP. In silico analysis revealed biased Fas signaling toward proliferation and inflammation, driven by RelA/NF-κB. Correlation of Fas transcript levels with proliferation (but not apoptosis) was confirmed in HAM/TSP ex vivo transcriptomes. In conclusion, we demonstrated a two-step increase in Fas expression, revealing a unique Fashi lymphocyte phenotype in HAM/TSP, distinguishable from MS. Non-apoptotic Fas signaling might fuel HAM/TSP pathogenesis, through increased lymphoproliferation, inflammation, and early age of onset.
Collapse
Affiliation(s)
- Soraya Maria Menezes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven , Leuven , Belgium
| | - Fabio E Leal
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Tim Dierckx
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven , Leuven , Belgium
| | - Ricardo Khouri
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium; LIMI, Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Daniele Decanine
- LIMI, Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ) , Salvador , Brazil
| | - Gilvaneia Silva-Santos
- LIMI, Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ) , Salvador , Brazil
| | - Saul V Schnitman
- LIMI, Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ) , Salvador , Brazil
| | | | - Giovanni López
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Carolina Alvarez
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael Talledo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Eduardo Gotuzzo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Enfermedades Infecciosas, Tropicales y Dermatológicas, Hospital Cayetano Heredia, Lima, Peru
| | - Douglas F Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Jurgen Vercauteren
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven , Leuven , Belgium
| | - David Brassat
- INSERM UMR1043 and Pôle des Neurosciences, Hôpital Purpan, Université de Toulouse , Toulouse , France
| | - Roland Liblau
- INSERM UMR1043 and Pôle des Neurosciences, Hôpital Purpan, Université de Toulouse , Toulouse , France
| | - Anne Mieke Vandamme
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium; Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven , Leuven , Belgium
| |
Collapse
|
10
|
Achiron A, Zilkha-Falb R, Mashiach R, Gurevich M. RAM-589.555 a new Polymerase-1 inhibitor as innovative targeted-treatment for multiple sclerosis. J Neuroimmunol 2017; 302:41-48. [DOI: 10.1016/j.jneuroim.2016.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/16/2023]
|
11
|
de Oliveira GLV, Ferreira AF, Gasparotto EPL, Kashima S, Covas DT, Guerreiro CT, Brum DG, Barreira AA, Voltarelli JC, Simões BP, Oliveira MC, de Castro FA, Malmegrim KCR. Defective expression of apoptosis-related molecules in multiple sclerosis patients is normalized early after autologous haematopoietic stem cell transplantation. Clin Exp Immunol 2016; 187:383-398. [PMID: 28008595 DOI: 10.1111/cei.12895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/23/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Defective apoptosis might be involved in the pathogenesis of multiple sclerosis (MS). We evaluated apoptosis-related molecules in MS patients before and after autologous haematopoietic stem cell transplantation (AHSCT) using BCNU, Etoposide, AraC and Melphalan (BEAM) or cyclophosphamide (CY)-based conditioning regimens. Patients were followed for clinical and immunological parameters for 2 years after AHSCT. At baseline, MS patients had decreased proapoptotic BAD, BAX and FASL and increased A1 gene expression when compared with healthy counterparts. In the BEAM group, BAK, BIK, BIMEL , FAS, FASL, A1, BCL2, BCLXL , CFLIPL and CIAP2 genes were up-regulated after AHSCT. With the exception of BIK, BIMEL and A1, all genes reached levels similar to controls at day + 720 post-transplantation. Furthermore, in these patients, we observed increased CD8+ Fas+ T cell frequencies after AHSCT when compared to baseline. In the CY group, we observed increased BAX, BCLW, CFLIPL and CIAP1 and decreased BIK and BID gene expressions after transplantation. At day + 720 post-AHSCT, the expression of BAX, FAS, FASL, BCL2, BCLXL and CIAP1 was similar to that of controls. Protein analyses showed increased Bcl-2 expression before transplantation. At 1 year post-AHSCT, expression of Bak, Bim, Bcl-2, Bcl-xL and cFlip-L was decreased when compared to baseline values. In summary, our findings suggest that normalization of apoptosis-related molecules is associated with the early therapeutic effects of AHSCT in MS patients. These mechanisms may be involved in the re-establishment of immune tolerance during the first 2 years post-transplantation.
Collapse
Affiliation(s)
- G L V de Oliveira
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil.,Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, São Paulo, Brazil, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - A F Ferreira
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil.,Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, São Paulo, Brazil, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - E P L Gasparotto
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil
| | - S Kashima
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, São Paulo, Brazil, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - D T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, São Paulo, Brazil, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - C T Guerreiro
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - D G Brum
- Department of Neurology, Psicology and Psiquiatry, School of Medicine of Botucatu, University of State of São Paulo (UNESP), Botucatu
| | - A A Barreira
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - J C Voltarelli
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil.,Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - B P Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, São Paulo, Brazil, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - M C Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, São Paulo, Brazil, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - F A de Castro
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil
| | - K C R Malmegrim
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil.,Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, São Paulo, Brazil, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ 2016; 4:e2775. [PMID: 28028462 PMCID: PMC5183126 DOI: 10.7717/peerj.2775] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein-protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. METHODS Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. RESULTS The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. DISCUSSION This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University , Tehran , Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Namaki
- Immunology Department, Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
13
|
Touzot M, Dahirel A, Cappuccio A, Segura E, Hupé P, Soumelis V. Using Transcriptional Signatures to Assess Immune Cell Function: From Basic Mechanisms to Immune-Related Disease. J Mol Biol 2015; 427:3356-67. [PMID: 25986308 DOI: 10.1016/j.jmb.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/24/2022]
Abstract
Assessing human immune response remains a challenge as it involves multiple cell types in specific tissues. The use of microarray-based expression profiling as a tool for assessing the immune response has grown increasingly over the past decade. Transcriptome analyses provide investigators with a global perspective of the complex molecular and cellular events that unfold during the development of an immune response. In this review, we will detail the broad use of gene expression profiling to decipher the complexity of immune responses from disease biomarkers identification to cell activation, polarisation or functional specialisation. We will also describe how such data-driven strategies revealed the flexibility of immune function with common and specific transcriptional programme under multiple stimuli.
Collapse
Affiliation(s)
- Maxime Touzot
- INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Alix Dahirel
- INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Antonio Cappuccio
- INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France; Service de Bioinformatique, INSERM U900, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Elodie Segura
- INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France
| | - Philippe Hupé
- Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France; Service de Bioinformatique, INSERM U900, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; CNRS UMR 144
| | - Vassili Soumelis
- INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
14
|
Hagman S, Kolasa M, Basnyat P, Helminen M, Kähönen M, Dastidar P, Lehtimäki T, Elovaara I. Analysis of apoptosis-related genes in patients with clinically isolated syndrome and their association with conversion to multiple sclerosis. J Neuroimmunol 2015; 280:43-8. [PMID: 25773154 DOI: 10.1016/j.jneuroim.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
To analyse whether the expression of apoptotic transcripts is associated with the conversion from clinically isolated syndrome (CIS) to multiple sclerosis (MS). Eleven candidate transcripts belonging to the death receptor pathway, BCL-2, the inflammasome complex and NF-ΚB family were studied in the nonconverting and converting CIS patients during the four-year follow-up period. Conversion to MS was associated with marked variability in the expression of proapoptotic genes that were linked to TGF-B1 gene levels. The predominant expression of proapoptotic genes in patients with CIS suggests an increased potential to undergo apoptosis with the goal of terminating immune responses and regulating immune system homeostasis.
Collapse
Affiliation(s)
- Sanna Hagman
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | - Marcin Kolasa
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Pabitra Basnyat
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mika Helminen
- Science Centre, Pirkanmaa Hospital District and School of Health Sciences, University of Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere Medical School, Finland
| | - Prasun Dastidar
- Medical Imaging Centre, Department of Diagnostic Radiology, Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine University of Tampere, Tampere, Finland
| | - Irina Elovaara
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland; Department of Neurology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
15
|
Raphael I, Webb J, Stuve O, Haskins W, Forsthuber T. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev Clin Immunol 2014; 11:69-91. [PMID: 25523168 DOI: 10.1586/1744666x.2015.991315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system, which affects over 2.5 million people worldwide. Although MS has been extensively studied, many challenges still remain in regards to treatment, diagnosis and prognosis. Typically, prognosis and individual responses to treatment are evaluated by clinical tests such as the expanded disability status scale, MRI and presence of oligoclonal bands in the cerebrospinal fluid. However, none of these measures correlates strongly with treatment efficacy or disease progression across heterogeneous patient populations and subtypes of MS. Numerous studies over the past decades have attempted to identify sensitive and specific biomarkers for diagnosis, prognosis and treatment efficacy of MS. The objective of this article is to review and discuss the current literature on body fluid biomarkers in MS, including research on potential biomarker candidates in the areas of miRNA, mRNA, lipids and proteins.
Collapse
Affiliation(s)
- Itay Raphael
- University of Texas San Antonio - Biology, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
16
|
Miceli-Richard C, Criswell LA. Genetic, genomic and epigenetic studies as tools for elucidating disease pathogenesis in primary Sjögren's syndrome. Expert Rev Clin Immunol 2014; 10:437-44. [PMID: 24646085 DOI: 10.1586/1744666x.2014.901888] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Primary Sjögren's syndrome (pSS) is characterized by lymphoid infiltration of lacrimal and salivary glands leading to xerophthalmia and xerostomia. pSS is a complex disease involving both genetic and environmental risk factors. Technological advances over the past 10 years have revolutionized genetics and genomics research enabling high-throughput characterization and analysis of DNA and RNA in patient samples on a genome-wide scale. Further, application of high-throughput methods for characterization of epigenetic variation, such as DNA methylation status, is increasingly being applied to AID populations and will likely further define additional risk factors for disease risk and outcome. Main results obtain in pSS through these various approaches are reviewed here.
Collapse
|
17
|
Srivastava A, Sharma A, Yadav S, Flora SJS, Dwivedi UN, Parmar D. Gene expression profiling of candidate genes in peripheral blood mononuclear cells for predicting toxicity of diesel exhaust particles. Free Radic Biol Med 2014; 67:188-94. [PMID: 24216475 DOI: 10.1016/j.freeradbiomed.2013.10.820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 12/18/2022]
Abstract
To validate gene expression profiling of peripheral blood mononuclear cells (PBMCs) as a surrogate for monitoring tissue expression, this study using RT-PCR-based TaqMan low-density array (TLDA) was initiated to investigate similarities in the mRNA expression of target genes altered by exposure to diesel exhaust particles (DEPs) in freshly prepared PBMCs and in lungs. Adult Wistar rats were treated transtracheally with a single dose of 7.5 or 15 or 30mg/kg DEPs and sacrificed 24h later. Blood and lungs were immediately taken out and processed for RT-PCR. DEP treatment induced similar patterns of increase in the expression of polycyclic aromatic hydrocarbon-responsive cytochrome P450s, the phase II enzymes, and their associated transcription factors in both lungs and PBMCs, at all doses. Similar to that seen in lungs, a dose-dependent increase was observed in the expression of genes involved in inflammation, such as cytokines, chemokines, and adhesion molecules, in PBMCs. The expression of various genes involved in DNA repair and apoptosis was also increased in a dose-dependent manner in PBMCs and lungs. The present TLDA data indicating similarities in the responsiveness of candidate genes involved in the toxicity of DEPs between PBMCs and lungs after exposure to DEPs demonstrate that expression profiles of genes in PBMCs could be used as a surrogate for monitoring the acute toxicity of fine and ultrafine particulate matter present in vehicular emissions.
Collapse
Affiliation(s)
- Ankita Srivastava
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India
| | - Amit Sharma
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India
| | - Sanjay Yadav
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India
| | - Swaran J S Flora
- Division of Regulatory Toxicology, Defence Research & Development Establishment, Gwalior, MP, India
| | | | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India.
| |
Collapse
|
18
|
Nickles D, Chen HP, Li MM, Khankhanian P, Madireddy L, Caillier SJ, Santaniello A, Cree BAC, Pelletier D, Hauser SL, Oksenberg JR, Baranzini SE. Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Hum Mol Genet 2013; 22:4194-205. [PMID: 23748426 DOI: 10.1093/hmg/ddt267] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). It is characterized by the infiltration of autoreactive immune cells into the CNS, which target the myelin sheath, leading to the loss of neuronal function. Although it is accepted that MS is a multifactorial disorder with both genetic and environmental factors influencing its development and course, the molecular pathogenesis of MS has not yet been fully elucidated. Here, we studied the longitudinal gene expression profiles of whole-blood RNA from a cohort of 195 MS patients and 66 healthy controls. We analyzed these transcriptomes at both the individual transcript and the biological pathway level. We found 62 transcripts to be significantly up-regulated in MS patients; the expression of 11 of these genes was counter-regulated by interferon treatment, suggesting partial restoration of a 'healthy' gene expression profile. Global pathway analyses linked the proteasome and Wnt signaling to MS disease processes. Since genotypes from a subset of individuals were available, we were able to identify expression quantitative trait loci (eQTL), a number of which involved two genes of the MS gene signature. However, all these eQTL were also present in healthy controls. This study highlights the challenge posed by analyzing transcripts from whole blood and how these can be mitigated by using large, well-characterized cohorts of patients with longitudinal follow-up and multi-modality measurements.
Collapse
|
19
|
Satoh JI. Molecular network of ChIP-Seq-based NF-κB p65 target genes involves diverse immune functions relevant to the immunopathogenesis of multiple sclerosis. Mult Scler Relat Disord 2013; 3:94-106. [PMID: 25877979 DOI: 10.1016/j.msard.2013.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND The transcription factor nuclear factor-kappa B (NF-κB) acts as a central regulator of immune response, stress response, cell proliferation, and apoptosis. Aberrant regulation of NF-κB function triggers development of cancers, metabolic diseases, and autoimmune diseases. We attempted to characterize a global picture of the NF-κB target gene network relevant to the immunopathogenesis of multiple sclerosis (MS). METHODS We identified the comprehensive set of 918 NF-κB p65 binding sites on protein-coding genes from chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) dataset of TNFα-stimulated human B lymphoblastoid cells. The molecular network was studied by a battery of pathway analysis tools of bioinformatics. RESULTS The GenomeJack genome viewer showed that NF-κB p65 binding sites were accumulated in promoter (35.5%) and intronic (54.9%) regions with an existence of the NF-κB consensus sequence motif. A set of 52 genes (5.7%) corresponded to known NF-κB targets by database search. KEGG, PANTHER, and Ingenuity Pathways Analysis (IPA) revealed that the NF-κB p65 target gene network is linked to regulation of immune functions and oncogenesis, including B cell receptor signaling, T cell activation pathway, Toll-like receptor signaling, and apoptosis signaling, and molecular mechanisms of cancers. KeyMolnet indicated an involvement of the complex crosstalk among core transcription factors in the NF-κB p65 target gene network. Furthermore, the set of NF-κB p65 target genes included 10 genes among 98 MS risk alleles and 49 molecules among 709 MS brain lesion-specific proteins. CONCLUSIONS These results suggest that aberrant regulation of NF-κB-mediated gene expression, by inducing dysfunction of diverse immune functions, is closely associated with development and progression of MS.
Collapse
Affiliation(s)
- Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
20
|
Malhotra S, Morcillo-Suárez C, Nurtdinov R, Rio J, Sarro E, Moreno M, Castilló J, Navarro A, Montalban X, Comabella M. Roles of the ubiquitin peptidase USP18 in multiple sclerosis and the response to interferon-β treatment. Eur J Neurol 2013; 20:1390-7. [PMID: 23700969 DOI: 10.1111/ene.12193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Ubiquitin specific peptidase 18 (USP18) is a deubiquitinating enzyme that functions as a negative regulator of the type I interferon (IFN) signalling pathway and is specifically induced by type I IFNs. In the present study, previous observations by our group were expanded suggesting an implication of USP18 in multiple sclerosis (MS) based on the finding of a deficient expression of the gene in peripheral blood mononuclear cells from MS patients compared with healthy controls. METHODS Two polymorphisms, rs2542109 (intronic) and rs9618216 (promoter), were genotyped in a cohort of 691 relapse-onset MS patients and 1028 healthy controls and in 225 MS patients treated with IFNβ and classified into responders and non-responders after 2 years of treatment according to clinical criteria. Correlations between genotypes and expression levels for USP18 and its target ISG15 were performed by real-time polymerase chain reaction. RESULTS Two USP18 haplotypes were significantly associated with MS, TG and CG. Additional experiments revealed that CG carriers were characterized by lower USP18 gene expression levels in peripheral blood mononuclear cells and higher clinical disease activity. Finally, AA homozygosis for the intronic polymorphism rs2542109 was associated with the responder phenotype; however, USP18 expression levels induced by IFNβ did not differ amongst MS patients carrying different rs2542109 genotypes. CONCLUSIONS Altogether, these results point to a role of USP18 in MS pathogenesis and the therapeutic response to IFNβ.
Collapse
Affiliation(s)
- S Malhotra
- Servei de Neurologia/Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (CEM-Cat), Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nikula T, Mykkänen J, Simell O, Lahesmaa R. Genome-wide comparison of two RNA-stabilizing reagents for transcriptional profiling of peripheral blood. Transl Res 2013; 161:181-8. [PMID: 23138105 DOI: 10.1016/j.trsl.2012.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/28/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Peripheral whole blood is relatively easily obtained for monitoring gene expression for biomarker discovery using transcriptomic platforms such as genome-wide microarrays. However, whole blood provides challenges caused by sensitivity for ex vivo incubation and overrepresentation of globin mRNAs. We compared the performance of 2 commercial whole blood preservation methods, TEMPUS (Applied Biosystems, Foster City, CA) and PAXgene (PreAnalytiX, Qiagen BD, Valencia, CA), using 2 RNA amplification protocols and high-density microarrays. Performance of commercial globin mRNA reduction protocol also was studied. Human peripheral blood samples collected with TEMPUS and PAXgene Blood RNA tubes were amplified with the RiboAmp OA 1 Round RNA Amplification Kit (Arcturus; Applied Biosystems) and the Affymetrix (Santa Clara, CA) small sample protocol. Affymetrix globin reduction protocol was applied for total RNA samples. Samples amplified with RiboAmp were hybridized on Illumina Sentrix HumanRef-8 Expression BeadChips (Illumina Inc, San Diego, CA) and subjected to statistical analyses. RiboAmp mRNA amplification did not notably amplify globin mRNA that is overrepresented in RNA isolated by both TEMPUS and PAXgene preservation. Enzymatic depletion of globin transcript reduced the quality of total RNA and is thus not recommendable. Microarray analysis showed acceptable correlation within and between the RNA preservation methods, but altogether 443 transcripts were differentially expressed between RNA samples preserved in TEMPUS and PAXgene tubes. We demonstrated that the 2 tested blood RNA-preservation methods combined with RiboAmp mRNA amplification may be used for microarray experiments without the need for a prior globin RNA reduction. However, because genes involved in immune cell functions and gene regulatory pathways were differentially expressed as a result of the technical bias between the preservation methods, they should not be used in the same analytic setting.
Collapse
Affiliation(s)
- Tuomas Nikula
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | | | | | | |
Collapse
|
22
|
Sharma A, Saurabh K, Yadav S, Jain SK, Parmar D. Expression profiling of selected genes of toxication and detoxication pathways in peripheral blood lymphocytes as a biomarker for predicting toxicity of environmental chemicals. Int J Hyg Environ Health 2012; 216:645-51. [PMID: 23273579 DOI: 10.1016/j.ijheh.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/18/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
To develop a rapid and sensitive tool for determining gene expression profiles of peripheral blood lymphocytes (PBL) as a surrogate for predicting toxicity associated with environmental exposures, studies were initiated using Taqman Low Density Array (TLDA), a medium throughput method for real time PCR (RT-PCR), for selected genes involved in toxication and detoxication processes. Total RNA was prepared from PBL and liver samples isolated from young rats treated with inducers of drug metabolizing enzymes, e.g. phenobarbital (PB, 80mg/kg i.p. X5 days) or methylcholanthrene (30mg/kg, i.p. X5 days) or ethanol (0.8ml/kg, i.p. X1 day). TLDA data showed that PBL expressed drug metabolizing enzymes (DMEs), though the level of expression was several folds lower when compared to liver. Treatment with different inducers of DMEs produced a similar pattern of an increase in the expression of various phase I and phase II DMEs and their respective transcription factors in liver and PBL. While treatment with MC increased the expression of MC inducible cytochrome P450 (CYP) 1A1, 1A2, 1B1, 2A2 & 3A1 and their associated transcription factors in PBL, an increase in the expression of CYP2B1, 2B2, 2C11 & 3A1 and their transcription factor was observed in PBL after PB treatment. Similarly, treatment of ethanol increased the expression of CYP2E1 and 3A1 along with transcription factors in PBL. These inducers were found to increase the expression of various phase II enzymes such as glutathione S-transferases, GSTs (GSTM1, GSTA1, GSTP1 and GSTK1), NQO1, Ephx1 and Sod1, genes involved in inflammation and apoptosis (p53, BCl2, Apaf1 and Caspase9) in both PBL and liver. The data suggests that the low-density array of selected genes in PBL has the potential to be developed as a rapid and sensitive tool for monitoring of individuals exposed to environmental chemicals as well as in clinical studies.
Collapse
Affiliation(s)
- Amit Sharma
- Developmental Toxicology Division, Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), M.G. Marg, Lucknow 226 001, UP, India; Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | | | | | | | | |
Collapse
|
23
|
Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun 2012. [PMID: 23190644 DOI: 10.1038/gene.2012.55] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via different subsignaling pathways. Analyses of the expression levels of dozens of genes and the protein-protein interactions among them demonstrated that CD and UC have relatively similar gene expression signatures, whereas the gene expression signatures of T1D and JRA relatively differ from the signatures of the other autoimmune diseases. These diseases are the only ones activated via the Fcɛ pathway. The relevant genes and pathways reported in this study are discussed at length, and may be helpful in the diagnoses and understanding of autoimmunity and/or specific autoimmune diseases.
Collapse
Affiliation(s)
- T Tuller
- School of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| | | | | | | | | |
Collapse
|
24
|
Gurevich M, Achiron A. The switch between relapse and remission in multiple sclerosis: Continuous inflammatory response balanced by Th1 suppression and neurotrophic factors. J Neuroimmunol 2012; 252:83-8. [DOI: 10.1016/j.jneuroim.2012.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/13/2012] [Accepted: 07/25/2012] [Indexed: 01/28/2023]
|
25
|
Liu X, Fang L, Guo TB, Mei H, Zhang JZ. Drug targets in the cytokine universe for autoimmune disease. Trends Immunol 2012; 34:120-8. [PMID: 23116550 DOI: 10.1016/j.it.2012.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 01/13/2023]
Abstract
In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders.
Collapse
Affiliation(s)
- Xuebin Liu
- Department of Neuroimmunology, GlaxoSmithKline Research and Development Center, Shanghai, China
| | | | | | | | | |
Collapse
|
26
|
Liu J, Yin L, Dong H, Xu E, Zhang L, Qiao Y, Liu Y, Li L, Jia J. Decreased serum levels of nucleolin protein fragment, as analyzed by bead-based proteomic technology, in multiple sclerosis patients compared to controls. J Neuroimmunol 2012; 250:71-6. [PMID: 22633274 DOI: 10.1016/j.jneuroim.2012.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
Abstract
In order to investigate the biomarkers associated with relapsing-remitting multiple sclerosis (RRMS), we analyzed 72 patients with RRMS and 65 healthy controls using proteome technology. Peptides in sera were purified using magnetic beads, and analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and ClinProTool software. Thirteen peptides were significantly different between patients with RRMS and healthy controls. Furthermore, a pattern of peaks was selected for genetic algorithm (GA), supervised neural network (SNN) and quick classifier (QC) model building. Among these three models, GA method was best with 93.49% of recognition capability and 82.66% of cross-validation and discriminated the proteomic spectra in patients with RRMS from healthy controls, with a sensitivity of 80% and a specificity of 91.3%. Meanwhile, the first peptide with m/z 2023.3 was identified as fragment of nucleolin protein. There is a possible relationship between the fragment peptide of nucleolin and the trigger of relapse in MS. Sera nucleolin may serve as a possible biomarker of RRMS.
Collapse
Affiliation(s)
- Jianghong Liu
- Department of Neurology, Xuan Wu Hospital of Capital Medical University, Beijing, 100053, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Levy H, Wang X, Kaldunski M, Jia S, Kramer J, Pavletich SJ, Reske M, Gessel T, Yassai M, Quasney MW, Dahmer MK, Gorski J, Hessner MJ. Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 2012; 13:593-604. [PMID: 22972474 PMCID: PMC4265236 DOI: 10.1038/gene.2012.41] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding therapeutic decisions and monitoring interventions. We previously demonstrated that plasma samples from recent-onset type 1 diabetes (RO T1D) patients induce a proinflammatory transcriptional signature in freshly drawn peripheral blood mononuclear cells (PBMCs) relative to that of unrelated healthy controls (HC). Here, using cryopreserved PBMC, we analyzed larger RO T1D and HC cohorts, examined T1D progression in pre-onset samples, and compared the RO T1D signature to those associated with three disorders characterized by airway infection and inflammation. The RO T1D signature, consisting of interleukin-1 cytokine family members, chemokines involved in immunocyte chemotaxis, immune receptors and signaling molecules, was detected during early pre-diabetes and found to resolve post-onset. The signatures associated with cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, patients with confirmed bacterial pneumonia, and subjects with H1N1 influenza all reflected immunological activation, yet each were distinct from one another and negatively correlated with that of T1D. This study highlights the remarkable capacity of cells to serve as biosensors capable of sensitively and comprehensively differentiating immunological states.
Collapse
Affiliation(s)
- H Levy
- The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
During the last decade, several defects in self-tolerance have been identified in multiple sclerosis. Dysfunction in central tolerance leads to the thymic output of antigen-specific T cells with T cell receptor alterations favouring autoimmune reactions. In addition, premature thymic involution results in a reduced export of naïve regulatory T cells, the fully suppressive clone. Alterations in peripheral tolerance concern costimulatory molecules as well as transcriptional and epigenetic mechanisms. Recent data underline the key role of regulatory T cells that suppress Th1 and Th17 effector cell responses and whose immunosuppressive activity is impaired in patients with multiple sclerosis. Those recent observations suggest that a defect in self-tolerance homeostasis might be the primary mover of multiple sclerosis leading to subsequent immune attacks, inflammation and neurodegeneration. The concept of multiple sclerosis as a consequence of the failure of central and peripheral tolerance mechanisms to maintain a self-tolerance state, particularly of regulatory T cells, may have therapeutic implications. Restoring normal thymic output and suppressive functions of regulatory T cells appears an appealing approach. Regulatory T cells suppress the general local immune response via bystander effects rather than through individual antigen-specific responses. Interestingly, the beneficial effects of currently approved immunomodulators (interferons β and glatiramer acetate) are associated with a restored regulatory T cell homeostasis. However, the feedback regulation between Th1 and Th17 effector cells and regulatory T cells is not so simple and tolerogenic mechanisms also involve other regulatory cells such as B cells, dendritic cells and CD56(bright) natural killer cells.
Collapse
Affiliation(s)
- R E Gonsette
- Fondation-Charcot-Stichting, Avenue Huart Hamoir 48, 1030 Brussels, Belgium.
| |
Collapse
|
29
|
Sánchez-Pla A, Reverter F, Ruíz de Villa MC, Comabella M. Transcriptomics: mRNA and alternative splicing. J Neuroimmunol 2012; 248:23-31. [PMID: 22626445 DOI: 10.1016/j.jneuroim.2012.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/27/2022]
Abstract
Transcriptomics has emerged as a powerful approach for biomarker discovery. In the present review, the two main types of high throughput transcriptomic technologies - microarrays and next generation sequencing - that can be used to identify candidate biomarkers are briefly described. Microarrays, the mainstream technology of the last decade, have provided hundreds of valuable datasets in a wide variety of diseases including multiple sclerosis (MS), in which this approach has been used to disentangle different aspects of its complex pathogenesis. RNA-seq, the current next generation sequencing approach, is expected to provide similar power as microarrays but extending their capabilities to aspects up to now more difficult to analyse such as alternative splicing and discovery of novel transcripts.
Collapse
|
30
|
Lorenzi JCC, Brum DG, Zanette DL, de Paula Alves Souza A, Barbuzano FG, Dos Santos AC, Barreira AA, da Silva WA. miR-15a and 16-1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients. Int J Neurosci 2012; 122:466-71. [PMID: 22463747 DOI: 10.3109/00207454.2012.678444] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathology of relapsing-remitting multiple sclerosis (RR-MS) is largely attributed to activated autoreactive effector T lymphocytes. The influence of microRNAs on the immune response has been shown to occur in different pathways of lymphocyte differentiation and function. Here, the expression of the miRNAs miR-15a/16-1 in PBMC, CD4(+), and CD8(+) from RR-MS patients has been investigated. BCL2, a known miR-15a/16-1 target, has also been analyzed. The results have shown that miR-15a/16-1 is downregulated in CD4(+) T cells, whereas BCL2 is highly expressed in RR-MS patients only. Our data suggest that miR-15a/16-1 can also modulate the BCL2 gene expression in CD4(+) T cells from RR-MS patients, thereby affecting apoptosis processes.
Collapse
|
31
|
Comi C, Fleetwood T, Dianzani U. The role of T cell apoptosis in nervous system autoimmunity. Autoimmun Rev 2012; 12:150-6. [PMID: 22504460 DOI: 10.1016/j.autrev.2011.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/20/2022]
Abstract
Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.
Collapse
Affiliation(s)
- C Comi
- Department of Clinical and Experimental Medicine, Section of Neurology, Amedeo Avogadro University, Novara, Italy.
| | | | | |
Collapse
|
32
|
Dutta R, Trapp BD. Gene expression profiling in multiple sclerosis brain. Neurobiol Dis 2012; 45:108-14. [PMID: 21147224 PMCID: PMC3066282 DOI: 10.1016/j.nbd.2010.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and the leading cause of non-traumatic neurological disability in young adults in the United States and Europe. The clinical disease course is variable and starts with reversible episodes of neurological disability in the third or fourth decade of life. Microarray-based comparative gene profiling provides a snapshot of genes underlying a particular condition. Several large scale microarray studies have been conducted using brain tissue from MS patients. In this review, we summarize existing data from different gene expression profiling studies and how they relate to understand the pathogenesis of MS.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
33
|
Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A. Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions. Hum Mol Genet 2011; 20:3606-19. [DOI: 10.1093/hmg/ddr281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Barr TL, Alexander S, Conley Y. Gene expression profiling for discovery of novel targets in human traumatic brain injury. Biol Res Nurs 2010; 13:140-53. [PMID: 21112922 DOI: 10.1177/1099800410385671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several clinical trials have failed to demonstrate a significant effect on outcome following human traumatic brain injury (TBI) despite promising results obtained in preclinical animal studies. These failures may be due in part to a misinterpretation of the findings obtained in preclinical animal models of TBI, a misunderstanding of the complexity of the human response to TBI, limited knowledge about the biological pathways that interact to contribute to good and bad outcomes after brain injury, and the effects of genomic variability and environment on individual recovery. Recent publications suggest that data obtained from gene expression profiling studies of complex neurological diseases such as stroke, multiple sclerosis (MS), Alzheimer's and Parkinson's may contribute to a more informed understanding of what affects outcome following TBI. These data may help to bridge the gap between successful preclinical studies and negative clinical trials in humans to reveal novel targets for therapy. Gene expression profiling has the capability to identify biomarkers associated with response to TBI, elucidate complex genetic interactions that may play a role in outcome following TBI, and reveal biological pathways related to brain health. This review highlights the current state of the literature on gene expression profiling for neurological disease and discusses its ability to aid in unraveling the variable human response to TBI and the potential for it to offer treatment strategies in an area where we currently have limited therapeutic options primarily based on supportive care.
Collapse
Affiliation(s)
- Taura L Barr
- West Virginia University School of Nursing & Center for Neuroscience, Morgantown, WV, USA.
| | | | | |
Collapse
|
35
|
Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, Habermann TM, Slager SL, Cerhan JR. Germline variation in apoptosis pathway genes and risk of non-Hodgkin's lymphoma. Cancer Epidemiol Biomarkers Prev 2010; 19:2847-58. [PMID: 20855536 DOI: 10.1158/1055-9965.epi-10-0581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The t(14;18)(q32;q21) translocation is the most commonly observed chromosomal translocation in non-Hodgkin's lymphoma (NHL), resulting in constitutive Bcl-2 expression and apoptosis inhibition. In addition, germline variation in both BCL2L11 (BIM) and CASP9, known regulators of apoptosis, has recently been linked to NHL risk. We conducted a comprehensive evaluation of 36 apoptosis pathway genes with risk of NHL. METHODS We genotyped 226 single-nucleotide polymorphisms (SNP) from 36 candidate genes in a clinic-based study of 441 newly diagnosed NHL cases and 475 frequency-matched controls. We used principal components analysis to assess gene-level associations, and logistic regression to assess SNP-level associations. MACH was used for imputation of SNPs in BCL2L11 and CASP9. RESULTS In gene-level analyses, BCL2L11 (P = 0.0019), BCLAF1 (P = 0.0097), BAG5 (P = 0.026), and CASP9 (P = 0.0022) were associated with NHL risk after accounting for multiple testing (tail strength, 0.38; 95% confidence interval, 0.05-0.70). Two of the five BCL2L11 tagSNPs (rs6746608 and rs12613243), both genotyped BCLAF1 tagSNPs (rs797558 and rs703193), the single genotyped BAG5 tagSNP (rs7693), and three of the seven genotyped CASP9 tagSNPs (rs6685648, rs2020902, and rs2042370) were significant at P < 0.05. We successfully imputed BCL2L11 and CASP9 SNPs previously linked to NHL, and replicated all four BCL2L11 and two of three CASP9 SNPs. CONCLUSION We replicated the association of BCL2L11 and CASP9 with NHL risk at the gene and SNP level, and identified novel associations with BCLAF1 and BAG5. IMPACT Closer evaluation of germline variation of genes in the apoptosis pathway with risk of NHL and its subtypes is warranted.
Collapse
Affiliation(s)
- Jennifer L Kelly
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lindsey JW, Agarwal SK, Tan FK. Gene expression changes in multiple sclerosis relapse suggest activation of T and non-T cells. Mol Med 2010; 17:95-102. [PMID: 20882258 DOI: 10.2119/molmed.2010.00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/16/2010] [Indexed: 11/06/2022] Open
Abstract
A defining feature of multiple sclerosis (MS) is the occurrence of clinical relapses separated by periods of clinical stability. Better understanding of the events underlying clinical relapse might suggest new approaches to treatment. The objective of this study was to measure changes in the expression of RNA in the blood during relapse. We used microarrays to measure mRNA expression in paired samples from 14 MS patients during clinical relapse and while stable. Seventy-one transcripts changed expression at the P < 0.001 significance level. The most notable finding was decreased expression of transcripts with regulatory function, expressed primarily in non-T cells. These decreased transcripts included the interleukin-1 receptor antagonist, which had a corresponding decrease in the protein concentration in serum. Transcripts with increased expression were expressed primarily in T cells. Pathways analysis suggested involvement of the cytokine network, coagulation and complement cascades, IL-10 signaling and NF-κB signaling. We conclude that there are alterations of mRNA expression in both T cells and non-T cells during MS relapse.
Collapse
Affiliation(s)
- J William Lindsey
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA.
| | | | | |
Collapse
|
37
|
Achiron A. Blood gene-expression profiling for preonset identification of multiple sclerosis. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
38
|
Satoh JI. Bioinformatics approach to identifying molecular biomarkers and networks in multiple sclerosis. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1759-1961.2010.00013.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Chaussabel D, Pascual V, Banchereau J. Assessing the human immune system through blood transcriptomics. BMC Biol 2010; 8:84. [PMID: 20619006 PMCID: PMC2895587 DOI: 10.1186/1741-7007-8-84] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 06/15/2010] [Indexed: 02/07/2023] Open
Abstract
Blood is the pipeline of the immune system. Assessing changes in transcript abundance in blood on a genome-wide scale affords a comprehensive view of the status of the immune system in health and disease. This review summarizes the work that has used this approach to identify therapeutic targets and biomarker signatures in the field of autoimmunity and infectious disease. Recent technological and methodological advances that will carry the blood transcriptome research field forward are also discussed.
Collapse
Affiliation(s)
- Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, 3434 Live Oak, Dallas, TX 75204, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research and Baylor Research Institute, 3434 Live Oak, Dallas, TX 75204, USA
| | - Jacques Banchereau
- Baylor Institute for Immunology Research and Baylor Research Institute, 3434 Live Oak, Dallas, TX 75204, USA
| |
Collapse
|
40
|
Pascual V, Chaussabel D, Banchereau J. A genomic approach to human autoimmune diseases. Annu Rev Immunol 2010; 28:535-71. [PMID: 20192809 DOI: 10.1146/annurev-immunol-030409-101221] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The past decade has seen an explosion in the use of DNA-based microarrays. These techniques permit assessment of RNA abundance on a genome-wide scale. Medical applications emerged in the field of cancer, with studies of both solid tumors and hematological malignancies leading to the development of tests that are now used to personalize therapeutic options. Microarrays have also been used to analyze the blood transcriptome in a wide range of diseases. In human autoimmune diseases, these studies are showing potential for identifying therapeutic targets as well as biomarkers for diagnosis, assessment of disease activity, and response to treatment. More quantitative and sensitive high-throughput RNA profiling methods are starting to be available and will be necessary for transcriptome analyses to become routine tests in the clinical setting. We expect this to crystallize within the coming decade, as these methods become part of the personalized medicine armamentarium.
Collapse
Affiliation(s)
- Virginia Pascual
- Baylor Institute for Immunology Research, INSERM U, Dallas, Texas 75204, USA.
| | | | | |
Collapse
|
41
|
Gurevich M, Gritzman T, Orbach R, Tuller T, Feldman A, Achiron A. Laquinimod suppress antigen presentation in relapsing-remitting multiple sclerosis: in-vitro high-throughput gene expression study. J Neuroimmunol 2010; 221:87-94. [PMID: 20347159 DOI: 10.1016/j.jneuroim.2010.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/22/2022]
Abstract
Laquinimod (LAQ) is a new immunomodulatory drug shown to be effective in the treatment of relapsing-remitting multiple sclerosis (RRMS); however, its molecular target pathways are not well recognized. In this study we characterized in-vitro the molecular effects of LAQ in peripheral blood mononuclear cells (PBMC) of healthy subjects and RRMS patients by gene expression microarrays. We demonstrated that LAQ induced suppression of genes related to antigen presentation and corresponding inflammatory pathways. These findings were demonstrated mainly via the NFkB pathway. Analysis of PBMC subpopulations identified activation of Th2 response in CD14+ and CD4+ cells and suppression of proliferation in CD8+ cells.
Collapse
Affiliation(s)
- M Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
42
|
Gene expression profiling in multiple sclerosis: a disease of the central nervous system, but with relapses triggered in the periphery? Neurobiol Dis 2009; 37:613-21. [PMID: 19944761 DOI: 10.1016/j.nbd.2009.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/29/2009] [Accepted: 11/18/2009] [Indexed: 12/28/2022] Open
Abstract
The aetiology of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS), includes both genetic and environmental factors, but the pathogenesis is still incompletely known. We performed gene expression profiling on paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from 26 MS patients without immunomodulatory treatment, sampled in relapse or remission, and 18 controls using Human Genome U133 plus 2.0 arrays (Affymetrix). In the CSF, 939 probe sets detected differential expression in MS patients compared to controls, but none in PBMCs, confirming that CSF cells might mirror the disease processes. The regulation of selected transcripts in CSF of MS patients was confirmed by quantitative PCR. Unexpectedly however, when comparing MS patients in relapse to those in remission, 266 probe sets detected differential expression in PBMCs, but not in CSF cells, indicating the importance of events outside of the CNS in the triggering of relapse.
Collapse
|
43
|
Gillett A, Maratou K, Fewings C, Harris RA, Jagodic M, Aitman T, Olsson T. Alternative splicing and transcriptome profiling of experimental autoimmune encephalomyelitis using genome-wide exon arrays. PLoS One 2009; 4:e7773. [PMID: 19915720 PMCID: PMC2775719 DOI: 10.1371/journal.pone.0007773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/12/2009] [Indexed: 01/01/2023] Open
Abstract
Background Multiple Sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate complex pathogenic mechanisms. Transcriptional control through isoform selection and mRNA levels determines pathway activation and ultimately susceptibility to disease. Methodology/Principal Findings We have studied the role of alternative splicing and differential expression in lymph node cells from EAE-susceptible Dark Agouti (DA) and EAE-resistant Piebald Virol Glaxo.AV1 (PVG) inbred rat strains using Affymetrix Gene Chip Rat Exon 1.0 ST Arrays. Comparing the two strains, we identified 11 differentially spliced and 206 differentially expressed genes at day 7 post-immunization, as well as 9 differentially spliced and 144 differentially expressed genes upon autoantigen re-stimulation. Functional clustering and pathway analysis implicate genes for glycosylation, lymphocyte activation, potassium channel activity and cellular differentiation in EAE susceptibility. Conclusions/Significance Our results demonstrate that alternative splicing occurs during complex disease and may govern EAE susceptibility. Additionally, transcriptome analysis not only identified previously defined EAE pathways regulating the immune system, but also novel mechanisms. Furthermore, several identified genes overlap known quantitative trait loci, providing novel causative candidate targets governing EAE.
Collapse
Affiliation(s)
- Alan Gillett
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska Hospital at Solna, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
44
|
Richter GHS, Mollweide A, Hanewinkel K, Zobywalski C, Burdach S. CD25 blockade protects T cells from activation-induced cell death (AICD) via maintenance of TOSO expression. Scand J Immunol 2009; 70:206-15. [PMID: 19703010 DOI: 10.1111/j.1365-3083.2009.02281.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CD25 monoclonal antibody binding to the alpha-chain of the Interleukin-2 (IL-2) receptor, blocks high-affinity IL-2 binding, thereby preventing complete T-cell activation and being of ample importance in transplantation medicine and potentially the treatment of autoimmune disease. However, CD25 antibodies do not only block T-cell activation but also prevent activation-induced cell death (AICD) attributing a dual function to IL-2. In this study, the modulation of the genomic expression profile of human peripheral blood mononuclear cells (PBMC) with therapeutic concentrations of humanized anti-CD25 mAb was investigated. PBMC were stimulated with CD3 antibody OKT-3 together with recombinant IL-2 in the absence or presence of anti-CD25 mAb. RNA was extracted and subjected to microarray analysis on U133A microarrays (Affymetrix). Anti-CD25 treatment inhibited several genes typically expressed during T-cell activation including granzyme B, signalling lymphocyte activation molecule, family member 1 (SLAMF1), CD40-Ligand (CD40-L), IL-9 and interferon (IFN)-gamma. Interestingly, anti-CD25 mAb also blocked the expression of several genes important for susceptibility to apoptosis, such as death receptor 6 (DR6) or reversed IL-2-mediated repression of anti-apoptotic genes, such as Fas apoptotic inhibitory molecule 3 (FAIM3)/TOSO. Functional significance of DR6 and TOSO expression in IL-2-dependent T-cell activation was subsequently evaluated by RNA interference in AICD: While siRNA specifically directed against DR6 did not modulate FAS-L-mediated apoptosis induction in primary T cells, down-regulation of TOSO significantly increased susceptibility to apoptosis, emphasizing an important role for TOSO in IL-2-mediated AICD.
Collapse
Affiliation(s)
- G H S Richter
- Laboratory for Functional Genomics and Transplantation Biology, Department of Pediatrics and Children's Cancer Research Center, Technische Universität München, 81664 München, Germany.
| | | | | | | | | |
Collapse
|
45
|
Pascual V, Allantaz F, Patel P, Palucka AK, Chaussabel D, Banchereau J. How the study of children with rheumatic diseases identified interferon-alpha and interleukin-1 as novel therapeutic targets. Immunol Rev 2009; 223:39-59. [PMID: 18613829 DOI: 10.1111/j.1600-065x.2008.00643.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SUMMARY Our studies in children with rheumatic diseases have led to the identification of two of the oldest cytokines, type I interferon (IFN) and interleukin 1 (IL-1), as important pathogenic players in systemic lupus erythematosus (SLE) and systemic onset juvenile arthritis (SoJIA), respectively. These findings were obtained by studying the transcriptional profiles of patient blood cells and by assessing the biological and transcriptional effect(s) of active patient sera on healthy blood cells. We also identified a signature that can be used to promptly diagnose SoJIA from other febrile conditions. Finally, our pilot clinical trials using IL-1 blockers have shown remarkable clinical benefits in SoJIA patients refractory to other medications.
Collapse
Affiliation(s)
- Virginia Pascual
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, TX 75204, USA
| | | | | | | | | | | |
Collapse
|
46
|
Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet 2008; 9:516-26. [PMID: 18542080 DOI: 10.1038/nrg2395] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease and a common cause of neurological disability in young adults. The modest heritability of MS reflects complex genetic effects and multifaceted gene-environment interactions. The human leukocyte antigen (HLA) region is the strongest susceptibility locus for MS, but a genome-wide association study recently identified new susceptibility genes. Progress in high-throughput genotyping and sequencing technologies and a better understanding of the structural organization of the human genome, together with powerful brain-imaging techniques that refine the phenotype, suggest that the tools could finally exist to identify the full set of genes influencing the pathogenesis of MS.
Collapse
Affiliation(s)
- Jorge R Oksenberg
- Department of Neurology, School of Medicine, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0435, USA.
| | | | | | | |
Collapse
|
47
|
SAGE analysis demonstrates increased expression of TOSO contributing to Fas-mediated resistance in CLL. Blood 2008; 112:394-7. [PMID: 18434611 DOI: 10.1182/blood-2007-11-124065] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To identify novel genes involved in the molecular pathogenesis of chronic lymphocytic leukemia (CLL) we performed a serial analysis of gene expression (SAGE) in CLL cells, and compared this with healthy B cells (nCD19(+)). We found a high level of similarity among CLL subtypes, but a comparison of CLL versus nCD19(+) libraries revealed 55 genes that were over-represented and 49 genes that were down-regulated in CLL. A gene ontology analysis revealed that TOSO, which plays a functional role upstream of Fas extrinsic apoptosis pathway, was over-expressed in CLL cells. This finding was confirmed by real-time reverse transcription-polymerase chain reaction in 78 CLL and 12 nCD19(+) cases (P < .001). We validated expression using flow cytometry and tissue microarray and demonstrated a 5.6-fold increase of TOSO protein in circulating CLL cells (P = .013) and lymph nodes (P = .006). Our SAGE results have demonstrated that TOSO is a novel over-expressed antiapoptotic gene in CLL.
Collapse
|
48
|
Microarray-based identification of novel biomarkers in IL-1-mediated diseases. Curr Opin Immunol 2007; 19:623-32. [PMID: 18036805 DOI: 10.1016/j.coi.2007.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Interleukin 1b (IL-1b) is emerging as mediator of a wide range of human diseases. Availability of IL-1 blockers that result in clinical benefits to patients with these diseases is creating a demand for biomarkers to diagnose as well as to predict and follow responses to therapy. Blood gene expression profiling can be used to identify such biomarkers. This review will summarize recent studies in the field and will discuss some of the challenges raised by the use of this technology in biomarker discovery.
Collapse
|