1
|
Lin JS, Jain SA. Challenges in Nerve Repair and Reconstruction. Hand Clin 2023; 39:403-415. [PMID: 37453767 DOI: 10.1016/j.hcl.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Peripheral nerve injuries may substantially impair a patient's function and quality of life. Despite appropriate treatment, outcomes often remain poor. Direct repair remains the standard of care when repair is possible without excessive tension. For larger nerve defects, nerve autografting is the gold standard. However, a considerable challenge is donor site morbidity. Processed nerve allografts and conduits are other options, but evidence supporting their use is limited to smaller nerves and shorter gaps. Nerve transfer is another technique that has seen increasing popularity. The future of care may include novel biologics and pharmacologic therapy to enhance regeneration.
Collapse
Affiliation(s)
- James S Lin
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, 241 West 11th Avenue, Suite 6081, Columbus, OH 43201, USA
| | - Sonu A Jain
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, 3rd Floor, Suite 3200, Columbus, OH 43212, USA.
| |
Collapse
|
2
|
Zou S, Pan BX. Post-synaptic specialization of the neuromuscular junction: junctional folds formation, function, and disorders. Cell Biosci 2022; 12:93. [PMID: 35718785 PMCID: PMC9208267 DOI: 10.1186/s13578-022-00829-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/05/2022] [Indexed: 11/14/2022] Open
Abstract
Post-synaptic specialization is critical to the neurotransmitter release and action potential conduction. The neuromuscular junctions (NMJs) are the synapses between the motor neurons and muscle cells and have a more specialized post-synaptic membrane than synapses in the central nervous system (CNS). The sarcolemma within NMJ folded to form some invagination portions called junctional folds (JFs), and they have important roles in maintaining the post-synaptic membrane structure. The NMJ formation and the acetylcholine receptor (AChR) clustering signal pathway have been extensively studied and reviewed. Although it has been suggested that JFs are related to maintaining the safety factor of neurotransmitter release, the formation mechanism and function of JFs are still unclear. This review will focus on the JFs about evolution, formation, function, and disorders. Anticipate understanding of where they are coming from and where we will study in the future.
Collapse
Affiliation(s)
- Suqi Zou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| |
Collapse
|
3
|
Minegishi Y, Nishimoto J, Uto M, Ozone K, Oka Y, Kokubun T, Murata K, Takemoto H, Kanemura N. Effects of exercise on muscle reinnervation and plasticity of spinal circuits in rat sciatic nerve crush injury models with different numbers of crushes. Muscle Nerve 2022; 65:612-620. [PMID: 35119696 DOI: 10.1002/mus.27512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Motor function recovery is frequently poor after peripheral nerve injury. The effect of different numbers of nerve crushes and exercise on motor function recovery is unknown. We aimed to examine how different numbers of crushes of the rat sciatic nerve affects muscle reinnervation and plasticity of spinal circuits and the effect of exercise intervention. METHODS Single and multiple sciatic nerve crush models with different numbers of crushes were created in rats. Treadmill exercise was performed at 10 m/min for 60 min, five times a week. Muscle reinnervation and synaptic changes in L4-5 motor neurons were examined by immunofluorescence staining. Behavioral tests were the sciatic functional index (SFI) and the pinprick tests. RESULTS The percentage of soleus muscle reinnervation was not significantly increased by the presence of exercise in single or multiple crushes. Exercise after a single crush increased the contact of motor neurons with VGLUT1-containing structures (Exercised vs. Unexercised, 12.9% vs. 8.7%; P < 0.01), but after multiple crushes, it decreased with or without exercise (8.1% vs. 8.6%). Exercise after a single crush significantly improved SFI values from 14 to 24 days, and exercise after multiple crushes from 21 to 35 days (all P < 0.05). The pinprick test showed no difference in recovery depending on the number of crushes or whether or not exercised. DISCUSSION Different numbers of sciatic nerve crushes affect muscle reinnervation and motor neuron synaptic changes differently, but motor function recovery may improve with exercise regardless of the number of crushes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuki Minegishi
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan.,Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Junji Nishimoto
- Department of Rehabilitation, Saitama Medical University Saitama Medical Center, Saitama, Japan
| | - Minori Uto
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Kaichi Ozone
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan.,Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuichiro Oka
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan.,Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Kenji Murata
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Hidenori Takemoto
- Department of Rehabilitation, Hiroshima International Medical and Welfare College, Hiroshima, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| |
Collapse
|
4
|
Swenarchuk LE. Nerve, Muscle, and Synaptogenesis. Cells 2019; 8:cells8111448. [PMID: 31744142 PMCID: PMC6912269 DOI: 10.3390/cells8111448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skeletal neuromuscular junction (NMJ) has long served as a model system for studying synapse structure, function, and development. Over the last several decades, a neuron-specific isoform of agrin, a heparan sulfate proteoglycan, has been identified as playing a central role in synapse formation at all vertebrate skeletal neuromuscular synapses. While agrin was initially postulated to be the inductive molecule that initiates synaptogenesis, this model has been modified in response to work showing that postsynaptic differentiation can develop in the absence of innervation, and that synapses can form in transgenic mice in which the agrin gene is ablated. In place of a unitary mechanism for neuromuscular synapse formation, studies in both mice and zebrafish have led to the proposal that two mechanisms mediate synaptogenesis, with some synapses being induced by nerve contact while others involve the incorporation of prepatterned postsynaptic structures. Moreover, the current model also proposes that agrin can serve two functions, to induce synaptogenesis and to stabilize new synapses, once these are formed. This review examines the evidence for these propositions, and concludes that it remains possible that a single molecular mechanism mediates synaptogenesis at all NMJs, and that agrin acts as a stabilizer, while its role as inducer is open to question. Moreover, if agrin does not act to initiate synaptogenesis, it follows that as yet uncharacterized molecular interactions are required to play this essential inductive role. Several alternatives to agrin for this function are suggested, including focal pericellular proteolysis and integrin signaling, but all require experimental validation.
Collapse
|
5
|
Faroni A, Melfi S, Castelnovo LF, Bonalume V, Colleoni D, Magni P, Araúzo-Bravo MJ, Reinbold R, Magnaghi V. GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination. Mol Neurobiol 2018; 56:1461-1474. [PMID: 29948947 DOI: 10.1007/s12035-018-1158-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
GABA-B receptors are important for Schwann cell (SC) commitment to a non-myelinating phenotype during development. However, the P0-GABA-B1fl/fl conditional knockout mice, lacking the GABA-B1 receptor specifically in SCs, also presented axon modifications, suggesting SC non-autonomous effects through the neuronal compartment. In this in vitro study, we evaluated whether the specific deletion of the GABA-B1 receptor in SCs may induce autonomous or non-autonomous cross-changes in sensory dorsal root ganglia (DRG) neurons. To this end, we performed an in vitro biomolecular and transcriptomic analysis of SC and DRG neuron primary cultures from P0-GABA-B1fl/fl mice. We found that cells from conditional P0-GABA-B1fl/fl mice exhibited proliferative, migratory and myelinating alterations. Moreover, we found transcriptomic changes in novel molecules that are involved in peripheral neuron-SC interaction.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Simona Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Luca Franco Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Deborah Colleoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
6
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
7
|
Bloch-Gallego E. Mechanisms controlling neuromuscular junction stability. Cell Mol Life Sci 2015; 72:1029-43. [PMID: 25359233 PMCID: PMC11113273 DOI: 10.1007/s00018-014-1768-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/06/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
The neuromuscular junction (NMJ) is the synaptic connection between motor neurons and muscle fibers. It is involved in crucial processes such as body movements and breathing. Its proper development requires the guidance of motor axons toward their specific targets, the development of multi-innervated myofibers, and a selective synapse stabilization. It first consists of the removal of excessive motor axons on myofibers, going from multi-innervation to a single innervation of each myofiber. Whereas guidance cues of motor axons toward their specific muscular targets are well characterized, only few molecular and cellular cues have been reported as clues for selecting and stabilizing specific neuromuscular junctions. We will first provide a brief summary on NMJ development. We will then review molecular cues that are involved in NMJ stabilization, in both pre- and post-synaptic compartments, considering motor neurons and Schwann cells on the one hand, and muscle on the other hand. We will provide links with pathologies and highlight advances that can be brought both by basic research on NMJ development and clinical data resulting from the analyses of neurodegeneration of synaptic connections to obtain a better understanding of this process. The goal of this review is to highlight the findings toward understanding the roles of poly- or single-innervations and the underlying mechanisms of NMJ stabilization.
Collapse
Affiliation(s)
- Evelyne Bloch-Gallego
- Institut Cochin, INSERM U. 1016, CNRS UMR 8104, University Paris Descartes 24, rue du Fbg St-Jacques, 75014, Paris, France,
| |
Collapse
|
8
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech 2013; 46:2381-7. [PMID: 23953670 DOI: 10.1016/j.jbiomech.2013.07.033] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 01/30/2023]
Abstract
Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463-0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle.
Collapse
Affiliation(s)
- Sarah F Eby
- Mayo Medical School, Mayo Graduate School, and the Medical Scientist Training Program, College of Medicine, Mayo Clinic, Rochester, MN, United States; Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, United States
| | | | | | | | | | | |
Collapse
|
10
|
Chao T, Frump D, Lin M, Caiozzo VJ, Mozaffar T, Steward O, Gupta R. Matrix metalloproteinase 3 deletion preserves denervated motor endplates after traumatic nerve injury. Ann Neurol 2012; 73:210-23. [DOI: 10.1002/ana.23781] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/29/2012] [Accepted: 09/24/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Tom Chao
- Department of Orthopaedic Surgery; University of California; Irvine, Irvine; CA
| | - Derek Frump
- Department of Orthopaedic Surgery; University of California; Irvine, Irvine; CA
| | - Michael Lin
- Department of Orthopaedic Surgery; University of California; Irvine, Irvine; CA
| | - Vincent J. Caiozzo
- Department of Orthopaedic Surgery; University of California; Irvine, Irvine; CA
| | | | | | | |
Collapse
|
11
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Abstract
Major peripheral nerve injuries are often associated with devastating functional deficits. Current management techniques fail to achieve adequate functional neural regeneration, and the development of adjunct therapies is necessary to improve outcomes. Recent efforts at enhancing the regeneration rate of peripheral nerves and developing axonal guidance channels or conduits have had limited success. The neuromuscular junction serves as the interface between the peripheral nerves and muscle. This critical area undergoes significant changes following peripheral nerve injury and induces end-organ atrophy after denervation, which limits the chance of true functional regeneration. Stabilization of the neuromuscular junction may be an important adjunct in peripheral nerve repair and should be explored as a method of managing major nerve injuries.
Collapse
|
13
|
Barros CS, Franco SJ, Müller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 2011; 3:a005108. [PMID: 21123393 DOI: 10.1101/cshperspect.a005108] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Claudia S Barros
- The Scripps Research Institute, Department of Cell Biology, Dorris Neuroscience Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
14
|
Abstract
Duchenne muscular dystrophy (DMD) still needs effective treatments, and myoblast transplantation (MT) is considered as an approach to repair damaged skeletal muscles. DMD is due to the complete loss of dystrophin from muscles. The lack of link between the contracting apparatus and the extracellular matrix leads to frequent damage to the sarcolemma triggering muscle fiber necrosis. Laminins are major proteins in the extracellular matrix. Laminin-111 is normally present in skeletal and cardiac muscles in mice and humans but only during embryonic development. In this study, we showed that intramuscular injection of laminin-111 increased muscle strength and resistance in mdx mice. We also used laminin-111 as a coadjuvant in MT, and we showed this protein decreased considerably the repetitive cycles of degeneration, inflammatory reaction, and regeneration. Moreover, MT is significantly improved. To explain the improvement, we confirmed with the same myoblast cell batch that laminin-111 improves proliferation and drastically increases migration in vitro. These results are extremely important because DMD could be treated only by the injection of a recombinant protein, a simple and safe therapy to prevent loss of muscle function. Moreover, the improvement in MT would be significant to treat the muscles of DMD patients who are already weak.
Collapse
|