1
|
Avila-Trejo AM, Rodríguez-Páez LI, Alcántara-Farfán V, Aguilar-Faisal JL. Multiple Factors Involved in Bone Damage Caused by Chikungunya Virus Infection. Int J Mol Sci 2023; 24:13087. [PMID: 37685893 PMCID: PMC10488091 DOI: 10.3390/ijms241713087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic cases of chikungunya fever represent a public health problem in countries where the virus circulates. The disease is prolonged, in some cases, for years, resulting in disabling pain and bone erosion among other bone and joint problems. As time progresses, tissue damage is persistent, although the virus has not been found in blood or joints. The pathogenesis of these conditions has not been fully explained. Additionally, it has been considered that there are multiple factors that might intervene in the viral pathogenesis of the different conditions that develop. Other mechanisms involved in osteoarthritic diseases of non-viral origin could help explain how damage is produced in chronic conditions. The aim of this review is to analyze the molecular and cellular factors that could be involved in the tissue damage generated by different infectious conditions of the chikungunya virus.
Collapse
Affiliation(s)
- Amanda M. Avila-Trejo
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
- Laboratorio de Medicina de Conservación, Secretaría de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Lorena I. Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
| | - Verónica Alcántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
| | - J. Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Secretaría de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
2
|
Feng F, Bouma EM, Hu G, Zhu Y, Yu Y, Smit JM, Diamond MS, Zhang R. Colocalization of Chikungunya Virus with Its Receptor MXRA8 during Cell Attachment, Internalization, and Membrane Fusion. J Virol 2023; 97:e0155722. [PMID: 37133449 PMCID: PMC10231136 DOI: 10.1128/jvi.01557-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Arthritogenic alphaviruses, including chikungunya virus (CHIKV), preferentially target joint tissues and cause chronic rheumatic disease that adversely impacts the quality of life of patients. Viruses enter target cells via interaction with cell surface receptor(s), which determine the viral tissue tropism and pathogenesis. Although MXRA8 is a recently identified receptor for several clinically relevant arthritogenic alphaviruses, its detailed role in the cell entry process has not been fully explored. We found that in addition to its localization on the plasma membrane, MXRA8 is present in acidic organelles, endosomes, and lysosomes. Moreover, MXRA8 is internalized into cells without a requirement for its transmembrane and cytoplasmic domains. Confocal microscopy and live cell imaging revealed that MXRA8 interacts with CHIKV at the cell surface and then enters cells along with CHIKV particles. At the moment of membrane fusion in the endosomes, many viral particles are still colocalized with MXRA8. These findings provide insight as to how MXRA8 functions in alphavirus internalization and suggest possible targets for antiviral development. IMPORTANCE The globally distributed arthritogenic alphaviruses have infected millions of humans and induce rheumatic disease, such as severe polyarthralgia/polyarthritis, for weeks to years. Alphaviruses infect target cells through receptor(s) followed by clathrin-mediated endocytosis. MXRA8 was recently identified as an entry receptor that shapes the tropism and pathogenesis for multiple arthritogenic alphaviruses, including chikungunya virus (CHIKV). Nonetheless, the exact functions of MXRA8 during the process of viral cell entry remain undetermined. Here, we have provided compelling evidence for MXRA8 as a bona fide entry receptor that mediates the uptake of alphavirus virions. Small molecules that disrupt MXRA8-dependent binding of alphaviruses or internalization steps could serve as a platform for unique classes of antiviral drugs.
Collapse
Affiliation(s)
- Fei Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ellen M. Bouma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunkai Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Mumtaz N, Dudakovic A, Nair A, Koedam M, van Leeuwen JPTM, Koopmans MPG, Rockx B, van Wijnen AJ, van der Eerden BCJ. Zika virus alters osteogenic lineage progression of human mesenchymal stromal cells. J Cell Physiol 2023; 238:379-392. [PMID: 36538650 DOI: 10.1002/jcp.30933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Arboviruses target bone forming osteoblasts and perturb bone remodeling via paracrine factors. We previously reported that Zika virus (ZIKV) infection of early-stage human mesenchymal stromal cells (MSCs) inhibited the osteogenic lineage commitment of MSCs. To understand the physiological interplay between bone development and ZIKV pathogenesis, we employed a primary in vitro model to examine the biological responses of MSCs to ZIKV infection at different stages of osteogenesis. Precommitted MSCs were infected at the late stage of osteogenic stimulation (Day 7) with ZIKV (multiplicity of infection of 5). We observe that MSCs infected at the late stage of differentiation are highly susceptible to ZIKV infection similar to previous observations with early stage infected MSCs (Day 0). However, in contrast to ZIKV infection at the early stage of differentiation, infection at a later stage significantly elevates the key osteogenic markers and calcium content. Comparative RNA sequencing (RNA-seq) of early and late stage infected MSCs reveals that ZIKV infection alters the mRNA transcriptome during osteogenic induction of MSCs (1251 genes). ZIKV infection provokes a robust antiviral response at both stages of osteogenic differentiation as reflected by the upregulation of interferon responsive genes (n > 140). ZIKV infection enhances the expression of immune-related genes in early stage MSCs while increasing cell cycle genes in late stage MSCs. Remarkably, ZIKA infection in early stage MSCs also activates lipid metabolism-related pathways. In conclusion, ZIKV infection has differentiation stage-dependent effects on MSCs and this mechanistic understanding may permit the development of new therapeutic or preventative measures for bone-related effects of ZIKV infection.
Collapse
Affiliation(s)
- Noreen Mumtaz
- Department of Viroscience, Erasmus MC, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Amel Dudakovic
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Asha Nair
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johannes P T M van Leeuwen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus MC, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus MC, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Singh VA, Kumar CS, Khare B, Kuhn RJ, Banerjee M, Tomar S. Surface decorated reporter-tagged chikungunya virus-like particles for clinical diagnostics and identification of virus entry inhibitors. Virology 2023; 578:92-102. [PMID: 36473281 DOI: 10.1016/j.virol.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The ever-evolving and versatile VLP technology is becoming an increasingly popular area of science. This study presents surface decorated reporter-tagged VLPs of CHIKV, an enveloped RNA virus of the genus alphavirus and its applications. Western blot, IFA and live-cell imaging confirm the expression of reporter-tagged CHIK-VLPs from transfected HEK293Ts. CryoEM micrographs reveal particle diameter as ∼67nm and 56-70 nm, respectively, for NLuc CHIK-VLPs and mCherry CHIK-VLPs. Our study demonstrates that by exploiting NLuc CHIK-VLPs as a detector probe, robust ratiometric luminescence signal in CHIKV-positive sera compared to healthy controls can be achieved swiftly. Moreover, the potential activity of the Suramin drug as a CHIKV entry inhibitor has been validated through the reporter-tagged CHIK-VLPs. The results reported in this study open new avenues in the eVLPs domain and offer potential for large-scale screening of clinical samples and antiviral agents targeting entry of CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Vedita Anand Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chandra Shekhar Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Re-Cellularised Kidney Scaffold for Chikungunya Virus Propagation: A Novel Approach. Tissue Eng Regen Med 2022; 19:769-779. [PMID: 35532737 PMCID: PMC9082465 DOI: 10.1007/s13770-022-00449-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Re-emerging viral attacks are catastrophic for health and economy. It is crucial to grasp the viral life cycle, replication and mutation policies and attack strategies. It is also absolute to fathom the cost-efficient antiviral remedies earliest possible. Methods: We propose to use a lab-grown organ (re-cellularized scaffold of sheep kidney) for viral culture and understand its interaction with extra-cellular matrices of the host tissue. Results: Our findings showed that the chikungunya virus (CHIKV) could be better replicated in tissue-engineered bio models than cell culture. A decrease in ds-DNA levels emphasized that CHIKV propagates within the re-cellularized and cell culture models. There was an increase in the viral titres (pfu/ml) in re-cellularized scaffolds and control groups. The lipid peroxidation levels were increased as the infection was progressed in cell culture as well as re-cellularized and control groups. The onset and progress of the CHIKV attacks (cellular infection) lead to transmembrane domain fatty acid peroxidation and DNA breakdown, landing in cellular apoptosis. Simultaneously cell viability was inversely proportional to non-viability, and it decreased as the infection progressed in all infected groups. Histological findings and extracellular matrix evaluation showed the impairment in medullary, cortex regions due to propagation of CHIKV and plaques generations. Conclusion: This method will be a breakthrough for future virus culture, drug interaction and to study its effect on extracellular matrix alterations. This study will also allow us to investigate the correct role of any vaccine or antiviral drugs and their effects on re-engineered organ matrices before moving towards the animal models. Graphical abstract ![]()
Collapse
|
6
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
7
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
8
|
The Alphaviral Capsid Protein Inhibits IRAK1-Dependent TLR Signaling. Viruses 2021; 13:v13030377. [PMID: 33673546 PMCID: PMC7997285 DOI: 10.3390/v13030377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein–protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein–protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host–pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid–IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid–IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein–protein interactions, establish the capsid–IRAK1 interaction as a common alphavirus host–pathogen interface, and delineate the molecular consequences of the capsid–IRAK1 interaction on IRAK1-dependent signaling.
Collapse
|
9
|
McFarland AJ, Yousuf MS, Shiers S, Price TJ. Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Rep 2021; 6:e885. [PMID: 33458558 PMCID: PMC7803673 DOI: 10.1097/pr9.0000000000000885] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that infects cells through the angiotensin-converting enzyme 2 receptor, aided by proteases that prime the spike protein of the virus to enhance cellular entry. Neuropilin 1 and 2 (NRP1 and NRP2) act as additional viral entry factors. SARS-CoV-2 infection causes COVID-19 disease. There is now strong evidence for neurological impacts of COVID-19, with pain as an important symptom, both in the acute phase of the disease and at later stages that are colloquially referred to as "long COVID." In this narrative review, we discuss how COVID-19 may interact with the peripheral nervous system to cause pain in the early and late stages of the disease. We begin with a review of the state of the science on how viruses cause pain through direct and indirect interactions with nociceptors. We then cover what we currently know about how the unique cytokine profiles of moderate and severe COVID-19 may drive plasticity in nociceptors to promote pain and worsen existing pain states. Finally, we review evidence for direct infection of nociceptors by SARS-CoV-2 and the implications of this potential neurotropism. The state of the science points to multiple potential mechanisms through which COVID-19 could induce changes in nociceptor excitability that would be expected to promote pain, induce neuropathies, and worsen existing pain states.
Collapse
Affiliation(s)
- Amelia J. McFarland
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Muhammad S. Yousuf
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
10
|
Comparative analyses of alphaviral RNA:Protein complexes reveals conserved host-pathogen interactions. PLoS One 2020; 15:e0238254. [PMID: 32841293 PMCID: PMC7446964 DOI: 10.1371/journal.pone.0238254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of host / pathogen interactions is essential to both understanding the molecular biology of infection and developing rational intervention strategies to overcome disease. Alphaviruses, such as Sindbis virus, Chikungunya virus, and Venezuelan Equine Encephalitis virus are medically relevant positive-sense RNA viruses. As such, they must interface with the host machinery to complete their infectious lifecycles. Nonetheless, exhaustive RNA:Protein interaction discovery approaches have not been reported for any alphavirus species. Thus, the breadth and evolutionary conservation of host interactions on alphaviral RNA function remains a critical gap in the field. Herein we describe the application of the Cross-Link Assisted mRNP Purification (CLAMP) strategy to identify conserved alphaviral interactions. Through comparative analyses, conserved alphaviral host / pathogen interactions were identified. Approximately 100 unique host proteins were identified as a result of these analyses. Ontological assessments reveal enriched Molecular Functions and Biological Processes relevant to alphaviral infection. Specifically, as anticipated, Poly(A) RNA Binding proteins are significantly enriched in virus specific CLAMP data sets. Moreover, host proteins involved in the regulation of mRNA stability, proteasome mediated degradation, and a number of 14-3-3 proteins were identified. Importantly, these data expand the understanding of alphaviral host / pathogen interactions by identifying conserved interactants.
Collapse
|
11
|
Vidal OM, Acosta-Reyes J, Padilla J, Navarro-Lechuga E, Bravo E, Viasus D, Arcos-Burgos M, Vélez JI. Chikungunya outbreak (2015) in the Colombian Caribbean: Latent classes and gender differences in virus infection. PLoS Negl Trop Dis 2020; 14:e0008281. [PMID: 32492017 PMCID: PMC7304630 DOI: 10.1371/journal.pntd.0008281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/19/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus of the Togaviridae family, is part of a group of emergent diseases, including arbovirus, constituting an increasing public health problem in tropical areas worldwide. CHIKV causes a severe and debilitating disease with high morbidity. The first Colombian autochthonous case was reported in the Colombian Caribbean region in September 2014. Within the next two to three months, the CHIKV outbreak reached its peak. Although the CHIKV pattern of clinical symptomatology has been documented in different epidemiological studies, understanding of the relationship between clinical symptomatology and variation in phenotypic response to CHIKV infection in humans remains limited. We performed a cross sectional study following 1160 individuals clinically diagnosed with CHIKV at the peak of the Chikungunya outbreak in the Colombian Caribbean region. We examined the relationship between symptomatology and diverse phenotypic responses. Latent Class Cluster Analysis (LCCA) models were used to characterize patients’ symptomatology and further identify subgroups of individuals with differential phenotypic response. We found that most individuals presented fever (94.4%), headache (73.28%) and general discomfort (59.4%), which are distinct clinical symptoms of a viral infection. Furthermore, 11/26 (43.2%) of the categorized symptoms were more frequent in women than in men. LCCA disclosed seven distinctive phenotypic response profiles in this population of CHIKV infected individuals. Interestingly, 282 (24.3%) individuals exhibited a lower symptomatic “extreme” phenotype and 74 (6.4%) patients were within the severe complex “extreme” phenotype. Although clinical symptomatology may be diverse, there are distinct symptoms or group of symptoms that can be correlated with differential phenotypic response and perhaps susceptibility to CHIKV infection, especially in the female population. This suggests that, comparatively to men, women are a CHIKV at-risk population. Further study is needed to validate these results and determine whether the distinct LCCA profiles are a result of the immune response or a mixture of genetic, lifestyle and environmental factors. Our findings could contribute to the development of machine learning approaches to characterizing CHIKV infection in other populations. Preliminary results have shown prediction models achieving up to 92% accuracy overall, with substantial sensitivity, specificity and accuracy values per LCCA-derived cluster. The Chikungunya virus (CHIKV) infection is a mosquito-borne virus of the Togaviridae family, part of the arbovirus group of mosquito-transmitted pathogens. CHIKV causes a severe and debilitating disease with high morbidity. In this study, we comprehensively analysed clinical data from 1160 individuals from the Colombian Caribbean, who were diagnosed with CHIKV infection during the 2014 epidemic peak and before the Zika epidemic (registered back in 2015). Further, the presence of latent classes and predictors of CHIKV susceptibility and severity of the CHIKV infection were analysed. Although it is well known that people respond differently to infection, our results showed that these differences are not arbitrary and may come from the specific orchestration of our immune response and specific genetic makeup. For example, we identified that females infected with CHIKV exhibited significant and heterogeneous phenotypic response patterns compared to men. Overall, these results inform about potential predictors and outlining strategies to study the natural history of CHIKV infection. Future studies assessing the contribution of demographic, immunological and genetic factors to symptom co-occurrence could shed some light on the severity of the clinical symptomatology and, ultimately, lead to more accurate, more efficient and differential diagnosis. These results could contribute to the development of machine learning approaches to characterizing CHIKV infection in other populations and provide more accurate and differential diagnosis.
Collapse
Affiliation(s)
- Oscar M. Vidal
- Universidad del Norte, Barranquilla, Colombia
- * E-mail: (OMV); (JIV)
| | | | | | | | - Elsa Bravo
- Epidemiological Surveillance Team, Health Secretary Program, Barranquilla, Colombia
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jorge I. Vélez
- Universidad del Norte, Barranquilla, Colombia
- * E-mail: (OMV); (JIV)
| |
Collapse
|
12
|
Guerrero-Arguero I, Høj TR, Tass ES, Berges BK, Robison RA. A comparison of Chikungunya virus infection, progression, and cytokine profiles in human PMA-differentiated U937 and murine RAW264.7 monocyte derived macrophages. PLoS One 2020; 15:e0230328. [PMID: 32163514 PMCID: PMC7067478 DOI: 10.1371/journal.pone.0230328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes rash, fever and severe polyarthritis that can last for years in humans. Murine models display inflammation and macrophage infiltration only in the adjacent tissues at the site of inoculation, showing no signs of systemic polyarthritis. Monocyte-derived macrophages are one cell type suspected to contribute to a systemic CHIKV infection. The purpose of this study was to analyze differences in CHIKV infection in two different cell lines, human U937 and murine RAW264.7 monocyte derived macrophages. PMA-differentiated U937 and RAW264.7 macrophages were infected with CHIKV, and infectious virus production was measured by plaque assay and by reverse transcriptase quantitative PCR at various time points. Secreted cytokines in the supernatants were measured using cytometric bead arrays. Cytokine mRNA levels were also measured to supplement expression data. Here we show that CHIKV replicates more efficiently in human macrophages compared to murine macrophages. In addition, infected human macrophages produced around 10-fold higher levels of infectious virus when compared to murine macrophages. Cytokine induction by CHIKV infection differed between human and murine macrophages; IL-1, IL-6, IFN-γ, and TNF were significantly upregulated in human macrophages. This evidence suggests that CHIKV replicates more efficiently and induces a much greater pro-inflammatory cytokine profile in human macrophages, when compared to murine macrophages. This may shed light on the critical role that macrophages play in the CHIKV inflammatory response.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Taalin R. Høj
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - E. Shannon Tass
- Department of Statistics, College of Physical and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
13
|
A possible role for autoimmunity through molecular mimicry in alphavirus mediated arthritis. Sci Rep 2020; 10:938. [PMID: 31969581 PMCID: PMC6976597 DOI: 10.1038/s41598-019-55730-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023] Open
Abstract
Alphaviral infections are foremost in causing debilitating clinical outcomes in humans characterized by rheumatic arthritis like conditions. Though the presence of virus in joints and associated inflammation has been implicated as one of the reasons for the acute and chronic polyarthritis post alphaviral infections, the basis for rheumatic like outcomes is not clear. Through an in silico analysis, we have investigated the possibility of an autoimmune process mediated through molecular mimicry in alphaviral infection induced pathogenicity. Interestingly, sequence alignment of the structural polyproteins belonging to arthritogenic alphaviruses revealed conserved regions which share homology with human proteins implicated in rheumatoid arthritis (RA). These conserved regions were predicted to exhibit binding to HLA class II alleles, showcasing their potential to incite T cell help. Molecular docking of the viral peptide and the corresponding homologous region in the human protein onto HLA-DRB1 revealed strong similarities in their binding patterns. Linear and conformational B cell epitope prediction analyses showed that these potential mimics have high propensity to elicit an efficient B cell response. We thus propose that the origin of polyarthritis post-arthritogenic alphaviral infections may also be mediated through a hitherto unknown autoimmune response due to the presence of cross-reactive epitopes between viral and human proteins.
Collapse
|
14
|
Abstract
Epidemiological studies suggest a viral etiology in approximately 1% of patients presenting with acute arthritis. The arthritogenic effect of viral infections may be related to viral invasion of synovial cells, the cellular and humoral immune response to viral antigens or by induction of autoimmunity. Viral arthritis can mimic rheumatoid arthritis by presenting as a symmetrical polyarticular disease often accompanied by a rash and influenza-like symptoms. Serological testing for pathogen-specific IgM and IgG antibodies is frequently performed for establishing a viral etiology of arthritis. Virus isolation from the joints or detection of viral nucleic acids in the synovium or synovial fluid is only rarely successful and does not always provide proof of a viral origin of arthritis. While viral arthritis in most cases is self-limiting, protracted disease can occur.
Collapse
|
15
|
Protective immunity by an engineered DNA vaccine for Mayaro virus. PLoS Negl Trop Dis 2019; 13:e0007042. [PMID: 30730897 PMCID: PMC6366747 DOI: 10.1371/journal.pntd.0007042] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/30/2018] [Indexed: 01/07/2023] Open
Abstract
Mayaro virus (MAYV) of the genus alphavirus is a mosquito-transmitted emerging infectious disease that causes an acute febrile illness, rash, headaches, and nausea that may turn into incapacitating, persistent arthralgias in some victims. Since its discovery in Trinidad in 1954, cases of MAYV infection have largely been confined there and to the northern countries of South America, but recently, MAYV cases have been reported in some island nations in the Caribbean Sea. Accompanying these reports is evidence that new vectors, including Aedes spp. mosquitos, recently implicated in the global spread of Zika and chikungunya viruses, are competent for MAYV transmission, which, if true, could facilitate the spread of MAYV beyond its current range. Despite its status as an emerging virus, there are no licensed vaccines to prevent MAYV infection nor therapeutics to treat it. Here, we describe the development and testing of a novel DNA vaccine, scMAYV-E, that encodes a synthetically-designed consensus MAYV envelope sequence. In vivo electroporation-enhanced immunization of mice with this vaccine induced potent humoral responses including neutralizing antibodies as well as robust T-cell responses to multiple epitopes in the MAYV envelope. Importantly, these scMAYV-E-induced immune responses protected susceptible mice from morbidity and mortality following a MAYV challenge.
Collapse
|
16
|
Sindbis Virus Infection Causes Cell Death by nsP2-Induced Transcriptional Shutoff or by nsP3-Dependent Translational Shutoff. J Virol 2018; 92:JVI.01388-18. [PMID: 30232189 DOI: 10.1128/jvi.01388-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.
Collapse
|
17
|
Dias CNDS, Gois BM, Lima VS, Guerra-Gomes IC, Araújo JMG, Gomes JDAS, Araújo DAM, Medeiros IA, Azevedo FDLAAD, Veras RC, Janebro DI, Amaral IPGD, Keesen TSL. Human CD8 T-cell activation in acute and chronic chikungunya infection. Immunology 2018; 155:499-504. [PMID: 30099739 DOI: 10.1111/imm.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 01/06/2023] Open
Abstract
There is a need for more detailed elucidation of T-cell immunity in chikungunya infection. CD8 T cells are one of main actors against viruses. Here, we analysed CD8+ T lymphocytes from patients in the acute and chronic phases of chikungunya disease (CHIKD). Our results demonstrate that CD8+ T cells expressed higher ex vivo granzyme B, perforin and CD107A expression in patients in the acute phase of CHIKD compared with healthy individuals and higher ex vivo expression of CD69, interleukin-17A, interleukin-10 and CD95 ligand, and co-expression of CD95/CD95 ligand. These results elucidate the importance of these lymphocytes, demonstrating immune mechanisms mediated in human chikungunya infection.
Collapse
Affiliation(s)
- Cinthia Nóbrega de Sousa Dias
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology of Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Bruna Macêdo Gois
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology of Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Viviane Silva Lima
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology of Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Isabel Cristina Guerra-Gomes
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology of Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Josélio Maria Galvão Araújo
- Molecular Biology of Cancer and Infectious Diseases Laboratory of Post-Graduation Programme on Parasite Biology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Juliana de Assis Silva Gomes
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Isac Almeida Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Robson Cavalcanti Veras
- Research Institute for Drugs and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - Daniele Idalino Janebro
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology of Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology of Federal University of Paraíba, João Pessoa, Paraíba, Brazil.,Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
18
|
Abstract
Alphaviruses, members of the positive-sense, single-stranded RNA virus family Togaviridae, represent a re-emerging public health concern worldwide as mosquito vectors expand into new geographic ranges. Members of the alphavirus genus tend to induce clinical disease characterized by rash, arthralgia, and arthritis (chikungunya virus, Ross River virus, and Semliki Forest virus) or encephalomyelitis (eastern equine encephalitis virus, western equine encephalitis virus, and Venezuelan equine encephalitis virus), though some patients who recover from the initial acute illness may develop long-term sequelae, regardless of the specific infecting virus. Studies examining the natural disease course in humans and experimental infection in cell culture and animal models reveal that host genetics play a major role in influencing susceptibility to infection and severity of clinical disease. Genome-wide genetic screens, including loss of function screens, microarrays, RNA-sequencing, and candidate gene studies, have further elucidated the role host genetics play in the response to virus infection, with the immune response being found in particular to majorly influence the outcome. This review describes the current knowledge of the mechanisms by which host genetic factors influence alphavirus pathogenesis and discusses emerging technologies that are poised to increase our understanding of the complex interplay between viral and host genetics on disease susceptibility and clinical outcome.
Collapse
|
19
|
Recommendations of the Brazilian Society of Rheumatology for diagnosis and treatment of Chikungunya fever. Part 1 - Diagnosis and special situations. REVISTA BRASILEIRA DE REUMATOLOGIA 2017; 57 Suppl 2:421-437. [PMID: 28751131 DOI: 10.1016/j.rbre.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
Chikungunya fever has become a relevant public health problem in countries where epidemics occur. Until 2013, only imported cases occurred in the Americas, but in October of that year, the first cases were reported in Saint Marin island in the Caribbean. The first autochthonous cases were confirmed in Brazil in September 2014; until epidemiological week 37 of 2016, 236,287 probable cases of infection with Chikungunya virus had been registered, 116,523 of which had serological confirmation. Environmental changes caused by humans, disorderly urban growth and an ever-increasing number of international travelers were described as the factors responsible for the emergence of large-scale epidemics. Clinically characterized by fever and joint pain in the acute stage, approximately half of patients progress to the chronic stage (beyond 3 months), which is accompanied by persistent and disabling pain. The aim of the present study was to formulate recommendations for the diagnosis and treatment of Chikungunya fever in Brazil. A literature review was performed in the MEDLINE, SciELO and PubMed databases to ground the decisions for recommendations. The degree of concordance among experts was established through the Delphi method, involving 2 in-person meetings and several online voting rounds. In total, 25 recommendations were formulated and divided into 3 thematic groups: (1) clinical, laboratory and imaging diagnosis; (2) special situations; and (3) treatment. The first 2 themes are presented in part 1, and treatment is presented in part 2.
Collapse
|
20
|
Marques CDL, Duarte ALBP, Ranzolin A, Dantas AT, Cavalcanti NG, Gonçalves RSG, Rocha Junior LFD, Valadares LDDA, Melo AKGD, Freire EAM, Teixeira R, Bezerra Neto FA, Medeiros MMDC, Carvalho JFD, Santos MSF, Océa RADLC, Levy RA, Andrade CAFD, Pinheiro GDRC, Abreu MM, Verztman JF, Merenlender S, Ribeiro SLE, Costa IPD, Pileggi G, Trevisani VFM, Lopes MIB, Brito C, Figueiredo E, Queiroga F, Feitosa T, Tenório ADS, Siqueira GRD, Paiva R, Vasconcelos JTS, Christopoulos G. Recomendações da Sociedade Brasileira de Reumatologia para diagnóstico e tratamento da febre chikungunya. Parte 1 – Diagnóstico e situações especiais. REVISTA BRASILEIRA DE REUMATOLOGIA 2017. [DOI: 10.1016/j.rbr.2017.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Mackay IM, Arden KE. Mayaro virus: a forest virus primed for a trip to the city? Microbes Infect 2016; 18:724-734. [PMID: 27989728 DOI: 10.1016/j.micinf.2016.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
Mayaro virus (MAYV) is an emerging arthropod-borne virus (arbovirus). Infection by MAYV can produce Mayaro virus disease (MAYVD) which is usually a clinically diagnosed, acute, febrile illness associated with prolonged and painful joint inflammation and swelling. MAYVD may be clinically indistinguishable from dengue, chikungunya fever, malaria, rabies, measles or other arboviral diseases. The full spectrum of disease, sequelae, routes of infection, virus shedding and any rarer means of transmission remain undefined. MAYVD cases in humans have so far been localised to Central and South America, particularly regions in and around the Amazon basin. MAYV usually circulates in a sylvan cycle of forest mosquitoes and vertebrates, however it has also been found in more urban locations alongside anthropophilic (preferring humans) insect vectors. If transmission via anthropophilic mosquitoes becomes more efficient following viral change, or existing vectors change their habitat and biting habits, the risk of urban establishment and further spread into non-forested areas will grow. Surveillance, testing and vector control remain key to monitoring and preventing global spread and establishment. The possibility of MAYV becoming further urbanized is worthy of note, consideration and action to ensure MAYV does not spread beyond the forests and establish in the world's cities.
Collapse
Affiliation(s)
- Ian M Mackay
- Department of Health, Public and Environmental Health Virology Laboratory, Forensic and Scientific Services, Archerfield, QLD, Australia; The University of Queensland, St Lucia, QLD, Australia.
| | | |
Collapse
|
22
|
Lwande OW, Obanda V, Bucht G, Mosomtai G, Otieno V, Ahlm C, Evander M. Global emergence of Alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol 2015; 5:29853. [PMID: 26689654 PMCID: PMC4685977 DOI: 10.3402/iee.v5.29853] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) may cause severe emerging and re-emerging infectious diseases, which pose a significant threat to human and animal health in the world today. These infectious diseases range from mild febrile illnesses, arthritis, and encephalitis to haemorrhagic fevers. It is postulated that certain environmental factors, vector competence, and host susceptibility have a major impact on the ecology of arboviral diseases. Presently, there is a great interest in the emergence of Alphaviruses because these viruses, including Chikungunya virus, O'nyong'nyong virus, Sindbis virus, Ross River virus, and Mayaro virus, have caused outbreaks in Africa, Asia, Australia, Europe, and America. Some of these viruses are more common in the tropics, whereas others are also found in temperate regions, but the actual factors driving Alphavirus emergence and re-emergence remain unresolved. Furthermore, little is known about the transmission dynamics, pathophysiology, genetic diversity, and evolution of circulating viral strains. In addition, the clinical presentation of Alphaviruses may be similar to other diseases such as dengue, malaria, and typhoid, hence leading to misdiagnosis. However, the typical presence of arthritis may distinguish between Alphaviruses and other differential diagnoses. The absence of validated diagnostic kits for Alphaviruses makes even routine surveillance less feasible. For that purpose, this review describes the occurrence, genetic diversity, clinical characteristics, and the mechanisms involving Alphaviruses causing arthritis in humans. This information may serve as a basis for better awareness and detection of Alphavirus-caused diseases during outbreaks and in establishing appropriate prevention and control measures.
Collapse
Affiliation(s)
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Gladys Mosomtai
- Earth Observation Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Viola Otieno
- IGAD Climate Prediction and Application Centre (ICPAC), Nairobi, Kenya
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Dhama K, Kapoor S, Pawaiya RVS, Chakraborty S, Tiwari R, Verma AK. Ross River Virus (RRV) infection in horses and humans: a review. Pak J Biol Sci 2015; 17:768-79. [PMID: 26035950 DOI: 10.3923/pjbs.2014.768.779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fascinating and important arbovirus is Ross River Virus (RRV) which is endemic and epizootic in nature in certain parts of the world. RRV is a member of the genus Alphavirus within the Semliki Forest complex of the family Togaviridae, which also includes the Getah virus. The virus is responsible for causing disease both in humans as well as horses. Mosquito species (Aedes camptorhynchus and Aedes vigilax; Culex annulirostris) are the most important vector for this virus. In places of low temperature as well as low rainfall or where there is lack of habitat of mosquito there is also limitation in the transmission of the virus. Such probability is higher especially in temperate regions bordering endemic regions having sub-tropical climate. There is involvement of articular as well as non-articular cells in the replication of RRV. Levels of pro-inflammatory factors viz., tumor necrosis factor-alpha (TNF-α); interferon-gamma (IFN-γ); and macrophage chemo-attractant protein-1 (MAC-1) during disease pathogenesis have been found to be reduced. Reverse transcription-polymerase chain reaction (RT-PCR) is the most advanced molecular diagnostic tool along with epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detecting RRV infection. Treatment for RRV infection is only supportive. Vaccination is not a fruitful approach. Precise data collection will help the researchers to understand the RRV disease dynamics and thereby designing effective prevention and control strategy. Advances in diagnosis, vaccine development and emerging/novel therapeutic regimens need to be explored to their full potential to tackle RRV infection and the disease it causes.
Collapse
|
24
|
Bernard E, Hamel R, Neyret A, Ekchariyawat P, Molès JP, Simmons G, Chazal N, Desprès P, Missé D, Briant L. Human keratinocytes restrict chikungunya virus replication at a post-fusion step. Virology 2014; 476:1-10. [PMID: 25496825 DOI: 10.1016/j.virol.2014.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses.
Collapse
Affiliation(s)
- Eric Bernard
- Centre d׳étude d'agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier, France
| | - Rodolphe Hamel
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier, France
| | - Aymeric Neyret
- Centre d׳étude d'agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier, France
| | - Peeraya Ekchariyawat
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier, France
| | | | - Graham Simmons
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Nathalie Chazal
- Centre d׳étude d'agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier, France
| | - Philippe Desprès
- Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris, France
| | - Dorothée Missé
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier, France
| | - Laurence Briant
- Centre d׳étude d'agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier, France.
| |
Collapse
|
25
|
Chen W, Foo SS, Li RW, Smith PN, Mahalingam S. Osteoblasts from osteoarthritis patients show enhanced susceptibility to Ross River virus infection associated with delayed type I interferon responses. Virol J 2014; 11:189. [PMID: 25407789 PMCID: PMC4252017 DOI: 10.1186/s12985-014-0189-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/26/2014] [Indexed: 11/29/2022] Open
Abstract
Background Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) have caused widespread outbreaks of chronic polyarthritis. The inflammatory responses in alphavirus-induced arthritis and osteoarthritis (OA) share many similar features, which suggests the possibility of exacerbated alphavirus-induced bone pathology in individuals with pre-existing OA. Here, we investigated the susceptibility of osteoblasts (OBs) from OA patients to RRV infection and dissected the immune mechanisms elicited from infection. Methods Primary hOBs obtained from trabecular bone of healthy donors and OA patients were infected with RRV. Infectivity and viral replication were determined using flow cytometry and plaque assay, respectively. Real-time PCR was performed to determine expression kinetics of type I interferon (IFN)-related immune mediators and osteotropic factors. Results OA hOBs showed enhanced RRV infectivity and replication during infection, which was associated with delayed induction of IFN-β and RIG-I expression. Enhanced susceptibility of OA hOBs to RRV was associated with a more pronounced increase in RANKL/OPG ratio and expression of osteotropic factors (IL-6, IL-1β, TNF-α and CCL2) in comparison to RRV-infected healthy hOBs. Conclusions Delayed activation of type I IFN-signalling pathway may have contributed to enhanced susceptibility to RRV infection in hOBs from OA patients. RRV-induced increases in RANKL/OPG ratio and expression of osteotropic factors that favour bone resorption, which may be exacerbated during osteoarthritis. This study provides the novel insight that osteoarthritis may be a risk factor for exacerbated arthritogenic alphaviral infection.
Collapse
Affiliation(s)
- Weiqiang Chen
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, 4222, Australia.
| | - Suan-Sin Foo
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, 4222, Australia.
| | - Rachel W Li
- Trauma and Orthopaedic Research Unit Laboratory, The Medical School, The Australian National University, Garran Rd, Canberra, ACT 2601, Australia.
| | - Paul N Smith
- Department of Orthopaedic Surgery, Trauma and Orthopaedic Research Unit, The Canberra Hospital, Canberra, ACT 2605, Australia.
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, 4222, Australia.
| |
Collapse
|
26
|
Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends Microbiol 2014; 23:35-43. [PMID: 25449049 DOI: 10.1016/j.tim.2014.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 01/01/2023]
Abstract
Arthritogenic alphaviral infection begins as a febrile illness and often progresses to joint pain and rheumatic symptoms that are described as polyarthritis. Alphaviral arthritis and classical arthritides share many similar cellular and immune mediators involved in their pathogenesis. Recent in vitro and in vivo evidence suggests that bone loss resulting from increased expression of bone resorption mediators may accompany alphaviral infection. In addition, several longitudinal studies have reported more severe and delayed recovery of alphaviral disease in patients with pre-existing arthritic conditions. This review aims to provide insights into alphavirus-induced bone loss and focuses on aspects of disease exacerbation in patients with underlying arthritis and on possible therapeutic targets.
Collapse
|
27
|
|
28
|
Development and evaluation of baculovirus-expressed Chikungunya virus E1 envelope proteins for serodiagnosis of Chikungunya infection. J Virol Methods 2014; 206:67-75. [PMID: 24880071 DOI: 10.1016/j.jviromet.2014.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/21/2022]
Abstract
Population-based serosurveillance studies provide critical estimates on community-level immunity and the potential for future outbreaks. Currently, serological assays, such as IgG enzyme-linked immunosorbent assays (ELISAs) and indirect immunofluorescence tests (IIFT) based on the inactivated whole virus are used to determine past Chikungunya virus (CHIKV) infection. However, these commercially available tests have variable sensitivities. To develop and evaluate recombinant based CHIKV-specific IgG antibody capture ELISAs (GAC-ELISAs), baculoviruses carrying wild-type (E1-A226, named WT) or mutant (E1-A226V, named MUT) E1 envelope protein genes of CHIKV were generated. The seroreactivity of recombinant CHIKV WT and MUT envelope proteins were determined using residual blood, collected from CHIKV-confirmed patients. The sensitivities of both recombinant CHIKV envelope proteins were 83.0% as measured by GAC-ELISAs. The specificities of both recombinant proteins were 87.8%. These GAC-ELISAs were also able to detect the persistence of anti-CHIKV IgG antibodies up to 6 months after the disease onset, together with rise in sensitivities with increasing time. These results suggest that the baculovirus purified recombinant CHIKV envelope proteins react with anti-CHIKV IgG antibodies and may be useful in population-based seroprevalence surveys. In addition, these GAC-ELISAs offer good diagnostic value to determine the recent/past CHIKV infection status in non-endemic populations.
Collapse
|
29
|
Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proc Natl Acad Sci U S A 2014; 111:6040-5. [PMID: 24733914 DOI: 10.1073/pnas.1318859111] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arthritogenic alphaviruses including Ross River virus (RRV), Sindbis virus, and chikungunya virus cause worldwide outbreaks of musculoskeletal disease. The ability of alphaviruses to induce bone pathologies remains poorly defined. Here we show that primary human osteoblasts (hOBs) can be productively infected by RRV. RRV-infected hOBs produced high levels of inflammatory cytokine including IL-6. The RANKL/OPG ratio was disrupted in the synovial fluid of RRV patients, and this was accompanied by an increase in serum Tartrate-resistant acid phosphatase 5b (TRAP5b) levels. Infection of bone cells with RRV was validated using an established RRV murine model. In wild-type mice, infectious virus was detected in the femur, tibia, patella, and foot, together with reduced bone volume in the tibial epiphysis and vertebrae detected by microcomputed tomographic (µCT) analysis. The RANKL/OPG ratio was also disrupted in mice infected with RRV; both this effect and the bone loss were blocked by treatment with an IL-6 neutralizing antibody. Collectively, these findings provide previously unidentified evidence that alphavirus infection induces bone loss and that OBs are capable of producing proinflammatory mediators during alphavirus-induced arthralgia. The perturbed RANKL/OPG ratio in RRV-infected OBs may therefore contribute to bone loss in alphavirus infection.
Collapse
|
30
|
Identical strength of the T cell responses against E2, nsP1 and capsid CHIKV proteins in recovered and chronic patients after the epidemics of 2005-2006 in La Reunion Island. PLoS One 2013; 8:e84695. [PMID: 24376836 PMCID: PMC3871564 DOI: 10.1371/journal.pone.0084695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022] Open
Abstract
To characterize the immunity developed by patients infected by chikungunya virus (CHIKV), we studied the intensity and specificity of CHIKV-specific T cells mediated responses in chronic and recovered patients at 12 to 24 months post-infection. T cells were challenged in vitro against CHIKV synthetic peptides covering the length of three viral proteins, capsid, E2 and nsP1 proteins as well as all inactivated virus particles. Cytokine production was assessed by ELISPOT and intracellular labeling. T cells producing IFN-γ were detected against CHIKV in 85% patient’s cells either by direct ELISPOT assay (69% of patients) or after expansion of memory T cells allowing the detection of both CD4 and CD8 specific-T cells in 16% additional cases. The IFN-γ response was mainly engaged in response to nsP1 or E2 (52% and 46% cases, respectively) but in only 27% cases against the capsid. The anti-E2 response represented half the magnitude of the total CHIKV IFN-γ production and was mainly directed against the C-terminal half part of the protein. Almost all patients had conserved a T cell specific response against CHIKV with a clear hierarchy of T cell responses (CD8 > CD4) engaged against E2 > nsP1 > capsid. More importantly, the intensity of responses was not significantly different between recovered and chronic patients. These findings constitute key elements to a better understanding of patient T cell immunoreactivity against CHIKV and argue against a possible defect of T cell immunoresponse in the chronicity post-CHIKV infection.
Collapse
|
31
|
Herrero LJ, Sheng KC, Jian P, Taylor A, Her Z, Herring BL, Chow A, Leo YS, Hickey MJ, Morand EF, Ng LF, Bucala R, Mahalingam S. Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. ARTHRITIS AND RHEUMATISM 2013; 65:2724-36. [PMID: 23896945 PMCID: PMC3796577 DOI: 10.1002/art.38090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/09/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Arthrogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) circulate worldwide. This virus class causes debilitating illnesses that are characterized by arthritis, arthralgia, and myalgia. In previous studies, we identified macrophage migration inhibitory factor (MIF) as a critical inflammatory factor in the pathogenesis of alphaviral diseases. The present study was undertaken to characterize the role of CD74, a cell surface receptor of MIF, in both RRV- and CHIKV-induced alphavirus arthritides. METHODS Mouse models of RRV and CHIKV infection were used to investigate the immunopathogenesis of arthritic alphavirus infection. The role of CD74 was assessed using histologic analysis, real-time polymerase chain reaction, flow cytometry, and plaque assay. RESULTS In comparison to wild-type mice, CD74-/- mice developed only mild clinical features and had low levels of tissue damage. Leukocyte infiltration, characterized predominantly by inflammatory monocytes and natural killer cells, was substantially reduced in the infected tissue of CD74-/- mice, but production of proinflammatory cytokines and chemokines was not decreased. CD74 deficiency was associated with increased monocyte apoptosis, but had no effect on monocyte migratory capacity. Consistent with these findings, alphaviral infection resulted in a dose-dependent up-regulation of CD74 expression in human peripheral blood mononuclear cells, and serum MIF levels were significantly elevated in patients with RRV or CHIKV infection. CONCLUSION CD74 appears to regulate immune responses to alphaviral infection through its effects on cellular recruitment and survival. These findings suggest that both MIF and CD74 play a critical role in mediating alphaviral disease, and blocking these factors with novel therapeutic agents could substantially ameliorate the pathologic manifestations.
Collapse
MESH Headings
- Alphavirus Infections/complications
- Alphavirus Infections/pathology
- Animals
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Apoptosis/physiology
- Arthritis, Infectious/etiology
- Arthritis, Infectious/pathology
- Arthritis, Infectious/physiopathology
- Cells, Cultured
- Chemokines/metabolism
- Chikungunya virus/physiology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/pathology
- Myositis/pathology
- Myositis/physiopathology
- Myositis/virology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Ross River virus/physiology
- Severity of Illness Index
Collapse
Affiliation(s)
- Lara J. Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Kuo-Ching Sheng
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Peng Jian
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Belinda L. Herring
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Angela Chow
- Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - Yee-Sin Leo
- Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | | | - Eric F. Morand
- Centre for Inflammatory Diseases, Monash University, VIC, Australia
| | - Lisa F.P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|
32
|
Determination of B cell epitopes and evaluation of antigen capture ELISA for the earlier diagnosis of CHIK virus using anti-rCHIK E1 rabbit antibodies. J Immunol Methods 2013; 393:45-52. [PMID: 23597929 DOI: 10.1016/j.jim.2013.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 11/22/2022]
Abstract
Chikungunya fever caused by an alpha virus has been generally considered as self limiting and non fatal. Recent reports on Chikungunya infection indicate high mortality rates due to the severity of the viral infection. For the early diagnosis of CHIK virus, the incubation period required for the development of antibodies in the serum of patients was a constraint for antigen based ELISA. The results of the present study demonstrates the development and evaluation of the antigen capture ELISA using recombinant anti-CHIK rabbit antibodies and anti-CHIK human antibody for more specific and rapid detection of CHIK viral antigen. A comprehensive bioinformatics analysis of the amino acid sequence of CHIK E1 protein was done for determining the antigenic residues, predominant B cell epitopes and their properties. Rabbit antibodies against recombinant CHIK E1 antigen was developed and purified. Antigen capture ELISA was done in 104 CHIK patient serum samples using anti-rCHIK E1 rabbit antibodies and anti-CHIK human antibodies. The highest rate of sensitivity (96%) and specificity (100%) was observed in the assay data and it highlights the accuracy of the test as a clinical diagnostic tool. No cross reactivity was observed with samples of dengue patients. Apart from the development and evaluation of the ELISA test, the dominant epitopes identified in the recombinant CHIK E1 protein sequence can be exploited for the development of a subunit Chikungunya vaccine.
Collapse
|
33
|
Rathore APS, Ng ML, Vasudevan SG. Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphorylation. Virol J 2013; 10:36. [PMID: 23356742 PMCID: PMC3605262 DOI: 10.1186/1743-422x-10-36] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/11/2013] [Indexed: 12/27/2022] Open
Abstract
Chikungunya (CHIKV) and Sindbis (SINV) are arboviruses belonging to the alphavirus genus within the Togaviridae family. They cause frequent epidemics of febrile illness and long-term arthralgic sequelae that affect millions of people each year. Both viruses replicate prodigiously in infected patients and in vitro in mammalian cells, suggesting some level of control over the host cellular translational machinery that senses and appropriately directs the cell's fate through the unfolded protein response (UPR). The mammalian UPR involves BIP (or GRP78), the master sensor in the endoplasmic reticulum (ER) together with the three downstream effector branches: inositol-requiring ser/thr protein kinase/endonuclease (IRE-1), PKR-like ER resident kinase (PERK) and activating transcription factor 6 (ATF-6). Through careful analysis of CHIKV and SINV infections in cell culture we found that the former selectively activates ATF-6 and IRE-1 branches of UPR and suppresses the PERK pathway. By separately expressing each of the CHIKV proteins as GFP-fusion proteins, we found that non-structural protein 4 (nsP4), which is a RNA-dependent-RNA polymerase, suppresses the serine-51 phosphorylation of eukaryotic translation initiation factor, alpha subunit (eIF2α), which in turn regulates the PERK pathway. This study provides insight into a mechanism by which CHIKV replication responds to overcome the host UPR machinery.
Collapse
Affiliation(s)
- Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8-College Road, Singapore 169857, Singapore
| | | | | |
Collapse
|
34
|
Zou CJ, Zhu LJ, Li YH, Mo YQ, Zheng DH, Ma JD, Ou-Yang X, Pessler F, Dai L. The association between hepatitis B virus infection and disease activity, synovitis, or joint destruction in rheumatoid arthritis. Clin Rheumatol 2013; 32:787-95. [PMID: 23340833 DOI: 10.1007/s10067-013-2170-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/12/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
The prevalence of chronic hepatitis B virus (HBV) infection in China is high. Four percent of patients with HBV infection can present with polyarthritis and positive rheumatic factor similar to rheumatoid arthritis (RA). Here, we investigated the association between HBV infection and serological, radiological, or histological disease status in RA. According to HBV infection status, 223 consecutive hospitalized Chinese patients with RA were divided into the groups of chronic HBV infection, past HBV infection, and no HBV infection. Clinical data and hand radiographs were collected. Synovium was obtained by closed-needle biopsy, and serial tissue sections were stained immunohistochemically for HBV surface antigen (HBsAg) and cluster of differentiation (CD) markers. (1) The prevalence of HBsAg positivity and chronic hepatitis B in RA was consistent with the age-matched general Chinese population (11.2 vs. 8.7 %, 1.7 vs. 1.0 %, respectively, P > 0.05). (2) Clinical parameters, disease activity score in 28 joints, or Sharp scores showed no significant difference among the three groups in 206 RA or 140 treatment-naïve patients, both with active disease (all P > 0.05). (3) Synovial immunohistochemical staining showed negative HBsAg in ten RA patients with HBV carrier status and ten RA patients with past HBV infection. Except for higher subintimal CD3+ cell density in the past HBV infection group, Krenn's synovitis score, mean densities of subintima positive-staining cells (CD20, CD38, CD79a, and CD68), and CD34+ microvessel counts showed no significant difference among RA patients with HBV carrier status, past HBV infection, or no HBV infection (all P > 0.05). Chronic HBV infection may have no significant effect on disease activity, synovitis, or joint destruction in RA.
Collapse
Affiliation(s)
- Chan-Juan Zou
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hypervariable domains of nsP3 proteins of New World and Old World alphaviruses mediate formation of distinct, virus-specific protein complexes. J Virol 2012; 87:1997-2010. [PMID: 23221551 DOI: 10.1128/jvi.02853-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are a group of single-stranded RNA viruses with genomes of positive polarity. They are divided into two geographically isolated groups: the Old World and the New World alphaviruses. Despite their similar genome organizations and virion structures, they differ in many aspects of pathogenesis and interaction with the host cell. Here we present new data highlighting previously unknown differences between these two groups. We found that nsP3 proteins of Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV) form cytoplasmic complexes with different morphologies and protein compositions. Unlike the amorphous aggregates formed by SINV nsP3 and other Old World alphavirus-specific nsP3s, VEEV nsP3 forms unique, large spherical structures with striking symmetry. Moreover, VEEV nsP3 does not interact with proteins previously identified as major components of SINV nsP3 complexes, such as G3BP1 and G3BP2. Importantly, the morphology of the complexes and the specificity of the interaction with cellular proteins are largely determined by the hypervariable domain (HVD) of nsP3. Replacement of the VEEV nsP3 HVD with the corresponding domain of SINV nsP3 rendered this protein capable of interaction with G3BPs. Conversely, replacement of the SINV nsP3 HVD with that of VEEV abolished SINV nsP3's interaction with G3BPs. The replacement of natural HVDs with those from heterologous viruses did not abrogate virus replication, despite these fragments demonstrating very low levels of sequence identity. Our data suggest that in spite of the differences in morphology and composition of the SINV- and VEEV-specific nsP3 complexes, it is likely that they have similar functions in virus replication and modification of the cellular environment.
Collapse
|
36
|
pH-dependent entry of chikungunya virus into Aedes albopictus cells. INFECTION GENETICS AND EVOLUTION 2012; 12:1275-81. [DOI: 10.1016/j.meegid.2012.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 02/04/2023]
|
37
|
Devaux CA. Emerging and re-emerging viruses: A global challenge illustrated by Chikungunya virus outbreaks. World J Virol 2012; 1:11-22. [PMID: 24175207 PMCID: PMC3782263 DOI: 10.5501/wjv.v1.i1.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/07/2011] [Accepted: 09/15/2011] [Indexed: 02/05/2023] Open
Abstract
In recent decades, the issue of emerging and re-emerging infectious diseases, especially those related to viruses, has become an increasingly important area of concern in public health. It is of significance to anticipate future epidemics by accumulating knowledge through appropriate research and by monitoring their emergence using indicators from different sources. The objective is to alert and respond effectively in order to reduce the adverse impact on the general populations. Most of the emerging pathogens in humans originate from known zoonosis. These pathogens have been engaged in long-standing and highly successful interactions with their hosts since their origins are exquisitely adapted to host parasitism. They developed strategies aimed at: (1) maximizing invasion rate; (2) selecting host traits that can reduce their impact on host life span and fertility; (3) ensuring timely replication and survival both within host and between hosts; and (4) facilitating reliable transmission to progeny. In this context, Arboviruses (or ARthropod-BOrne viruses), will represent with certainty a threat for the coming century. The unprecedented epidemic of Chikungunya virus which occurred between 2005 and 2006 in the French Reunion Island in the Indian Ocean, followed by several outbreaks in other parts of the world, such as India and Southern Europe, has attracted the attention of medical and state authorities about the risks linked to this re-emerging mosquito-borne virus. This is an excellent model to illustrate the issues we are facing today and to improve how to respond tomorrow.
Collapse
Affiliation(s)
- Christian A Devaux
- Christian A Devaux, Center for the study of Pathogens and health Biotechnology-CPBS, UMR5236 CNRS-UM1-UM2, F-34293 Montpellier cedex 5, France
| |
Collapse
|
38
|
Cramer JP, Kastenbauer U, Löscher T, Emmerich P, Schmidt-Chanasit J, Burchard GD, von Sonnenburg F. Polyarthritis in two travellers returning from Australia. J Clin Virol 2012; 52:1-3. [PMID: 21641275 DOI: 10.1016/j.jcv.2011.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Affiliation(s)
- J P Cramer
- University Medical Center Hamburg-Eppendorf, I. Department of Internal Medicine, Section Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Foo SS, Chen W, Herrero L, Bettadapura J, Narayan J, Dar L, Broor S, Mahalingam S. The genetics of alphaviruses. Future Virol 2011. [DOI: 10.2217/fvl.11.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alphaviruses are emerging human pathogens that are transmitted by arthropod vectors. Their ability to infect a wide range of vertebrate hosts including humans, equines, birds and rodents has brought about a series of epidemic and epizootic outbreaks worldwide. Their potential to cause a pandemic has spurred the interest of researchers globally, leading to the rapid advancement on the characterization of genetic determinants of alphaviruses. In this review, the focal point is placed on the genetics of alphaviruses, whereby the genetic composition, clinical features, evolution and adaptation of alphaviruses, modulation of IFN response by alphavirus proteins and therapeutic aspects of alphaviruses will be discussed.
Collapse
Affiliation(s)
- Suan Sin Foo
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Biopolis, Singapore
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Weiqiang Chen
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Biopolis, Singapore
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lara Herrero
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jayaram Bettadapura
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Lalit Dar
- All India Institute of Medical Sciences, New Delhi, India
| | - Shobha Broor
- All India Institute of Medical Sciences, New Delhi, India
| | - Suresh Mahalingam
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
40
|
Emerging Viral Infections in Rheumatic Diseases. Semin Arthritis Rheum 2011; 41:236-46. [DOI: 10.1016/j.semarthrit.2011.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
|
41
|
Shang G, Seed CR, Gahan ME, Rolph MS, Mahalingam S. Duration of Ross River viraemia in a mouse model--implications for transfusion transmission. Vox Sang 2011; 102:185-92. [PMID: 21923861 DOI: 10.1111/j.1423-0410.2011.01536.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES There is little data on the duration of viraemia following infection with Ross River virus (RRV), the most common cause of arbovirus disease in Australia. In particular, no accurate estimate exists for the duration of pre-symptomatic RRV infection, which is important in assessing the potential for transfusion transmission. MATERIALS AND METHODS We used an established mouse model of RRV infection involving adult Swiss outbred mice to measure viraemia following infection. Applying our experimental data to a published probabilistic model for estimating the risk of dengue transmission by transfused blood, we derived comparable risk estimates for RRV. RESULTS Ross River virus RNA was measured using highly sensitive real-time PCR in serum samples to determine the duration of asymptomatic viraemia, which typically lasted 5 days, but extended to 9 days in some mice. Assuming the potential for transfusion transmission is proven, the risk of RRV transmission by blood during a 2004 outbreak in Cairns, Australia was retrospectively estimated as 1 in 13,542 (range from 1 in 4765 to 47,563). CONCLUSION This study provides updated epidemiological data useful to underpin modelling to assess the potential risk of transfusion-transmitted RRV. Using an established model for dengue, the risk estimate for RRV transmission is comparable in the same geographical region. Should transfusion be proven as a route of transmission, this supports consideration of appropriate mitigation strategies to safeguard blood recipients.
Collapse
Affiliation(s)
- G Shang
- Virus and Inflammation Research Group, Faculty of Applied Science, University of Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
42
|
Yathi KK, Joseph JM, Bhasker S, Kumar R, Chinnamma M. Recombinant CHIK virus E1 coat protein of 11KDa with antigenic domains for the detection of Chikungunya. J Immunol Methods 2011; 372:171-6. [DOI: 10.1016/j.jim.2011.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
|
43
|
Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc Natl Acad Sci U S A 2011; 108:12048-53. [PMID: 21730129 DOI: 10.1073/pnas.1101089108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arthrogenic alphaviruses, such as Ross River virus (RRV), chikungunya, Sindbis, mayaro and o'nyong-nyong viruses circulate endemically worldwide, frequently causing outbreaks of polyarthritis. The exact mechanisms of how alphaviruses induce polyarthritis remain ill defined, although macrophages are known to play a key role. Macrophage migration inhibitory factor (MIF) is an important cytokine involved in rheumatoid arthritis pathogenesis. Here, we characterize the role of MIF in alphavirus-induced arthritides using a mouse model of RRV-induced arthritis, which has many characteristics of RRV disease in humans. RRV-infected WT mice developed severe disease associated with up-regulated MIF expression in serum and tissues, which corresponded to severe inflammation and tissue damage. MIF-deficient (MIF(-/-)) mice developed mild disease accompanied by a reduction in inflammatory infiltrates and muscle destruction in the tissues, despite having viral titers similar to WT mice. In addition, reconstitution of MIF into MIF(-/-) mice exacerbated RRV disease and treatment of mice with MIF antagonist ameliorated disease in WT mice. Collectively, these findings suggest that MIF plays a critical role in determining the clinical severity of alphavirus-induced musculoskeletal disease and may provide a target for the development of antiviral pharmaceuticals. The prospect being that early treatment with MIF-blocking pharmaceuticals may curtail the debilitating arthritis associated with alphaviral infections.
Collapse
|
44
|
Smith DW, Speers DJ, Mackenzie JS. The viruses of Australia and the risk to tourists. Travel Med Infect Dis 2011; 9:113-25. [DOI: 10.1016/j.tmaid.2010.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/13/2010] [Indexed: 10/25/2022]
|
45
|
Vassilopoulos D, Calabrese LH. Rheumatologic aspects of viral infections. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
46
|
Bernard E, Solignat M, Gay B, Chazal N, Higgs S, Devaux C, Briant L. Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One 2010; 5:e11479. [PMID: 20628602 PMCID: PMC2900206 DOI: 10.1371/journal.pone.0011479] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 06/08/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The replicative cycle of chikungunya virus (CHIKV), an alphavirus that recently re-emerged in India and in Indian Ocean area, remains mostly unknown. The aim of the present study was to investigate the intracellular trafficking pathway(s) hijacked by CHIKV to enter mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS Entry pathways were investigated using a variety of pharmacological inhibitors or overexpression of dominant negative forms of proteins perturbating cellular endocytosis. We found that CHIKV infection of HEK293T mammalian cells is independent of clathrin heavy chain and- dependent of functional Eps15, and requires integrity of Rab5-, but not Rab7-positive endosomal compartment. Cytoskeleton integrity is crucial as cytochalasin D and nocodazole significantly reduced infection of the cells. Finally, both methyl beta-cyclodextrin and lysomotropic agents impaired CHIKV infection, supporting that a cholesterol-, pH-dependent step is required to achieve productive infection. Interestingly, differential sensitivity to lysomotropic agents was observed between the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in Reunion Island. CONCLUSIONS Together our data indicate that CHIKV entry in its target cells is essentially mediated by clathrin-independent, Eps15-dependent endocytosis. Despite that this property is shared by the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in La Réunion Island, differential sensitivity to lysomotropic agents may support that the LR-OPY1 strain has acquired specific entry mechanisms.
Collapse
Affiliation(s)
- Eric Bernard
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Maxime Solignat
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Bernard Gay
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Nathalie Chazal
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Stephen Higgs
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christian Devaux
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Laurence Briant
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| |
Collapse
|
47
|
Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, Das T, Li-Pat-Yuen G, Dassa B, Denizot M, Guichard E, Ribera A, Henni T, Tallet F, Moiton MP, Gauzère BA, Bruniquet S, Jaffar Bandjee Z, Morbidelli P, Martigny G, Jolivet M, Gay F, Grandadam M, Tolou H, Vieillard V, Debré P, Autran B, Gasque P. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. THE JOURNAL OF IMMUNOLOGY 2010; 184:5914-27. [PMID: 20404278 DOI: 10.4049/jimmunol.0900255] [Citation(s) in RCA: 425] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alphaviruses, including Chikungunya virus (CHIKV), produce a transient illness in humans, but severe forms leading to chronic incapacitating arthralgia/arthritis have been reported by mechanisms largely ill-characterized. The pathogenesis of CHIKV was addressed in a prospective cohort study of 49 hospitalized patients from Reunion Island subsequently categorized into two distinct groups at 12 mo postinfection. Comprehensive analyses of the clinical and immunological parameters throughout the disease course were analyzed in either the "recovered" or the "chronic" groups to identify prognostic markers of arthritis-like pathology after CHIKV disease. We found that the chronic group consisted mainly of more elderly patients (>60 y) and with much higher viral loads (up to 10(10) viruses per milliliter of blood) during the acute phase. Remarkably, a rapid innate immune antiviral response was demonstrated by robust dendritic/NK/CD4/CD8 cell activation and accompanied by a rather weak Th1/Th2 cytokine response in both groups. Interestingly, the antiviral immune response witnessed by high levels of IFN-alpha mRNA in PBMCs and circulating IL-12 persisted for months only in the chronic group. CHIKV (RNA and proteins) was found in perivascular synovial macrophages in one chronic patient 18 mo postinfection surrounded by infiltrating NK and T cells (CD4(++) but rare cytotoxic CD8). Fibroblast hyperplasia, strong angiogenesis, tissue lesions given the high levels of matrix metalloproteinase 2, and acute cell death [high cleaved poly(ADP-ribose) polymerase staining] were observed in the injured synovial tissue. These observed cellular and molecular events may contribute to chronic arthralgia/arthritis targeted by methotrexate used empirically for effective treatment but with immunosuppressive function in a context of viral persistence.
Collapse
Affiliation(s)
- Jean-Jacques Hoarau
- Biology Unit, Centre Hospitalier Régional Nord Félix-Guyon and Cyclotron Réunion Océan Indien, Université de la Réunion, St. Denis, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
[Emerging viral infections in South East Asia and the Pacific region]. Med Mal Infect 2009; 38:513-23. [PMID: 18771865 DOI: 10.1016/j.medmal.2008.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/17/2008] [Indexed: 11/21/2022]
Abstract
The epidemiology of several viral diseases underwent profound changes in South-East Asia and Oceania over the past decades. This was due to several factors, including the geographical distribution of vectors and the viruses they transmit; increasing traveling and trade; increasing ecological and demographic pressure. We reviewed the current state of knowledge based on published sources and available epidemiological data. The review was limited to potentially emerging viruses in Southeast Asia and the Pacific reported in human cases. Dengue, Chikungunya, and Japanese Encephalitis viruses have recurred on a yearly basis with a steady increase in these regions. Ross River and Barmah viruses now appear regularly in Australia, in an increasing number of cases. Nipah virus strikes regularly with limited but deadly epidemics in Southeast Asia. Finally, infections by lyssaviruses, Kunjin, Murray Valley, or Zika viruses were also reviewed.
Collapse
|
49
|
Simon F, Savini H, Parola P. Chikungunya: a paradigm of emergence and globalization of vector-borne diseases. Med Clin North Am 2008; 92:1323-43, ix. [PMID: 19061754 DOI: 10.1016/j.mcna.2008.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chikungunya (CHIK) fever is a tropical arboviral disease responsible for acute polyarthritis which can last for weeks to months. In 2007, the chikungunya virus (CHIKV) reached Europe. Since the beginning of this outbreak, several million cases of chikungunya virus disease have occurred in autochthonous populations and in travelers who were diagnosed after they returned home from epidemic areas. CHIKV, usually transmitted by Aedes aegypti mosquitoes, has now been repeatedly associated with a new vector, Aedes albopictus (the "Asian tiger mosquito"), which has spread into tropical areas previously occupied predominantly by A aegypti, and has dispersed worldwide. Because CHIKV could spread throughout the world, all physicians should be prepared to encounter this arboviral infection, which represents a paradigm for emerging arboviral infections. In this article, the authors review different aspects of this reemerging and fascinating disease, focusing on clinical aspects and lessons from the recent large-scale outbreaks.
Collapse
Affiliation(s)
- Fabrice Simon
- Service de Pathologies Infectieuses et Tropicales, Hôspital d'Instruction des Armées Laveran, BP 50, 13998 Marseille Armées, France.
| | | | | |
Collapse
|
50
|
Vassilopoulos D, Calabrese LH. Virally associated arthritis 2008: clinical, epidemiologic, and pathophysiologic considerations. Arthritis Res Ther 2008; 10:215. [PMID: 18828883 PMCID: PMC2592818 DOI: 10.1186/ar2480] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Several viruses have been associated with the development of inflammatory arthritis, including the hepatitis viruses (hepatitis B virus and hepatitis C virus), HIV, the parvovirus B19, the human T-cell lymphotropic virus-I, and the alphaviruses. Here, we review the epidemiology, the pathophysiological mechanisms, the pertinent clinical and laboratory findings as well as the principles of therapy of the most common virus-associated arthritides. We believe that the knowledge of these key diagnostic and therapeutic features of virus-associated arthritides is important for the rheumatologist of the 21st century.
Collapse
Affiliation(s)
- Dimitrios Vassilopoulos
- Athens University School of Medicine, 2nd Department of Medicine, Hippokration General Hospital, 114 Vass., Sophias Avenue, 115 27 Athens, Greece
| | - Leonard H Calabrese
- Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Department of Rheumatic and Immunologic Diseases, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Desk A50, Cleveland, OH 44195, USA
| |
Collapse
|