1
|
Podder V, Ranjan T, Gowda M, Camacho AM, Ahluwalia MS. Emerging Therapies for Brain Metastases in NSCLC, Breast Cancer, and Melanoma: A Critical Review. Curr Neurol Neurosci Rep 2024; 25:6. [PMID: 39625633 DOI: 10.1007/s11910-024-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE OF REVIEW Advancements in precision medicine have shifted the treatment paradigm of brain metastases (BM) from non-small cell lung cancer (NSCLC), breast cancer, and melanoma, especially through targeted therapies focused on specific molecular drivers. These novel agents have improved outcomes by overcoming challenges posed by the blood-brain barrier (BBB) and resistance mechanisms, enabling more effective treatment of BM. RECENT FINDINGS In NSCLC, therapies such as osimertinib have improved efficacy in treating EGFR-mutant BM, with emerging combinations such as amivantamab and lazertinib offering promising alternatives for patients resistant to frontline therapies. In HER2-positive breast cancer, significant advancements with tucatinib and trastuzumab deruxtecan (T-DXd) have transformed the treatment landscape, achieving improved survival and intracranial control in patients with BM. Similarly, in triple-negative breast cancer (TNBC), novel therapies such as sacituzumab govitecan (SG) and datopotamab deruxtecan (Dato-DXd) offer new hope for managing BM. For melanoma, the combination of immune checkpoint inhibitors such as nivolumab and ipilimumab has proven effective in enhancing survival for patients with BM, both in BRAF-mutant and wild-type cases. Developing targeted therapies penetrating the BBB has revolutionized BM treatment by targeting key drivers like EGFR, ALK, HER2, and BRAF. Despite improved survival, challenges persist, particularly for patients with resistant genetic alterations. Future research should optimise combination therapies, overcome resistance, and refine treatment sequencing. Continued emphasis on personalized, biomarker-driven approaches offers the potential to further improve outcomes, even for complex cases.
Collapse
Affiliation(s)
- Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Tulika Ranjan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Maya Gowda
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | | | |
Collapse
|
2
|
Podder V, Bellur S, Margolin K, Advani P, Mahtani RL, Subbiah V, Novo GB, Ranjan T, Ahluwalia MS. Immunotherapeutic and Targeted Strategies for Managing Brain Metastases from Common Cancer Origins: A State-of-the-Art Review. Curr Oncol Rep 2024; 26:1612-1638. [PMID: 39514054 DOI: 10.1007/s11912-024-01593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW This review examines contemporary strategies for managing brain metastases (BM) from common cancers such as lung, breast, and melanoma. We evaluate the efficacy and applicability of targeted therapies and immunotherapies, exploring their potential to cross the blood-brain barrier and improve patient outcomes. RECENT FINDINGS Recent studies have shown that tyrosine kinase inhibitors, immune checkpoint inhibitors, and ADCs effectively treat BM. These treatments can overcome the challenges posed by the blood-brain barrier and improve therapeutic outcomes. ADCs are promising because they can deliver cytotoxic agents directly to tumor cells, which reduces systemic toxicity and increases drug delivery efficiency to the brain. Personalized medicine is becoming increasingly significant in treatment decisions, with biomarkers playing an essential role. Advances in molecular genetics and drug development have led to more refined treatments, emphasizing the precision medicine framework. The management of BM is evolving, driven by drug efficacy, resistance mechanisms, and the need for personalized medicine. Integrating ADCs into treatment regimens represents a significant advancement in targeting metastatic brain tumors. Despite these advances, BM management still presents considerable challenges, requiring ongoing research and multi-institutional trials to optimize therapeutic strategies. This review outlines the current state and future directions in treating BM, highlighting the critical need for continued innovation and comprehensive clinical evaluations to improve survival rates and quality of life for affected patients.
Collapse
Affiliation(s)
- Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Shreyas Bellur
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Kim Margolin
- Saint John's Cancer Institute, Santa Monica, CA, USA
| | | | - Reshma L Mahtani
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute (SCRI), Nashville, TN, USA
| | - Gabriella B Novo
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Tulika Ranjan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | |
Collapse
|
3
|
Hadley CE, Matsui JK, Blakaj DM, Beyer S, Grecula JC, Chakravarti A, Thomas E, Raval RR, Elder JB, Wu K, Kendra K, Giglio P, Palmer JD. Delayed and Concurrent Stereotactic Radiosurgery in Immunotherapy-Naïve Melanoma Brain Metastases. Cancers (Basel) 2024; 16:3733. [PMID: 39594689 PMCID: PMC11591981 DOI: 10.3390/cancers16223733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma remains a formidable challenge in oncology, causing the majority of skin cancer deaths in the United States, with brain metastases contributing substantially to this mortality. This paper reviews the current therapeutic strategies for melanoma brain metastases, with a focus on delayed and concurrent stereotactic radiosurgery (SRS). While surgery and traditional chemotherapy offer limited efficacy, recent advances in immunotherapy, particularly immune checkpoint inhibitors (ICIs), have played a major role in the advancement and improved efficacy of the treatment of cancers, including brain metastases. Recent studies indicate that monotherapy with ICIs may lead to a higher median overall survival compared to historical benchmarks, potentially allowing patients to delay radiosurgery. Other studies have found that combining SRS with ICIs demonstrates promise, with results indicating improved intracranial control. Ongoing clinical trials explore novel combinations of immunotherapies and radiotherapies, aiming to optimize treatment outcomes while minimizing adverse effects. As treatment options expand, future studies will be necessary to understand the interplay between therapies and their optimal sequencing to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sasha Beyer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - John C. Grecula
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Evan Thomas
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Raju R. Raval
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - James B. Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kyle Wu
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kari Kendra
- Division of Neuro-Oncology, Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Pierre Giglio
- Division of Neuro-Oncology, Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Boutros C, Herrscher H, Robert C. Progress in Immune Checkpoint Inhibitor for Melanoma Therapy. Hematol Oncol Clin North Am 2024; 38:997-1010. [PMID: 39048408 DOI: 10.1016/j.hoc.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Melanoma has seen the most remarkable therapeutic improvements among all cancers in the past decade, primarily due to the development of immune checkpoint inhibitors (ICI). Initially developed in the patients with advanced disease, ICI are now used in adjuvant and neoadjuvant settings. More recently, the development of LAG-3 blocking antibody and the combination of ICI with a personalized RNA-based vaccine have continued to lead the immunotherapeutic field. Despite these advances, primary and secondary resistances remain problematic and there is a high need for predictive biomarkers to optimize benefit/risk ratio of ICI use.
Collapse
Affiliation(s)
- Celine Boutros
- Department of Medicine, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Hugo Herrscher
- Oncology Unit, Clinique Sainte-Anne, Groupe Hospitalier Saint Vincent, rue Philippe Thys, 67000 Strasbourg, France
| | - Caroline Robert
- Department of Medicine, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France; Faculty of Medicine, University Paris-Saclay, 63 Rue Gabriel Péri, 94270 Kremlin-Bicêtre, France; INSERM Unit U981, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
5
|
Bliley R, Avant A, Medina TM, Lanning RM. Radiation and Melanoma: Where Are We Now? Curr Oncol Rep 2024; 26:904-914. [PMID: 38822928 DOI: 10.1007/s11912-024-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the current role of radiotherapy for the treatment of cutaneous melanoma in the definitive, adjuvant, and palliative settings, and combinations with immunotherapy and targeted therapies. RECENT FINDINGS Definitive radiotherapy may be considered for lentigo maligna if surgery would be disfiguring. High risk, resected melanoma may be treated with adjuvant radiotherapy, but the role is poorly defined since the advent of effective systemic therapies. For patients with metastatic disease, immunotherapy and targeted therapies can be delivered safely in tandem with radiotherapy to improve outcomes. Radiotherapy and modern systemic therapies act in concert to improve outcomes, especially in the metastatic setting. Further prospective data is needed to guide the use of definitive radiotherapy for lentigo maligna and adjuvant radiotherapy for high-risk melanoma in the immunotherapy era. Current evidence does not support an abscopal response or at least identify the conditions necessary to reliably produce one with combinations of radiation and immunotherapy.
Collapse
Affiliation(s)
- Roy Bliley
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam Avant
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theresa M Medina
- Department of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ryan M Lanning
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
6
|
Ryan MB, Quade B, Schenk N, Fang Z, Zingg M, Cohen SE, Swalm BM, Li C, Özen A, Ye C, Ritorto MS, Huang X, Dar AC, Han Y, Hoeflich KP, Hale M, Hagel M. The Pan-RAF-MEK Nondegrading Molecular Glue NST-628 Is a Potent and Brain-Penetrant Inhibitor of the RAS-MAPK Pathway with Activity across Diverse RAS- and RAF-Driven Cancers. Cancer Discov 2024; 14:1190-1205. [PMID: 38588399 PMCID: PMC11215411 DOI: 10.1158/2159-8290.cd-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and are a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents the phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analyses of RAF-MEK complexes show that NST-628 engages all isoforms of RAF and prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies, NST-628 is positioned to make an impact clinically in areas of unmet patient need. Significance: This study introduces NST-628, a molecular glue having differentiated mechanism and drug-like properties. NST-628 treatment leads to broad efficacy with high tolerability and central nervous system activity across multiple RAS- and RAF-driven tumor models. NST-628 has the potential to provide transformative clinical benefits as both monotherapy and vertical combination anchor.
Collapse
Affiliation(s)
| | | | | | - Zhong Fang
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | | - Chun Li
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Chaoyang Ye
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Xin Huang
- Nested Therapeutics, Cambridge, Massachusetts.
| | - Arvin C. Dar
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Yongxin Han
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | |
Collapse
|
7
|
Pellerino A, Davidson TM, Bellur SS, Ahluwalia MS, Tawbi H, Rudà R, Soffietti R. Prevention of Brain Metastases: A New Frontier. Cancers (Basel) 2024; 16:2134. [PMID: 38893253 PMCID: PMC11171378 DOI: 10.3390/cancers16112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
This review discusses the topic of prevention of brain metastases from the most frequent solid tumor types, i.e., lung cancer, breast cancer and melanoma. Within each tumor type, the risk of brain metastasis is related to disease status and molecular subtype (i.e., EGFR-mutant non-small cell lung cancer, HER2-positive and triple-negative breast cancer, BRAF and NRAF-mutant melanoma). Prophylactic cranial irradiation is the standard of care in patients in small cell lung cancer responsive to chemotherapy but at the price of late neurocognitive decline. More recently, several molecular agents with the capability to target molecular alterations driving tumor growth have proven as effective in the prevention of secondary relapse into the brain in clinical trials. This is the case for EGFR-mutant or ALK-rearranged non-small cell lung cancer inhibitors, tucatinib and trastuzumab-deruxtecan for HER2-positive breast cancer and BRAF inhibitors for melanoma. The need for screening with an MRI in asymptomatic patients at risk of brain metastases is emphasized.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience ‘Rita Levi Montalcini’, University and City of Health and Science Hospital, 10126 Turin, Italy;
| | - Tara Marie Davidson
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; (T.M.D.); (H.T.)
| | - Shreyas S. Bellur
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL 33176, USA; (S.S.B.); (M.S.A.)
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL 33176, USA; (S.S.B.); (M.S.A.)
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; (T.M.D.); (H.T.)
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience ‘Rita Levi Montalcini’, University and City of Health and Science Hospital, 10126 Turin, Italy;
| | | |
Collapse
|
8
|
Lofiego MF, Piazzini F, Caruso FP, Marzani F, Solmonese L, Bello E, Celesti F, Costa MC, Noviello T, Mortarini R, Anichini A, Ceccarelli M, Coral S, Di Giacomo AM, Maio M, Covre A. Epigenetic remodeling to improve the efficacy of immunotherapy in human glioblastoma: pre-clinical evidence for development of new immunotherapy approaches. J Transl Med 2024; 22:223. [PMID: 38429759 PMCID: PMC10908027 DOI: 10.1186/s12967-024-05040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor, that is refractory to standard treatment and to immunotherapy with immune-checkpoint inhibitors (ICI). Noteworthy, melanoma brain metastases (MM-BM), that share the same niche as GBM, frequently respond to current ICI therapies. Epigenetic modifications regulate GBM cellular proliferation, invasion, and prognosis and may negatively regulate the cross-talk between malignant cells and immune cells in the tumor milieu, likely contributing to limit the efficacy of ICI therapy of GBM. Thus, manipulating the tumor epigenome can be considered a therapeutic opportunity in GBM. METHODS Microarray transcriptional and methylation profiles, followed by gene set enrichment and IPA analyses, were performed to study the differences in the constitutive expression profiles of GBM vs MM-BM cells, compared to the extracranial MM cells and to investigate the modulatory effects of the DNA hypomethylating agent (DHA) guadecitabine among the different tumor cells. The prognostic relevance of DHA-modulated genes was tested by Cox analysis in a TCGA GBM patients' cohort. RESULTS The most striking differences between GBM and MM-BM cells were found to be the enrichment of biological processes associated with tumor growth, invasion, and extravasation with the inhibition of MHC class II antigen processing/presentation in GBM cells. Treatment with guadecitabine reduced these biological differences, shaping GBM cells towards a more immunogenic phenotype. Indeed, in GBM cells, promoter hypomethylation by guadecitabine led to the up-regulation of genes mainly associated with activation, proliferation, and migration of T and B cells and with MHC class II antigen processing/presentation. Among DHA-modulated genes in GBM, 7.6% showed a significant prognostic relevance. Moreover, a large set of immune-related upstream-regulators (URs) were commonly modulated by DHA in GBM, MM-BM, and MM cells: DHA-activated URs enriched for biological processes mainly involved in the regulation of cytokines and chemokines production, inflammatory response, and in Type I/II/III IFN-mediated signaling; conversely, DHA-inhibited URs were involved in metabolic and proliferative pathways. CONCLUSIONS Epigenetic remodeling by guadecitabine represents a promising strategy to increase the efficacy of cancer immunotherapy of GBM, supporting the rationale to develop new epigenetic-based immunotherapeutic approaches for the treatment of this still highly deadly disease.
Collapse
Affiliation(s)
| | | | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Laura Solmonese
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | | | | - Maria Claudia Costa
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Teresa Noviello
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Ceccarelli
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | |
Collapse
|
9
|
Mandalà M, Lorigan P, Sergi MC, Benannoune N, Serra P, Vitale MG, Giannarelli D, Arance AM, Couselo EM, Neyns B, Tucci M, Guida M, Spagnolo F, Rossi E, Occelli M, Queirolo P, Quaglino P, Depenni R, Merelli B, Placzke J, Di Giacomo AM, Del Vecchio M, Indini A, da Silva IP, Menzies AM, Long GV, Robert C, Rutkowski P, Ascierto PA. Combined immunotherapy in melanoma patients with brain metastases: A multicenter international study. Eur J Cancer 2024; 199:113542. [PMID: 38266540 DOI: 10.1016/j.ejca.2024.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Ipilimumab plus nivolumab (COMBO) is the standard treatment in asymptomatic patients with melanoma brain metastases (MBM). We report a retrospective study aiming to assess the outcome of patients with MBM treated with COMBO outside clinical trials. METHODS Consecutive patients treated with COMBO have been included. Demographics, steroid treatment, Central Nervous System (CNS)-related symptoms, BRAF status, radiotherapy or surgery, response rate (RR), progression-free (PFS) and overall survival (OS) have been analyzed. RESULTS 376 patients were included: 262 received COMBO as first-line and 114 as a subsequent line of therapy, respectively. In multivariate analysis, Eastern Cooperative Oncology Group (ECOG) (≥1 vs 0) [HR 1.97 (1.46-2.66)], extracerebral metastases [HR 1.92 (1.09-3.40)], steroid use at the start of COMBO [HR 1.59 (1.08-2.38)], CNS-related symptoms [HR 1.59 (1.08-2.34)], SRS (Stereotactic radiosurgery) [HR 0.63 (0.45-0.88)] and surgery [HR 0.63 (0.43-0.91)] were associated with OS. At a median follow-up of 30 months, the median OS (mOS) in the overall population was 21.3 months (18.1-24.5), whilst OS was not yet reached in treatment-naive patients, steroid-free at baseline. In patients receiving COMBO after BRAF/MEK inhibitors(i) PFS at 1-year was 15.7%. The dose of steroids (dexamethasone < vs ≥ 4 mg/day) was not prognostic. SRS alongside COMBO vs COMBO alone in asymptomatic patients prolonged survival. (p = 0.013). Toxicities were consistent with previous studies. An independent validation cohort (n = 51) confirmed the findings. CONCLUSIONS Our results demonstrate remarkable long-term survival in treatment-naïve, asymptomatic, steroid-free patients, as well as in those receiving SRS plus COMBO. PFS and OS were poor in patients receiving COMBO after progressing to BRAF/MEKi.
Collapse
Affiliation(s)
- Mario Mandalà
- Unit of Medical Oncology, University of Perugia, Perugia, Italy.
| | - Paul Lorigan
- The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | | | - Patricio Serra
- The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Maria Grazia Vitale
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, I.N.T. IRCCS Fondazione "G. Pascale" Napoli, Naples, Italy
| | - Diana Giannarelli
- Epidemiology and Biostatistics, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | | | - Eva Munoz Couselo
- Department of Medical Oncology. Vall d'Hebron Hospital, Barcelona, Spain & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Marco Tucci
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto dei Tumori "Giovanni Paolo II," Bari, Italy
| | | | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | | | | | - Pietro Quaglino
- Department of Dermatology, University of Turin, Turin, Italy
| | - Roberta Depenni
- University of Modena and Reggio Emilia, Department of Oncology, Hematology, Modena, Emilia-Romagna, Italy
| | | | - Joanna Placzke
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | | | - Alice Indini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ines Pires da Silva
- Melanoma Institute Australia, University of Sydney, and Blacktown Hospital, Sydney, New South Wales, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Caroline Robert
- Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Piotr Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, I.N.T. IRCCS Fondazione "G. Pascale" Napoli, Naples, Italy
| |
Collapse
|
10
|
Rahnea-Nita RA, Rebegea LF, Toma RV, Mocanu H, Soare I, Mihailov R, Nechifor A, Guliciuc M, Constantin GB, Rahnea-Nita G. Immunotherapy Combined with Radiation in Malignant Melanoma without BRAF Mutations Brain Metastases-Favorable Response after Immunotherapy Continued beyond Progression. J Pers Med 2024; 14:86. [PMID: 38248787 PMCID: PMC10817469 DOI: 10.3390/jpm14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
We present the case of a patient who was diagnosed in 2018 with nodular Malignant Melanoma (MM) without BRAF V 600 mutations stage 3 C (pT4b pN1a M0), and who underwent adjuvant citokines treatment with Interferon alpha 2b-48 weeks. Immunotherapy was initiated in January 2021 for lung and lymph node metastases. In June 2021, there was a partial response of the lung and lymph node metastases, but there was also progression to brain metastases. Immunotherapy was continued and Whole Brain Radiotherapy (WBRT) was performed. In September 2023, the imaging investigations revealed a favorable response, with no lesions suggestive of secondary determinations. The combination of Radiotherapy (RT) and Immunotherapy (IT) with Immune Checkpoint Inhibitors (ICI) has an abscopal effect. There is a coordinated action in the combination of RT and IT in order to obtain a common result, with the antitumor effect being greater than if RT or IT acted separately.
Collapse
Affiliation(s)
- Roxana-Andreea Rahnea-Nita
- The Clinical Department, The Faculty of Medicine, The University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (R.-A.R.-N.); (R.-V.T.)
- The Oncology-Palliative Care Department, “Sf. Luca” Chronic Disease Hospital, 041915 Bucharest, Romania;
| | - Laura-Florentina Rebegea
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
- The Radiotherapy Department, “Sf. Ap. Andrei” County Emergency Clinical Hospital, 800579 Galati, Romania
- The Research Center in the Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, 800010 Galati, Romania
| | - Radu-Valeriu Toma
- The Clinical Department, The Faculty of Medicine, The University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (R.-A.R.-N.); (R.-V.T.)
- The Radiotherapy Department, The Oncological Institute, 022328 Bucharest, Romania
| | - Horia Mocanu
- The Clinical Department, The Faculty of Medicine, “Titu Maiorescu” University, 040051 Bucharest, Romania; (H.M.); (I.S.)
- The E.N.T Department, Gaesti City Hospital, 135200 Gaesti, Romania
| | - Ioana Soare
- The Clinical Department, The Faculty of Medicine, “Titu Maiorescu” University, 040051 Bucharest, Romania; (H.M.); (I.S.)
| | - Raul Mihailov
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
| | - Alexandru Nechifor
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
| | - Mădălin Guliciuc
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
- The Urology Department, “Sf. Ap. Andrei” County Emergency Clinical Hospital, 800579 Galati, Romania
| | - Georgiana Bianca Constantin
- The Morphological and Functional Sciences Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania
| | - Gabriela Rahnea-Nita
- The Oncology-Palliative Care Department, “Sf. Luca” Chronic Disease Hospital, 041915 Bucharest, Romania;
- The Clinical Department, The Faculty of Midwifery and Nursing, The University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Su M, Yang Y, Wang P. Efficacy and safety of the combined use of ipilimumab and nivolumab for melanoma patients with brain metastases: a systematic review and meta-analysis. Immunopharmacol Immunotoxicol 2023; 45:761-769. [PMID: 37228242 DOI: 10.1080/08923973.2023.2215403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
CONTEXT Immune checkpoint inhibitors have advanced immunotherapy for melanoma patients.Objective: This study evaluates efficacy and safety of ipilimumab and nivolumab combination (IN) for melanoma brain metastases (MBM) patients. MATERIALS AND METHODS Literature search was conducted in electronic databases and studies were included if they reported efficacy and safety of IN in MBM patients or prognostic information related to brain metastases. Outcomes evaluated were objective response rate (ORR), complete remission/stable disease/progressive disease rates, progression-free survival (PFS), overall survival (OS), incidence rates of adverse events, and hazard ratios of disease progression or mortality between IN-treated patients with and without brain metastasis. RESULTS Intracranial ORR was higher in IN-treated MBM patients than with control therapies (nivolumab or ipilimumab plus fotemustine). IN treatment led to longer PFS and OS in than control treatments. Five-year OS of IN-treated MBM patients was up to 51% compared to 34% for nivolumab. Outcomes were better for treatment naïve and asymptomatic patients. Whereas many studies reported significantly higher mortality or progression risk with IN treatment in MBM patients compared to non-MBM melanoma patients, many others did not find this risk significant. Incidence of grade 3/4 adverse events in IN-treated MBM patients was: diarrhea or colitis (16%), hepatitis (15%), rash (8%), increased alanine transaminase (8%), increased aspartate aminotransferase (7%), increased lipase (6%), increased amylase (4%), fatigue (3%), hypophysitis (2%), pneumonitis (2%), headache (2%), nausea or vomiting (1%), and neutropenia (1%). CONCLUSION IN is an efficacious and safer treatment option for MBM patients, especially for asymptomatic and treatment naïve patients.
Collapse
Affiliation(s)
- Mengmeng Su
- Department of Radiotherapy, Peking University People's Hospital, Beijing, China
| | - Yuyan Yang
- Department of Radiotherapy, Peking University International Hospital, Beijing, China
| | - Peng Wang
- Department of Radiotherapy, Peking University International Hospital, Beijing, China
| |
Collapse
|
12
|
In GK, Ribeiro JR, Yin J, Xiu J, Bustos MA, Ito F, Chow F, Zada G, Hwang L, Salama AKS, Park SJ, Moser JC, Darabi S, Domingo-Musibay E, Ascierto ML, Margolin K, Lutzky J, Gibney GT, Atkins MB, Izar B, Hoon DSB, VanderWalde AM. Multi-omic profiling reveals discrepant immunogenic properties and a unique tumor microenvironment among melanoma brain metastases. NPJ Precis Oncol 2023; 7:120. [PMID: 37964004 PMCID: PMC10646102 DOI: 10.1038/s41698-023-00471-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Melanoma brain metastases (MBM) are clinically challenging to treat and exhibit variable responses to immune checkpoint therapies. Prior research suggests that MBM exhibit poor tumor immune responses and are enriched in oxidative phosphorylation. Here, we report results from a multi-omic analysis of a large, real-world melanoma cohort. MBM exhibited lower interferon-gamma (IFNγ) scores and T cell-inflamed scores compared to primary cutaneous melanoma (PCM) or extracranial metastases (ECM), which was independent of tumor mutational burden. Among MBM, there were fewer computationally inferred immune cell infiltrates, which correlated with lower TNF and IL12B mRNA levels. Ingenuity pathway analysis (IPA) revealed suppression of inflammatory responses and dendritic cell maturation pathways. MBM also demonstrated a higher frequency of pathogenic PTEN mutations and angiogenic signaling. Oxidative phosphorylation (OXPHOS) was enriched in MBM and negatively correlated with NK cell and B cell-associated transcriptomic signatures. Modulating metabolic or angiogenic pathways in MBM may improve responses to immunotherapy in this difficult-to-treat patient subset.
Collapse
Affiliation(s)
- Gino K In
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | - Jun Yin
- Caris Life Sciences, Phoenix, AZ, USA
| | | | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Fumito Ito
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frances Chow
- Department of Neurology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gabriel Zada
- Department of Neurological Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lindsay Hwang
- LAC+USC Medical Center, Los Angeles, CA, USA
- Department of Radiation Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - April K S Salama
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Soo J Park
- Division of Hematology/Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Justin C Moser
- HonorHealth Research and Innovation Institute, Scottsdale, AZ, USA
| | - Sourat Darabi
- Hoag Family Cancer Institute, Hoag Hospital, Newport Beach, CA, USA
| | - Evidio Domingo-Musibay
- Department of Medicine, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Maria L Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Department of Translational Immunology, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Kim Margolin
- Department of Medical Oncology, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jose Lutzky
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA
| | - Geoffrey T Gibney
- Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA
| | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Benjamin Izar
- Columbia University, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Ari M VanderWalde
- Caris Life Sciences, Irving, TX, USA
- West Cancer Center and Research Institute, 514 Chickasawba St., Blytheville, Arkansas, 72315, USA
| |
Collapse
|
13
|
Pavlick AC, Ariyan CE, Buchbinder EI, Davar D, Gibney GT, Hamid O, Hieken TJ, Izar B, Johnson DB, Kulkarni RP, Luke JJ, Mitchell TC, Mooradian MJ, Rubin KM, Salama AK, Shirai K, Taube JM, Tawbi HA, Tolley JK, Valdueza C, Weiss SA, Wong MK, Sullivan RJ. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. J Immunother Cancer 2023; 11:e006947. [PMID: 37852736 PMCID: PMC10603365 DOI: 10.1136/jitc-2023-006947] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 10/20/2023] Open
Abstract
Since the first approval for immune checkpoint inhibitors (ICIs) for the treatment of cutaneous melanoma more than a decade ago, immunotherapy has completely transformed the treatment landscape of this chemotherapy-resistant disease. Combination regimens including ICIs directed against programmed cell death protein 1 (PD-1) with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) agents or, more recently, anti-lymphocyte-activation gene 3 (LAG-3) agents, have gained regulatory approvals for the treatment of metastatic cutaneous melanoma, with long-term follow-up data suggesting the possibility of cure for some patients with advanced disease. In the resectable setting, adjuvant ICIs prolong recurrence-free survival, and neoadjuvant strategies are an active area of investigation. Other immunotherapy strategies, such as oncolytic virotherapy for injectable cutaneous melanoma and bispecific T-cell engager therapy for HLA-A*02:01 genotype-positive uveal melanoma, are also available to patients. Despite the remarkable efficacy of these regimens for many patients with cutaneous melanoma, traditional immunotherapy biomarkers (ie, programmed death-ligand 1 expression, tumor mutational burden, T-cell infiltrate and/or microsatellite stability) have failed to reliably predict response. Furthermore, ICIs are associated with unique toxicity profiles, particularly for the highly active combination of anti-PD-1 plus anti-CTLA-4 agents. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of melanoma, including rare subtypes of the disease (eg, uveal, mucosal), with the goal of improving patient care by providing guidance to the oncology community. Drawing from published data and clinical experience, the Expert Panel developed evidence- and consensus-based recommendations for healthcare professionals using immunotherapy to treat melanoma, with topics including therapy selection in the advanced and perioperative settings, intratumoral immunotherapy, when to use immunotherapy for patients with BRAFV600-mutated disease, management of patients with brain metastases, evaluation of treatment response, special patient populations, patient education, quality of life, and survivorship, among others.
Collapse
Affiliation(s)
| | - Charlotte E Ariyan
- Department of Surgery Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Diwakar Davar
- Hillman Cancer Center, University of Pittsburg Medical Center, Pittsburgh, Pennsylvania, USA
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | - Tina J Hieken
- Department of Surgery and Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rajan P Kulkarni
- Departments of Dermatology, Oncological Sciences, Biomedical Engineering, and Center for Cancer Early Detection Advanced Research, Knight Cancer Institute, OHSU, Portland, Oregon, USA
- Operative Care Division, VA Portland Health Care System (VAPORHCS), Portland, Oregon, USA
| | - Jason J Luke
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tara C Mitchell
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meghan J Mooradian
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Krista M Rubin
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - April Ks Salama
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, Carolina, USA
| | - Keisuke Shirai
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Janis M Taube
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J Keith Tolley
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Caressa Valdueza
- Cutaneous Oncology Program, Weill Cornell Medicine, New York, New York, USA
| | - Sarah A Weiss
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Michael K Wong
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Ryan J Sullivan
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Kim YS, Kim D, Park J, Chung YJ. Single-cell RNA sequencing of a poorly metastatic melanoma cell line and its subclones with high lung and brain metastasis potential reveals gene expression signature of metastasis with prognostic implication. Exp Dermatol 2023; 32:1774-1784. [PMID: 37534569 DOI: 10.1111/exd.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The molecular mechanisms underlying melanoma metastasis remain poorly understood. In this study, we aimed to delineate the mechanisms underlying gene expression alterations during metastatic potential acquisition and characterize the metastatic subclones within primary cell lines. We performed single-cell RNA sequencing of a poorly metastatic melanoma cell line (WM239A) and its subclones with high metastatic potential to the lung (113/6-4L) and the brain (131/4-5B1 and 131/4-5B2). Unsupervised clustering of 8173 melanoma cells identified three distinct clusters according to cell type ('Primary', 'Lung' and 'Brain' clusters) with differential expression of MITF and AXL pathways and putative cancer and cell cycle drivers, with the lung cluster expressing intermediate but distinct gene profiles between primary and brain clusters. Principal component (PC) analysis revealed that PC2 (the second PC), which was positively associated with MITF expression and negatively with AXL pathways, primarily segregated cell types, in addition to PC1 of the cell cycle pathway. Pseudotime trajectory and RNA velocity analyses suggested the existence of cellular subsets with metastatic potential in the Primary cluster and an association between PC2 signature alteration and metastasis potential acquisition. Analysis of The Cancer Genome Atlas melanoma samples by clustering into PC2-high and -low clusters by quartiles of PC2 signature expression revealed that the PC2-high cluster was an independent significant factor for poor prognosis (p-value = 0.003) with distinct genomic and transcriptomic characteristics, compared to the PC2-low cluster. In conclusion, we identified signatures of melanoma metastasis with prognostic significance and putative pro-metastatic subclones within a primary cell line.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dokyeong Kim
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Nowacka A, Fajkiel-Madajczyk A, Ohla J, Woźniak-Dąbrowska K, Liss S, Gryczka K, Smuczyński W, Ziółkowska E, Bożiłow D, Śniegocki M, Wiciński M. Current Treatment of Melanoma Brain Metastases. Cancers (Basel) 2023; 15:4088. [PMID: 37627116 PMCID: PMC10452790 DOI: 10.3390/cancers15164088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a type of skin cancer in which there is a strong correlation between its occurrence and exposure to ultraviolet radiation. Although it is not the most common skin cancer, it has the highest mortality rate of all skin cancers. The prognosis of patients is significantly worsened by melanoma metastasis to the brain, which often occurs in patients with advanced disease. The formation and development of melanoma metastases to the brain involve a very complex process, and their mechanisms are not fully understood. One of the ways for metastatic melanoma cells to survive and develop cancer in the brain environment is the presence of oncogenic BRAF mutation, which occurs in up to 50% of metastatic melanoma cases. Before discovering new methods of treating metastases, the overall survival of patients with this disease was 6 months. Currently, research is being conducted on new drugs using immunotherapy (immune checkpoint inhibitors: anti-PD-1, anti-CTLA-4) and targeted therapy (BRAF and MEK inhibitors) to improve the prognosis of patients. In this article, we summarize the current state of knowledge about the results of treating brain metastases with new systemic therapies.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Kamila Woźniak-Dąbrowska
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Sara Liss
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| | - Wojciech Smuczyński
- Department of Physiotherapy, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Techników 3, 85-801 Bydgoszcz, Poland;
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
| | - Maciej Śniegocki
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| |
Collapse
|
16
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
17
|
Feng Y, Cao Y, Singh R, Janjua TI, Popat A. Silica nanoparticles for brain cancer. Expert Opin Drug Deliv 2023; 20:1749-1767. [PMID: 37905998 DOI: 10.1080/17425247.2023.2273830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Brain cancer is a debilitating disease with a poor survival rate. There are significant challenges for effective treatment due to the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB) which impedes drug delivery to tumor sites. Many nanomedicines have been tested in improving both the survival and quality of life of patients with brain cancer with the recent focus on inorganic nanoparticles such as silica nanoparticles (SNPs). This review examines the use of SNPs as a novel approach for diagnosing, treating, and theranostics of brain cancer. AREAS COVERED The review provides an overview of different brain cancers and current therapies available. A special focus on the key functional properties of SNPs is discussed which makes them an attractive material in the field of onco-nanomedicine. Strategies to overcome the BBB using SNPs are analyzed. Furthermore, recent advancements in active targeting, combination therapies, and innovative nanotherapeutics utilizing SNPs are discussed. Safety considerations, toxicity profiles, and regulatory aspects are addressed to provide an understanding of SNPs' translational potential. EXPERT OPINION SNPs have tremendous prospects in brain cancer research. The multifunctionality of SNPs has the potential to overcome both the BBB and BTB limitations and can be used for brain cancer imaging, drug delivery, and theranostics. The insights provided will facilitate the development of next-generation, innovative strategies, guiding future research toward improved diagnosis, targeted therapy, and better outcomes in brain cancer patients.
Collapse
Affiliation(s)
- Yuran Feng
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Ravi Singh
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Stoian AR, Rahnea-Nita G, Ciuhu AN, Gales L, Anghel RM, Rebegea LF, Rahnea-Nita RA, Andronache LF, Soare I, Stoleriu G. The Benefits and Challenges of the Multimodal Treatment in Advanced/Metastatic Malignant Melanoma. Diagnostics (Basel) 2023; 13:diagnostics13091635. [PMID: 37175025 PMCID: PMC10178057 DOI: 10.3390/diagnostics13091635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Currently, the treatment of malignant melanoma offers the longest and the most studied experience of innovative treatments in malignant pathology. The algorithm of the therapeutic decision in advanced or metastatic melanoma must comprise: the timing of the therapeutic initiation, the sequencing of the specific oncological treatment (radiotherapy and chemotherapy still being therapeutic alternatives in selected cases), the diagnosis and the management of adverse reactions. We present the case of a patient diagnosed with metastatic malignant melanoma in November 2019, who progressed successively under new systemic treatment throughout the 3 years of treatment and experienced skin reactions of various degrees of severity. The comprehensive response to secondary hilar pulmonary lymphatic determinations under subsequent chemotherapy was specific to the presented case. The occurrence of vitiligo secondary to immunotherapy is a favorable prognostic factor, but the occurrence of secondary cerebral determinations is an extremely severe prognostic factor in malignant melanoma and a challenge in making the therapeutic decision. Previous treatment with immune checkpoint inhibitors may trigger a favorable response to systemic chemotherapy. The early and accurate diagnosis of the adverse events of the new therapies requires a multidisciplinary approach, because it can radically change the therapeutic decision.
Collapse
Affiliation(s)
- Alexandru-Rares Stoian
- Clinical Department, Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Street, 050474 Bucharest, Romania
- "Bagdasar-Arseni" Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Gabriela Rahnea-Nita
- Clinical Department, Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Street, 050474 Bucharest, Romania
- "Sf. Luca" Chronic Disease Hospital, 041915 Bucharest, Romania
| | | | - Laurentia Gales
- Clinical Department, Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Street, 050474 Bucharest, Romania
- The Oncological Institute "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Rodica-Maricela Anghel
- Clinical Department, Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Street, 050474 Bucharest, Romania
- The Oncological Institute "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Laura-Florentina Rebegea
- Radiotherapy Department, "Sf. Ap. Andrei" County Emergency Clinical Hospital, 800579 Galati, Romania
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
- Research Center in the Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, 800010 Galati, Romania
| | - Roxana-Andreea Rahnea-Nita
- Clinical Department, Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Street, 050474 Bucharest, Romania
- "Sf. Luca" Chronic Disease Hospital, 041915 Bucharest, Romania
| | - Liliana-Florina Andronache
- Clinical Department, Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Ioana Soare
- Clinical Department, The Faculty of Medicine, "Titu Maiorescu" University, 040051 Bucharest, Romania
| | - Gabriela Stoleriu
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| |
Collapse
|
19
|
Diaz MJ, Mark I, Rodriguez D, Gelman B, Tran JT, Kleinberg G, Levin A, Beneke A, Root KT, Tran AXV, Lucke-Wold B. Melanoma Brain Metastases: A Systematic Review of Opportunities for Earlier Detection, Diagnosis, and Treatment. Life (Basel) 2023; 13:life13030828. [PMID: 36983983 PMCID: PMC10053844 DOI: 10.3390/life13030828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Melanoma continues to represent the most serious skin cancer worldwide. However, few attempts have been made to connect the body of research on advanced melanoma. In the present review, we report on strides made in the diagnosis and treatment of intracranial metastatic melanoma. Methods: Relevant Cochrane reviews and randomized-controlled trials published by November 2022 were systematically retrieved from the Cochrane Library, EMBASE, and PubMed databases (N = 27). Search and screening methods adhered to the 2020 revision of the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Results: Although the research surrounding the earlier detection of melanoma brain metastasis is scarce, several studies have highlighted specific markers associated with MBM. Such factors include elevated BRAFV600 mutant ctDNA, high LDH concentration, and high IGF-1R. The approach to treating MBM is moving away from surgery and toward nonsurgical management, namely, a combination of stereotactic radiosurgery (SRS) and immunotherapeutic agents. There is an abundance of emerging research seeking to identify and improve both novel and established treatment options and diagnostic approaches for MBM, however, more research is still needed to maximize the clinical efficacy, especially for new immunotherapeutics. Conclusions: Early detection is optimal for the efficacy of treatment and MBM prognosis. Current treatment utilizes chemotherapies and targeted therapies. Emerging approaches emphasize biomarkers and joint treatments. Further exploration toward preliminary identification, the timing of therapies, and methods to ameliorate adverse treatment effects are needed to advance MBM patient care.
Collapse
Affiliation(s)
| | - Isabella Mark
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Daphnee Rodriguez
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Beata Gelman
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jasmine Thuy Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA
| | - Giona Kleinberg
- College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Anna Levin
- School of Arts and Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Alice Beneke
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kevin Thomas Root
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew Xuan Vinh Tran
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Pala L, Bagnardi V, Tettamanzi F, Barberis M, Mazzarol G, Casali C, De Pas T, Pennacchioli E, Coppola S, Baldini F, Cocorocchio E, Ferrucci P, Patane' D, Saponara M, Queirolo P, Conforti F. Genetic Alterations of Melanoma Brain Metastases: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2023; 27:5-13. [PMID: 36401787 DOI: 10.1007/s40291-022-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Data on molecular alterations harbored by melanoma brain metastases (MBMs) are limited, and this has hampered the development of more effective therapeutic strategies. We conducted a systematic review and meta-analysis of all the studies reporting DNA sequencing data of MBMs, in order to identify recurrently mutated genes and molecular pathways significantly enriched for genetic alterations. METHODS We searched PubMed, Embase and Scopus for articles published from the inception of each database to June 30, 2021. We included in the analysis all the studies that reported individual patient data on DNA sequencing of MBMs, assessing single nucleotide variants (SNVs) and/or gene copy number variations (CNVs) in at least five tumor samples. Meta-analysis was performed for genes evaluated for SNVs and/or CNVs in at least two studies. Pooled proportions of samples with SNVs and/or CNVs was calculated by applying random-effect models based on the DerSimonian-Laird method. Gene-set enrichment analysis (GSEA) was performed to identify molecular pathways significantly enriched for mutated genes. RESULTS Ten studies fulfilled the inclusion criteria and were included in the analysis, for a total of 531 samples of MBMs evaluated. Twenty-seven genes were found recurrently mutated with a meta-analytic rate of SNVs higher than 5%. GSEA conducted on the list of these 27 recurrently mutated genes revealed vascular endothelial growth factor-activated receptor activity and transmembrane receptor protein tyrosine kinase activity to be among the top 10 gene ontology (GO) molecular functions significantly enriched for mutated genes, while regulation of apoptosis and cell proliferation were among the top 10 significantly enriched GO biological processes. Notably, a high meta-analytic rate of SNVs was found in several actionable cancer-associated genes, such as all the vascular endothelial growth factor (VEGF) receptor isoforms (i.e., Flt1 and Flt2 genes, for both SNV rate: 0.22, 95% CI 0.04-0.49; KDR gene, SNV rate: 0.1, 95% CI 0.05-0.16). Finally, two tumor suppressor genes were characterized by a high meta-analytic rate of CNVs: CDKN2A/B (CNV rate: 0.59, 95% CI 0.23-0.90) and PTEN (CNV rate: 0.31, 95% CI 0.02-0.95). CONCLUSION MBMs harbored actionable molecular alterations that could be exploited as therapeutic targets to improve the poor prognosis of patients.
Collapse
Affiliation(s)
- Laura Pala
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy. .,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy.
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | | | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Mazzarol
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Cecilia Casali
- Department of Neurological Surgery, IRCCS Foundation Neurological Institute "Carlo Besta", Milan, Italy
| | - Tommaso De Pas
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy.,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy
| | - Elisabetta Pennacchioli
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Sara Coppola
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Federica Baldini
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Emilia Cocorocchio
- Division of Medical Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Pierfrancesco Ferrucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Damiano Patane'
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Maristella Saponara
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Paola Queirolo
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Fabio Conforti
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy.,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy
| |
Collapse
|
21
|
Pozzi S, Scomparin A, Ben-Shushan D, Yeini E, Ofek P, Nahmad AD, Soffer S, Ionescu A, Ruggiero A, Barzel A, Brem H, Hyde TM, Barshack I, Sinha S, Ruppin E, Weiss T, Madi A, Perlson E, Slutsky I, Florindo HF, Satchi-Fainaro R. MCP-1/CCR2 axis inhibition sensitizes the brain microenvironment against melanoma brain metastasis progression. JCI Insight 2022; 7:154804. [PMID: 35980743 PMCID: PMC9536270 DOI: 10.1172/jci.insight.154804] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessio D Nahmad
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Soffer
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Barzel
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States of America
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sanju Sinha
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Tomer Weiss
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Lasocki A, Sia J, Stuckey SL. Improving the diagnosis of radiation necrosis after stereotactic radiosurgery to intracranial metastases with conventional MRI features: a case series. Cancer Imaging 2022; 22:33. [PMID: 35794677 PMCID: PMC9258115 DOI: 10.1186/s40644-022-00470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background The distinction between true disease progression and radiation necrosis after stereotactic radiosurgery to intracranial metastases is a common, but challenging, clinical scenario. Improvements in systemic therapies are increasing the importance of this distinction. A variety of imaging techniques have been investigated, but the value of any individual technique is limited. Case presentation Assessment should extend beyond simply the appearances of the lesion at a given timepoint, but also consider local anatomy and lesion evolution. Firstly, enlargement of a metastasis is affected by local anatomical boundaries, such as the dural reflections or cerebrospinal fluid spaces. In contrast, the radiation dose administered with stereotactic radiosurgery does not respect these anatomical boundaries and is largely concentric around the treated lesion. Therefore, new, non-contiguous enhancement across such a boundary can be confidently attributed to radiation necrosis. Secondly, the dynamic nature of radiation necrosis may result in a change in lesion shape, with different portions of the lesion simultaneously enlarging and regressing. Regression of part of a lesion indicates radiation necrosis, even if the overall lesion enlarges. This case series describes these two features and provides illustrative clinical examples in which these features allowed a confident diagnosis of radiation necrosis. Conclusions The distinction between true disease progression and radiation necrosis should extend beyond just the appearances of the lesion. More nuanced interpretation incorporating a relationship to anatomical boundaries and a change in shape can improve accurate diagnosis of radiation necrosis.
Collapse
|
23
|
Alvarez-Breckenridge C, Remon J, Piña Y, Nieblas-Bedolla E, Forsyth P, Hendriks L, Brastianos PK. Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35522917 DOI: 10.1200/edbk_352320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of brain metastases has historically been a dreaded, end-stage complication of systemic disease. Additionally, with the increasing effectiveness of systemic therapies that prolong life expectancy and improved imaging tools, the incidence of intracranial progression is becoming more common. Within this context, there has been increasing attention directed at understanding the molecular underpinnings of intracranial progression. Exploring the unique features of brain metastases compared with their extracranial counterparts to identify aberrant signaling pathways, which can be targeted pharmacologically, may help lead to new treatments for this patient population. Additionally, critical discoveries outside the sphere of the central nervous system are increasingly being applied to brain metastases with the emergence of immune checkpoint inhibition, becoming a prevalent treatment option for patients with brain metastases across multiple histologies. As novel treatment strategies are considered, they require thoughtful incorporation of agents that can cross the blood-brain barrier and can synergize with pre-existing agents through rational combinations. Lastly, as clinicians and scientists continue to understand key molecular features of these tumors, they will continue to influence the treatment algorithms that are developing for the management of these patients. Due to the complexity of treatment decisions for patients with brain metastases, an emerging tool is the utilization of multidisciplinary brain metastasis tumor boards to ensure optimal treatment decisions are made and that patients are provided access to applicable clinical trials. Looking to the future, the collective effort to understand the various tumor-intrinsic and tumor-extrinsic factors that promote central nervous system seeding and propagation will have the potential to change the clinical trajectory for these patients.
Collapse
Affiliation(s)
| | - Jordi Remon
- Department of Medical Oncology, HM CIOCC Barcelona (Centro Integral Oncológico Clara Campal), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | | | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | - Lizza Hendriks
- Department of Pulmonary Diseases - GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
24
|
Eggen AC, Hospers GAP, Bosma I, Kramer MCA, Reyners AKL, Jalving M. Anti-tumor treatment and healthcare consumption near death in the era of novel treatment options for patients with melanoma brain metastases. BMC Cancer 2022; 22:247. [PMID: 35247992 PMCID: PMC8897874 DOI: 10.1186/s12885-022-09316-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Effective systemic treatments have revolutionized the management of patients with metastatic melanoma, including those with brain metastases. The extent to which these treatments influence disease trajectories close to death is unknown. Therefore, this study aimed to gain insight into provided treatments and healthcare consumption during the last 3 months of life in patients with melanoma brain metastases. Methods Retrospective, single-center study, including consecutive patients with melanoma brain metastases diagnosed between June-2015 and June-2018, referred to the medical oncologist, and died before November-2019. Patient and tumor characteristics, anti-tumor treatments, healthcare consumption, presence of neurological symptoms, and do-not-resuscitate status were extracted from medical charts. Results 100 patients were included. A BRAF-mutation was present in 66 patients. Systemic anti-tumor therapy was given to 72% of patients during the last 3 months of life, 34% in the last month, and 6% in the last week. Patients with a BRAF-mutation more frequently received systemic treatment during the last 3 (85% vs. 47%) and last month (42% vs. 18%) of life than patients without a BRAF-mutation. Furthermore, patients receiving systemic treatment were more likely to visit the emergency room (ER, 75% vs. 36%) and be hospitalized (75% vs. 36%) than those who did not. Conclusion The majority of patients with melanoma brain metastases received anti-tumor treatment during the last 3 months of life. ER visits and hospitalizations occurred more often in patients on anti-tumor treatment. Further research is warranted to examine the impact of anti-tumor treatments close to death on symptom burden and care satisfaction.
Collapse
|
25
|
Palmer JD, Prasad RN, Fabian D, Wei L, Yildiz VO, Tan Y, Grecula J, Welliver M, Williams T, Elder JB, Raval R, Blakaj D, Haglund K, Bazan J, Kendra K, Arnett A, Beyer S, Liebner D, Giglio P, Puduvalli V, Chakravarti A, Wuthrick E. Phase I study of trametinib in combination with whole brain radiation therapy for brain metastases. Radiother Oncol 2022; 170:21-26. [DOI: 10.1016/j.radonc.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
|
26
|
Saberian C, Davies MA. Re-thinking therapeutic development for CNS metastatic disease. Exp Dermatol 2022; 31:74-81. [PMID: 34152638 PMCID: PMC11373440 DOI: 10.1111/exd.14413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
There has been unprecedented progress in the development of systemic therapies for patients with metastatic melanoma over the last decade. There is now tremendous potential and momentum to further and markedly reduce the impact of this disease. However, developing more effective treatments for metastases to the CNS remains a critical challenge for patients with melanoma. Melanoma patients with active CNS metastases have largely been excluded from both early-phase and registration trials for all currently approved targeted and immune therapies for this disease. While this exclusion has generally been justified in clinical research due to concerns about poor prognosis, lack of CNS penetration of agents and/or risk of toxicities, recent post-approval trials have shown the feasibility, safety and clinical benefit of clinical investigation in these patients. These trials have also identified key areas for which more effective strategies are needed. In parallel, recent translational and preclinical research has provided insights into novel immune, molecular and metabolic features of melanoma brain metastases that may mediate the aggressive biology and therapeutic resistance of these tumors. Together, these advances suggest the need for new paradigms for therapeutic development for melanoma patients with CNS metastasis.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Serra F, Faverio C, Lasagna A, Barruscotti S, Dominioni T, Benazzo M, Pedrazzoli P, Chiellino S. Treatment beyond progression and locoregional approaches in selected patients with BRAF-mutated metastatic melanoma. Drugs Context 2021; 10:dic-2021-3-1. [PMID: 34457014 PMCID: PMC8366503 DOI: 10.7573/dic.2021-3-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
The clinical management of BRAF-mutated metastatic melanoma had an important turning point after the introduction of the targeted therapy. Despite the efficacy and good tolerability of this treatment, the development of resistance mechanisms causes disease progression. The aim of this review is to investigate the role of treatment beyond progression and locoregional approaches in BRAF-mutated metastatic melanoma and provide oncologists dealing with this malignancy a useful road map on when and why to choose this strategy. The article is structured in the form of a narrative review reporting the most significant studies on the subject. Most of the available articles are represented by retrospective studies and case reports, leading to limitations in the final interpretations. Nevertheless, a correct analysis of the selected studies allows the drawing of some conclusions. In well-selected cases, treatment beyond progression could play an important role in the treatment sequence of patients with BRAF-mutated advanced melanoma and would seem to produce good disease control rates and positive survival outcomes. A careful evaluation of the radiological examinations and laboratory tests, based on the clinical conditions, allows the identification of which patients can benefit from this strategy. Such patients are those who, at the time of progression, have favourable features such as a lower performance status according to Eastern Cooperative Oncology Group (ECOG-PS), normal lactate dehydrogenase levels and lower disease burden. The clinical benefit is also consolidated by the addition of locoregional approaches. Locoregional approaches can include electrochemotherapy, radiotherapy or surgery, and their use provides local disease control and a better quality of life for patients.
Collapse
Affiliation(s)
- Francesco Serra
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlotta Faverio
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | - Marco Benazzo
- Otolaryngology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Chiellino
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
28
|
Phytogalactolipid dLGG Inhibits Mouse Melanoma Brain Metastasis through Regulating Oxylipin Activity and Re-Programming Macrophage Polarity in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13164120. [PMID: 34439274 PMCID: PMC8391228 DOI: 10.3390/cancers13164120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Metastatic brain melanoma is a common metastatic cancer with a high mortality rate. Current clinical regimens use the anti-angiogenesis drug bevacizumab (Avastin) and/or Lipo-DOX, a drug capable penetrating the blood–brain barrier; however, both commonly result in adverse side effects and limited treatment results. This study provides evidence to support the function of a phyto-glyceroglycolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) in inhibiting melanoma brain metastasis (MBM) in mice through reprogramming the tumor microenvironment and interacting with melanoma cells and macrophages. The novel function of oxylipin 9,10-EpOMEs + 12,13-EpOMEs in preventing melanoma cell invasion and microglia/macrophage distribution and polarization in the tumor microenvironment is presented. The novel anti-melanoma function and underlying molecular mechanism of dLGG proposed herein can be considered as a novel therapeutic strategy to combat MBM. Abstract Current conventional cancer therapies for melanoma brain metastasis (MBM) remain ineffective. In this study, we demonstrated the bioefficacy of a phyto-glyceroglycolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) alone, or in combination with liposomal doxorubicin (Lip-DOX) or Avastin against MBM in a syngeneic B16BM4COX−2/Luc brain-seeking melanoma mouse model. Treatment with dLGG–10, dLGG–25, dLGG–10 + Avastin–5, Lipo-DOX–2, dLGG–10 + Lipo-DOX–2 or Lipo-DOX–2 + Avastin–5 suppressed, respectively, 17.9%, 59.1%, 55.7%, 16.2%, 44.5% and 72.4% of MBM in mice relative to the untreated tumor control. Metastatic PD-L1+ melanoma cells, infiltration of M2-like macrophages and CD31+ endothelial cells, and high expression levels of 15-LOX/CYP450 4A enzymes in the brain tumor microenvironment of the tumor control mice were significantly attenuated in dLGG-treated mice; conversely, M1-like resident microglia and cytotoxic T cells were increased. A lipidomics study showed that dLGG promoted B16BM4 cells to secrete oxylipins 9,10-/12,13-EpOMEs into the culture medium. Furthermore, the conditioned medium of B16BM4 cells pretreated with dLGG or 9,10-EpOMEs + 12,13-EpOMEs drove M2-like macrophages to polarize into M1-like macrophages in vitro. An ex vivo 3D-culture assay further demonstrated that dLGG, 9,10-EpOME or 9,10-EpOME + 12,13-EpOME pretreatment attenuated B16BM4 cells invading brain tissue, and prevented microglia/macrophages infiltrating into the interface of melanoma plug and brain organ/tissue. In summary, this report provides a novel therapeutic strategy and mechanistic insights into phytogalactolipid dLGG for combating MBM.
Collapse
|
29
|
Amaral T, Kiecker F, Schaefer S, Stege H, Kaehler K, Terheyden P, Gesierich A, Gutzmer R, Haferkamp S, Uttikal J, Berking C, Rafei-Shamsabadi D, Reinhardt L, Meier F, Karoglan A, Posch C, Gambichler T, Pfoehler C, Thoms K, Tietze J, Debus D, Herbst R, Emmert S, Loquai C, Hassel JC, Meiss F, Tueting T, Heinrich V, Eigentler T, Garbe C, Zimmer L. Combined immunotherapy with nivolumab and ipilimumab with and without local therapy in patients with melanoma brain metastasis: a DeCOG* study in 380 patients. J Immunother Cancer 2021; 8:jitc-2019-000333. [PMID: 32221017 PMCID: PMC7206917 DOI: 10.1136/jitc-2019-000333] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nivolumab combined with ipilimumab have shown activity in melanoma brain metastasis (MBM). However, in most of the clinical trials investigating immunotherapy in this subgroup, patients with symptomatic MBM and/or prior local brain radiotherapy were excluded. We studied the efficacy of nivolumab plus ipilimumab alone or in combination with local therapies regardless of treatment line in patients with asymptomatic and symptomatic MBM. Methods Patients with MBM treated with nivolumab plus ipilimumab in 23 German Skin Cancer Centers between April 2015 and October 2018 were investigated. Overall survival (OS) was evaluated by Kaplan-Meier estimator and univariate and multivariate Cox proportional hazard analyses were performed to determine prognostic factors associated with OS. Results Three hundred and eighty patients were included in this study and 31% had symptomatic MBM (60/193 with data available) at the time of start nivolumab plus ipilimumab. The median follow-up was 18 months and the 2 years and 3 years OS rates were 41% and 30%, respectively. We identified the following independently significant prognostic factors for OS: elevated serum lactate dehydrogenase and protein S100B levels, number of MBM and Eastern Cooperative Oncology Group performance status. In these patients treated with checkpoint inhibition first-line or later, in the subgroup of patients with BRAFV600-mutated melanoma we found no differences in terms of OS when receiving first-line either BRAF and MEK inhibitors or nivolumab plus ipilimumab (p=0.085). In BRAF wild-type patients treated with nivolumab plus ipilimumab in first-line or later there was also no difference in OS (p=0.996). Local therapy with stereotactic radiosurgery or surgery led to an improvement in OS compared with not receiving local therapy (p=0.009), regardless of the timepoint of the local therapy. Receiving combined immunotherapy for MBM in first-line or at a later time point made no difference in terms of OS in this study population (p=0.119). Conclusion Immunotherapy with nivolumab plus ipilimumab, particularly in combination with stereotactic radiosurgery or surgery improves OS in asymptomatic and symptomatic MBM.
Collapse
Affiliation(s)
- Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, Eberhard Karls University of Tuebingen, Tubingen, Germany
| | - Felix Kiecker
- Skin Cancer Center, Department of Dermatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Schaefer
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Katharina Kaehler
- Skin Cancer Center, Department of Dermatology, University Hospital Kiel, Kiel, Germany
| | - Patrick Terheyden
- Skin Cancer Center, Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Gesierich
- Department of Dermatology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Hannover, Germany
| | | | - Jochen Uttikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Germany.,Department of Dermatology and Allergy, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
| | - David Rafei-Shamsabadi
- Skin Cancer Center, Department of Dermatology and Venerology, Medical Centre University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lydia Reinhardt
- Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany
| | - Ante Karoglan
- Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Christian Posch
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany.,Sigmund Freud Universität Wien, Faculty of Medicine, Wien, Austria
| | - Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Claudia Pfoehler
- Department of Dermatology, Saarland University Medical School, Homburg/Saar, Germany
| | - Kai Thoms
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Tietze
- Department of Dermatology and Allergology, Augsburg Medical Center, Augsburg, Germany
| | - Dirk Debus
- Skin Cancer Center, Department of Dermatology, Paracelsus Medical University, General Hospital Nuremberg, Nuremberg, Germany
| | | | - Steffen Emmert
- Clinic for Dermatology and Venereology, University Medical Center, Rostock, Germany
| | - Carmen Loquai
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Meiss
- Skin Cancer Center, Department of Dermatology and Venerology, Medical Centre University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Tueting
- Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Vanessa Heinrich
- Clinic of Radiation Oncology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Thomas Eigentler
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, Eberhard Karls University of Tuebingen, Tubingen, Germany
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, Eberhard Karls University of Tuebingen, Tubingen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
30
|
Colditz M, Lee S, Eastgate M, Elder S, Brandis P, Anderson D, Withers T, Jeffree R, Pinkham M, Olson S. Surgical series of metastatic cerebral melanoma: Clinical association of resection, BRAF-mutation status, and survival. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Wilkes JG, Patel A, McClure E, Pina Y, Zager JS. Developments in therapy for brain metastases in melanoma patients. Expert Opin Pharmacother 2021; 22:1443-1453. [PMID: 33688795 DOI: 10.1080/14656566.2021.1900117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Cutaneous melanoma brain metastases (MBM) are a major cause of morbidity and mortality. While cytotoxic agents, interferon, or interleukin-2, have been used with some success in extracranial disease, limited efficacy is demonstrated in MBM. The rare patient with long-term survival presented with limited intracranial disease amenable to surgery or radiation therapy. However, the development of targeted therapy and immunotherapy over the last decade has significantly improved overall survival in this formerly devastating presentation of metastatic melanoma.Areas covered: This article reviews the mechanism of brain metastasis, challenges with treating the central nervous system, historical treatment of MBM, and outcomes in clinical trials with targeted therapy and immunotherapy.Expert opinion: The MBM patient population now, more than ever, requires a multidisciplinary approach with surgery, radiation therapy, and the use of newer systemic therapies such as immunotherapy agents and targeted therapy agents. MBM has traditionally been excluded from clinical trials for systemic therapy due to poor survival. However, recent data show overall survival rates have significantly improved, supporting the need for inclusion of MBM patients in systemic therapy clinical trials. Understanding the mechanisms of therapeutic activity in the brain, resistance mechanisms, and the appropriate multi-modality treatment approach requires further investigation. Nevertheless, these therapies continue to give some hope to patients with historically poor survival.
Collapse
Affiliation(s)
- Justin G Wilkes
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ayushi Patel
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Erin McClure
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yolanda Pina
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
32
|
Clinical Significance of PDCD4 in Melanoma by Subcellular Expression and in Tumor-Associated Immune Cells. Cancers (Basel) 2021; 13:cancers13051049. [PMID: 33801444 PMCID: PMC7958624 DOI: 10.3390/cancers13051049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary While targeting programmed cell death (PDCD) 1 is a central treatment against melanoma, little is known about the related protein PDCD4. We defined differences in melanoma PDCD4 subcellular localization (either total cellular or nuclear-only) during oncogenesis, evaluated its presence on tumor-infiltrating immune cells, and determined its impact on survival. High PDCD4 expression resulted in improved survival in patients with primary and intracranial but not extracranial metastatic melanoma. High PDCD4 levels in surrounding tumor tissue were also associated with increased infiltrating immune cells. PDCD4 may be a potentially useful biomarker in melanoma to help guide our understanding of patient prognosis. Methods to increase PDCD4 in those with melanoma brain metastases may also help improve disease response. Abstract Little is known about the subcellular localization and function of programmed cell death 4 (PDCD4) in melanoma. Our past studies suggest PDCD4 interacts with Pleckstrin Homology Domain Containing A5 (PLEKHA5) to influence melanoma brain metastasis outcomes, as high intracranial PDCD4 expression leads to improved survival. We aimed to define the subcellular distribution of PDCD4 in melanoma and in the tumor microenvironment during neoplastic progression and its impact on clinical outcomes. We analyzed multiple tissue microarrays with well-annotated clinicopathological variables using quantitative immunofluorescence and evaluated single-cell RNA-sequencing on a brain metastasis sample to characterize PDCD4+ immune cell subsets. We demonstrate differences in PDCD4 expression during neoplastic progression, with high tumor and stromal PDCD4 levels associated with improved survival in primary melanomas and in intracranial metastases, but not in extracranial metastatic disease. While the expression of PDCD4 is well-documented on CD8+ T cells and natural killer cells, we show that it is also found on B cells and mast cells. PDCD4 expression in the tumor microenvironment is associated with increased immune cell infiltration. Further studies are needed to define the interaction of PDCD4 and PLEKHA5 and to evaluate the utility of this pathway as a therapeutic target in melanoma brain metastasis.
Collapse
|
33
|
Moyers JT, Chong EG, Peng J, Tsai HHC, Sufficool D, Shavlik D, Nagaraj G. Real world outcomes of combination and timing of immunotherapy with radiotherapy for melanoma with brain metastases. Cancer Med 2021; 10:1201-1211. [PMID: 33484100 PMCID: PMC7926022 DOI: 10.1002/cam4.3716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Immunotherapy (IT) and radiotherapy (RT) have improved overall survival in patients with melanoma with brain metastasis (MBM). We examined the real‐world survival impact of IT and RT combination and timing strategies. Materials and Methods From the facility‐based National Cancer Database (NCDB) data set, 3008 cases of MBM were identified between 2011 and 2015. Six treatment cohorts were identified: stereotactic radiosurgery (SRS) + IT, SRS alone, whole brain radiotherapy (WBRT) + IT, WBRT alone, IT alone, and none. Concurrent therapy was defined as IT given within 28 days before or after RT; nonconcurrent defined as IT administered within 28–90 days of RT. The co‐primary outcomes were propensity score‐adjusted overall survival by treatment regimen and overall survival by RT and IT timing. Results Median overall survival (mOS) was performed for each treatment category; SRS +IT 15.77 m; (95%CI 12.13–21.29), SRS alone (9.33 m; 95%CI: 8.0–11.3), IT alone (7.29 m; 95%CI: 5.35–12.91), WBRT +IT (4.89 m; 95%CI: 3.65–5.92), No RT or IT (3.29 m; 95%CI: 2.96–3.75), and WBRT alone (3.12 m; 95%CI 2.79–3.52). By propensity score matching, mOS for SRS +IT (15.5 m; 95%CI: 11.5–20.2) was greater than SRS alone (10.1 m; 95%CI: 8.4–11.8) (p = 0.010), and median survival for WBRT +IT (4.6 m; 95%CI: 3.4–5.6) was greater than WBRT alone (2.9 m; 95%CI: 2.5–3.5) (p < 0.001). In the SRS +IT group, 24‐month landmark survival was 47% (95%CI; 42–52) for concurrent versus 37% (95%CI; 30–44) for nonconcurrent (p = 0.40). Conclusion Those who received IT in addition to WBRT and SRS experienced longer survival compared to RT modalities alone, while those receiving concurrent SRS and IT trended toward improved survival versus nonconcurrent therapy.
Collapse
Affiliation(s)
- Justin T Moyers
- Division of Hematology and Oncology, Department of Internal Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Esther G Chong
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiahao Peng
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | | | - Daniel Sufficool
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - David Shavlik
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Gayathri Nagaraj
- Division of Hematology and Oncology, Department of Internal Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
34
|
Khasraw M, Walsh KM, Heimberger AB, Ashley DM. What is the Burden of Proof for Tumor Mutational Burden in gliomas? Neuro Oncol 2020; 23:noaa256. [PMID: 33252666 PMCID: PMC7849945 DOI: 10.1093/neuonc/noaa256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
The treatment of patients with a variety of solid tumors has benefitted from immune checkpoint inhibition targeting the anti-programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis. The US Food and Drug Administration (FDA) granted accelerated approval of PD-1 inhibitor pembrolizumab for the treatment of adult and pediatric patients with TMB-high (TMB-H), solid tumors that have progressed following prior treatment and who have no other treatment options, including the extension to tumors of the Central Nervous System (CNS). In general, pan-cancer approvals are viewed positively to empower patients and clinicians. There are subsets (eg, BRAF, NTRK) for which this pathway for approval is appropriate. However, the pan-cancer FDA approval of pembrolizumab raises several concerns regarding the generalizability of the evidence to other tumor types, including managing patients with gliomas and other CNS tumors. The cut off for TMB-H is not well defined. There are intrinsic immunological differences between gliomas and other cancers types, including the immunosuppressive glioma microenvironment, the tumor's effects on systemic immune function, and the transformation of the T cell populations to an exhausted phenotype in glioma. Here we address the caveats with pan-cancer approvals concerning gliomas, complexities of the unique CNS immune environment, and discuss potential predictive biomarkers, including TMB, and explain why the recent approval should be applied with caution in CNS tumors.
Collapse
Affiliation(s)
- Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Kyle M Walsh
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
35
|
Abstract
Neuro-oncology is a rapidly developing field. A continuous evolution in the understanding of the molecular underpinnings of central nervous system tumors has helped reconfigure the classification of brain tumors. More importantly, it has laid the path forward for the development and investigation of new therapeutics. The authors discuss the classification of brain tumors and novel therapies in brain tumors as well as promising treatments underway.
Collapse
Affiliation(s)
- Jigisha P Thakkar
- Department of Neurology, Division of Neuro-oncology, Loyola University Chicago, Stritch School of Medicine, 2160 South 1st Avenue, Building 105, Room 2716, Maywood, IL 60153, USA.
| | - Vikram C Prabhu
- Department of Neurological Surgery, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC 27711, USA
| | - Katherine B Peters
- Department of Neurology, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC 27711, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA; Lou & Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
36
|
Keilholz U, Ascierto PA, Dummer R, Robert C, Lorigan P, van Akkooi A, Arance A, Blank CU, Chiarion Sileni V, Donia M, Faries MB, Gaudy-Marqueste C, Gogas H, Grob JJ, Guckenberger M, Haanen J, Hayes AJ, Hoeller C, Lebbé C, Lugowska I, Mandalà M, Márquez-Rodas I, Nathan P, Neyns B, Olofsson Bagge R, Puig S, Rutkowski P, Schilling B, Sondak VK, Tawbi H, Testori A, Michielin O. ESMO consensus conference recommendations on the management of metastatic melanoma: under the auspices of the ESMO Guidelines Committee. Ann Oncol 2020; 31:1435-1448. [PMID: 32763453 DOI: 10.1016/j.annonc.2020.07.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
The European Society for Medical Oncology (ESMO) held a consensus conference on melanoma on 5-7 September 2019 in Amsterdam, The Netherlands. The conference included a multidisciplinary panel of 32 leading experts in the management of melanoma. The aim of the conference was to develop recommendations on topics that are not covered in detail in the current ESMO Clinical Practice Guideline and where available evidence is either limited or conflicting. The main topics identified for discussion were (i) the management of locoregional disease; (ii) targeted versus immunotherapies in the adjuvant setting; (iii) targeted versus immunotherapies for the first-line treatment of metastatic melanoma; (iv) when to stop immunotherapy or targeted therapy in the metastatic setting; and (v) systemic versus local treatment for brain metastases. The expert panel was divided into five working groups to each address questions relating to one of the five topics outlined above. Relevant scientific literature was reviewed in advance. Recommendations were developed by the working groups and then presented to the entire panel for further discussion and amendment before voting. This manuscript presents the results relating to the management of metastatic melanoma, including findings from the expert panel discussions, consensus recommendations and a summary of evidence supporting each recommendation. All participants approved the final manuscript.
Collapse
Affiliation(s)
- U Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - P A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - R Dummer
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - C Robert
- Department of Dermatology, Gustave Roussy, Villejuif, France; Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - P Lorigan
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - A van Akkooi
- Department of Surgical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - A Arance
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - C U Blank
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - V Chiarion Sileni
- Department of Experimental and Clinical Oncology, Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
| | - M Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark; University of Copenhagen, Copenhagen, Denmark
| | - M B Faries
- Department of Surgery, The Angeles Clinic, Cedars Sinai Medical Center, Los Angeles, USA
| | - C Gaudy-Marqueste
- Department of Dermatology and Skin Cancer, Aix Marseille University, Hôpital De La Timone, Marseille, France
| | - H Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - J J Grob
- Department of Dermatology and Skin Cancer, Aix Marseille University, Hôpital De La Timone, Marseille, France
| | - M Guckenberger
- Department of Radio-Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - J Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A J Hayes
- Department of Academic Surgery, Royal Marsden NHS Foundation Trust, London, UK
| | - C Hoeller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Lebbé
- AP-HP Dermatology, Université de Paris, Paris, France; INSERM U976, Hôpital Saint Louis, Paris, France
| | - I Lugowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - M Mandalà
- Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Bergamo, Italy
| | - I Márquez-Rodas
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - P Nathan
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - B Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - R Olofsson Bagge
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - S Puig
- Dermatology Service, Hospital Clínic of Barcelona and University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; CIBER, Instituto de Salud Carlos III, Barcelona, Spain
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - B Schilling
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - V K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, USA
| | - H Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Testori
- Department of Dermatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - O Michielin
- Department of Oncology, University Hospital Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Pomeranz Krummel DA, Nasti TH, Kaluzova M, Kallay L, Bhattacharya D, Melms JC, Izar B, Xu M, Burnham A, Ahmed T, Li G, Lawson D, Kowalski J, Cao Y, Switchenko JM, Ionascu D, Cook JM, Medvedovic M, Jenkins A, Khan MK, Sengupta S. Melanoma Cell Intrinsic GABA A Receptor Enhancement Potentiates Radiation and Immune Checkpoint Inhibitor Response by Promoting Direct and T Cell-Mediated Antitumor Activity. Int J Radiat Oncol Biol Phys 2020; 109:1040-1053. [PMID: 33289666 DOI: 10.1016/j.ijrobp.2020.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Most patients with metastatic melanoma show variable responses to radiation therapy and do not benefit from immune checkpoint inhibitors. Improved strategies for combination therapy that leverage potential benefits from radiation therapy and immune checkpoint inhibitors are critical. METHODS AND MATERIALS We analyzed metastatic melanoma tumors in the TCGA cohort for expression of genes coding for subunits of type A γ-aminobutyric acid (GABA) receptor (GABAAR), a chloride ion channel and major inhibitory neurotransmitter receptor. Electrophysiology was used to determine whether melanoma cells possess intrinsic GABAAR activity. Melanoma cell viability studies were conducted to test whether enhancing GABAAR mediated chloride transport using benzodiazepine-impaired viability. A syngeneic melanoma mouse model was used to assay the effect of benzodiazepine on tumor volume and its ability to potentiate radiation therapy or immunotherapy. Treated tumors were analyzed for changes in gene expression by RNA sequencing and presence of tumor-infiltrating lymphocytes by flow cytometry. RESULTS Genes coding for subunits of GABAARs express functional GABAARs in melanoma cells. By enhancing GABAAR-mediated anion transport, benzodiazepines depolarize melanoma cells and impair their viability. In vivo, benzodiazepine alone reduces tumor growth and potentiates radiation therapy and α-PD-L1 antitumor activity. The combination of benzodiazepine, radiation therapy, and α-PD-L1 results in near complete regression of treated tumors and a potent abscopal effect, mediated by increased infiltration of polyfunctional CD8+ T cells. Treated tumors show expression of cytokine-cytokine receptor interactions and overrepresentation of p53 signaling. CONCLUSIONS This study identifies an antitumor strategy combining radiation and/or an immune checkpoint inhibitor with modulation of GABAARs in melanoma using benzodiazepine.
Collapse
Affiliation(s)
- Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tahseen H Nasti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | | | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Johannes C Melms
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Benjamin Izar
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Maxwell Xu
- Johns Hopkins University, Baltimore, Maryland
| | - Andre Burnham
- Emory University School of Medicine, Atlanta, Georgia
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - David Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Jeanne Kowalski
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, University of Texas, Austin, Texas
| | - Yichun Cao
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Jeffrey M Switchenko
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Dan Ionascu
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Jenkins
- Departments of Anesthesiology, Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Mohammad K Khan
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
38
|
Hu X, Yu H, Zheng Y, Zhang Q, Lin M, Wang J, Qiu Y. Immune Checkpoint Inhibitors and Survival Outcomes in Brain Metastasis: A Time Series-Based Meta-Analysis. Front Oncol 2020; 10:564382. [PMID: 33194639 PMCID: PMC7606910 DOI: 10.3389/fonc.2020.564382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown potential to improve the prognosis of patients with brain metastasis (BM) caused by advanced cancers. However, controversies still exist in regard to its survival benefits. In the present work, a time series-based meta-analysis based on the phase I/II/III trials and observational studies were performed to investigate the differences in mortality of ICI-treated BM patients. A number of public library databases, including MEDLINE, EMBASE, OVID, and COCHRANE, were systemically searched by March 2019. The quality of included studies was evaluated by the Newcastle-Ottawa Scale (NOS) scoring. Outcome measures here established were mortality and progression-free survival (PFS) at different follow-up endpoints. Survival rates and curve data were pooled for further analysis. To detect the data heterogeneity, subgroup analyses were conducted according to tumor and ICI types. Eighteen studies, 6 trials, and 12 controlled cohorts were assessed, involving a total of 1330 ICI-treated BM patients. The 6-month survival rate and PFS were 0.67 (95%CI: 0.59–0.74) and 0.36 (95%CI: 0.24–0.49), respectively. According to the tumor type (melanoma, NSCLC, and RCC), subgroup analyses indicated that melanoma presented the lowest survival rates among the three groups here selected. In regard to the type of ICIs, the anti-CTLA-4 combined with the anti-PD-1/PD-L1 showed the best survival outcome among these groups. The 12-month survival rate and PFS showed a consistent pattern of findings. In the long-term, the 24-month survival rate and PFS were 0.20 (95%CI: 0.12–0.31) and 0.18 (0.05–0.46) in BM patients. Hence, ICI therapy may be associated with an improved prognosis of BM patients. Nevertheless, current research presented a limited study design. Multicenter randomized trials may later assist in validating ICI-based therapies for a better outcome of BM patients.
Collapse
Affiliation(s)
- Xingjiang Hu
- Research Center of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunliang Zheng
- Research Center of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiao Zhang
- Research Center of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meihua Lin
- Research Center of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunqing Qiu
- Research Center of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Jiang C, Wallington DG, Anker CJ, Lawson DH, Yushak ML, Kudchadkar RR, Tarhini A, Khan MK. Changing Therapeutic Landscape for Melanoma With Multiple Brain Metastases. Neurosurgery 2020; 87:498-515. [PMID: 32315430 DOI: 10.1093/neuros/nyaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Over 90 000 people are expected to be diagnosed with melanoma in the United States this year. The development of brain metastases is particularly difficult to manage. Over the past few years, melanoma patients with multiple unresectable brain metastases for which stereotactic surgery might also not be a viable option have fortunately experienced a dramatic expansion in available management options given improvements made to targeted agents, immunotherapy, and radiotherapy. Whole-brain radiation therapy (WBRT) is a long-standing radiation technique that has become increasingly sophisticated. In this review, we summarize retrospective and prospective studies on individual advances in targeted agents, immunotherapy, and WBRT, highlighting important variables such as overall survival, intracranial progression-free survival, control and response rates, and toxicities. We also discuss the recent integration of these therapies into a multimodality approach, which has shown promise in the clinical setting although toxicities have not been insignificant. Finally, we describe ongoing prospective trials relevant to melanoma with brain metastases, and we conclude with our own thoughts on the optimal approach for these patients.
Collapse
Affiliation(s)
- Cecilia Jiang
- Emory University School of Medicine, Atlanta, Georgia
| | - David G Wallington
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Christopher J Anker
- Division of Radiation Oncology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - David H Lawson
- Winship Cancer Institute, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Melinda L Yushak
- Winship Cancer Institute, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Ragini R Kudchadkar
- Winship Cancer Institute, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Ahmad Tarhini
- H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | - Mohammad K Khan
- Winship Cancer Institute, Atlanta, Georgia.,H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida.,Department of Radiation Oncology, Emory University, Atlanta, Georgia
| |
Collapse
|
40
|
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L, Smetana K. Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol 2020; 57:619-630. [PMID: 32705148 PMCID: PMC7384852 DOI: 10.3892/ijo.2020.5090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
Collapse
Affiliation(s)
- Ondřej Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jan Kučera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Karolína Strnadová
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Barbora Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jiří Štork
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
41
|
Becco P, Gallo S, Poletto S, Frascione MPM, Crotto L, Zaccagna A, Paruzzo L, Caravelli D, Carnevale-Schianca F, Aglietta M. Melanoma Brain Metastases in the Era of Target Therapies: An Overview. Cancers (Basel) 2020; 12:cancers12061640. [PMID: 32575838 PMCID: PMC7352598 DOI: 10.3390/cancers12061640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Malignant melanoma is the third most common type of tumor that causes brain metastases. Patients with cerebral involvement have a dismal prognosis and their treatment is an unmet medical need. Brain involvement is a multistep process involving several signaling pathways such as Janus kinase/signal Transducer and Activator of Transcription (JAK/STAT), Phosphoinositide 3-kinase/Protein Kinase B (PI3K/AKT), Vascular Endothelial Growth Factor and Phosphatase and Tensin Homolog (PTEN). Recently therapy that targets the MAPK signaling (BRAF/MEK inhibitors) and immunotherapy (anti-CTLA4 and anti-PD1 agents) have changed the therapeutic approaches to stage IV melanoma. In contrast, there are no solid data about patients with brain metastases, who are usually excluded from clinical trials. Retrospective data showed that BRAF-inhibitors, alone or in combination with MEK-inhibitors have interesting clinical activity in this setting. Prospective data about the combinations of BRAF/MEK inhibitors have been recently published, showing an improved overall response rate. Short intracranial disease control is still a challenge. Several attempts have been made in order to improve it with combinations between local and systemic therapies. Immunotherapy approaches seem to retain promising activity in the treatment of melanoma brain metastasis as showed by the results of clinical trials investigating the combination of anti-CTL4 (Ipilimumab) and anti-PD1(Nivolumab). Studies about the combination or the sequential approach of target therapy and immunotherapy are ongoing, with immature results. Several clinical trials are ongoing trying to explore new approaches in order to overcome tumor resistance. At this moment the correct therapeutic choices for melanoma with intracranial involvement is still a challenge and new strategies are needed.
Collapse
Affiliation(s)
- Paolo Becco
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Susanna Gallo
- Ospedale Mauriziano Umberto I-Largo Turati 62, 10128 Torino, Italy
- Correspondence:
| | - Stefano Poletto
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| | - Mirko Pio Manlio Frascione
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| | - Luca Crotto
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Alessandro Zaccagna
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Luca Paruzzo
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| | - Daniela Caravelli
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Fabrizio Carnevale-Schianca
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Massimo Aglietta
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| |
Collapse
|
42
|
Koh YQ, Tan CJ, Toh YL, Sze SK, Ho HK, Limoli CL, Chan A. Role of Exosomes in Cancer-Related Cognitive Impairment. Int J Mol Sci 2020; 21:ijms21082755. [PMID: 32326653 PMCID: PMC7215650 DOI: 10.3390/ijms21082755] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
A decline in cognitive function following cancer treatment is one of the most commonly reported post-treatment symptoms among patients with cancer and those in remission, and include memory, processing speed, and executive function. A clear understanding of cognitive impairment as a result of cancer and its therapy can be obtained by delineating structural and functional changes using brain imaging studies and neurocognitive assessments. There is also a need to determine the underlying mechanisms and pathways that impact the brain and affect cognitive functioning in cancer survivors. Exosomes are small cell-derived vesicles formed by the inward budding of multivesicular bodies, and are released into the extracellular environment via an exocytic pathway. Growing evidence suggests that exosomes contribute to various physiological and pathological conditions, including neurological processes such as synaptic plasticity, neuronal stress response, cell-to-cell communication, and neurogenesis. In this review, we summarize the relationship between exosomes and cancer-related cognitive impairment. Unraveling exosomes’ actions and effects on the microenvironment of the brain, which impacts cognitive functioning, is critical for the development of exosome-based therapeutics for cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Yong Qin Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Chia Jie Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Yi Long Toh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Alexandre Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-8896
| |
Collapse
|
43
|
Herrera-Rios D, Mughal SS, Teuber-Hanselmann S, Pierscianek D, Sucker A, Jansen P, Schimming T, Klode J, Reifenberger J, Felsberg J, Keyvani K, Brors B, Sure U, Reifenberger G, Schadendorf D, Helfrich I. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol 2020; 11:120. [PMID: 32117271 PMCID: PMC7013086 DOI: 10.3389/fimmu.2020.00120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/16/2020] [Indexed: 01/12/2023] Open
Abstract
The manifestation of brain metastases in patients with advanced melanoma is a common event that limits patient's survival and quality of life. The immunosuppressive properties of the brain parenchyma are very different compared to the rest of the body, making it plausible that the current success of cancer immunotherapies is specifically limited here. In melanoma brain metastases, the reciprocal interplay between immunosuppressive mediators such as indoleamine 2, 3-dioxygenase (IDO) or programmed cell death-ligand 1 (PD-L1) in the context of neoplastic transformation are far from being understood. Therefore, we analyzed the immunoreactive infiltrate (CD45, CD3, CD8, Forkhead box P3 [FoxP3], CD11c, CD23, CD123, CD68, Allograft Inflammatory factor 1[AIF-1]) and PD-L1 with respect to IDO expression and localization in melanoma brain metastases but also in matched metastases at extracranial sites to correlate intra- and interpatient data with therapy response and survival. Comparative tissue analysis identified macrophages/microglia as the major source of IDO expression in melanoma brain metastases. In contrast to the tumor infiltrating lymphocytes, melanoma cells per se exhibited low IDO expression levels paralleled by cell surface presentation of PD-L1 in intracranial metastases. Absolute numbers and pattern of IDO-expressing cells in metastases of the brain correlated with recruitment and localization of CD8+ T cells, implicating dynamic impact on the regulation of T cell function in the brain parenchyma. However, paired analysis of matched intra- and extracranial metastases identified significantly lower fractions of cytotoxic CD8+ T cells in intracranial metastases while all other immune cell populations remain unchanged. In line with the already established clinical benefit for PD-L1 expression in extracranial melanoma metastases, Kaplan-Meier analyses correlated PD-L1 expression in brain metastases with favorable outcome in advanced melanoma patients undergoing immune checkpoint therapy. In summary, our data provide new insights into the landscape of immunosuppressive factors in melanoma brain metastases that may be useful in the implication of novel therapeutic strategies for patients undergoing cancer immunotherapy.
Collapse
Affiliation(s)
- Dayana Herrera-Rios
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Sadaf S Mughal
- Division of Applied Bioinfomatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Teuber-Hanselmann
- Medical Faculty, West German Cancer Center, Institute of Neuropathology, University Duisburg-Essen, Essen, Germany
| | - Daniela Pierscianek
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Neurosurgery, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Antje Sucker
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Philipp Jansen
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Tobias Schimming
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Joachim Klode
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Julia Reifenberger
- Department of Dermatology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Felsberg
- Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Kathy Keyvani
- Medical Faculty, West German Cancer Center, Institute of Neuropathology, University Duisburg-Essen, Essen, Germany
| | - Benedikt Brors
- Division of Applied Bioinfomatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Neurosurgery, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Guido Reifenberger
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
44
|
Shah S, Raskin L, Cohan D, Hamid O, Freeman ML. Treatment patterns of melanoma by BRAF mutation status in the USA from 2011 to 2017: a retrospective cohort study. Melanoma Manag 2019; 6:MMT31. [PMID: 31871620 PMCID: PMC6920746 DOI: 10.2217/mmt-2019-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
AIM To describe treatment changes from 2011 to 2017 and demographic/clinical characteristics of patients with advanced melanoma who received systemic therapy by BRAF status. PATIENTS & METHODS Treatment patterns were evaluated in adults from the Oncology Services Comprehensive Electronic Records database who received antimelanoma systemic therapy. RESULTS Checkpoint inhibitors were prevailingly prescribed (66%); usage increased from 2011 (21%) to 2017 (84%). BRAF/MEK inhibitors were the second most common (21%); usage increased from 2011 (6%) to 2012 (18%) and stabilized until 2017 (22%). BRAF/MEK inhibitors (65%) and checkpoint inhibitors (57%) were predominantly used for BRAFMut melanoma. CONCLUSION Overall, checkpoint inhibitors have supplanted other therapies for advanced melanoma. Treatment shifts have occurred for BRAFMut melanoma, notably increased use of checkpoint inhibitors and BRAF/MEK combinations compared with monotherapies.
Collapse
Affiliation(s)
- Shweta Shah
- Global Health Economics, Amgen Inc., Thousand Oaks, CA, USA
| | - Leon Raskin
- Center for Observational Research, Amgen Inc., Thousand Oaks, CA, USA
| | - David Cohan
- Medical Affairs, Amgen Inc., Thousand Oaks, CA, USA
| | - Omid Hamid
- The Angeles Clinic & Research Institute, Los Angeles, CA, USA
| | | |
Collapse
|
45
|
Abstract
Targeted BRAF and MEK inhibition has become an appropriate first-line treatment of BRAF-mutant advanced cutaneous melanoma. The authors present an overview of the MAPK pathway as well as the other major pathways implicated in melanoma development. Melanoma brain metastases are a devastating complication of melanoma that can be traced to derangements in cell signaling pathways, and the current evidence for targeted therapy is reviewed. Finally, activating KIT mutations are rarely found to cause melanomas and may provide an actionable target for therapy. The authors review the current evidence for targeted KIT therapy and summarize the ongoing clinical trials.
Collapse
Affiliation(s)
- James Sun
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 North McKinley Drive, 4th Floor, Tampa, FL 33612, USA
| | - Michael J Carr
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 North McKinley Drive, 4th Floor, Tampa, FL 33612, USA
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 North McKinley Drive, 4th Floor, Tampa, FL 33612, USA.
| |
Collapse
|
46
|
Holbrook K, Lutzky J, Davies MA, Davis JM, Glitza IC, Amaria RN, Diab A, Patel SP, Amin A, Tawbi H. Intracranial antitumor activity with encorafenib plus binimetinib in patients with melanoma brain metastases: A case series. Cancer 2019; 126:523-530. [PMID: 31658370 PMCID: PMC7004095 DOI: 10.1002/cncr.32547] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Background Sixty percent of patients with stage IV melanoma may develop brain metastases, which result in significantly increased morbidity and a poor overall prognosis. Phase 3 studies of melanoma usually exclude patients with untreated brain metastases; therefore, clinical data for intracranial responses to treatments are limited. Methods A multicenter, retrospective case series investigation of consecutive BRAF‐mutant patients with melanoma brain metastases (MBMs) treated with a combination of BRAF inhibitor encorafenib and MEK inhibitor binimetinib was conducted to evaluate the antitumor response. Assessments included the intracranial, extracranial, and global objective response rates (according to the modified Response Evaluation Criteria in Solid Tumors, version 1.1); the clinical benefit rate; the time to response; the duration of response; and safety. Results A total of 24 patients with stage IV BRAF‐mutant MBMs treated with encorafenib plus binimetinib in 3 centers in the United States were included. Patients had received a median of 2.5 prior lines of treatment, and 88% had prior treatment with BRAF/MEK inhibitors. The intracranial objective response rate was 33%, and the clinical benefit rate was 63%. The median time to a response was 6 weeks, and the median duration of response was 22 weeks. Among the 21 patients with MBMs and prior BRAF/MEK inhibitor treatment, the intracranial objective response rate was 24%, and the clinical benefit rate was 57%. Similar outcomes were observed for extracranial and global responses. The safety profile for encorafenib plus binimetinib was similar to that observed in patients with melanoma without brain metastases. Conclusions Combination therapy with encorafenib plus binimetinib elicited intracranial activity in patients with BRAF‐mutant MBMs, including patients previously treated with BRAF/MEK inhibitors. Further prospective studies are warranted and ongoing. All clinical trials to date with encorafenib and binimetinib (US Food and Drug Administration–approved in June 2018 for BRAF‐mutated metastatic melanoma) have excluded untreated melanoma brain metastases. This case series provides the first clinical evidence of intracranial activity of the combination of encorafenib plus binimetinib in patients with BRAF‐mutant melanoma with active brain metastases. Intracranial clinical activity is observed for the first time in patients previously treated with BRAF/MEK inhibitors, a population that has not been previously investigated.
Collapse
Affiliation(s)
| | - Jose Lutzky
- Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida
| | - Michael A Davies
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Rodabe N Amaria
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi Diab
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sapna P Patel
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Asim Amin
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Hussein Tawbi
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
47
|
Kuroda H, Tachikawa M, Yagi Y, Umetsu M, Nurdin A, Miyauchi E, Watanabe M, Uchida Y, Terasaki T. Cluster of Differentiation 46 Is the Major Receptor in Human Blood-Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Mol Pharm 2018; 16:292-304. [PMID: 30452273 DOI: 10.1021/acs.molpharmaceut.8b00985] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain metastasis is a frequent complication of cancer and may be mediated, at least in part, by the internalization of cancer-cell-derived exosomes into brain capillary endothelial cells. Clarifying the mechanism(s) of this internalization is of interest because it could help us to develop ways to block brain metastasis, as well as affording a potential new route for drug delivery into the brain. Therefore, the purpose of the present study was to address this issue by identifying the receptors involved in the internalization of exosomes derived from a brain-metastatic cancer cell line (SK-Mel-28) into human blood-brain barrier endothelial cells (hCMEC/D3 cells). The combination of sulfo-SBED-based cross-linking and comprehensive proteomics yielded 20 proteins as exosome receptor candidates in hCMEC/D3 cells. The uptake of PKH67-labeled exosomes by hCMEC/D3 cells measured at 37 °C was significantly reduced by 95.6% at 4 °C and by 15.3% in the presence of 1 mM RGD peptide, an integrin ligand. Therefore, we focused on the identified RGD receptors, integrin α5 and integrin αV, and CD46, which is reported to act as an adenovirus receptor, together with integrin αV. A mixture of neutralizing antibodies against integrin α5 and integrin αV significantly decreased the exosome uptake by 11.8%, while application of CD46 siRNA reduced it by 39.0%. Immunohistochemical analysis confirmed the presence of CD46 in human brain capillary endothelial cells. These results suggest that CD46 is a major receptor for the uptake of SK-Mel-28-derived exosomes by human blood-brain barrier endothelial cells (hCMEC/D3 cells).
Collapse
Affiliation(s)
- Hiroki Kuroda
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Yuta Yagi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Mina Umetsu
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Armania Nurdin
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Eisuke Miyauchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Michitoshi Watanabe
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| |
Collapse
|