1
|
Jacquemyn X, Chinni BK, Barnes BT, Rao S, Kutty S, Manlhiot C. Unsupervised machine learning identifies distinct phenotypes in cardiac complications of pediatric patients treated with anthracyclines. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:74. [PMID: 39468669 PMCID: PMC11514752 DOI: 10.1186/s40959-024-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Anthracyclines are essential in pediatric cancer treatment, but patients are at risk cancer therapy-related cardiac dysfunction (CTRCD). Standardized definitions by the International Cardio-Oncology Society (IC-OS) aim to enhance precision in risk assessment. OBJECTIVES Categorize distinct phenotypes among pediatric patients undergoing anthracycline chemotherapy using unsupervised machine learning. METHODS Pediatric cancer patients undergoing anthracycline chemotherapy at our institution were retrospectively included. Clinical and echocardiographic data at baseline, along with follow-up data, were collected from patient records. Unsupervised machine learning was performed, involving dimensionality reduction using principal component analysis and K-means clustering to identify different phenotypic clusters. Identified phenogroups were analyzed for associations with CTRCD, defined following contemporary IC-OS definitions, and hypertensive response. RESULTS A total of 187 patients (63.1% male, median age 15.5 years [10.4-18.7]) were included and received anthracycline chemotherapy with a median treatment duration of 0.66 years [0.35-1.92]. Median follow-up duration was 2.78 years [1.31-4.21]. Four phenogroups were identified with following distribution: Cluster 0 (32.6%, n = 61), Cluster 1 (13.9%, n = 26), Cluster 2 (24.6%, n = 46), and Cluster 3 (28.9%, n = 54). Cluster 0 showed the highest risk of moderate CTRCD (HR: 3.10 [95% CI: 1.18-8.16], P = 0.022) compared to other clusters. Cluster 3 demonstrated a protective effect against hypertensive response (HR: 0.30 [95% CI: 0.13- 0.67], P = 0.003) after excluding baseline hypertensive patients. Longitudinal assessments revealed differences in global longitudinal strain and systolic blood pressure among phenogroups. CONCLUSIONS Unsupervised machine learning identified distinct phenogroups among pediatric cancer patients undergoing anthracycline chemotherapy, offering potential for personalized risk assessment.
Collapse
Affiliation(s)
- Xander Jacquemyn
- Department of Pediatrics, The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, 600 N. Wolfe Street, 1389 Blalock, Baltimore, MD, 21287, USA
- Department of Cardiovascular Sciences, KU Leuven & Congenital and Structural Cardiology, UZ Leuven, Leuven, Belgium
| | - Bhargava K Chinni
- Department of Pediatrics, The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, 600 N. Wolfe Street, 1389 Blalock, Baltimore, MD, 21287, USA
| | - Benjamin T Barnes
- Department of Pediatrics, The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, 600 N. Wolfe Street, 1389 Blalock, Baltimore, MD, 21287, USA
| | - Sruti Rao
- Department of Pediatrics, The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, 600 N. Wolfe Street, 1389 Blalock, Baltimore, MD, 21287, USA
| | - Shelby Kutty
- Department of Pediatrics, The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, 600 N. Wolfe Street, 1389 Blalock, Baltimore, MD, 21287, USA
| | - Cedric Manlhiot
- Department of Pediatrics, The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, 600 N. Wolfe Street, 1389 Blalock, Baltimore, MD, 21287, USA.
| |
Collapse
|
2
|
Feng W, Wang Q, Tan Y, Qiao J, Liu Q, Yang B, Yang S, Cui L. Early detection of anthracycline-induced cardiotoxicity. Clin Chim Acta 2024; 565:120000. [PMID: 39401650 DOI: 10.1016/j.cca.2024.120000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Although anthracyclines are important anticancer agents, their use is limited due to various adverse effects, particularly cardiac toxicity. Mechanisms underlying anthracycline-induced cardiotoxicity (AIC) are complex. Given the irreplaceable role of anthracyclines in treatment of malignancies and other serious diseases, early monitoring of AIC is paramount. In recent years, multiple studies have investigated various biomarkers for early detection of AIC. Currently, the two most common are cardiac troponin and B-type natriuretic peptide. In addition, a range of other molecules, including RNAs, myeloperoxidase (MPO), C-reactive protein (CRP), various genes, and others, also play roles in AIC prediction. Unfortunately, current research indicates a need to validate their sensitivity and specificity of these biomarkers especially in large study populations. In this review, we summarize the mechanisms and potential biomarkers of AIC, although some remain preliminary.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
3
|
Nyangwara VA, Mazhindu T, Chikwambi Z, Masimirembwa C, Campbell TB, Borok M, Ndlovu N. Cardiotoxicity and pharmacogenetics of doxorubicin in black Zimbabwean breast cancer patients. Br J Clin Pharmacol 2024; 90:1782-1789. [PMID: 36630266 DOI: 10.1111/bcp.15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
AIMS Doxorubicin-induced cardiotoxicity (DIC) is a significant cause of mortality in cancer care. This study was conducted to establish the frequency of DIC in Zimbabwean breast cancer patients on doxorubicin and to test the DIC predictive power of genetic biomarkers. METHODS A cohort of 50 Zimbabwean breast cancer patients treated with doxorubicin were followed up for 12 months with serial echocardiography and genotyped for UGTA1A6*4, SLC28A3 and RARG. Eleven per cent of the patients experienced DIC. RESULTS The frequencies of SLC28A3 (rs7853758), UGT1A6*4 (rs17863783) and RARG (rs2229774) were 60.7%, 17.9% and 14.3%, respectively. No association between DIC and the three variants was observed. CONCLUSIONS This is the first study on the prevalence of DIC and associated genetic biomarker predictive evaluation in Zimbabwean breast cancer patients. The genetic frequencies observed in our study were different to those reported in other populations. A larger sample size with a longer follow-up time will be necessary in future studies.
Collapse
Affiliation(s)
- Vincent Aketch Nyangwara
- African Institute of Biomedical Science and Technology, Harare, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Tinashe Mazhindu
- African Institute of Biomedical Science and Technology, Harare, Zimbabwe
- Unit of Internal Medicine, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Zedias Chikwambi
- African Institute of Biomedical Science and Technology, Harare, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | | | - Thomas B Campbell
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret Borok
- Unit of Internal Medicine, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Ntokozo Ndlovu
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
4
|
Jacquemyn X, Zhan J, Van den Eynde J, Cordrey K, Long R, Rao S, Barnes BT, Thompson WR, Danford D, Kutty S. Time course of hypertension and myocardial dysfunction following anthracycline chemotherapy in pediatric patients. IJC HEART & VASCULATURE 2024; 53:101436. [PMID: 38872982 PMCID: PMC11169083 DOI: 10.1016/j.ijcha.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Background Anthracyclines are associated with cardiac dysfunction. Little is known about the interplay of pre-existing hypertension and treatment response. We aimed to investigate the relationship between hypertension and the development of cancer therapy-related cardiac dysfunction (CTRCD) in pediatric patients treated with anthracycline chemotherapy. Methods Pediatric patients with cancer who received anthracycline chemotherapy from 2013 to 2021 were retrospectively included. Serial cardiac assessments were conducted during and after chemotherapy. The primary outcome was the development of CTRCD, classified as mild, moderate, or severe according to contemporary definitions. Results Among 190 patients undergoing anthracycline chemotherapy, 34 patients (17.9 %) had hypertension (24 patients Stage 1, and 10 patients Stage 2) at baseline evaluation. Patients underwent chemotherapy for a median of 234.4 days (interquartile range 127.8-690.3 days) and were subsequently followed up. Hypertension was frequent during follow-up 31.3 % (0-3 months), 15.8 % (3-6 months), 21.9 % (0.5-1 years), 24.7 % (1-2 years), 31.1 % (2-4 years) and 35.8 % (beyond 4 years) (P for trend < 0.001). Freedom from mild CTRCD at 5 years was 45.0 %, freedom from moderate CTRCD was 87.8 % at 5 years. Baseline hypertension did not increase the risk of mild (HR 0.77, 95 % CI: 0.41-1.42, P = 0.385) or moderate CTRCD (HR 0.62, 95 % CI: 0.14-2.72, P = 0.504). Patients with baseline hypertension showed different global longitudinal strain (P < 0.001) and LVEF (P < 0.001) patterns during follow-up. Conclusions Pediatric patients often develop CTRCD post-anthracycline chemotherapy. Those with pre-existing hypertension show a unique treatment response, despite no increased CTRCD risk, warranting further investigation.
Collapse
Affiliation(s)
- Xander Jacquemyn
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Cardiovascular Sciences, KU Leuven & Congenital and Structural Cardiology, UZ Leuven, Leuven, Belgium
| | - Junzhen Zhan
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jef Van den Eynde
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Cardiovascular Sciences, KU Leuven & Congenital and Structural Cardiology, UZ Leuven, Leuven, Belgium
| | - Kyla Cordrey
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rita Long
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sruti Rao
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin T. Barnes
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - W. Reid Thompson
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Danford
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shelby Kutty
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Hundal J, Curley T, Hamilton BK. Cardiovascular Considerations in Patients Undergoing Hematopoietic Cell Transplantation. Curr Treat Options Oncol 2024; 25:1027-1037. [PMID: 39052206 PMCID: PMC11329532 DOI: 10.1007/s11864-024-01240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
OPINION STATEMENT Cardiac dysfunction is a serious adverse effect of cancer therapies that can interfere with quality of life and impact long-term survival in patients with cancer. Hematopoietic cell transplantation is a potentially curative therapy for many advanced hematologic malignancies and bone marrow failure syndromes, however is associated with several short- and long-term adverse effects, including importantly, cardiovascular toxicities. The goal of this review article is to describe the cardiovascular events that may develop before, during, and after hematopoietic cell transplantation, review risk factors for short- and long-term cardiovascular toxicities, discuss approaches to cardiovascular risk stratification and evaluation, and highlight the research gaps in the consideration of cardiovascular disease in patients undergoing hematopoietic cell transplantation. Further understanding of cardiovascular events and the factors associated with cardiovascular disease will hopefully lead to novel interventions in managing and mitigating the significant long-term burden of late cardiovascular effects in transplant survivors.
Collapse
Affiliation(s)
- Jasmin Hundal
- Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas Curley
- Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Institute, 9500 Euclid Ave CA60, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Zhou X, Liu Y, Shen Y, Chen L, Hu W, Yan Y, Feng B, Xiang L, Zhu Y, Jiang C, Dai Z, Huang X, Wu L, Liu T, Fu L, Duan C, Shen S, Li J, Zhang H. Rescue of cardiac dysfunction during chemotherapy in acute myeloid leukaemia by blocking IL-1α. Eur Heart J 2024; 45:2235-2250. [PMID: 38607560 DOI: 10.1093/eurheartj/ehae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND AND AIMS Patients with acute myeloid leukaemia (AML) suffer from severe myocardial injury during daunorubicin (DNR)-based chemotherapy and are at high risk of cardiac mortality. The crosstalk between tumour cells and cardiomyocytes might play an important role in chemotherapy-related cardiotoxicity, but this has yet to be demonstrated. This study aimed to identify its underlying mechanism and explore potential therapeutic targets. METHODS Cardiac tissues were harvested from an AML patient after DNR-based chemotherapy and were subjected to single-nucleus RNA sequencing. Cardiac metabolism and function were evaluated in AML mice after DNR treatment by using positron emission tomography, magnetic resonance imaging, and stable-isotope tracing metabolomics. Plasma cytokines were screened in AML mice after DNR treatment. Genetically modified mice and cell lines were used to validate the central role of the identified cytokine and explore its downstream effectors. RESULTS In the AML patient, disruption of cardiac metabolic homeostasis was associated with heart dysfunction after DNR-based chemotherapy. In AML mice, cardiac fatty acid utilization was attenuated, resulting in cardiac dysfunction after DNR treatment, but these phenotypes were not observed in similarly treated tumour-free mice. Furthermore, tumour cell-derived interleukin (IL)-1α was identified as a primary factor leading to DNR-induced cardiac dysfunction and administration of an anti-IL-1α neutralizing antibody could improve cardiac functions in AML mice after DNR treatment. CONCLUSIONS This study revealed that crosstalk between tumour cells and cardiomyocytes during chemotherapy could disturb cardiac energy metabolism and impair heart function. IL-1α neutralizing antibody treatment is a promising strategy for alleviating chemotherapy-induced cardiotoxicity in AML patients.
Collapse
Affiliation(s)
- Xingliang Zhou
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yiwei Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yi Shen
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Lijun Chen
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Wenting Hu
- Department of Hematology & Oncology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Bei Feng
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Li Xiang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yifan Zhu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Chenyu Jiang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Zihao Dai
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xu Huang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Liwei Wu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Tianyu Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Lijun Fu
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Caiwen Duan
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Shuhong Shen
- Department of Hematology & Oncology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Jun Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
7
|
Pan Y, Wang C, Zhou W, Shi Y, Meng X, Muhammad Y, Hammer RD, Jia B, Zheng H, Li DP, Liu Z, Hildebrandt G, Kang X. Inhibiting AGTR1 reduces AML burden and protects the heart from cardiotoxicity in mouse models. Sci Transl Med 2024; 16:eadl5931. [PMID: 38896605 PMCID: PMC11250918 DOI: 10.1126/scitranslmed.adl5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Clinical treatment of acute myeloid leukemia (AML) largely relies on intensive chemotherapy. However, the application of chemotherapy is often hindered by cardiotoxicity. Patient sequence data revealed that angiotensin II receptor type 1 (AGTR1) is a shared target between AML and cardiovascular disease (CVD). We found that inhibiting AGTR1 sensitized AML to chemotherapy and protected the heart against chemotherapy-induced cardiotoxicity in a human AML cell-transplanted mouse model. These effects were regulated by the AGTR1-Notch1 axis in AML cells and cardiomyocytes from mice. In mouse cardiomyocytes, AGTR1 was hyperactivated by AML and chemotherapy. AML leukemogenesis increased the expression of the angiotensin-converting enzyme and led to increased production of angiotensin II, the ligand of AGTR1, in an MLL-AF9-driven AML mouse model. In this model, the AGTR1-Notch1 axis regulated a variety of genes involved with cell stemness and chemotherapy resistance. AML cell stemness was reduced after Agtr1a deletion in the mouse AML cell transplant model. Mechanistically, Agtr1a deletion decreased γ-secretase formation, which is required for transmembrane Notch1 cleavage and release of the Notch1 intracellular domain into the nucleus. Using multiomics, we identified AGTR1-Notch1 signaling downstream genes and found decreased binding between these gene sequences with Notch1 and chromatin enhancers, as well as increased binding with silencers. These findings describe an AML/CVD association that may be used to improve AML treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Amyloid Precursor Protein Secretases/metabolism
- Cardiotoxicity/metabolism
- Cardiotoxicity/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Heart/drug effects
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - WenXuan Zhou
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yao Shi
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - XiaDuo Meng
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yasir Muhammad
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Bei Jia
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hong Zheng
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Gerhard Hildebrandt
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Leger KJ, Absalon MJ, Demissei BG, Smith AM, Gerbing RB, Alonzo TA, Narayan HK, Hirsch BA, Pollard JA, Razzouk BI, Getz KD, Aplenc R, Kolb EA, Ky B, Cooper TM. Cardiotoxicity of CPX-351 in children and adolescents with relapsed AML: a Children's Oncology Group report. Front Cardiovasc Med 2024; 11:1347547. [PMID: 38947228 PMCID: PMC11211570 DOI: 10.3389/fcvm.2024.1347547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/07/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Anthracyclines are effective in treating acute myeloid leukemia (AML) but limited by cardiotoxicity. CPX-351, a liposomal daunorubicin and cytarabine, may provide therapeutic benefit with less cardiotoxicity. Acute changes in left ventricular systolic function and cardiac biomarkers were evaluated after a cycle of CPX-351 in children with relapsed AML treated on the phase 1/2 Children's Oncology Group study, AAML1421. Methods Subjects received 135 units/m2/dose of CPX-351 on days 1, 3, and 5 as cycle 1. Echocardiograms were performed and centrally quantitated at baseline and at the end of cycle 1 (day 29 +/- 1 week). High sensitivity troponin (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were measured at baseline and serially through the end of cycle 1 (days 5, 8, 15, 22 and 29). Differences between baseline and post-CPX-351 echo/biomarker measures were analyzed using Wilcoxon signed rank tests. Linear regression was used to model post-CPX-351 left ventricular ejection fraction (LVEF) with cTnT/NT-proBNP at each time point, controlling for baseline LVEF. Cancer therapy related cardiac dysfunction (CTRCD) was defined as a decline in LVEF of ≥10%-<50%. Results Twenty-five of 38 heavily anthracycline pre-treated (median 348 mg/m2 daunorubicin equivalents) subjects enrolled on AAML1421 were included in the cardiac analyses. At baseline, centrally quantitated LVEF was <50% in 8 of 25 subjects (32%) with a median LVEF of 53.8% [48.0, 56.9]. Following CPX-351, LVEF declined significantly (ΔLVEF -3.3% [-7.8, 0]) and 6 of 25 subjects (24%) experienced CTRCD. Amongst all subjects, hs-cTnT was modestly increased at end of cycle 1 compared to baseline [baseline hs-cTnT 7.2 (3, 10.6); ΔcTnT 1.80 (0, 6.1), p = 0.03]. NT-proBNP remained stably elevated without significant change. No significant associations were seen between NT-proBNP or cTnT levels and post-CPX-351 LVEF. Discussion In this single arm study of anthracycline pre-treated children exposed to CPX-351, baseline abnormalities in cardiovascular function were prevalent. Following CPX-351, LVEF decreased, cTnT increased, and NT-proBNP did not change. Longer follow-up is needed to determine whether these changes result in clinically meaningful long-term decrements in cardiac function. An ongoing randomized trial of CPX-351 compared to standard anthracyclines in anthracycline naïve patients will provide further insight into the cardiac effects of CPX-351 (ClinicalTrials.gov; NCT04293562).
Collapse
Affiliation(s)
- Kasey J. Leger
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Michael J. Absalon
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR, United States
| | - Biniyam G. Demissei
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amanda M. Smith
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Todd A. Alonzo
- Children’s Oncology Group, Monrovia, CA, United States
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Hari K. Narayan
- Department of Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, La Jolla, CA, United States
| | - Betsy A. Hirsch
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Jessica A. Pollard
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Bassem I. Razzouk
- Department of Pediatrics, Peyton Manning Children’s Hospital at Ascension St. Vincent, Indianapolis, IN, United States
| | - Kelly D. Getz
- Departments of Biostatistics, Epidemiology & Informatics and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Richard Aplenc
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, A.I. DuPont Hospital for Children, Wilmington, DE, United States
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Todd M. Cooper
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Zhang S, Li D, Liu L, Shi Q, Ju X. Extracellular vesicles derived from HuMSCs alleviate daunorubicin-induced cardiac microvascular injury via miR-186-5p/PARP9/STAT1 signal pathway. Regen Ther 2024; 25:320-330. [PMID: 38327716 PMCID: PMC10847672 DOI: 10.1016/j.reth.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction It is essential to acknowledge that the cardiovascular toxicity associated with anthracycline drugs can be partially attributed to the damage inflicted on blood vessels and endothelial cells. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have the potential to repair cellular processes and promote tissue regeneration through the transfer of signaling molecules such as miRNAs. In the present study, we investigated the effects of MSC-EVs on daunorubicin (DNR)-damaged human cardiac microvascular endothelial cells (HCMEC) and developing blood vessels of Chicken Chorioallantoic Membrane (CAM) in vivo. Materials and methods We constructed in vitro and in vivo models of DNR-damaged endothelial cells and developing blood vessel. Scratch wound assays, EdU assays, tube formation assays, and SA-β-Gal staining were used to evaluate the effects of MSC-EVs on cell migration, proliferation, angiogenesis capacity and cell senescence. Blood vessel area was used to assess the effects of MSC-EVs on CAM vasculature. RT-qPCR was used to detect the mRNA expression levels of inflammatory molecules. RNA sequencing was employed to compare differential gene expression and downstream regulatory mechanisms. RNA interference experiments and miRNA mimic overexpression experiments were used to validate the regulatory effects of target genes and downstream signaling pathways. Results We found that MSC-EVs improved the migration, proliferation, and angiogenesis of HCMEC, while also alleviating cellular senescence. The angiogenic effect on the developing blood vessels was confirmed in vivo. We identified that MSC-EVs downregulated the expression of PARP9, thereby inhibiting the STAT1/pSTAT1 signaling pathway. This downregulation effect is likely mediated by the transfer of miR-186-5p from MSC-EVs to HCMEC. Overexpression of miR-186-5p in DNR-damaged HCMEC also exhibited the aforementioned downregulation effect. In vivo, the introduction of miR-186-5p mimics enhanced angiogenesis in the CAM model. Conclusions To summarize, our study reveals that MSC-EVs can restore the cellular function of DNR-damaged HCMEC and alleviate cellular senescence through the miR-185-5p-PARP9-STAT1/pSTAT1 pathway. This finding highlights the potential of MSC-EVs as a therapeutic strategy for mitigating the detrimental effects of anthracycline-induced endothelial damage.
Collapse
Affiliation(s)
- Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Linghong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Tao Y, Wei L, Shiba N, Tomizawa D, Hayashi Y, Ogawa S, Chen L, You H. Development and validation of a promising 5-gene prognostic model for pediatric acute myeloid leukemia. MOLECULAR BIOMEDICINE 2024; 5:1. [PMID: 38163849 PMCID: PMC10758381 DOI: 10.1186/s43556-023-00162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Risk classification in pediatric acute myeloid leukemia (P-AML) is crucial for personalizing treatments. Thus, we aimed to establish a risk-stratification tool for P-AML patients and eventually guide individual treatment. A total of 256 P-AML patients with accredited mRNA-seq data from the TARGET database were divided into training and internal validation datasets. A gene-expression-based prognostic score was constructed for overall survival (OS), by using univariate Cox analysis, LASSO regression analysis, Kaplan-Meier (K-M) survival, and multivariate Cox analysis. A P-AML-5G prognostic score bioinformatically derived from expression levels of 5 genes (ZNF775, RNFT1, CRNDE, COL23A1, and TTC38), clustered P-AML patients in training dataset into high-risk group (above optimal cut-off) with shorter OS, and low-risk group (below optimal cut-off) with longer OS (p < 0.0001). Meanwhile, similar results were obtained in internal validation dataset (p = 0.005), combination dataset (p < 0.001), two treatment sub-groups (p < 0.05), intermediate-risk group defined with the Children's Oncology Group (COG) (p < 0.05) and an external Japanese P-AML dataset (p = 0.005). The model was further validated in the COG study AAML1031(p = 0.001), and based on transcriptomic analysis of 943 pediatric patients and 70 normal bone marrow samples from this dataset, two genes in the model demonstrated significant differential expression between the groups [all log2(foldchange) > 3, p < 0.001]. Independent of other prognostic factors, the P-AML-5G groups presented the highest concordance-index values in training dataset, chemo-therapy only treatment subgroups of the training and internal validation datasets, and whole genome-sequencing subgroup of the combined dataset, outperforming two Children's Oncology Group (COG) risk stratification systems, 2022 European LeukemiaNet (ELN) risk classification tool and two leukemic stem cell expression-based models. The 5-gene prognostic model generated by a single assay can further refine the current COG risk stratification system that relies on numerous tests and may have the potential for the risk judgment and identification of the high-risk pediatric AML patients receiving chemo-therapy only treatment.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wei
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma and Institute of Physiology and Medicine, Gunma Children's Medical Center, Jobu University, Gunma, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, 17177, Stockholm, Sweden
| | - Li Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Gündüz A, Duman D, Başbinar Y, Taşdelen B, Küpeli S, Karpuz D. The Role of RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 Single-nucleotide Polymorphisms in the Doxorubicin-induced Cardiotoxicity in Solid Childhood Tumors. J Pediatr Hematol Oncol 2024; 46:e65-e70. [PMID: 37828659 DOI: 10.1097/mph.0000000000002768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The objective of our study was to determine the role of retinoic acid receptor gamma (RARG) rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 single-nucleotide polymorphisms in identifying the risk of doxorubicin-induced cardiotoxicity in pediatric solid tumors. METHODS A total of 60 pediatric patients who had completed their treatment at least 2 years ago and 50 healthy children matched for age and sex were included in the study. All patients were evaluated for cardiotoxicity by echocardiography. The blood samples were analyzed for RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 polymorphisms. Demographic characteristics, echocardiographic parameters, and genetic results of both groups were evaluated. RESULTS In our study, the RARG rs2229774 AA genotype was associated with cardiotoxicity ( P =0.017). The SLC28A3 rs7853758 AA+GA genotype was detected more frequently in patients who did not develop cardiotoxicity ( P <0.023). Furthermore, the frequency of the SLC28A3 rs7853758 A allele was significantly lower in the cardiotoxicity group ( P <0.025). CONCLUSIONS This is the first study in the Turkish population to investigate the correlation between the cardiotoxicity risk and 3 marker genes, which are recommended in the pharmacogenetic guideline for risk assessment in pediatric doxorubicin patients. The gene polymorphism that we investigated in this study was useful for the early prediction of cardiotoxicity risk.
Collapse
Affiliation(s)
| | | | | | - Bahar Taşdelen
- Department of Pediatrics, Division of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Çukurova University Medical Faculty, Adana, Turkey
| | - Serhan Küpeli
- Department of Pediatrics, Division of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Çukurova University Medical Faculty, Adana, Turkey
| | | |
Collapse
|
12
|
Mertens L, Singh G, Armenian S, Chen MH, Dorfman AL, Garg R, Husain N, Joshi V, Leger KJ, Lipshultz SE, Lopez-Mattei J, Narayan HK, Parthiban A, Pignatelli RH, Toro-Salazar O, Wasserman M, Wheatley J. Multimodality Imaging for Cardiac Surveillance of Cancer Treatment in Children: Recommendations From the American Society of Echocardiography. J Am Soc Echocardiogr 2023; 36:1227-1253. [PMID: 38043984 DOI: 10.1016/j.echo.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Luc Mertens
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gautam Singh
- Children's Hospital of Michigan, Detroit, Michigan; Central Michigan University School of Medicine, Saginaw, Michigan
| | - Saro Armenian
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ming-Hui Chen
- Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam L Dorfman
- University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Ruchira Garg
- Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Vijaya Joshi
- St. Jude Children's Research Hospital/University of Tennessee College of Medicine, Memphis, Tennessee
| | - Kasey J Leger
- University of Washington, Seattle Children's Hospital, Seattle, Washington
| | - Steven E Lipshultz
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Oishei Children's Hospital, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Hari K Narayan
- University of California San Diego, Rady Children's Hospital San Diego, San Diego, California
| | - Anitha Parthiban
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | | | - Olga Toro-Salazar
- Connecticut Children's Medical Center, University of Connecticut School of Medicine, Hartford, Connecticut
| | | | | |
Collapse
|
13
|
Leger KJ, Robison N, Narayan HK, Smith AM, Tsega T, Chung J, Daniels A, Chen Z, Englefield V, Demissei BG, Lefebvre B, Morrow G, Dizon I, Gerbing RB, Pabari R, Getz KD, Aplenc R, Pollard JA, Chow EJ, Tang WHW, Border WL, Sachdeva R, Alonzo TA, Kolb EA, Cooper TM, Ky B. Rationale and design of the Children's Oncology Group study AAML1831 integrated cardiac substudies in pediatric acute myeloid leukemia therapy. Front Cardiovasc Med 2023; 10:1286241. [PMID: 38107263 PMCID: PMC10722184 DOI: 10.3389/fcvm.2023.1286241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Background Pediatric acute myeloid leukemia (AML) therapy is associated with substantial short- and long-term treatment-related cardiotoxicity mainly due to high-dose anthracycline exposure. Early left ventricular systolic dysfunction (LVSD) compromises anthracycline delivery and is associated with inferior event-free and overall survival in de novo pediatric AML. Thus, effective cardioprotective strategies and cardiotoxicity risk predictors are critical to optimize cancer therapy delivery and enable early interventions to prevent progressive LVSD. While dexrazoxane-based cardioprotection reduces short-term cardiotoxicity without compromising cancer survival, liposomal anthracycline formulations have the potential to mitigate cardiotoxicity while improving antitumor efficacy. This overview summarizes the rationale and methodology of cardiac substudies within AAML1831, a randomized Children's Oncology Group Phase 3 study of CPX-351, a liposomal formulation of daunorubicin and cytarabine, in comparison with standard daunorubicin/cytarabine with dexrazoxane in the treatment of de novo pediatric AML. Methods/design Children (age <22 years) with newly diagnosed AML were enrolled and randomized to CPX-351-containing induction 1 and 2 (Arm A) or standard daunorubicin and dexrazoxane-containing induction (Arm B). Embedded cardiac correlative studies aim to compare the efficacy of this liposomal anthracycline formulation to dexrazoxane for primary prevention of cardiotoxicity by detailed core lab analysis of standardized echocardiograms and serial cardiac biomarkers throughout AML therapy and in follow-up. In addition, AAML1831 will assess the ability of early changes in sensitive echo indices (e.g., global longitudinal strain) and cardiac biomarkers (e.g., troponin and natriuretic peptides) to predict subsequent LVSD. Finally, AAML1831 establishes expert consensus-based strategies in cardiac monitoring and anthracycline dose modification to balance the potentially competing priorities of cardiotoxicity reduction with optimal leukemia therapy. Discussion This study will inform diagnostic, prognostic, preventative, and treatment strategies regarding cardiotoxicity during pediatric AML therapy. Together, these measures have the potential to improve leukemia-free and overall survival and long-term cardiovascular health in children with AML. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT04293562.
Collapse
Affiliation(s)
- Kasey J. Leger
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Nora Robison
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Hari K. Narayan
- Division of Cardiology, Department of Pediatrics, Rady Children’s Hospital San Diego, University of California San Diego, La Jolla, CA, United States
| | - Amanda M. Smith
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tenaadam Tsega
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jade Chung
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amber Daniels
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhen Chen
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Virginia Englefield
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Biniyam G. Demissei
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Benedicte Lefebvre
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gemma Morrow
- Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Ilona Dizon
- Division of Cardiology, Seattle Children’s Hospital, Seattle, WA, United States
| | | | - Reena Pabari
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kelly D. Getz
- Division of Oncology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica A. Pollard
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eric J. Chow
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
- Clinical Research and Public Health Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - W. H. Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William L. Border
- Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ritu Sachdeva
- Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Todd A. Alonzo
- Children’s Oncology Group, Monrovia, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE, United States
| | - Todd M. Cooper
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Tarlock K, Liu X, Minard CG, Isikwei EA, Reid JM, Horton TM, Fox E, Weigel BJ, Cooper T. Feasibility of pevonedistat combined with azacitidine, fludarabine, cytarabine in pediatric relapsed/refractory AML: Results from COG ADVL1712. Pediatr Blood Cancer 2023; 70:e30672. [PMID: 37710306 PMCID: PMC10864008 DOI: 10.1002/pbc.30672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Outcomes for children with relapsed/refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are poor, and new therapies are needed. Pevonedistat is an inhibitor of the NEDD-8 activating enzyme, a key regulator of the ubiquitin proteasome system that is responsible for protein turnover, with protein degradation regulating cell growth and survival. PROCEDURE We evaluated the feasibility, toxicity, and pharmacokinetics (PK) of pevonedistat (20 mg/m2 days 1, 3, 5) in combination with azacitidine, fludarabine, cytarabine (aza-FLA) in children with R/R AML and MDS (NCT03813147). Twelve patients were enrolled, median age was 13 years (range 1-21). Median number of prior chemotherapeutic regimens was two (range one to five), and two (25%) patients had prior hematopoietic cell transplantation. Diagnoses were AML NOS (n = 10, 83%), acute monocytic leukemia (n = 1), and therapy-related AML (n = 1). RESULTS Overall, three of 12 (25%) patients experienced DLTs. The day 1 mean ± SD (n = 12) Cmax , VSS , T1/2 , and CL were 223 ± 91 ng/mL, 104 ± 53.8 L/m2 , 4.3 ± 1.2 hours, and 23.2 ± 6.9 L/h/m2 , respectively. T1/2 , VSS , and Cmax , but not CL, were significantly different between age groups. The overall response rate was 25%, with n = 3 patients achieving a complete remission with incomplete hematologic recovery (CRi). CONCLUSIONS Pevonedistat 20 mg/m2 combined with Aza-FLA was tolerable in children with R/R AML with similar toxicity profile to other intensive AML regimens. However, within the confines of a phase 1 study, we did not observe that the pevonedistat + Aza-FLA combination demonstrated significant anti-leukemic activity.
Collapse
Affiliation(s)
- Katherine Tarlock
- Cancer and Blood Disorders Center, Department of Pediatrics, Seattle Children’s Hospital and the Seattle Children’s Research Institute, University of Washington, Seattle WA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| | | | | | | | | | - Terzah M. Horton
- Texas Children’s Baylor College of Medicine/Dan L Duncan Comprehensive Cancer Center, Pediatrics, Houston TX
| | | | | | - Todd Cooper
- Cancer and Blood Disorders Center, Department of Pediatrics, Seattle Children’s Hospital and the Seattle Children’s Research Institute, University of Washington, Seattle WA
| |
Collapse
|
15
|
Gerhartz B, Damodharan S, Puccetti DM, Boriosi JP, Hokanson JS, Capitini CM. Use of milrinone to support therapy-induced heart failure through hematopoietic stem cell transplantation in a pediatric patient with high-risk FLT3+ acute myeloid leukemia. Pediatr Blood Cancer 2023; 70:e30542. [PMID: 37485552 DOI: 10.1002/pbc.30542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Brianna Gerhartz
- Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Sudarshawn Damodharan
- Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Diane M Puccetti
- Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Juan P Boriosi
- Division of Pediatric Critical Care Medicine, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - John S Hokanson
- Division of Pediatric Cardiology, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Kouwenberg TW, van Dalen EC, Feijen EAM, Netea SA, Bolier M, Slieker MG, Hoesein FAAM, Kremer LCM, Grotenhuis HB, Mavinkurve-Groothuis AMC. Acute and early-onset cardiotoxicity in children and adolescents with cancer: a systematic review. BMC Cancer 2023; 23:866. [PMID: 37710224 PMCID: PMC10500898 DOI: 10.1186/s12885-023-11353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Cardiotoxicity is among the most important adverse effects of childhood cancer treatment. Anthracyclines, mitoxantrone and radiotherapy involving the heart are its main causes. Subclinical cardiac dysfunction may over time progress to clinical heart failure. The majority of previous studies have focused on late-onset cardiotoxicity. In this systematic review, we discuss the prevalence and risk factors for acute and early-onset cardiotoxicity in children and adolescents with cancer treated with anthracyclines, mitoxantrone or radiotherapy involving the heart. METHODS A literature search was performed within PubMed and reference lists of relevant studies. Studies were eligible if they reported on cardiotoxicity measured by clinical, echocardiographic and biochemical parameters routinely used in clinical practice during or within one year after the start of cancer treatment in ≥ 25 children and adolescents with cancer. Information about study population, treatment, outcomes of diagnostic tests used for cardiotoxicity assessment and risk factors was extracted and risk of bias was assessed. RESULTS Our PubMed search yielded 3649 unique publications, 44 of which fulfilled the inclusion criteria. One additional study was identified by scanning the reference lists of relevant studies. In these 45 studies, acute and early-onset cardiotoxicity was studied in 7797 children and adolescents. Definitions of acute and early-onset cardiotoxicity prove to be highly heterogeneous. Prevalence rates varied for different cardiotoxicity definitions: systolic dysfunction (0.0-56.4%), diastolic dysfunction (30.0-100%), combinations of echocardiography and/or clinical parameters (0.0-38.1%), clinical symptoms (0.0-25.5%) and biomarker levels (0.0-37.5%). Shortening fraction and ejection fraction significantly decreased during treatment. Cumulative anthracycline dose proves to be an important risk factor. CONCLUSIONS Various definitions have been used to describe acute and early-onset cardiotoxicity due to childhood cancer treatment, complicating the establishment of its exact prevalence. Our findings underscore the importance of uniform international guidelines for the monitoring of cardiac function during and shortly after childhood cancer treatment.
Collapse
Affiliation(s)
- Theodorus W Kouwenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Elvira C van Dalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Elizabeth A M Feijen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Stejara A Netea
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Melissa Bolier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Martijn G Slieker
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | - Leontien C M Kremer
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Heynric B Grotenhuis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Alpman MS, Jarting A, Magnusson K, Manouras A, Henter J, Broberg AM, Herold N. Longitudinal strain analysis for assessment of early cardiotoxicity during anthracycline treatment in childhood sarcoma: A single center experience. Cancer Rep (Hoboken) 2023; 6:e1852. [PMID: 37354068 PMCID: PMC10480418 DOI: 10.1002/cnr2.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/14/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The growing population of long-term childhood cancer survivors encounter a substantial burden of cardiovascular complications. The highest risk of cardiovascular complications is associated with exposure to anthracyclines and chest radiation. Longitudinal cardiovascular surveillance is recommended for childhood cancer patients; however, the optimal methods and timing are yet to be elucidated. AIMS We aimed to investigate the feasibility of different echocardiographic methods to evaluate left ventricular systolic function in retrospective datasets, including left ventricular ejection fraction (LVEF), fractional shortening (FS), global longitudinal strain (GLS) and longitudinal strain (LS) as well as the incidence and timing of subclinical left ventricular dysfunction detected by these methods. METHODS AND RESULTS A retrospective longitudinal study was performed with re-analysis of longitudinal echocardiographic data, acquired during treatment and early follow-up, including 41 pediatric sarcoma patients, aged 2.1-17.8 years at diagnosis, treated at Astrid Lindgren Children's Hospital, Stockholm, Sweden, during the period 2010-2021. All patients had received treatment according to protocols including high cumulative doxorubicin equivalent doses (≥250 mg/m2 ). In 68% of all 366 echocardiograms, LS analysis was feasible. Impaired LS values (<17%) was demonstrated in >40%, with concomitant impairment of either LVEF or FS in 20% and combined impairment of both LVEF and FS in <10%. Importantly, there were no cases of abnormal LVEF and FS without concomitant LS impairment. CONCLUSION Our findings demonstrate feasibility of LS in a majority of echocardiograms and a high incidence of impaired LS during anthracycline treatment for childhood sarcoma. We propose inclusion of LS in pediatric echocardiographic surveillance protocols.
Collapse
Affiliation(s)
- Maria Sjöborg Alpman
- Pediatric Cardiology, Astrid Lindgren Children's HospitalKarolinska University HospitalStockholmSweden
- Pediatric Oncology, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Annica Jarting
- Pediatric Cardiology, Astrid Lindgren Children's HospitalKarolinska University HospitalStockholmSweden
| | - Kerstin Magnusson
- Pediatric Cardiology, Astrid Lindgren Children's HospitalKarolinska University HospitalStockholmSweden
| | - Aristomenis Manouras
- Department of CardiologyKarolinska University HospitalStockholmSweden
- Department of MedicineKarolinska InstitutetStockholmSweden
| | - Jan‐Inge Henter
- Pediatric Oncology, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Pediatric Oncology, Astrid Lindgren Children's HospitalKarolinska University HospitalStockholmSweden
| | - Agneta Månsson Broberg
- Pediatric Oncology, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Department of CardiologyKarolinska University HospitalStockholmSweden
- Department of MedicineKarolinska InstitutetStockholmSweden
| | - Nikolas Herold
- Pediatric Oncology, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Pediatric Oncology, Astrid Lindgren Children's HospitalKarolinska University HospitalStockholmSweden
| |
Collapse
|
18
|
Cooper TM, Alonzo TA, Tasian SK, Kutny MA, Hitzler J, Pollard JA, Aplenc R, Meshinchi S, Kolb EA. Children's Oncology Group's 2023 blueprint for research: Myeloid neoplasms. Pediatr Blood Cancer 2023; 70 Suppl 6:e30584. [PMID: 37480164 PMCID: PMC10614720 DOI: 10.1002/pbc.30584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
During the past decade, the outcomes of pediatric patients with acute myeloid leukemia (AML) have plateaued with 5-year event-free survival (EFS) and overall survival (OS) of approximately 46 and 64%, respectively. Outcomes are particularly poor for those children with high-risk disease, who have 5-year OS of 46%. Substantial survival improvements have been observed for a subset of patients treated with targeted therapies. Specifically, children with KMT2A-rearranged AML and/or FLT3 internal tandem duplication (FLT3-ITD) mutations benefitted from the addition of gemtuzumab ozogamicin, an anti-CD33 antibody-drug conjugate, in the AAML0531 clinical trial (NCT00372593). Sorafenib also improved response and survival in children with FLT3-ITD AML in the AAML1031 clinical trial (NCT01371981). Advances in characterization of prognostic cytomolecular events have helped to identify patients at highest risk of relapse and facilitated allocation to consolidative hematopoietic stem cell transplant (HSCT) in first remission. Some patients clearly have improved survival with HSCT, although the benefit is largely unknown for most patients. Finally, data-driven refinements in supportive care recommendations continue to evolve with meaningful and measurable reductions in toxicity and improvements in EFS and OS. As advances in application of targeted therapies, risk stratification, and improved supportive care measures are incorporated into current trials and become standard-of-care, there is every expectation that we will see improved survival with a reduction in toxic morbidity and mortality. The research agenda of the Children's Oncology Group's Myeloid Diseases Committee continues to build upon experience and outcomes with an overarching goal of curing more children with AML.
Collapse
Affiliation(s)
- Todd M Cooper
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
| | | | - Sarah K Tasian
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Matthew A Kutny
- University of Alabama at Birmingham, Department of Pediatrics, Division of Hematology/Oncology, Birmingham, Alabama
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, ON, Canada; Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jessica A Pollard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Richard Aplenc
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Soheil Meshinchi
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours Children’s Health, Wilmington, DE
| |
Collapse
|
19
|
Doan A, Huang HK, Hadar AJ, Malvar J, Rushing T, Raca G, Kovach AE, Freyer DR, Parekh C, Stokke J, Posch LC, Dao J, Bhojwani D, Gaynon P, Orgel E. Efficacy and safety of FLAG-IDA as front-line therapy in de novo paediatric acute myeloid leukaemia population. Br J Haematol 2023; 202:e3-e6. [PMID: 37129267 PMCID: PMC10330637 DOI: 10.1111/bjh.18844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Andrew Doan
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Holly K.T. Huang
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Jemily Malvar
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Teresa Rushing
- Department of Pharmacy, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Gordana Raca
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Alexandra E. Kovach
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - David R. Freyer
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Chintan Parekh
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Jamie Stokke
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Leila C. Posch
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Julie Dao
- Department of Pharmacy, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Deepa Bhojwani
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Paul Gaynon
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Etan Orgel
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
20
|
Park JH, Hong JY, Shen JJ, Han K, Park JO, Park YS, Lim HY. Increased Risk of Young-Onset Digestive Tract Cancers Among Young Adults Age 20-39 Years With Nonalcoholic Fatty Liver Disease: A Nationwide Cohort Study. J Clin Oncol 2023:JCO2201740. [PMID: 37075279 DOI: 10.1200/jco.22.01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Although the incidence of young-onset digestive tract cancers is increasing worldwide, their risk factors remain largely unknown. We investigated the association between nonalcoholic fatty liver disease (NAFLD) and young-onset digestive tract cancers. PATIENTS AND METHODS This nationwide cohort study included 5,265,590 individuals age 20-39 years who underwent national health screening under the Korean National Health Insurance Service between 2009 and 2012. The fatty liver index was used as a diagnostic biomarker for NAFLD. The participants were followed up until December 2018 to determine the incidence of young-onset digestive tract cancers (ie, esophageal, stomach, colorectal, liver, pancreatic, biliary tract, and gallbladder). Multivariable Cox proportional hazards models were conducted to estimate the risk after adjusting for potential confounders. RESULTS During the 38.8 million person-years of follow-up, 14,565 patients were newly diagnosed with young-onset digestive tract cancers. The cumulative incidence probability of each cancer type was consistently higher in individuals with NAFLD than in those without NAFLD (all log-rank P < .05). NAFLD was associated with an increased risk of overall digestive tract (adjusted hazard ratio [aHR], 1.16; 95% CI, 1.10 to 1.22), stomach (aHR, 1.14; 95% CI, 1.06 to 1.24), colorectal (aHR, 1.14; 95% CI, 1.06 to 1.22), liver (aHR, 1.13; 95% CI, 1.12 to 1.52), pancreatic (aHR, 1.23; 95% CI, 1.09 to 1.40), biliary tract (aHR, 1.29; 95% CI, 1.00 to 1.66), and gallbladder (aHR, 1.53; 95% CI, 1.01 to 2.31) cancer. These associations remained significant regardless of age, sex, smoking status, alcohol consumption, and obesity status (all P < .05; P for interaction >.05). The aHR for esophageal cancer was 1.67 (95% CI, 0.92 to 3.03). CONCLUSION NAFLD may be an independent, modifiable risk factor for young-onset digestive tract cancers. Our findings suggest a crucial opportunity to reduce premature morbidity and mortality associated with young-onset digestive tract cancers in the next generation.
Collapse
Affiliation(s)
- Joo-Hyun Park
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV
| | - Jung Yong Hong
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jay J Shen
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Boluda B, Solana-Altabella A, Cano I, Martínez-Cuadrón D, Acuña-Cruz E, Torres-Miñana L, Rodríguez-Veiga R, Navarro-Vicente I, Martínez-Campuzano D, García-Ruiz R, Lloret P, Asensi P, Osa-Sáez A, Aguero J, Rodríguez-Serrano M, Buendía-Fuentes F, Megías-Vericat JE, Martín-Herreros B, Barragán E, Sargas C, Salas M, Wooddell M, Dharmani C, Sanz MA, De la Rubia J, Montesinos P. Incidence and Risk Factors for Development of Cardiac Toxicity in Adult Patients with Newly Diagnosed Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:2267. [PMID: 37190195 PMCID: PMC10136564 DOI: 10.3390/cancers15082267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The incidence of cardiac morbimortality in acute myeloid leukemia (AML) is not well known. We aim to estimate the cumulative incidence (CI) of cardiac events in AML patients and to identify risk factors for their occurrence. Among 571 newly diagnosed AML patients, 26 (4.6%) developed fatal cardiac events, and among 525 treated patients, 19 (3.6%) experienced fatal cardiac events (CI: 2% at 6 months; 6.7% at 9 years). Prior heart disease was associated with the development of fatal cardiac events (hazard ratio (HR) = 6.9). The CI of non-fatal cardiac events was 43.7% at 6 months and 56.9% at 9 years. Age ≥ 65 (HR = 2.2), relevant cardiac antecedents (HR = 1.4), and non-intensive chemotherapy (HR = 1.8) were associated with non-fatal cardiac events. The 9-year CI of grade 1-2 QTcF prolongation was 11.2%, grade 3 was 2.7%, and no patient had grade 4-5 events. The 9-year CI of grade 1-2 cardiac failure was 1.3%, grade 3-4 was 15%, and grade 5 was 2.1%; of grade 1-2, arrhythmia was 1.9%, grade 3-4 was 9.1%, and grade 5 was 1%. Among 285 intensive therapy patients, median overall survival decreased in those experiencing grade 3-4 cardiac events (p < 0.001). We observed a high incidence of cardiac toxicity associated with significant mortality in AML.
Collapse
Affiliation(s)
- Blanca Boluda
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Antonio Solana-Altabella
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Isabel Cano
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - David Martínez-Cuadrón
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Evelyn Acuña-Cruz
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Laura Torres-Miñana
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Rebeca Rodríguez-Veiga
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Irene Navarro-Vicente
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - David Martínez-Campuzano
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
| | - Raquel García-Ruiz
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
| | - Pilar Lloret
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
| | - Pedro Asensi
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
| | - Ana Osa-Sáez
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Jaume Aguero
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | | | | | | | - Beatriz Martín-Herreros
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Eva Barragán
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Claudia Sargas
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Maribel Salas
- Daiichi Sankyo, Inc., Basking Ridge, NJ 07920, USA
- Center for Real-World Effectiveness and Safety of Therapeutics (CREST), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | - Miguel A. Sanz
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier De la Rubia
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Internal Medicine, School of Medicine and Dentistry, Catholic University of Valencia, 46001 Valencia, Spain
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain (I.N.-V.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
23
|
Narayan HK, Sheline K, Wong V, Kuo D, Choo S, Yoon J, Leger K, Kutty S, Fradley M, Tremoulet A, Ky B, Armenian S, Guha A. Cardiovascular toxicities with pediatric tyrosine kinase inhibitor therapy: An analysis of adverse events reported to the Food and Drug Administration. Pediatr Blood Cancer 2023; 70:e30059. [PMID: 36385736 DOI: 10.1002/pbc.30059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
We sought to examine cardiovascular toxicities associated with tyrosine kinase inhibitors in pediatrics. We examined 1624 pediatric adverse events with imatinib, dasatinib, sorafenib, pazopanib, crizotinib, and ruxolitinib reported to the Food and Drug Administration between January 1, 2015, and August 14, 2020. There were 102 cardiovascular event reports. Hypertension was the most commonly reported cardiovascular event and was most frequently associated with sorafenib and pazopanib. The presence of infection increased the reporting odds of cardiovascular events overall and specifically cardiac arrest, heart failure, and hypertension. These data provide early insight into cardiovascular toxicities with tyrosine kinase inhibitor use in pediatrics.
Collapse
Affiliation(s)
- Hari K Narayan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Karyn Sheline
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Victor Wong
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Dennis Kuo
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sun Choo
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Janet Yoon
- Department of Pediatrics, City of Hope, Duarte, California, USA
| | - Kasey Leger
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Shelby Kutty
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Fradley
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adriana Tremoulet
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Bonnie Ky
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saro Armenian
- Department of Pediatrics, City of Hope, Duarte, California, USA
| | - Avirup Guha
- Cardio-Oncology Program, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
24
|
Ehrhardt MJ, Leerink JM, Mulder RL, Mavinkurve-Groothuis A, Kok W, Nohria A, Nathan PC, Merkx R, de Baat E, Asogwa OA, Skinner R, Wallace H, Lieke Feijen EAM, de Ville de Goyet M, Prasad M, Bárdi E, Pavasovic V, van der Pal H, Fresneau B, Demoor-Goldschmidt C, Hennewig U, Steinberger J, Plummer C, Chen MH, Teske AJ, Haddy N, van Dalen EC, Constine LS, Chow EJ, Levitt G, Hudson MM, Kremer LCM, Armenian SH. Systematic review and updated recommendations for cardiomyopathy surveillance for survivors of childhood, adolescent, and young adult cancer from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 2023; 24:e108-e120. [PMID: 37052966 DOI: 10.1016/s1470-2045(23)00012-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
Survivors of childhood, adolescent, and young adult cancer, previously treated with anthracycline chemotherapy (including mitoxantrone) or radiotherapy in which the heart was exposed, are at increased risk of cardiomyopathy. Symptomatic cardiomyopathy is typically preceded by a series of gradually progressive, asymptomatic changes in structure and function of the heart that can be ameliorated with treatment, prompting specialist organisations to endorse guidelines on cardiac surveillance in at-risk survivors of cancer. In 2015, the International Late Effects of Childhood Cancer Guideline Harmonization Group compiled these guidelines into a uniform set of recommendations applicable to a broad spectrum of clinical environments with varying resource availabilities. Since then, additional studies have provided insight into dose thresholds associated with a risk of asymptomatic and symptomatic cardiomyopathy, have characterised risk over time, and have established the cost-effectiveness of different surveillance strategies. This systematic Review and guideline provides updated recommendations based on the evidence published up to September, 2020.
Collapse
|
25
|
Sanchez Mejia AA, Pignatelli RH, Rainusso N, Lilje C, Sachdeva S, Tunuguntla HP, Doan TT, Gandhi AA, Walters NC, Trajtenberg DP, Loar RW. Correlating decline in left ventricular ejection fraction and longitudinal strain in pediatric cancer patients. Int J Cardiovasc Imaging 2022; 39:747-755. [PMID: 36543913 DOI: 10.1007/s10554-022-02780-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Left ventricular ejection fraction (LVEF) is routinely used to monitor cardiac function in cancer patients. Global longitudinal strain (GLS) detects subclinical myocardial dysfunction. There is no consensus on what constitutes a significant change in GLS in pediatric cancer patients. We aim to determine the change in GLS associated with a simultaneous decline in LVEF in pediatric cancer patients. METHODS This is a retrospective longitudinal study of pediatric cancer patients treated with anthracyclines between October 2017 and November 2019. GLS was measured by 2-dimensional speckle tracking. The study outcome was a decline in LVEF, defined as a decrease in LVEF of ≥ 10% points from baseline or LVEF < 55%. We evaluated two echocardiograms per patient, one baseline, and one follow-up. The follow-up echocardiogram was either (1) the first study that met the outcome or (2) the last echocardiogram available in patients without the outcome. Statistical analyses included receiver operator characteristic curves and univariable and multivariable Cox proportional hazards regression. RESULTS Out of 161 patients, 33 (20.5%) had a decline in LVEF within one year of follow-up. GLS reduction by ≥ 15% from baseline and follow-up GLS >-18% had sensitivities of 85% and 78%, respectively, and specificities of 86% and 83%, respectively, to detect LVEF decline. GLS reduction by ≥ 15% from baseline and follow-up GLS >-18% were independently associated with simultaneous LVEF decline [hazard ratio (95% confidence intervals): 16.71 (5.47-51.06), and 12.83 (4.62-35.63), respectively]. CONCLUSION Monitoring GLS validates the decline in LVEF in pediatric cancer patients.
Collapse
Affiliation(s)
- Aura A Sanchez Mejia
- Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, 6651 Main St. Suite E1920, 77030, Houston, TX, USA
- Texas Children's Hospital, 6621 Fannin St, 77030, Houston, TX, USA
| | - Ricardo H Pignatelli
- Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, 6651 Main St. Suite E1920, 77030, Houston, TX, USA
- Texas Children's Hospital, 6621 Fannin St, 77030, Houston, TX, USA
| | - Nino Rainusso
- Texas Children's Hospital, 6621 Fannin St, 77030, Houston, TX, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine Feigin Center, 1102 Bates St., Suite 1030.07, 77030, Houston, TX, USA
| | - Christian Lilje
- Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, 6651 Main St. Suite E1920, 77030, Houston, TX, USA
- Texas Children's Hospital, 6621 Fannin St, 77030, Houston, TX, USA
| | - Shagun Sachdeva
- Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, 6651 Main St. Suite E1920, 77030, Houston, TX, USA
- Texas Children's Hospital, 6621 Fannin St, 77030, Houston, TX, USA
| | - Hari P Tunuguntla
- Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, 6651 Main St. Suite E1920, 77030, Houston, TX, USA
- Texas Children's Hospital, 6621 Fannin St, 77030, Houston, TX, USA
| | - Tam T Doan
- Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, 6651 Main St. Suite E1920, 77030, Houston, TX, USA
- Texas Children's Hospital, 6621 Fannin St, 77030, Houston, TX, USA
| | - Anusha A Gandhi
- Baylor College of Medicine, One Baylor Plaza, 77030, Houston, TX, USA
| | - Nicole C Walters
- Baylor College of Medicine, One Baylor Plaza, 77030, Houston, TX, USA
| | | | - Robert W Loar
- Cook Children's Medical Center, 801 7th Ave, 76104, Fort Worth, TX, USA
| |
Collapse
|
26
|
Bottinor W. Mitigating, monitoring, and managing long-term chemotherapy- and radiation-induced cardiac toxicity. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:251-258. [PMID: 36485088 PMCID: PMC9820865 DOI: 10.1182/hematology.2022000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Five-year survival for childhood cancer now exceeds 85%. However, for many patients, treatment requires the use of intensive anthracycline-based chemotherapy and radiotherapy, both of which are associated with significant long-term cardiovascular toxicity. As such, late cardiovascular disease is now one of the leading causes of premature morbidity and mortality among childhood cancer survivors. Recent advances over the past decade have refined the cardiotoxic potential of various chemotherapeutics, and ongoing work seeks to determine the efficacy of various cardioprotective strategies in children receiving active cancer therapy. The development of risk prediction models offers an additional strategy to define risk for both newly treated and long-term survivors. Current screening strategies are primarily based on echocardiography, although there is active research investigating methods to further optimize screening through myocardial strain, cardiac magnetic resonance imaging, blood biomarkers, and genetics, along with the cost-effectiveness of different screening strategies. Active research is also underway investigating the efficacy of prevention strategies for childhood cancer survivors who have completed cancer therapy. This ranges from the use of medications to mitigate potential pathologic ventricular remodeling to reducing adverse and modifiable cardiovascular risk factors (eg, hypertension, dyslipidemia, insulin resistance, physical inactivity, tobacco exposure), many of which may be more common in cancer survivors vs the general population and are often underrecognized and undertreated in relatively young adult-aged survivors of childhood cancer.
Collapse
|
27
|
Zeng PYF, Cecchini MJ, Barrett JW, Shammas-Toma M, De Cecco L, Serafini MS, Cavalieri S, Licitra L, Hoebers F, Brakenhoff RH, Leemans CR, Scheckenbach K, Poli T, Wang X, Liu X, Laxague F, Prisman E, Poh C, Bose P, Dort JC, Shaikh MH, Ryan SEB, Dawson A, Khan MI, Howlett CJ, Stecho W, Plantinga P, Daniela da Silva S, Hier M, Khan H, MacNeil D, Mendez A, Yoo J, Fung K, Lang P, Winquist E, Palma DA, Ziai H, Amelio AL, Li SSC, Boutros PC, Mymryk JS, Nichols AC. Immune-based classification of HPV-associated oropharyngeal cancer with implications for biomarker-driven treatment de-intensification. EBioMedicine 2022; 86:104373. [PMID: 36442320 PMCID: PMC9706534 DOI: 10.1016/j.ebiom.2022.104373] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is significant interest in treatment de-escalation for human papillomavirus-associated (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) patients given the generally favourable prognosis. However, 15-30% of patients recur after primary treatment, reflecting a need for improved risk-stratification tools. We sought to develop a molecular test to risk stratify HPV+ OPSCC patients. METHODS We created an immune score (UWO3) associated with survival outcomes in six independent cohorts comprising 906 patients, including blinded retrospective and prospective external validations. Two aggressive radiation de-escalation cohorts were used to assess the ability of UWO3 to identify patients who recur. Multivariate Cox models were used to assess the associations between the UWO3 immune class and outcomes. FINDINGS A three-gene immune score classified patients into three immune classes (immune rich, mixed, or immune desert) and was strongly associated with disease-free survival in six datasets, including large retrospective and prospective datasets. Pooled analysis demonstrated that the immune rich group had superior disease-free survival compared to the immune desert (HR = 9.0, 95% CI: 3.2-25.5, P = 3.6 × 10-5) and mixed (HR = 6.4, 95% CI: 2.2-18.7, P = 0.006) groups after adjusting for age, sex, smoking status, and AJCC8 clinical stage. Finally, UWO3 was able to identify patients from two small treatment de-escalation cohorts who remain disease-free after aggressive de-escalation to 30 Gy radiation. INTERPRETATION With additional prospective validation, the UWO3 score could enable biomarker-driven clinical decision-making for patients with HPV+ OPSCC based on robust outcome prediction across six independent cohorts. Prospective de-escalation and intensification clinical trials are currently being planned. FUNDING CIHR, European Union, and the NIH.
Collapse
Affiliation(s)
- Peter Y F Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Matthew Shammas-Toma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Mara S Serafini
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Research Institute GROW, Maastricht University, Maastricht, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Kathrin Scheckenbach
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tito Poli
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, Parma, Italy
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Francisco Laxague
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Eitan Prisman
- Division of Otolaryngology- Head and Neck Surgery, Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Catherine Poh
- Division of Otolaryngology- Head and Neck Surgery, Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pinaki Bose
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Joseph C Dort
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Mushfiq H Shaikh
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Sarah E B Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Alice Dawson
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Mohammed I Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - William Stecho
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Paul Plantinga
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | | | - Michael Hier
- Department of Otolaryngology Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Halema Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Danielle MacNeil
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Adrian Mendez
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - John Yoo
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Kevin Fung
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Pencilla Lang
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Eric Winquist
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - David A Palma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Hedyeh Ziai
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Antonio L Amelio
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn S-C Li
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
28
|
Arad-Cohen N, Zeller B, Abrahamsson J, Fernandez Navarro JM, Cheuk D, Palmu S, Costa V, De Moerloose B, Hasle H, Jahnukainen K, Pronk CJ, Gísli Jónsson Ó, Kovalova Z, Lausen B, Munthe-Kaas M, Noren-Nyström U, Palle J, Pasauliene R, Saks K, Kaspers GJ. Supportive care in pediatric acute myeloid leukemia:Expert-based recommendations of the NOPHO-DB-SHIP consortium. Expert Rev Anticancer Ther 2022; 22:1183-1196. [PMID: 36191604 DOI: 10.1080/14737140.2022.2131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Pediatric acute myeloid leukemia (AML) is the second most common type of pediatric leukemia. Patients with AML are at high risk for several complications such as infections, typhlitis, and acute and long-term cardiotoxicity. Despite this knowledge, there are no definite supportive care guidelines as to what the best approach is to manage or prevent these complications. AREA COVERED The NOPHO-DB-SHIP (Nordic-Dutch-Belgian-Spain-Hong-Kong-Israel-Portugal) consortium, in preparation for a new trial in pediatric AML patients, had dedicated meetings for supportive care. In this review, the authors discuss the available data and outline recommendations for the management of children and adolescents with AML with an emphasis on hyperleukocytosis, tumor lysis syndrome, coagulation abnormalities and bleeding, infection, typhlitis, malnutrition, cardiotoxicity, and fertility preservation. EXPERT OPINION Improved supportive care has significantly contributed to increased cure rates. Recommendations on supportive care are an essential part of treatment for this highly susceptible population and will further improve their outcome.
Collapse
Affiliation(s)
- Nira Arad-Cohen
- Department of Pediatric Hemato-Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Bernward Zeller
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Jonas Abrahamsson
- Department of Paediatrics, Queen Silvia Children's Hospital, Institution for Clinical Sciences, Gothenburg, Sweden
| | | | - Daniel Cheuk
- Department of Pediatrics, Queen Mary Hospital, Hong Kong Pediatric Hematology & Oncology Study Group (HKPHOSG), Hong Kong
| | - Sauli Palmu
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vitor Costa
- Departament of Paediatrics, Instituto Português de Oncologia, FG-Porto, Portugal
| | | | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kirsi Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | - Zhanna Kovalova
- Department of Paediatrics, Children's Clinical University Hospital, Riga, Latvia
| | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Monica Munthe-Kaas
- Pediatric Department, Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | | | - Josefine Palle
- Department of Woman's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ramune Pasauliene
- Center of Oncology and Hematology, BMT unit, Vilnius University Children's Hospital, Vilnius, Lithuania
| | - Kadri Saks
- Department of Paediatrics, SA Tallinna Lastehaigla, Tallinn, Estonia
| | - Gertjan Jl Kaspers
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
29
|
Zhang XY, Yang KL, Li Y, Zhao Y, Jiang KW, Wang Q, Liu XN. Can Dietary Nutrients Prevent Cancer Chemotherapy-Induced Cardiotoxicity? An Evidence Mapping of Human Studies and Animal Models. Front Cardiovasc Med 2022; 9:921609. [PMID: 35845064 PMCID: PMC9277029 DOI: 10.3389/fcvm.2022.921609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Chemotherapy has significantly improved cancer survival rates at the cost of irreversible and frequent cardiovascular toxicity. As the main dose-dependent adverse effect, cardiotoxic effects not only limit the usage of chemotherapeutic agents, but also cause the high risk of severe poor prognoses for cancer survivors. Therefore, it is of great significance to seek more effective cardioprotective strategies. Some nutrients have been reported to diminish cardiac oxidative damage associated with chemotherapy. However, the currently available evidence is unclear, which requires a rigorous summary. As such, we conducted a systematic review of all available evidence and demonstrated whether nutrients derived from food could prevent cardiotoxicity caused by chemotherapy. Methods We searched Medline (via PubMed), Embase and the Cochrane Library from inception to Nov 9, 2021 to identify studies reporting dietary nutrients against cancer chemotherapy-related cardiotoxicity. We performed descriptive summaries on the included studies, and used forest plots to demonstrate the effects of various dietary nutrients. Results Fifty-seven eligible studies were identified, involving 53 animal studies carried on rats or mice and four human studies in cancer patients. Seven types of dietary nutrients were recognized including polyphenols (mainly extracted from grapes, grape seeds, and tea), allicin (mainly extracted form garlic), lycopene (mainly extracted from tomatoes), polyunsaturated fatty acids, amino acids (mainly referring to glutamine), coenzyme Q10, and trace elements (mainly referring to zinc and selenium). Dietary nutrients ameliorated left ventricular dysfunctions and myocardial oxidative stress at varying degrees, which were caused by chemotherapy. The overall risk of bias of included studies was at moderate to high risk. Conclusion The results indicated that dietary nutrients might be a potential strategy to protect cardiovascular system exposed to the chemotherapeutic agents, but more human studies are urged in this field.Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0015/.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China.,Nursing Department, Chengdu BOE Hospital, Chengdu, China
| | - Ke-Lu Yang
- Academic Center for Nursing and Midwifery, Department of Public Health and Primary Care, University of Leuven (KU Leuven), Leuven, Belgium
| | - Yang Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Yang Zhao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Xiao-Nan Liu
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Huang W, Xu R, Zhou B, Lin C, Guo Y, Xu H, Guo X. Clinical Manifestations, Monitoring, and Prognosis: A Review of Cardiotoxicity After Antitumor Strategy. Front Cardiovasc Med 2022; 9:912329. [PMID: 35757327 PMCID: PMC9226336 DOI: 10.3389/fcvm.2022.912329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
The development of various antitumor drugs has significantly improved the survival of patients with cancer. Many first-line chemotherapy drugs are cytotoxic and the cardiotoxicity is one of the most significant effects that could leads to poor prognosis and decreased survival rate. Cancer treatment include traditional anthracycline drugs, as well as some new targeted drugs such as trastuzumab and ICIs. These drugs may directly or indirectly cause cardiovascular injury through different mechanisms, and lead to increasing the risk of cardiovascular disease or accelerating the development of cardiovascular disease. Cardiotoxicity is clinically manifested by arrhythmia, decreased cardiac function, or even sudden death. The cardiotoxicity caused by traditional chemotherapy drugs such as anthracyclines are significantly known. The cardiotoxicity of some new antitumor drugs such like immune checkpoint inhibitors (ICIs) is also relatively clear and requiring further observation and verification. This review is focused on major three drugs with relatively high incidence of cardiotoxicity and poor prognosis and intended to provide an update on the clinical complications and outcomes of these drugs, and we innovatively summarize the monitoring status of survivors using these drugs and discuss the biomarkers and non-invasive imaging features to identify early cardiotoxicity. Finally, we summarize the prevention that decreasing antitumor drugs-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Center for Translational Medicine, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chao Lin
- Department of Hematology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huayan Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Carlino F, Diana A, Piccolo A, Ventriglia A, Bruno V, De Santo I, Letizia O, De Vita F, Daniele B, Ciardiello F, Orditura M. Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice. Cancers (Basel) 2022; 14:cancers14092102. [PMID: 35565233 PMCID: PMC9103968 DOI: 10.3390/cancers14092102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been considered for many years an orphan disease in terms of therapeutic options, with conventional chemotherapy (CT) still representing the mainstay of treatment in the majority of patients. Although breast cancer (BC) has been historically considered a "cold tumor", exciting progress in the genomic field leading to the characterization of the molecular portrait and the immune profile of TNBC has opened the door to novel therapeutic strategies, including Immune Checkpoint Inhibitors (ICIs), Poly ADP-Ribose Polymerase (PARP) inhibitors and Antibody Drug Conjugates (ADCs). In particular, compared to standard CT, the immune-based approach has been demonstrated to improve progression-free survival (PFS) and overall survival (OS) in metastatic PD-L1-positive TNBC and the pathological complete response rate in the early setting, regardless of PD-L1 expression. To date, PD-L1 has been widely used as a predictor of the response to ICIs; however, many patients do not benefit from the addition of immunotherapy. Therefore, PD-L1 is not a reliable predictive biomarker of the response, and its accuracy remains controversial due to the lack of a consensus about the assay, the antibody, and the scoring system to adopt, as well as the spatial and temporal heterogeneity of the PD-L1 status. In the precision medicine era, there is an urgent need to identify more sensitive biomarkers in the BC immune oncology field other than just PD-L1 expression. Through the characterization of the tumor microenvironment (TME), the analysis of peripheral blood and the evaluation of immune gene signatures, novel potential biomarkers have been explored, such as the Tumor Mutational Burden (TMB), Microsatellite Instability/Mismatch Repair Deficiency (MSI/dMMR) status, genomic and epigenomic alterations and tumor-infiltrating lymphocytes (TILs). This review aims to summarize the recent knowledge on BC immunograms and on the biomarkers proposed to support ICI-based therapy in TNBC, as well as to provide an overview of the potential strategies to enhance the immune response in order to overcome the mechanisms of resistance.
Collapse
Affiliation(s)
- Francesca Carlino
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
- Correspondence: ; Tel.: +39-349-5152216
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Antonio Piccolo
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Anna Ventriglia
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Vincenzo Bruno
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Irene De Santo
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ortensio Letizia
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ferdinando De Vita
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Michele Orditura
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| |
Collapse
|
32
|
Dhunputh C, Strullu M, Petit A, Merched M, Pasquet M, Azarnoush S, Leverger G, Ducassou S. Single-dose (4.5 mg/m 2 ) gemtuzumab ozogamicin in combination with fludarabine, cytarabine and anthracycline as reinduction therapy in relapsed or refractory paediatric acute myeloid leukaemia. Br J Haematol 2022; 198:373-381. [PMID: 35438187 DOI: 10.1111/bjh.18203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
Despite major therapeutic improvements, children with relapsed/refractory Acute Myeloid Leukaemia still have poor outcomes and overall survival does not exceed 40%. New treatments are required to improve their outcome; Gemtuzumab ozogamicin (GO), an anti-CD33 immunoconjugate antibody, is a potent cytotoxic agent whose efficacy has been demonstrated mainly in adults. The main objective of this retrospective multicentre study was to assess the outcome of children treated, between February 2008 and August 2019, with GO at a single 4.5 mg/m2 dose, in combination with Fludarabine, Cytarabine and antssshracyclines, in context of a first relapse (n = 26) or refractory disease (n = 3). The remission rate was 83% (24/29 children) and 20 children (69%) were allografted. With a median follow-up of 1.2 years (range: 0.1-8), the overall survival was 49% (CI95% = 33; 72). Most common adverse event was febrile neutropenia with microbiological identification in 55% of cases. Veno-occlusive disease occurred in 6 patients (21%), of which 5 subvened after bone marrow transplantation, and resolved within 2-32 days (median 10.5 days). Administration of GO in combination with FLA-anthracyclines chemotherapy appears to be a good reinduction regimen for relapsed or refractory AML with a good safety profile. These results warrant larger prospective study.
Collapse
Affiliation(s)
- Chloé Dhunputh
- Paediatric Haematology Oncology Unit, CHU de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Marion Strullu
- Paediatric Haematology Unit, AP-HP, Hopital Robert Débré, APHP, Paris, France
| | - Arnaud Petit
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Paediatric Haematology Oncology Unit, AP-HP, Armand Trousseau Hospital, Paris, France
| | | | - Marlène Pasquet
- Paediatric Haematology Oncology Unit, CHU de Toulouse, France
| | - Saba Azarnoush
- Paediatric Haematology Unit, AP-HP, Hopital Robert Débré, APHP, Paris, France
| | - Guy Leverger
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Paediatric Haematology Oncology Unit, AP-HP, Armand Trousseau Hospital, Paris, France
| | - Stéphane Ducassou
- Paediatric Haematology Oncology Unit, CHU de Bordeaux, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
33
|
Wilcox NS, Rotz SJ, Mullen M, Song EJ, Hamilton BK, Moslehi J, Armenian S, Wu JC, Rhee JW, Ky B. Sex-Specific Cardiovascular Risks of Cancer and Its Therapies. Circ Res 2022; 130:632-651. [PMID: 35175846 PMCID: PMC8915444 DOI: 10.1161/circresaha.121.319901] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In both cardiovascular disease and cancer, there are established sex-based differences in prevalence and outcomes. Males and females may also differ in terms of risk of cardiotoxicity following cancer therapy, including heart failure, cardiomyopathy, atherosclerosis, thromboembolism, arrhythmias, and myocarditis. Here, we describe sex-based differences in the epidemiology and pathophysiology of cardiotoxicity associated with anthracyclines, hematopoietic stem cell transplant (HCT), hormone therapy and immune therapy. Relative to males, the risk of anthracycline-induced cardiotoxicity is higher in prepubertal females, lower in premenopausal females, and similar in postmenopausal females. For autologous hematopoietic cell transplant, several studies suggest an increased risk of late heart failure in female lymphoma patients, but sex-based differences have not been shown for allogeneic hematopoietic cell transplant. Hormone therapies including GnRH (gonadotropin-releasing hormone) modulators, androgen receptor antagonists, selective estrogen receptor modulators, and aromatase inhibitors are associated with cardiotoxicity, including arrhythmia and venous thromboembolism. However, sex-based differences have not yet been elucidated. Evaluation of sex differences in cardiotoxicity related to immune therapy is limited, in part, due to low participation of females in relevant clinical trials. However, some studies suggest that females are at increased risk of immune checkpoint inhibitor myocarditis, although this has not been consistently demonstrated. For each of the aforementioned cancer therapies, we consider sex-based differences according to cardiotoxicity management. We identify knowledge gaps to guide future mechanistic and prospective clinical studies. Furthering our understanding of sex-based differences in cancer therapy cardiotoxicity can advance the development of targeted preventive and therapeutic cardioprotective strategies.
Collapse
Affiliation(s)
- Nicholas S. Wilcox
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seth J. Rotz
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Evelyn J. Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Betty Ky Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Saro Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - June Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Bonnie Ky
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Qu C, Wang J, Wang Y, He F, Shi X, Zhang Z, Wang Y. Multimodality imaging in the assessment of bone marrow-derived mesenchymal stem cell therapy for doxorubicin-induced cardiomyopathy. Am J Cancer Res 2022; 12:574-584. [PMID: 35261788 PMCID: PMC8899982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023] Open
Abstract
Due to their broad-spectrum effects and high antitumor efficacies, anthracycline-based chemotherapies are commonly prescribed in various solid and hematological malignancies. Doxorubicin (DOX) is one of the most highly used anthracyclines but has been shown to cause lethal cardiomyopathy in clinical practice. Studies have demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) have the ability to rescue DOX-induced cardiomyopathy (DIC). However, novel molecular imaging techniques are required to explore the biological behaviors, safety, eventual viability, and environmental interactions of transplanted stem cells during therapy. To investigate the biological behaviors of transplanted BMSCs, we applied bioluminescence imaging (BLI) and magnetic resonance imaging (MRI) techniques to trace firefly luciferase (Fluc) and ultrasmall superparamagnetic iron oxide (USPIO) double-labeled mouse BMSCs after injection into the heart apex in a chronic DIC mouse model. Then, we determined the optimal BMSC number for transplantation into the heart and optimized MRI parameters to evaluate transplanted BMSCs in vitro and in vivo. Our results showed that the BLI trace signal could last 7 days in the DIC mouse model, whereas the MRI signal lasted up to 3 days. However, MRI provided more detailed pathophysiological information on DIC than BLI, such as inflammation and fibrosis signs. The optimal in vivo cell number for BLI and MRI was determined to be 1×106. In conclusion, BLI combined with multimodality MRI could be used to monitor the biological behavior of BMSCs transplanted into a chronic DIC mouse model in a visual and dynamic manner.
Collapse
Affiliation(s)
- Chanjuan Qu
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Jian Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Yuqing Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua UniversityBeijing 100084, China
| | - Fangfei He
- National Center for Nanoscience and Technology (NCNST)Beijing 100190, China
| | - Xudong Shi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Sciences, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijing 100021, China
| | - Zhuoli Zhang
- Radiology & Biomedical Engineering Chao Family Comprehensive Cancer, University of CaliforniaIrvine, USA
| | - Yining Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| |
Collapse
|
35
|
Chow EJ, Aplenc R, Vrooman LM, Doody DR, Huang YSV, Aggarwal S, Armenian SH, Baker KS, Bhatia S, Constine LS, Freyer DR, Kopp LM, Leisenring WM, Asselin BL, Schwartz CL, Lipshultz SE. Late health outcomes after dexrazoxane treatment: A report from the Children's Oncology Group. Cancer 2022; 128:788-796. [PMID: 34644414 PMCID: PMC8792306 DOI: 10.1002/cncr.33974] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The objective of this study was to examine long-term outcomes among children newly diagnosed with cancer who were treated in dexrazoxane-containing clinical trials. METHODS P9404 (acute lymphoblastic leukemia/lymphoma [ALL]), P9425 and P9426 (Hodgkin lymphoma), P9754 (osteosarcoma), and Dana-Farber Cancer Institute 95-01 (ALL) enrolled 1308 patients between 1996 and 2001: 1066 were randomized (1:1) to doxorubicin with or without dexrazoxane, and 242 (from P9754) were nonrandomly assigned to receive dexrazoxane. Trial data were linked with the National Death Index, the Organ Procurement and Transplantation Network, the Pediatric Health Information System (PHIS), and Medicaid. Osteosarcoma survivors from the Childhood Cancer Survivor Study (CCSS; n = 495; no dexrazoxane) served as comparators in subanalyses. Follow-up events were assessed with cumulative incidence, Cox regression, and Fine-Gray methods. RESULTS In randomized trials (cumulative prescribed doxorubicin dose, 100-360 mg/m2 ; median follow-up, 18.6 years), dexrazoxane was not associated with relapse (hazard ratio [HR], 0.84; 95% confidence interval [CI], 0.63-1.13), second cancers (HR, 1.19; 95% CI, 0.62-2.30), all-cause mortality (HR, 1.07; 95% CI, 0.78-1.47), or cardiovascular mortality (HR, 1.45; 95% CI, 0.41-5.16). Among P9754 patients (all exposed to dexrazoxane; cumulative doxorubicin, 450-600 mg/m2 ; median follow-up, 16.6-18.4 years), no cardiovascular deaths or heart transplantation occurred. The 20-year heart transplantation rate among CCSS osteosarcoma survivors (mean doxorubicin, 377 ± 145 mg/m2 ) was 1.6% (vs 0% in P9754; P = .13). Among randomized patients, serious cardiovascular outcomes (cardiomyopathy, ischemic heart disease, and stroke) ascertained by PHIS/Medicaid occurred less commonly with dexrazoxane (5.6%) than without it (17.6%; P = .02), although cardiomyopathy rates alone did not differ (4.4% vs 8.1%; P = .35). CONCLUSIONS Dexrazoxane did not appear to adversely affect long-term mortality, event-free survival, or second cancer risk.
Collapse
Affiliation(s)
- Eric J. Chow
- Fred Hutchinson Cancer Research Center, Seattle Children’s Hospital
| | | | | | - David R. Doody
- Fred Hutchinson Cancer Research Center, Seattle Children’s Hospital
| | | | | | | | - K. Scott Baker
- Fred Hutchinson Cancer Research Center, Seattle Children’s Hospital
| | | | - Louis S. Constine
- University of Rochester Medical Center, Golisano Children’s Hospital
| | - David R. Freyer
- Children’s Hospital Los Angeles, University of Southern California
| | | | | | | | | | - Steven E. Lipshultz
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Oishei Children’s Hospital, Roswell Park Comprehensive Center
| |
Collapse
|
36
|
Brickler M, Raskin A, Ryan TD. Current State of Pediatric Cardio-Oncology: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:127. [PMID: 35204848 PMCID: PMC8870613 DOI: 10.3390/children9020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The landscape of pediatric oncology has dramatically changed over the course of the past several decades with five-year survival rates surpassing 80%. Anthracycline therapy has been the cornerstone of many chemotherapy regimens for pediatric patients since its introduction in the 1960s, and recent improved survival has been in large part due to advancements in chemotherapy, refinement of supportive care treatments, and development of novel therapeutics such as small molecule inhibitors, chimeric antigen receptor T-cell therapy, and immune checkpoint inhibitors. Unfortunately, many cancer-targeted therapies can lead to acute and chronic cardiovascular pathologies. The range of cardiotoxicity can vary but includes symptomatic or asymptotic heart failure, arrhythmias, coronary artery disease, valvar disease, pericardial disease, hypertension, and peripheral vascular disease. There is lack of data guiding primary prevention and treatment strategies in the pediatric population, which leads to substantial practice variability. Several important future research directions have been identified, including as they relate to cardiac disease, prevention strategies, management of cardiovascular risk factors, risk prediction, early detection, and the role of genetic susceptibility in development of cardiotoxicity. Continued collaborative research will be key in advancing the field. The ideal model for pediatric cardio-oncology is a proactive partnership between pediatric cardiologists and oncologists in order to better understand, treat, and ideally prevent cardiac disease in pediatric oncology patients.
Collapse
Affiliation(s)
| | | | - Thomas D. Ryan
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
37
|
Martinez HR, Beasley GS, Goldberg JF, Absi M, Ryan KA, Guerrier K, Joshi VM, Johnson JN, Morin CE, Hurley C, Morrison RR, Rai P, Hankins JS, Bishop MW, Triplett BM, Ehrhardt MJ, Pui CH, Inaba H, Towbin JA. Pediatric Cardio-Oncology Medicine: A New Approach in Cardiovascular Care. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121200. [PMID: 34943396 PMCID: PMC8699848 DOI: 10.3390/children8121200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
Survival for pediatric patients diagnosed with cancer has improved significantly. This achievement has been made possible due to new treatment modalities and the incorporation of a systematic multidisciplinary approach for supportive care. Understanding the distinctive cardiovascular characteristics of children undergoing cancer therapies has set the underpinnings to provide comprehensive care before, during, and after the management of cancer. Nonetheless, we acknowledge the challenge to understand the rapid expansion of oncology disciplines. The limited guidelines in pediatric cardio-oncology have motivated us to develop risk-stratification systems to institute surveillance and therapeutic support for this patient population. Here, we describe a collaborative approach to provide wide-ranging cardiovascular care to children and young adults with oncology diseases. Promoting collaboration in pediatric cardio-oncology medicine will ultimately provide excellent quality of care for future generations of patients.
Collapse
Affiliation(s)
- Hugo R. Martinez
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
- Correspondence:
| | - Gary S. Beasley
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason F. Goldberg
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Mohammed Absi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Kaitlin A. Ryan
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Karine Guerrier
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Vijaya M. Joshi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason N. Johnson
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Cara E. Morin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Caitlin Hurley
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Ronald Ray Morrison
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
| | - Parul Rai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Jane S. Hankins
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Michael W. Bishop
- Division of Solid Tumor, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Matthew J. Ehrhardt
- Division of Cancer Survivorship, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ching-Hon Pui
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Hiroto Inaba
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Jeffrey A. Towbin
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| |
Collapse
|
38
|
Narayan HK, Getz KD, Leger KJ. Minimizing cardiac toxicity in children with acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:368-375. [PMID: 34889355 PMCID: PMC8791101 DOI: 10.1182/hematology.2021000268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anthracycline chemotherapy remains an integral component of modern pediatric acute myeloid leukemia (AML) regimens and is often delivered at high doses to maximize cancer survival. Unfortunately, high-dose anthracyclines are associated with a significant risk of cardiotoxicity, which may result in early and/or long-term left ventricular systolic dysfunction and heart failure. Moreover, the development of cardiotoxicity during pediatric AML therapy is associated with lower event-free and overall survival, which may be partially attributable to incomplete anthracycline delivery. A combined strategy of primary cardioprotection and close cardiac monitoring can maximize chemotherapy delivery while reducing the toxicity of intensive AML therapy. Primary cardioprotection using dexrazoxane reduces short-term cardiotoxicity without compromising cancer survival. Liposomal anthracycline formulations, which are under active investigation, have the potential to mitigate cardiotoxicity while also improving antitumor efficacy. Primary cardioprotective strategies may reduce but not eliminate the risk of cardiotoxicity; therefore, close cardiac monitoring is also needed. Standard cardiac monitoring consists of serial echocardiographic assessments for left ventricular ejection fraction decline. Global longitudinal strain has prognostic utility in cancer therapy-related cardiotoxicity and may be used as an adjunct assessment. Additional cardioprotective measures should be considered in response to significant cardiotoxicity; these include cardiac remodeling medications to support cardiac recovery and anthracycline dose interruption and/or regimen modifications. However, the withholding of anthracyclines should be limited to avoid compromising cancer survival. A careful approach to cardioprotection during AML therapy is critical to maximize the efficacy of leukemia treatment while minimizing the short- and long-term risks of cardiotoxicity.
Collapse
Affiliation(s)
- Hari K Narayan
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Kelly D Getz
- Departments of Biostatistics, Epidemiology & Informatics and Pediatrics, Perelman School of Medicine, University of Pennsylvania; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kasey J Leger
- Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA
| |
Collapse
|
39
|
Horton DB, Blum MD, Burcu M. Real-World Evidence for Assessing Treatment Effectiveness and Safety in Pediatric Populations. J Pediatr 2021; 238:312-316. [PMID: 34217767 PMCID: PMC8249672 DOI: 10.1016/j.jpeds.2021.06.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Daniel B. Horton
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ,Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, New Brunswick, NJ,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ,Reprint requests: Daniel B. Horton, MD, MSCE, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, 112 Paterson St, New Brunswick, NJ 08901
| | - Michael D. Blum
- Office of Pharmacovigilance and Epidemiology, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Mehmet Burcu
- Department of Epidemiology, Merck & Co., Inc., Kenilworth, NJ
| |
Collapse
|
40
|
Mechanisms and Insights for the Development of Heart Failure Associated with Cancer Therapy. CHILDREN-BASEL 2021; 8:children8090829. [PMID: 34572260 PMCID: PMC8468170 DOI: 10.3390/children8090829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 01/01/2023]
Abstract
Cardiotoxicity is a well-recognized late effect among childhood cancer survivors. With various pediatric cancers becoming increasingly curable, it is imperative to understand the disease burdens that survivors may face in the future. In order to prevent or mitigate cardiovascular complications, we must first understand the mechanistic underpinnings. This review will examine the underlying mechanisms of cardiotoxicity that arise from traditional antineoplastic chemotherapies, radiation therapy, hematopoietic stem cell transplantation, as well as newer cellular therapies and targeted cancer therapies. We will then propose areas for prevention, primarily drawing from the anthracycline-induced cardiotoxicity literature. Finally, we will explore the role of human induced pluripotent stem cell cardiomyocytes and genetics in advancing the field of cardio-oncology.
Collapse
|
41
|
Matetic A, Mohamed M, Miller RJH, Kolman L, Lopez-Mattei J, Cheung WY, Brenner DR, Van Spall HGC, Graham M, Bianco C, Mamas MA. Impact of cancer diagnosis on causes and outcomes of 5.9 million US patients with cardiovascular admissions. Int J Cardiol 2021; 341:76-83. [PMID: 34333019 DOI: 10.1016/j.ijcard.2021.07.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION There are limited data on causes of cardiovascular (CV) admissions and associated outcomes among patients with different cancers. METHODS All CV admissions from the US National Inpatient Sample between October 2015 to December 2017 were stratified by cancer type as well as metastatic status. Multivariable logistic regression was performed to determine the adjusted odds ratios (aOR) of in-hospital mortality in different groups. RESULTS From 5,936,014 eligible CV admissions, cancer was present in 265,221 (4.5%) hospitalizations. There was significant variation in the admission diagnoses among the different cancers, with hematological malignancies being principally associated with heart failure (HF), lung cancer with atrial fibrillation (AF), and colorectal and prostate cancer with acute myocardial infarction (AMI). Admission with haemorrhagic stroke has the highest associated mortality across cancers (20.0-38.4%). In-hospital mortality was higher in cancer than non-cancer patients across most CV admissions (P < 0.001) with AF having the worst prognosis. Compared to group without any cancer, the greatest aOR of mortality was associated with lung cancer in AMI (aOR 2.32, 95% CI 2.18-2.47), ischemic stroke (aOR 2.21, 95%CI 2.08-2.34), AF (aOR 4.69, 95%CI 4.32-5.10) and HF (aOR 2.07, 95%CI 1.89-2.27). CONCLUSIONS The most common causes of CV admission to hospital vary in patients with different types of cancer, with AMI being most common in patients with colon cancer, HF in patients with hematological malignancies and AF in patients with lung cancer. Patients with cancer, particularly lung cancer, have greater mortality than non-cancer patients after admissions with a CV cause.
Collapse
Affiliation(s)
- Andrija Matetic
- Keele Cardiovascular Research Group, Keele University, Stoke on Trent, UK; Department of Cardiology, University Hospital of Split, Split, Croatia
| | - Mohamed Mohamed
- Keele Cardiovascular Research Group, Keele University, Stoke on Trent, UK
| | - Robert J H Miller
- Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Louis Kolman
- Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Juan Lopez-Mattei
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Winson Y Cheung
- Department of Medicine and Oncology, University of Calgary, Calgary, Canada
| | - Darren R Brenner
- Departments of Oncology and Community Health Sciences, University of Calgary, Calgary, Canada
| | - Harriette G C Van Spall
- Division of Cardiology, Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Michelle Graham
- Division of Cardiology, University of Alberta, Edmonton, Canada
| | - Christopher Bianco
- Division of Cardiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Keele University, Stoke on Trent, UK; Department of Cardiology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
42
|
Makimoto A, Fang J, Maeda H. Development of a Selective Tumor-Targeted Drug Delivery System: Hydroxypropyl-Acrylamide Polymer-Conjugated Pirarubicin (P-THP) for Pediatric Solid Tumors. Cancers (Basel) 2021; 13:cancers13153698. [PMID: 34359599 PMCID: PMC8345214 DOI: 10.3390/cancers13153698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Hydroxypropyl acrylamide polymer-conjugated pirarubicin (P-THP), an innovative polymer-conjugated anticancer agent, theoretically has highly tumor-specific distribution via the enhanced permeability and retention (EPR) effect. While anthracyclines are extremely important in the treatment of most pediatric solid tumors, P-THP may serve as a less toxic and more effective substitute for conventional anthracyclines in both newly diagnosed and refractory/recurrent pediatric cancers. Abstract Most pediatric cancers are highly chemo-sensitive, and cytotoxic chemotherapy has always been the mainstay of treatment. Anthracyclines are highly effective against most types of childhood cancer, such as neuroblastoma, hepatoblastoma, nephroblastoma, rhabdomyosarcoma, Ewing sarcoma, and so forth. However, acute and chronic cardiotoxicity, one of the major disadvantages of anthracycline use, limits their utility and effectiveness. Hydroxypropyl acrylamide polymer-conjugated pirarubicin (P-THP), which targets tumor tissue highly selectively via the enhanced permeability and retention (EPR) effect, and secondarily releases active pirarubicin molecules quickly into the acidic environment surrounding the tumor. Although, the latter rarely occurs in the non-acidic environment surrounding normal tissue. This mechanism has the potential to minimize acute and chronic toxicities, including cardiotoxicity, as well as maximize the efficacy of chemotherapy through synergy with tumor-targeting accumulation of the active molecules and possible dose-escalation. Simply replacing doxorubicin with P-THP in a given regimen can improve outcomes in anthracycline-sensitive pediatric cancers with little risk of adverse effects, such as cardiotoxicity. As cancer is a dynamic disease showing intra-tumoral heterogeneity during its course, continued parallel development of cytotoxic agents and molecular targeting agents is necessary to find potentially more effective treatments.
Collapse
Affiliation(s)
- Atsushi Makimoto
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, Tokyo 183-8561, Japan
- Correspondence: ; Tel.: +81-42-300-5111 (ext. 5177)
| | - Jun Fang
- Faculty of Pharmaceutical Science, Sojo University, Kumamoto 860-0082, Japan;
| | - Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan;
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 862-0954, Japan
- Tohoku University, Miyagi 980-8572, Japan
- Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Abrahão R, Huynh JC, Benjamin DJ, Li QW, Winestone LE, Muffly L, Keegan THM. Chronic medical conditions and late effects after acute myeloid leukaemia in adolescents and young adults: a population-based study. Int J Epidemiol 2021; 50:663-674. [PMID: 34000732 DOI: 10.1093/ije/dyaa184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Curative-intent treatment of acute myeloid leukaemia (AML) can lead to multiple chronic medical conditions ('late effects'). Little is known about the burden of late effects in adolescent and young adult (AYA, 15-39 years) survivors of AML. We aimed to estimate the cumulative incidence and investigate the main predictors of late effects among these patients. METHODS During 1996-2012, 1168 eligible AYAs with AML who survived ≥2 years after diagnosis were identified in the California Cancer Registry. Late effects were reported from State hospital discharge data, and patients were followed through 2014. Hazard ratios and 95% confidence intervals of late effects occurrence were estimated using Cox proportional hazard models, adjusted for sociodemographic and clinical factors. RESULTS The most common late effects at 10 years after diagnosis were: endocrine (26.1%), cardiovascular (18.6%) and respiratory (6.6%), followed by neurologic (4.9%), liver/pancreatic (4.3%), renal (3.1%), avascular necrosis (2.7%) and second primary malignancies (2.4%). Of 1168 survivors, 547 (46.8%) received a haematopoietic stem cell transplant (HSCT). After multivariable adjustments, AYAs who underwent HSCT or had a non-favourable risk AML experienced ∼2-fold or higher increased likelihood of all late effects. Additionally, AYAs of Hispanic, Black or Asian/Pacific Islander (vs non-Hispanic White) race/ethnicity and those who resided in lower socio-economic neighbourhoods were at higher risk of numerous late effects. CONCLUSIONS Our findings underscore the need for long-term surveillance for the prevention, early detection and treatment of late effects, and can inform the development of AYA-focused consensus-based guidelines that will ultimately improve the quality of life and survival of these young vulnerable patients.
Collapse
Affiliation(s)
- Renata Abrahão
- Division of Hematology and Oncology, Center for Oncology Hematology Outcomes Research and Training (COHORT), University of California, Davis, Sacramento, CA, USA.,Center for Healthcare Policy and Research, University of California, Davis, Sacramento, CA, USA
| | - Jasmine C Huynh
- Division of Hematology and Oncology, Center for Oncology Hematology Outcomes Research and Training (COHORT), University of California, Davis, Sacramento, CA, USA
| | - David J Benjamin
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Irvine, Orange, CA, USA
| | - Qian W Li
- Division of Hematology and Oncology, Center for Oncology Hematology Outcomes Research and Training (COHORT), University of California, Davis, Sacramento, CA, USA
| | - Lena E Winestone
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | - Lori Muffly
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Theresa H M Keegan
- Division of Hematology and Oncology, Center for Oncology Hematology Outcomes Research and Training (COHORT), University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
44
|
Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer 2021; 68:e28979. [PMID: 33844444 DOI: 10.1002/pbc.28979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease that requires a multifaceted treatment approach. Although outcomes for low-risk AML have improved significantly over recent decades, high-risk AML continues to be associated with an adverse prognosis. Recent advances in molecular diagnostics, risk stratification, and supportive care have contributed to improvements in outcomes in pediatric AML. Targeted approaches, for example, the use of tyrosine kinase inhibitors to treat FLT3-ITD AML, offer promise and are currently undergoing clinical investigation in pediatric patients. New approaches to hematopoietic stem cell transplantation, including the use of haploidentical donors, are significantly expanding donor options for patients with high-risk AML. This review provides an overview of recent advances in the treatment of pediatric AML that are likely to have clinical impact and reshape the standard of care.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yogi Chopra
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Mourad
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Kuang-Yueh Chiang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
45
|
He X, Ji J, Dai X, Qdaisat AZ, Esteva FJ, Hortobagyi GN, Yeung SCJ. Association of Cardiovascular Disease Risk Factors with Late Cardiotoxicity and Survival in HER2-positive Breast Cancer Survivors. Clin Cancer Res 2021; 27:5343-5352. [PMID: 34117035 DOI: 10.1158/1078-0432.ccr-20-4162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Breast cancer and cardiovascular (CV) diseases often share the same risk factors. It is increasingly important to identify risk factors for CV events in patients with high-risk breast cancer and explore optimal treatment regimens. PATIENTS AND METHODS Early HER2-positive breast cancer patients at our institution between January 1998 and October 2009 were reviewed. Primary outcome was late-severe-CV-event-free survival, and late severe CV events were defined as cardiovascular death, cardiomyopathy, symptomatic heart failure, and myocardial infarction developing 2+ years after breast cancer diagnosis. Kaplan-Meier plots, Cox proportional hazard regressions, and restricted mean survival time were used to evaluate outcomes. RESULTS We identified 2,448 consecutive eligible patients with a median follow-up time of 111.0 months (interquartile range, 52.0-151.8 months). One hundred and thirty-six patients had late severe CV events and 752 died of any cause [533 (70.9%) died of primary breast cancer; 12 (1.6%) died of cardiovascular disease]. Hypertension [HR, 1.546; 95% confidence interval (95% CI), 1.030-2.320; P = 0.036] and history of coronary artery disease (CAD; HR, 3.333; 95% CI, 1.669-6.656; P < 0.001) were associated with worse late-severe-CV-event-free survival. Anthracycline-containing regimens (HR, 1.536; 95% CI, 0.979-2.411; P = 0.062) was not a significant risk factor for CV events in multivariate analysis. Regimens containing both anthracycline and anti-HER2 therapy were prognostic for better OS (HR, 0.515; 95% CI, 0.412-0.643; P < 0.001). CONCLUSIONS Hypertension and CAD history were independent prognostic factors for late severe CV events. Adding anti-HER2 agents to anthracycline-containing regimens did not substantially increase the risk for late severe cardiotoxicity and conferred better overall survival.
Collapse
Affiliation(s)
- Xuexin He
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jiali Ji
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Xiaolan Dai
- Department of Pharmacy, Shantou University, School of Medicine, Shantou, Guangdong, China
| | - Aiham Z Qdaisat
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francisco J Esteva
- Division of Hematology/Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sai-Ching J Yeung
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
46
|
How I treat pediatric acute myeloid leukemia. Blood 2021; 138:1009-1018. [PMID: 34115839 DOI: 10.1182/blood.2021011694] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment outcomes for pediatric patients with acute myeloid leukemia (AML) have continued to lag behind outcomes reported for children with acute lymphoblastic leukemia (ALL), in part because of the heterogeneity of the disease, a paucity of targeted therapies, and the relatively slow development of immunotherapy compared to ALL. In addition, we have reached the limits of treatment intensity and, even with outstanding supportive care, it is highly unlikely that further intensification of conventional chemotherapy alone will impact relapse rates. However, comprehensive genomic analyses and a more thorough characterization of the leukemic stem cell have provided insights that should lead to tailored and more effective therapies in the near future. In addition, new therapies are finally emerging, including the BCL-2 inhibitor venetoclax, CD33 and CD123-directed chimeric antigen receptor T cell therapy, CD123-directed antibody therapy, and menin inhibitors. Here we present four cases to illustrate some of the controversies regarding the optimal treatment of children with newly diagnosed or relapsed AML.
Collapse
|
47
|
Minimally myelosuppressive regimen for remission induction in pediatric AML: long-term results of an observational study. Blood Adv 2021; 5:1837-1847. [PMID: 33787864 DOI: 10.1182/bloodadvances.2020003453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment refusal and death as a result of toxicity account for most treatment failures among children with acute myeloid leukemia (AML) in resource-constrained settings. We recently reported the results of treating children with AML with a combination of low-dose cytarabine and mitoxantrone or omacetaxine mepesuccinate with concurrent granulocyte colony-stimulating factor (G-CSF) (low-dose chemotherapy [LDC]) for remission induction followed by standard postremission strategies. We have now expanded the initial cohort and have provided long-term follow-up. Eighty-three patients with AML were treated with the LDC regimen. During the study period, another 100 children with AML received a standard-dose chemotherapy (SDC) regimen. Complete remission was attained in 88.8% and 86.4% of patients after induction in the LDC and SDC groups, respectively (P = .436). Twenty-two patients in the LDC group received SDC for the second induction course. Significantly more high-risk AML patients were treated with the SDC regimen (P = .035). There were no significant differences between the LDC and SDC groups in 5-year event-free survival (61.4% ± 8.7% vs 65.2% ± 7.4%, respectively; P = .462), overall survival (72.7% ± 6.9% vs 72.5% ± 6.2%, respectively; P = .933), and incidence of relapse (20.5% ± 4.5% vs 17.6% ± 3.9%, respectively; P = .484). Clearance of mutations based on the average variant allele frequency at complete remission in the LDC and SDC groups was 1.9% vs 0.6% (P < .001) after induction I and 0.17% vs 0.078% (P = .052) after induction II. In conclusion, our study corroborated the high remission rate reported for children with AML who received at least 1 course of LDC. The results, although preliminary, also suggest that long-term survival of these children is comparable to that of children who receive SDC regimens.
Collapse
|
48
|
Narezkina A, Narayan HK, Zemljic-Harpf AE. Molecular mechanisms of anthracycline cardiovascular toxicity. Clin Sci (Lond) 2021; 135:1311-1332. [PMID: 34047339 PMCID: PMC10866014 DOI: 10.1042/cs20200301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Anthracyclines are effective chemotherapeutic agents, commonly used in the treatment of a variety of hematologic malignancies and solid tumors. However, their use is associated with a significant risk of cardiovascular toxicities and may result in cardiomyopathy and heart failure. Cardiomyocyte toxicity occurs via multiple molecular mechanisms, including topoisomerase II-mediated DNA double-strand breaks and reactive oxygen species (ROS) formation via effects on the mitochondrial electron transport chain, NADPH oxidases (NOXs), and nitric oxide synthases (NOSs). Excess ROS may cause mitochondrial dysfunction, endoplasmic reticulum stress, calcium release, and DNA damage, which may result in cardiomyocyte dysfunction or cell death. These pathophysiologic mechanisms cause tissue-level manifestations, including characteristic histopathologic changes (myocyte vacuolization, myofibrillar loss, and cell death), atrophy and fibrosis, and organ-level manifestations including cardiac contractile dysfunction and vascular dysfunction. In addition, these mechanisms are relevant to current and emerging strategies to diagnose, prevent, and treat anthracycline-induced cardiomyopathy. This review details the established and emerging data regarding the molecular mechanisms of anthracycline-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Anna Narezkina
- Department of Medicine, Division of Cardiovascular Medicine, UCSD Cardiovascular Institute, University of California, San Diego
| | - Hari K. Narayan
- Department of Pediatrics, Division of Cardiology, University of California, San Diego
| | - Alice E. Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
49
|
Anthracycline-related cardiotoxicity in older patients with acute myeloid leukemia: a Young SIOG review paper. Blood Adv 2021; 4:762-775. [PMID: 32097461 DOI: 10.1182/bloodadvances.2019000955] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
The incidence of acute myeloid leukemia (AML) increases with age. Intensive induction chemotherapy containing cytarabine and an anthracycline has been part of the upfront and salvage treatment of AML for decades. Anthracyclines are associated with a significant risk of cardiotoxicity (especially anthracycline-related left ventricular dysfunction [ARLVD]). In the older adult population, the higher prevalence of cardiac comorbidities and risk factors may further increase the risk of ARLVD. In this article of the Young International Society of Geriatric Oncology group, we review the prevalence of ARLVD in patients with AML and factors predisposing to ARLVD, focusing on older adults when possible. In addition, we review the assessment of cardiac function and management of ARLVD during and after treatment. It is worth noting that only a minority of clinical trials focus on alternative treatment strategies in patients with mildly declined left ventricular ejection fraction or at a high risk for ARLVD. The limited evidence for preventive strategies to ameliorate ARLVD and alternative strategies to anthracycline use in the setting of cardiac comorbidities are discussed. Based on extrapolation of findings from younger adults and nonrandomized trials, we recommend a comprehensive baseline evaluation of cardiac function by imaging, cardiac risk factors, and symptoms to risk stratify for ARLVD. Anthracyclines remain an appropriate choice for induction although careful risk-stratification based on cardiac disease, risk factors, and predicted chemotherapy-response are warranted. In case of declined left ventricular ejection fraction, alternative strategies should be considered.
Collapse
|
50
|
Diagnosis, Prevention, Treatment and Surveillance of Anthracycline-Induced Cardiovascular Toxicity in Pediatric Cancer Survivors. HEARTS 2021. [DOI: 10.3390/hearts2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in pediatric cancer therapies have dramatically improved the likelihood of survival. As survivors are aging, however, we are now understanding that treatment carries a significant risk of cardiovascular toxicity, which can develop immediately, or even many years after completing therapy. Anthracycline derivates are some of the most commonly used agents in pediatric oncology treatment protocols, which have a dose-dependent correlation with the development of cardiac toxicity. As we learn more about the mechanisms of toxicity, we are developing prevention strategies, including improvements in surveillance, to improve early diagnosis of heart disease. Current survivorship surveillance protocols often include screening echocardiograms to evaluate systolic function by measuring the ejection fraction or fractional shortening. However, these measurements alone are not enough to capture early myocardial changes. The use of additional imaging biomarkers, serum biomarkers, electrocardiograms, as well as cholesterol and blood pressure screening, are key to the early detection of cardiomyopathy and cardiovascular disease. Medical treatment strategies are the same as those used for heart failure from other causes, but earlier recognition and implementation can lead to improved long term outcomes.
Collapse
|