1
|
Rees D, Gianferante DM, Kim J, Stavrou T, Reaman G, Sapkota Y, Gramatges MM, Morton LM, Hudson MM, Armstrong GT, Freedman ND, Huang WY, Diver WR, Lori A, Luo W, Hicks BD, Liu J, Hutchinson AA, Goldstein AM, Mirabello L. Frequency of pathogenic germline variants in pediatric medulloblastoma survivors. Front Oncol 2024; 14:1441958. [PMID: 39184053 PMCID: PMC11341988 DOI: 10.3389/fonc.2024.1441958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor in children. Most cases are sporadic, but well characterized germline alterations in APC, ELP1, GPR161, PTCH1, SUFU, and TP53 predispose to medulloblastoma. However, knowledge about pathogenic/likely pathogenic (P/LP) variants that predispose to medulloblastoma vary based on genes evaluated, patient demographics, and pathogenicity definitions. Methods Germline exome sequencing was conducted on 160 childhood survivors of medulloblastoma. Analyses focused on rare variants in 239 known cancer susceptibility genes (CSGs). P/LP variants were identified using ClinVar and InterVar. Variants of unknown significance in known medulloblastoma predisposing genes (APC, ELP1, GPR161, PTCH1, SUFU, TP53) were further classified for loss of function variants. We compared the frequency of P/LP variants in cases to that in 1,259 cancer-free adult controls. Results Twenty cases (12.5%) had a P/LP variant in an autosomal dominant CSG versus 5% in controls (p=1.0 x10-3), and 10 (6.3%) of these were P/LP variants in a known medulloblastoma gene, significantly greater than 0.2% observed in controls (p=1.4x10-8). The CSGs with the most P/LP variants in cases, and significantly higher than controls, were ELP1 (p=3.0x10-4) and SUFU (p=1.4x10-3). Conclusion Approximately one in eight pediatric medulloblastoma survivors had an autosomal dominant P/LP CSG variant. We confirm several known associated genes and identify novel genes that may be important in medulloblastoma.
Collapse
Affiliation(s)
- Donald Rees
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
- Department of Pediatric Hematology and Oncology, Walter Reed National Military Medical Center, Bethesda, MD, United States
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D. Matthew Gianferante
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | | | - Gregory Reaman
- Division Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yadav Sapkota
- Departments of Oncology and Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - M. Monica Gramatges
- Division of Hematology and Oncology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - Melissa M. Hudson
- Departments of Oncology and Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Gregory T. Armstrong
- Departments of Oncology and Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - W. Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Belynda D. Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jia Liu
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Amy A. Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
2
|
Patel K, Smith NJ. Primary cilia, A-kinase anchoring proteins and constitutive activity at the orphan G protein-coupled receptor GPR161: A tale about a tail. Br J Pharmacol 2024; 181:2182-2196. [PMID: 36772847 DOI: 10.1111/bph.16053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Primary cilia are non-motile antennae-like structures responsible for sensing environmental changes in most mammalian cells. Ciliary signalling is largely mediated by the Sonic Hedgehog (Shh) pathway, which acts as a master regulator of ciliary protein transit and is essential for normal embryonic development. One particularly important player in primary cilia is the orphan G protein-coupled receptor, GPR161. In this review, we introduce GPR161 in the context of Shh signalling and describe the unique features on its C-terminus such as PKA phosphorylation sites and an A-kinase anchoring protein motif, which may influence the function of the receptor, cAMP compartmentalisation and/or trafficking within primary cilia. We discuss the recent putative pairing of GPR161 and spexin-1, highlighting the additional steps needed before GPR161 could be considered 'deorphanised'. Finally, we speculate that the marked constitutive activity and unconventional regulation of GPR161 may indicate that the receptor may not require an endogenous ligand. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Kinjal Patel
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
3
|
Hansford JR, Das A, McGee RB, Nakano Y, Brzezinski J, Scollon SR, Rednam SP, Schienda J, Michaeli O, Kim SY, Greer MLC, Weksberg R, Stewart DR, Foulkes WD, Tabori U, Pajtler KW, Pfister SM, Brodeur GM, Kamihara J. Update on Cancer Predisposition Syndromes and Surveillance Guidelines for Childhood Brain Tumors. Clin Cancer Res 2024; 30:2342-2350. [PMID: 38573059 PMCID: PMC11147702 DOI: 10.1158/1078-0432.ccr-23-4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Tumors of the central nervous system (CNS) comprise the second most common group of neoplasms in childhood. The incidence of germline predisposition among children with brain tumors continues to grow as our knowledge on disease etiology increases. Some children with brain tumors may present with nonmalignant phenotypic features of specific syndromes (e.g., nevoid basal cell carcinoma syndrome, neurofibromatosis type 1 and type 2, DICER1 syndrome, and constitutional mismatch-repair deficiency), while others may present with a strong family history of cancer (e.g., Li-Fraumeni syndrome) or with a rare tumor commonly found in the context of germline predisposition (e.g., rhabdoid tumor predisposition syndrome). Approximately 50% of patients with a brain tumor may be the first in a family identified to have a predisposition. The past decade has witnessed a rapid expansion in our molecular understanding of CNS tumors. A significant proportion of CNS tumors are now well characterized and known to harbor specific genetic changes that can be found in the germline. Additional novel predisposition syndromes are also being described. Identification of these germline syndromes in individual patients has not only enabled cascade testing of family members and early tumor surveillance but also increasingly affected cancer management in those patients. Therefore, the AACR Cancer Predisposition Working Group chose to highlight these advances in CNS tumor predisposition and summarize and/or generate surveillance recommendations for established and more recently emerging pediatric brain tumor predisposition syndromes.
Collapse
Affiliation(s)
- Jordan R Hansford
- Michael Rice Children's Hematology and Oncology Center, Women's and Children's Hospital; South Australia Health and Medical Research Institute; South Australia ImmunoGenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anirban Das
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Rose B McGee
- Department of Oncology, Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yoshiko Nakano
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas
| | - Jack Brzezinski
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sarah R Scollon
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas
| | - Surya P Rednam
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Orli Michaeli
- Division of Hematology/Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Center, Cincinnati, Ohio
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children/Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - William D Foulkes
- Department of Human Genetics, McGill University, and Division of Medical Genetics, Departments of Specialized Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ); German Cancer Research Center Heidelberg (DKFZ) and Heidelberg University Hospital, Heidelberg; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ); German Cancer Research Center Heidelberg (DKFZ) and Heidelberg University Hospital, Heidelberg; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Garrett M Brodeur
- Department of Pediatrics, Division of Oncology, the Children's Hospital of Philadelphia, and the University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Junne Kamihara
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter JF, Dror RO, Evers AS, Mukhopadhyay S, Manglik A. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. Nat Struct Mol Biol 2024; 31:667-677. [PMID: 38326651 PMCID: PMC11221913 DOI: 10.1038/s41594-024-01223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, a sterol that binds adjacent to transmembrane helices 6 and 7 stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress Gs-mediated signaling. These mutants retain the ability to suppress GLI2 transcription factor accumulation in primary cilia, a key function of ciliary GPR161. By contrast, a protein kinase A-binding site in the GPR161 C terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the role of GPR161 function in other signaling pathways.
Collapse
Affiliation(s)
- Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Simone Harrison
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
| | - Masha Karelina
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek R Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel P Berry
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Philipp Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Douglas F Covey
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Debora S Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ron O Dror
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Cipri S, Del Baldo G, Carai A, Cacchione A, Agolini E, Novelli A, Rossi S, Colafati GS, Boccuto L, Mastronuzzi A. A second case report of medulloblastoma in a patient carrying biallelic pathogenic MUTYH germline variants. Neuropathol Appl Neurobiol 2024; 50:e12968. [PMID: 38477379 DOI: 10.1111/nan.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, South Carolina, USA
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Stoltze UK, Foss-Skiftesvik J, Hansen TVO, Rasmussen S, Karczewski KJ, Wadt KAW, Schmiegelow K. The evolutionary impact of childhood cancer on the human gene pool. Nat Commun 2024; 15:1881. [PMID: 38424437 PMCID: PMC10904397 DOI: 10.1038/s41467-024-45975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Germline pathogenic variants associated with increased childhood mortality must be subject to natural selection. Here, we analyze publicly available germline genetic metadata from 4,574 children with cancer [11 studies; 1,083 whole exome sequences (WES), 1,950 whole genome sequences (WGS), and 1,541 gene panel] and 141,456 adults [125,748 WES and 15,708 WGS]. We find that pediatric cancer predisposition syndrome (pCPS) genes [n = 85] are highly constrained, harboring only a quarter of the loss-of-function variants that would be expected. This strong indication of selective pressure on pCPS genes is found across multiple lines of germline genomics data from both pediatric and adult cohorts. For six genes [ELP1, GPR161, VHL and SDHA/B/C], a clear lack of mutational constraint calls the pediatric penetrance and/or severity of associated cancers into question. Conversely, out of 23 known pCPS genes associated with biallelic risk, two [9%, DIS3L2 and MSH2] show significant constraint, indicating that they may monoallelically increase childhood cancer risk. In summary, we show that population genetic data provide empirical evidence that heritable childhood cancer leads to natural selection powerful enough to have significantly impacted the present-day gene pool.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA.
| | - Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Neurosurgery, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark.
| |
Collapse
|
7
|
Guerrini-Rousseau L, Masliah-Planchon J, Filser M, Tauziède-Espariat A, Entz-Werle N, Maugard CM, Hopman SMJ, Torrejon J, Gauthier-Villars M, Simaga F, Blauwblomme T, Beccaria K, Rouleau E, Dimaria M, Grill J, Abbou S, Claret B, Brugières L, Doz F, Bouchoucha Y, Faure-Conter C, Bonadona V, Mansuy L, de Carli E, Ingster O, Legrand C, Pagnier A, Berthet P, Bodet D, Julia S, Bertozzi AI, Wilems M, Maurage CA, Delattre O, Ayrault O, Dufour C, Bourdeaut F. Medulloblastomas with ELP1 pathogenic variants: A weakly penetrant syndrome with a restricted spectrum in a limited age window. Neurooncol Adv 2024; 6:vdae075. [PMID: 38962751 PMCID: PMC11221071 DOI: 10.1093/noajnl/vdae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background ELP1 pathogenic variants (PV) have been recently identified as the most frequent variants predisposing to Sonic Hedgehog (SHH) medulloblastomas (MB); however, guidelines are still lacking for genetic counseling in this new syndrome. Methods We retrospectively reviewed clinical and genetic data of a French series of 29 ELP1-mutated MB. Results All patients developed SHH-MB, with a biallelic inactivation of PTCH1 found in 24 tumors. Other recurrent alterations encompassed the TP53 pathway and activation of MYCN/MYCL signaling. The median age at diagnosis was 7.3 years (range: 3-14). ELP1-mutated MB behave as sporadic cases, with similar distribution within clinical and molecular risk groups and similar outcomes (5 y - OS = 86%); no unusual side effect of treatments was noticed. Remarkably, a germline ELP1 PV was identified in all patients with available constitutional DNA (n = 26); moreover, all tested familial trio (n = 11) revealed that the PVs were inherited. Two of the 26 index cases from the French series had a family history of MB; pedigrees from these patients and from 1 additional Dutch family suggested a weak penetrance. Apart from MB, no cancer was associated with ELP1 PVs; second tumors reported in 4 patients occurred within the irradiation fields, in the usual time-lapse for expected radiotherapy-induced neoplasms. Conclusions The low penetrance, the "at risk' age window limited to childhood and the narrow tumor spectrum, question the actual benefit of genetic screening in these patients and their family. Our results suggest restricting ELP1 germline sequencing to patients with SHH-MB, depending on the parents" request.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Julien Masliah-Planchon
- Department of Pathology and Diagnostic, Prognostic and Theranostic Medicine, Somatic Genetic Unit, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Mathilde Filser
- Department of Pathology and Diagnostic, Prognostic and Theranostic Medicine, Somatic Genetic Unit, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | | | - Natacha Entz-Werle
- Pediatric Hematology and Oncology Department, Strasbourg University Hospital, University of Strasbourg, Strasbourg, France
| | - Christine M Maugard
- Department of Clinical Genetics, Strasbourg University Hospital, Strasbourg, France
| | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacob Torrejon
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie, Paris Sciences Lettres Research University, CNRS UMR, INSERM, Orsay, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Fatoumata Simaga
- Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Thomas Blauwblomme
- Necker-Enfants Malades University Hospital, Department of Pediatric Neurosurgery, Paris-Cité University, Paris, France
| | - Kevin Beccaria
- Necker-Enfants Malades University Hospital, Department of Pediatric Neurosurgery, Paris-Cité University, Paris, France
| | - Etienne Rouleau
- Cancer Genetics Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
| | - Marina Dimaria
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Samuel Abbou
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy, Villejuif, France
| | - Béatrice Claret
- Psycho-Oncology Unit, Interdisciplinary Department of Supportive Care, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - François Doz
- Université Paris Cité, SIREDO Pediatric Cancer Center, Institut Curie, Paris, France
- SIREDO Center (Care, Innovation Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Yassine Bouchoucha
- SIREDO Center (Care, Innovation Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Cécile Faure-Conter
- Pediatric Hematology and Oncology Institut, Centre Léon Berard, Lyon, France
| | - Valerie Bonadona
- Clinical Oncogenetics Unit, Department of Prevention and Public Health, Centre Léon Bérard, Lyon, France
| | - Ludovic Mansuy
- Department of Pediatric Hematology and Oncology, Centre Hospitalo-Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Emilie de Carli
- Pediatric Hematology and Oncology Department, Angers University Hospital, Nancy, France
| | - Olivier Ingster
- Department of Genetics, Angers University Hospital, Angers, France
| | | | - Anne Pagnier
- Department of Pediatric Hematology and Oncology, Centre Hospitalo-Universitaire de Grenoble, Grenoble, France
| | | | - Damien Bodet
- Pediatric Hematology and Oncology Department, Caen University Hospital, Caen, France
| | - Sophie Julia
- Department of Genetics, Toulouse University Hospital, Toulouse, France
| | - Anne-Isabelle Bertozzi
- Pediatric Hematology and Oncology Department, Toulouse University Hospital, Toulouse, France
| | - Marjolaine Wilems
- Department of Medical Genetics, Montpellier University Hospital, Institute for Neurosciences of Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | | | - Olivier Delattre
- INSERM U830, Cancer, Heterogeneity, Instability and Plasticity Laboratory Institut Curie, Paris, France
| | - Olivier Ayrault
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie, Paris Sciences Lettres Research University, CNRS UMR, INSERM, Orsay, France
| | - Christelle Dufour
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Franck Bourdeaut
- Université Paris Cité, SIREDO Pediatric Cancer Center, Institut Curie, Paris, France
- SIREDO Center (Care, Innovation Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
- INSERM U830, Cancer, Heterogeneity, Instability and Plasticity Laboratory Institut Curie, Paris, France
| |
Collapse
|
8
|
Mardis ER, Potter SL, Schieffer KM, Varga EA, Mathew MT, Costello HM, Wheeler G, Kelly BJ, Miller KE, Garfinkle EAR, Wilson RK, Cottrell CE. Germline susceptibility from broad genomic profiling of pediatric brain cancers. Neurooncol Adv 2024; 6:vdae099. [PMID: 39036440 PMCID: PMC11259010 DOI: 10.1093/noajnl/vdae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Background Identifying germline predisposition in CNS malignancies is of increasing clinical importance, as it contributes to diagnosis and prognosis, and determines aspects of treatment. The inclusion of germline testing has historically been limited due to challenges surrounding access to genetic counseling, complexity in acquiring a germline comparator specimen, concerns about the impact of findings, or cost considerations. These limitations were further defined by the breadth and scope of clinical testing to precisely identify complex variants as well as concerns regarding the clinical interpretation of variants including those of uncertain significance. Methods In the course of conducting an IRB-approved protocol that performed genomic, transcriptomic and methylation-based characterization of pediatric CNS malignancies, we cataloged germline predisposition to cancer based on paired exome capture sequencing, coupled with computational analyses to identify variants in known cancer predisposition genes and interpret them relative to established clinical guidelines. Results In certain cases, these findings refined diagnosis or prognosis or provided important information for treatment planning. Conclusions We outline our aggregate findings on cancer predisposition within this cohort which identified 16% of individuals (27 of 168) harboring a variant predicting cancer susceptibility and contextualize the impact of these results in terms of treatment-related aspects of precision oncology.
Collapse
Affiliation(s)
- Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Samara L Potter
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Elizabeth A Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Heather M Costello
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Elizabeth A R Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
9
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
10
|
Jackson K, Packer RJ. Recent Advances in Pediatric Medulloblastoma. Curr Neurol Neurosci Rep 2023; 23:841-848. [PMID: 37943476 PMCID: PMC10724301 DOI: 10.1007/s11910-023-01316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE OF REVIEW Review recent advances in the understanding of pediatric medulloblastoma including etiology, biology, radiology, and management of pediatric medulloblastoma. RECENT FINDINGS The classic four subgroups have been reclassified and further subdivided based on new molecular findings. Research is revealing the cell origins of the different subtypes of medulloblastoma. There has been continued personalization of management based on molecular parameters. While many advances have been made in the knowledge base of this most common malignant pediatric brain tumor, there has not yet been translation into more effective therapies to prolong survival in all subgroups with the possible exception of children with group 3 disease. Quality of life remains a major challenge for long-term survivors.
Collapse
Affiliation(s)
- Kasey Jackson
- Brain Tumor Institute, Children's National Hospital, Washington D C, USA.
- Division of Hematology and Oncology, Children's National Hospital, Washington D C, USA.
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, Washington D C, USA
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington D C, USA
| |
Collapse
|
11
|
Nie Y, Qiu Z, Chen S, Chen Z, Song X, Ma Y, Huang N, Cyster JG, Zheng S. Specific binding of GPR174 by endogenous lysophosphatidylserine leads to high constitutive G s signaling. Nat Commun 2023; 14:5901. [PMID: 37737235 PMCID: PMC10516915 DOI: 10.1038/s41467-023-41654-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Many orphan G protein-coupled receptors (GPCRs) remain understudied because their endogenous ligands are unknown. Here, we show that a group of class A/rhodopsin-like orphan GPCRs including GPR61, GPR161 and GPR174 increase the cAMP level similarly to fully activated D1 dopamine receptor (D1R). We report cryo-electron microscopy structures of the GPR61‒Gs, GPR161‒Gs and GPR174‒Gs complexes without any exogenous ligands. The GPR174 structure reveals that endogenous lysophosphatidylserine (lysoPS) is copurified. While GPR174 fails to respond to exogenous lysoPS, likely owing to its maximal activation by the endogenous ligand, GPR174 mutants with lower ligand binding affinities can be specifically activated by lysoPS but not other lipids, in a dose-dependent manner. Moreover, GPR174 adopts a non-canonical Gs coupling mode. The structures of GPR161 and GPR61 reveal that the second extracellular loop (ECL2) penetrates into the orthosteric pocket, possibly contributing to constitutive activity. Our work definitively confirms lysoPS as an endogenous GPR174 ligand and suggests that high constitutive activity of some orphan GPCRs could be accounted for by their having naturally abundant ligands.
Collapse
Affiliation(s)
- Yingying Nie
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Zeming Qiu
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Sijia Chen
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Zhao Chen
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Xiaocui Song
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Jason G Cyster
- HHMI, University of California, San Francisco, CA, 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA
| | - Sanduo Zheng
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
12
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
13
|
Smith MJ, Woodward ER, Evans DG. Perspectives on the implications of carrying putative pathogenic variants in the medulloblastoma predisposition genes ELP1 and GPR161. Fam Cancer 2023; 22:341-344. [PMID: 36961676 PMCID: PMC10276115 DOI: 10.1007/s10689-023-00330-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Recent genetic sequencing studies in large series' of predominantly childhood medulloblastoma have implicated loss-of-function, predominantly truncating, variants in the ELP1 and GPR161 genes in causation of the MBSHH subtype specifically. The latter association, along with a report of an index case with some features of Gorlin syndrome has led to speculation that GPR161 may also cause Gorlin syndrome. We show that these genes are associated with relatively low absolute risks of medulloblastoma from extrapolating lifetime risks in the general population and odds ratios from the population database gnomAD. The projected risks are around 1 in 270-430 for ELP1 and 1 in 1600-2500 for GPR161. These risks do not suggest the need for MRI screening in infants with ELP1 or GPR161 variants as this is not currently recommended for PTCH1 where the risks are equivalent or higher. We also screened 27 PTCH1/SUFU pathogenic variant-negative patients with Gorlin syndrome for GPR161 and found no suspicious variants. Given the population frequencies of 0.0962% for GPR161 and 0.0687% for ELP1, neither of these genes can be a cause of Gorlin syndrome with an unexplained population frequency far lower at 0.0021%.
Collapse
Affiliation(s)
- Miriam J Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, M13 9WL, Manchester, UK
| | - Emma R Woodward
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, M13 9WL, Manchester, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, M13 9WL, Manchester, UK.
| |
Collapse
|
14
|
Gao G, Fiorica PN, McClellan J, Barbeira AN, Li JL, Olopade OI, Im HK, Huo D. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes. Am J Hum Genet 2023; 110:950-962. [PMID: 37164006 PMCID: PMC10257003 DOI: 10.1016/j.ajhg.2023.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified more than 200 genomic loci for breast cancer risk, but specific causal genes in most of these loci have not been identified. In fact, transcriptome-wide association studies (TWASs) of breast cancer performed using gene expression prediction models trained in breast tissue have yet to clearly identify most target genes. To identify candidate genes, we performed a GWAS analysis in a breast cancer dataset from UK Biobank (UKB) and combined the results with the GWAS results of the Breast Cancer Association Consortium (BCAC) by a meta-analysis. Using the summary statistics from the meta-analysis, we performed a joint TWAS analysis that combined TWAS signals from multiple tissues. We used expression prediction models trained in 11 tissues that are potentially relevant to breast cancer from the Genotype-Tissue Expression (GTEx) data. In the GWAS analysis, we identified eight loci distinct from those reported previously. In the TWAS analysis, we identified 309 genes at 108 genomic loci to be significantly associated with breast cancer at the Bonferroni threshold. Of these, 17 genes were located in eight regions that were at least 1 Mb away from published GWAS hits. The remaining TWAS-significant genes were located in 100 known genomic loci from previous GWASs of breast cancer. We found that 21 genes located in known GWAS loci remained statistically significant after conditioning on previous GWAS index variants. Our study provides insights into breast cancer genetics through mapping candidate target genes in a large proportion of known GWAS loci and discovering multiple new loci.
Collapse
Affiliation(s)
- Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Peter N Fiorica
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Julian McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I Olopade
- Section of Hematology & Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter J, Dror RO, Evers AS, Mukhopadhyay S, Manglik A. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.540554. [PMID: 37292845 PMCID: PMC10245861 DOI: 10.1101/2023.05.23.540554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR161 is enriched in primary cilia, where it plays a central role in suppressing Hedgehog signaling1. GPR161 mutations lead to developmental defects and cancers2,3,4. The fundamental basis of how GPR161 is activated, including potential endogenous activators and pathway-relevant signal transducers, remains unclear. To elucidate GPR161 function, we determined a cryogenic-electron microscopy structure of active GPR161 bound to the heterotrimeric G protein complex Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, we identify a sterol that binds to a conserved extrahelical site adjacent to transmembrane helices 6 and 7 and stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress cAMP pathway activation. Surprisingly, these mutants retain the ability to suppress GLI2 transcription factor accumulation in cilia, a key function of ciliary GPR161 in Hedgehog pathway suppression. By contrast, a protein kinase A-binding site in the GPR161 C-terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how unique structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the broader role of GPR161 function in other signaling pathways.
Collapse
Affiliation(s)
- Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Simone Harrison
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
| | - Masha Karelina
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek R. Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel P. Berry
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Philipp Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck; Tyrolean Cancer Research Institute (TKFI), Innsbruck 6020, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Douglas F. Covey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck; Tyrolean Cancer Research Institute (TKFI), Innsbruck 6020, Austria
| | - Debora S. Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158
| | - Ron O. Dror
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
16
|
Lampros M, Alexiou GA. Brain and Spinal Cord Tumors of Embryonic Origin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:405-420. [PMID: 37452947 DOI: 10.1007/978-3-031-23705-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Embryonal tumors (ETs) of the central nervous system (CNS) comprise a large heterogeneous group of highly malignant tumors that predominantly affect children and adolescents. Currently, the neoplasms classified as ET are the medulloblastoma (MB), embryonal tumors with multilayered rosettes (ETMR), medulloepithelioma (ME), CNS neuroblastoma (NB), CNS ganglioneuroblastoma (GNB), atypical teratoid/rhabdoid tumors (AT/RT), and CNS embryonal tumors with rhabdoid features. All these tumors are classified as malignant-grade IV neoplasms, and the prognosis of patients with these neoplasms is very poor. Currently, except for the histological classification of MB, the recently utilized WHO classification accepts a novel molecular classification of MBs into four distinct molecular subgroups: wingless/integrated (WNT)-activated, sonic hedgehog (Shh), and the numerical Group3 and Group 4. The combination of both histological and genetic classifications has substantial prognostic significance, and patients are categorized as low risk with over 90% survival, the standard risk with 75-90% survival, high risk with 50-75% survival, and very high risk with survival rate lower than 50%. Children under three years are predominantly affected by AT/RT and represent about 20% of all CNS tumors in this age group. AT/RT is typically located in the posterior fossa (mainly in cerebellopontine angle) in 50-60% of the cases. The pathogenesis of this neoplasm is strongly associated with loss of function of the SMARCB1 (INI1, hSNF5) gene located at the 22q11.23 chromosome, or very rarely with alterations in (SMARCA4) BRG1 gene. The cells of this neoplasm resemble those of other neuronal tumors, and hence, immunochemistry markers have been utilized, such as smooth muscle actin, epithelial membrane antigen, vimentin, and lately antibodies for INI1. ETMRs are characterized by the presence of ependymoblastic rosettes formed by undifferentiated neuroepithelial cells and neuropil. The tumorigenesis of ETMRs is strongly related to the amplification of the pluripotency factor Chr19q13.41 miRNA cluster (C19MC) present in around 90% of the cases. Additionally, the expression of LIN28A is a highly sensitive and specific marker of ETMR diagnosis, as it is overexpressed in almost all cases of ETMR and is related to poor patient outcomes. The treatment of patients with ETs includes a combination of surgical resection, radiotherapy (focal or craniospinal), and chemotherapeutic agents. Currently, there is a trend to reduce the dose of craniospinal irradiation in the treatment of low-risk MBs. Novel targeted therapies are expected in the treatment of patients with MBs due to the identification of the main driver genes. Survival rates vary between ET types and their subtypes, with ganglioneuroblastoma having over 95% 5-year survival rate, while ATRT is probably linked with the worst prognosis with a 30% 5-year survival rate.
Collapse
Affiliation(s)
- Marios Lampros
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece
| | - George A Alexiou
- Department of Neurosurgery, School of Medicine, University of Ioannina, 45500, Ioannina, Greece.
| |
Collapse
|
17
|
Lafay-Cousin L, Baroni L, Ramaswamy V, Bouffet E. How do we approach the management of medulloblastoma in young children? Pediatr Blood Cancer 2022; 69:e29838. [PMID: 35686728 DOI: 10.1002/pbc.29838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022]
Abstract
Therapeutic strategies avoiding craniospinal irradiation were developed for young children with medulloblastoma to improve survival while protecting the neurocognitive outcomes of these vulnerable patients. These strategies most commonly rely on high-dose chemotherapy with stem cell rescue or conventional chemotherapy combined with intraventricular chemotherapy or conventional chemotherapy with adjuvant focal irradiation. Over the past decade, our growing understanding of the molecular landscape of medulloblastoma has transformed how we risk stratify and allocate treatment in this young age group. We present the results of the most recent approaches and clinical trials for medulloblastoma of early childhood, according to the different molecular subgroups. Overall, young children with sonic hedgehog medulloblastoma treated with intensive adjuvant chemotherapy achieve excellent survival and can safely be spared from radiotherapy. For patients with group 3 and 4 medulloblastomas, the interplay between molecular alterations and treatment intensity still needs to be further delineated. While recent clinical trials point toward more encouraging survival figure for a sizeable number of them, patients identified with very high-risk feature desperately needs innovative therapies.
Collapse
Affiliation(s)
- Lucie Lafay-Cousin
- Section of Pediatric Oncology and Bone Marrow Transplantation, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Lorena Baroni
- Service of Hematology/Oncology, Hospital JP Garrahan, Buenos Aires, Argentina
| | - Vijay Ramaswamy
- Division of Pediatric Hematology/Oncology and Bone Marrow Transplantation, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Pediatric Hematology/Oncology and Bone Marrow Transplantation, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Guerrini-Rousseau L, Masliah-Planchon J, Waszak SM, Alhopuro P, Benusiglio PR, Bourdeaut F, Brecht IB, Del Baldo G, Dhanda SK, Garrè ML, Gidding CEM, Hirsch S, Hoarau P, Jorgensen M, Kratz C, Lafay-Cousin L, Mastronuzzi A, Pastorino L, Pfister SM, Schroeder C, Smith MJ, Vahteristo P, Vibert R, Vilain C, Waespe N, Winship IM, Evans DG, Brugieres L. Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation: a collaborative study of the SIOPE Host Genome Working Group. J Med Genet 2022; 59:jmedgenet-2021-108385. [PMID: 35768194 PMCID: PMC9613872 DOI: 10.1136/jmedgenet-2021-108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. METHODS To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. RESULTS Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. CONCLUSION Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
| | - Julien Masliah-Planchon
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Pia Alhopuro
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Patrick R Benusiglio
- Département de Génétique et Institut Universitaire de Cancérologie, Sorbonne University Faculty of Medicine Pitié-Salpêtrière Campus, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Ines B Brecht
- Department of Pediatric Oncology and Hematology, University Hospitals Tubingen, Tubingen, Germany
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, IRCCS, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Department of Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Corrie E M Gidding
- Neuro-Oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steffen Hirsch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
| | - Pauline Hoarau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
| | - Mette Jorgensen
- Oncology, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Christian Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Lucie Lafay-Cousin
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital and Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Mastronuzzi
- Pediatric Hematology/Oncology and Stem Cells Transplatation, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Lorenza Pastorino
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
- Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tubingen Institute of Human Genetics, Tubingen, Germany
| | - Miriam Jane Smith
- Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Pia Vahteristo
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Roseline Vibert
- Department of Genetics, PSL Research University, Institute Curie, Paris, France
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Nicolas Waespe
- CANSEARCH Research Platform, Depatment of pediatric oncology and hematology, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ingrid M Winship
- Department of Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences,Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Laurence Brugieres
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
- Department of Children and Adolescents Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
20
|
Zhou Q, Xu Y, Zhou Y, Wang J. Promising Chemotherapy for Malignant Pediatric Brain Tumor in Recent Biological Insights. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092685. [PMID: 35566032 PMCID: PMC9104915 DOI: 10.3390/molecules27092685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Brain tumors are the most widespread malignancies in children around the world. Chemotherapy plays a critical role in the treatment of these tumors. Although the current chemotherapy process has a remarkable outcome for a certain subtype of brain tumor, improving patient survival is still a major challenge. Further intensive treatment with conventional non-specific chemotherapy could cause additional adverse reactions without significant advancement in survival. Recently, patient derived brain tumor, xenograft, and whole genome analysis using deep sequencing technology has made a significant contribution to our understanding of cancer treatment. This realization has changed the focus to new agents, targeting the molecular pathways that are critical to tumor survival or proliferation. Thus, many novel drugs targeting epigenetic regulators or tyrosine kinase have been developed. These selective drugs may have less toxicity in normal cells and are expected to be more effective than non-specific chemotherapeutics. This review will summarize the latest novel targets and corresponding candidate drugs, which are promising chemotherapy for brain tumors according to the biological insights.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China; (Q.Z.); (Y.Z.)
| | - Yichen Xu
- Department of Biological Sciences, University of Southern California (Main Campus), Los Angeles, CA 90007, USA;
| | - Yan Zhou
- Department of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China; (Q.Z.); (Y.Z.)
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
21
|
Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov 2022; 12:331-355. [PMID: 34921008 PMCID: PMC9401511 DOI: 10.1158/2159-8290.cd-21-1094] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on "blastomas," which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account.
Collapse
Affiliation(s)
- Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Jason A Jarzembowski
- Department of Pathology, Children's Wisconsin and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - D Ashley Hill
- Department of Pathology, Children's National Hospital, Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Thomas S Jacques
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Pieter Wesseling
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
| | - Dolores H López Terrada
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
22
|
The Current Landscape of Targeted Clinical Trials in Non-WNT/Non-SHH Medulloblastoma. Cancers (Basel) 2022; 14:cancers14030679. [PMID: 35158947 PMCID: PMC8833659 DOI: 10.3390/cancers14030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Medulloblastoma is a form of malignant brain tumor that arises predominantly in infants and young children and can be divided into different groups based on molecular markers. The group of non-WNT/non-SHH medulloblastoma includes a spectrum of heterogeneous subgroups that differ in their biological characteristics, genetic underpinnings, and clinical course of disease. Non-WNT/non-SHH medulloblastoma is currently treated with surgery, chemotherapy, and radiotherapy; however, new drugs are needed to treat patients who are not yet curable and to reduce treatment-related toxicity and side effects. We here review which new treatment options for non-WNT/non-SHH medulloblastoma are currently clinically tested. Furthermore, we illustrate the challenges that have to be overcome to reach a new therapeutic standard for non-WNT/non-SHH medulloblastoma, for instance the current lack of good preclinical models, and the necessity to conduct trials in a comparably small patient collective. Abstract Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
Collapse
|
23
|
Bazarbashi S, Alsharm A, Meshref A, Mrabti H, Ansari J, Ghosn M, Abdulla M, Urun Y. Management of metastatic castration-resistant prostate cancer in Middle East African countries: Challenges and strategic recommendations. Urol Ann 2022; 14:303-313. [PMID: 36505997 PMCID: PMC9731188 DOI: 10.4103/ua.ua_148_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the reliance on Western guidelines for managing prostate cancer (PC), there are wide variations and gaps in treatment among developing countries such as the Middle East African (MEA) region. A multidisciplinary team of experts from the MEA region engaged in a comprehensive discussion to identify the real-world challenges in diagnostics and treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC) and provided insights on the urgent unmet needs. We present a consensus document on the region-specific barriers, key priority areas and strategic recommendations by experts for optimizing management of mCRPC in the MEA. Limited access to genetic testing and economic constraints were highlighted as major concerns in the MEA. As the therapeutic landscape continues to expand, treatment selection for mCRPC needs to be increasingly personalized. Enhanced genetic testing and judicious utilization of newer therapies like olaparib, articulated by reimbursement support, should be made accessible for the underserved populations in the MEA. Increasing awareness on testing through educational activities catalyzed by digital technologies can play a central role in overcoming barriers to patient care in the MEA region. The involvement of multidisciplinary teams can bridge the treatment gaps, facilitating holistic and optimal management of mCRPC. Region-specific guidelines can help health-care workers navigate challenges and deliver personalized management through collaborative efforts - thus curb health-care variations and drive consistency. Development of region-specific scalable guidelines for genetic testing and treatment of mCRPC, factoring in the trade-off for access, availability, and affordability, is crucial.
Collapse
Affiliation(s)
- Shouki Bazarbashi
- Oncology Center, King Faisal Specialist Hospital and Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia,Address for correspondence: Dr. Shouki Bazarbashi, King Faisal Specialist Hospital and Research Centre, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia. E-mail:
| | - Abdullah Alsharm
- Comprehensive Cancer Center, King Fahad Medical City, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Hind Mrabti
- Department of Medical Oncology, National Institute of Oncology, Mohamed V University-Rabat, Morocco
| | - Jawaher Ansari
- Department of Medical Oncology, Tawam Hospital, Al Ain, UAE
| | - Marwan Ghosn
- Department of Medical Oncology, Saint Joseph University in Beirut, Lebanon
| | | | - Yuksel Urun
- Department of Medical Oncology, Ankara University, Turkey
| |
Collapse
|
24
|
Abstract
In 2016, medulloblastoma classification was restructured to allow for incorporation of updated data about medulloblastoma biology, genomics, and clinical behavior. For the first time, medulloblastomas were classified according to molecular characteristics ("genetically defined" categories) as well as histologic characteristics ("histologically defined" categories). Current genetically-defined categories include WNT-activated, SHH-activated TP53 wildtype, SHH-activated TP53-mutant, and non-WNT/non-SHH. In this article, we review the most recent update to the classification of medulloblastomas, provide a practical approach to immunohistochemical and molecular testing for these tumors, and demonstrate how to use key molecular genetic findings to develop an integrated diagnosis.
Collapse
Affiliation(s)
- Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
26
|
Kloth K, Obrecht D, Sturm D, Pietsch T, Warmuth-Metz M, Bison B, Mynarek M, Rutkowski S. Defining the Spectrum, Treatment and Outcome of Patients With Genetically Confirmed Gorlin Syndrome From the HIT-MED Cohort. Front Oncol 2021; 11:756025. [PMID: 34888241 PMCID: PMC8649840 DOI: 10.3389/fonc.2021.756025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
Gorlin syndrome is a genetic condition associated with the occurrence of SHH activated medulloblastoma, basal cell carcinoma, macrocephaly and other congenital anomalies. It is caused by heterozygous pathogenic variants in PTCH1 or SUFU. In this study we included 16 patients from the HIT2000, HIT2000interim, I-HIT-MED, observation registry and older registries such as HIT-SKK87, HIT-SKK92 (1987 – 2020) with genetically confirmed Gorlin syndrome, harboring 10 PTCH1 and 6 SUFU mutations. Nine patients presented with desmoplastic medulloblastomas (DMB), 6 with medulloblastomas with extensive nodularity (MBEN) and one patient with classic medulloblastoma (CMB); all tumors affected the cerebellum, vermis or the fourth ventricle. SHH activation was present in all investigated tumors (14/16); DNA methylation analysis (when available) classified 3 tumors as iSHH-I and 4 tumors as iSHH-II. Age at diagnosis ranged from 0.65 to 3.41 years. All but one patient received chemotherapy according to the HIT-SKK protocol. Ten patients were in complete remission after completion of primary therapy; four subsequently presented with PD. No patient received radiotherapy during initial treatment. Five patients acquired additional neoplasms, namely basal cell carcinomas, odontogenic tumors, ovarian fibromas and meningioma. Developmental delay was documented in 5/16 patients. Overall survival (OS) and progression-free survival (PFS) between patients with PTCH1 or SUFU mutations did not differ statistically (10y-OS 90% vs. 100%, p=0.414; 5y-PFS 88.9% ± 10.5% vs. 41.7% ± 22.2%, p=0.139). Comparing the Gorlin patients to all young, SHH activated MBs in the registries (10y-OS 93.3% ± 6.4% vs. 92.5% ± 3.3%, p=0.738; 10y-PFS 64.9%+-16.7% vs. 83.8%+-4.5%, p=0.228) as well as comparing Gorlin M0 SKK-treated patients to all young, SHH activated, M0, SKK-treated MBs in the HIT-MED database did not reveal significantly different clinical outcomes (10y-OS 88.9% ± 10.5% vs. 88% ± 4%, p=0.812; 5y-PFS 87.5% ± 11.7% vs. 77.7% ± 5.1%, p=0.746). Gorlin syndrome should be considered in young children with SHH activated medulloblastoma, especially DMB and MBEN but cannot be ruled out for CMB. Survival did not differ to patients with SHH-activated medulloblastoma with unknown germline status or between PTCH1 and SUFU mutated patients. Additional neoplasms, especially basal cell carcinomas, need to be expected and screened for. Genetic counselling should be provided for families with young medulloblastoma patients with SHH activation.
Collapse
Affiliation(s)
- Katja Kloth
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, Deutsche Gesellschaft für Neuropathologie und Neuroanatomie (DGNN) Brain Tumor Reference Center, Bonn, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
28
|
Gargallo P, Oltra S, Yáñez Y, Juan-Ribelles A, Calabria I, Segura V, Lázaro M, Balaguer J, Tormo T, Dolz S, Fernández JM, Fuentes C, Torres B, Andrés M, Tasso M, Castel V, Font de Mora J, Cañete A. Germline Predisposition to Pediatric Cancer, from Next Generation Sequencing to Medical Care. Cancers (Basel) 2021; 13:5339. [PMID: 34771502 PMCID: PMC8582391 DOI: 10.3390/cancers13215339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge about genetic predisposition to pediatric cancer is constantly expanding. The categorization and clinical management of the best-known syndromes has been refined over the years. Meanwhile, new genes for pediatric cancer susceptibility are discovered every year. Our current work shares the results of genetically studying the germline of 170 pediatric patients diagnosed with cancer. Patients were prospectively recruited and studied using a custom panel, OncoNano V2. The well-categorized predisposing syndromes incidence was 9.4%. Likely pathogenic variants for predisposition to the patient's tumor were identified in an additional 5.9% of cases. Additionally, a high number of pathogenic variants associated with recessive diseases was detected, which required family genetic counseling as well. The clinical utility of the Jongmans MC tool was evaluated, showing a high sensitivity for detecting the best-known predisposing syndromes. Our study confirms that the Jongmans MC tool is appropriate for a rapid assessment of patients; however, the updated version of Ripperger T criteria would be more accurate. Meaningfully, based on our findings, up to 9.4% of patients would present genetic alterations predisposing to cancer. Notably, up to 20% of all patients carry germline pathogenic or likely pathogenic variants in genes related to cancer and, thereby, they also require expert genetic counseling. The most important consideration is that the detection rate of genetic causality outside Jongmans MC et al. criteria was very low.
Collapse
Affiliation(s)
- Pablo Gargallo
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Silvestre Oltra
- Genetics Unit, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain;
- Genetics Department, Universidad de Valencia, 46010 Valencia, Spain
| | - Yania Yáñez
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Antonio Juan-Ribelles
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Inés Calabria
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Vanessa Segura
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Marián Lázaro
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Julia Balaguer
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Teresa Tormo
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Sandra Dolz
- Laboratory of Cellular and Molecular Biology, Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.D.); (J.F.d.M.)
| | - José María Fernández
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Carolina Fuentes
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Bárbara Torres
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Mara Andrés
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - María Tasso
- Pediatric Oncology Department, Hospital General de Alicante, 03010 Alicante, Spain;
| | - Victoria Castel
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.D.); (J.F.d.M.)
| | - Adela Cañete
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
29
|
Hirsch S, Dikow N, Pfister SM, Pajtler KW. Cancer predisposition in pediatric neuro-oncology-practical approaches and ethical considerations. Neurooncol Pract 2021; 8:526-538. [PMID: 34594567 DOI: 10.1093/nop/npab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A genetic predisposition to tumor development can be identified in up to 10% of pediatric patients with central nervous system (CNS) tumors. For some entities, the rate of an underlying predisposition is even considerably higher. In recent years, population-based approaches have helped to further delineate the role of cancer predisposition in pediatric oncology. Investigations for cancer predisposition syndrome (CPS) can be guided by clinical signs and family history leading to directed testing of specific genes. The increasingly adopted molecular analysis of tumor and often parallel blood samples with multi-gene panel, whole-exome, or whole-genome sequencing identifies additional patients with or without clinical signs. Diagnosis of a genetic predisposition may put an additional burden on affected families. However, information on a given cancer predisposition may be critical for the patient as potentially influences treatment decisions and may offer the patient and healthy carriers the chance to take part in intensified surveillance programs aiming at early tumor detection. In this review, we discuss some of the practical and ethical challenges resulting from the widespread use of new diagnostic techniques and the most important CPS that may manifest with brain tumors in childhood.
Collapse
Affiliation(s)
- Steffen Hirsch
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
30
|
Hor CHH, Lo JCW, Cham ALS, Leong WY, Goh ELK. Multifaceted Functions of Rab23 on Primary Cilium-Mediated and Hedgehog Signaling-Mediated Cerebellar Granule Cell Proliferation. J Neurosci 2021; 41:6850-6863. [PMID: 34210780 PMCID: PMC8360682 DOI: 10.1523/jneurosci.3005-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor-Rab23 in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, Rab23-depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Furthermore, Rab23's potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma.SIGNIFICANCE STATEMENT Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.
Collapse
Affiliation(s)
- C H H Hor
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - J C W Lo
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - A L S Cham
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - W Y Leong
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - E L K Goh
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
- Department of Research, National Neuroscience Institute, Singapore, 308433
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
- KK Research Center, KK Women's and Children's Hospital, Singapore, 229899
| |
Collapse
|
31
|
Orr BA. Pathology, diagnostics, and classification of medulloblastoma. Brain Pathol 2021; 30:664-678. [PMID: 32239782 PMCID: PMC7317787 DOI: 10.1111/bpa.12837] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is the most common CNS embryonal tumor. While the overall cure rate is around 70%, patients with high‐risk disease continue to have poor outcome and experience long‐term morbidity. MB is among the tumors for which diagnosis, risk stratification, and clinical management has shown the most rapid advancement. These advances are largely due to technological improvements in diagnosis and risk stratification which now integrate histomorphologic classification and molecular classification. MB stands as a prototype for other solid tumors in how to effectively integrate morphology and genomic data to stratify clinicopathologic risk and aid design of innovative clinical trials for precision medicine. This review explores the current diagnostic and classification of MB in modern neuropathology laboratories.
Collapse
Affiliation(s)
- Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| |
Collapse
|
32
|
Shen CJ, Perkins SM, Bradley JA, Mahajan A, Marcus KJ. Radiation therapy for infants with cancer. Pediatr Blood Cancer 2021; 68 Suppl 2:e28700. [PMID: 33818894 DOI: 10.1002/pbc.28700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Abstract
The clinical outcomes for infants with malignant tumors are often worse than older children due to a combination of more biologically aggressive disease in some cases, and increased toxicity-or deintensification of therapies due to concern for toxicity-in others. Especially in infants and very young children, finding the appropriate balance between maximizing treatment efficacy while minimizing toxicity-in particular late side effects-is crucial. We review here the management of malignant tumors in infants and very young children, focusing on central nervous system (CNS) malignancies and rhabdomyosarcoma.
Collapse
Affiliation(s)
- Colette J Shen
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Karen J Marcus
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
van Engelen N, van Dijk F, Waanders E, Buijs A, Vermeulen MA, Loeffen JLC, Kuiper RP, Jongmans MCJ. Constitutional 2p16.3 deletion including MSH6 and FBXO11 in a boy with developmental delay and diffuse large B-cell lymphoma. Fam Cancer 2021; 20:349-354. [PMID: 33811277 PMCID: PMC8484184 DOI: 10.1007/s10689-021-00244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 10/26/2022]
Abstract
We describe a case of a boy with neurodevelopmental delay and a diffuse large B-cell lymphoma (DLBCL) in whom we discovered a germline de novo 2p16.3 deletion including MSH6 and part of the FBXO11 gene. A causative role for MSH6 in cancer development was excluded based on tumor characteristics. The constitutional FBXO11 deletion explains the neurodevelopmental delay in the patient. The FBXO11 protein is involved in BCL-6 ubiquitination and BCL-6 is required for the germinal center reaction resulting in B cell differentiation. Somatic loss of function alterations of FBXO11 result in BCL-6 overexpression which is a known driver in DLBCL. We therefore consider that a causative relationship between the germline FBXO11 deletion and the development of DLBCL in this boy is conceivable.
Collapse
Affiliation(s)
- N van Engelen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - F van Dijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - E Waanders
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Buijs
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M A Vermeulen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - J L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - R P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW This review aims to give an update on histopathological, molecular and clinical features of central nervous system (CNS) 'embryonal' tumors. RECENT FINDINGS The taxonomy of previously called 'CNS primitive neuroectodermal tumor' (CNS PNET) has been deeply modified since the discovery of specific molecular profiles for each various sub-entity of these rare, mainly pediatric, tumors. The term 'embryonal tumors' now refers to medulloblastomas, atypical teratoid rhabdoid tumors (AT/RT) and other rare entities, defined by their specific histopathological features together with expression-based or methylation-based profiling; specific gene mutations or fusions characterize some tumor types. In addition, the compilation of large series of molecular data has allowed to dissecting several of these tumor types in molecular subgroups, increasing the number of tumor entities, and leading to an amazingly complex nosology of rare-to-extremely rare malignancies. This rarity precludes from having strong evidence-based therapeutic recommendations, although international efforts are conducted to define the best treatment strategies. SUMMARY Embryonal tumors now correspond to molecularly well defined entities, which deserve further international collaborations to specify their biology and the appropriate burden of treatment, in order to minimize the long-term side-effects of treatment of these overall rare and severe diseases of childhood.
Collapse
|
35
|
Adel Fahmideh M, Scheurer ME. Pediatric Brain Tumors: Descriptive Epidemiology, Risk Factors, and Future Directions. Cancer Epidemiol Biomarkers Prev 2021; 30:813-821. [PMID: 33653816 DOI: 10.1158/1055-9965.epi-20-1443] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Brain tumors are the most common solid tumors in children and remain a significant contributor to death by disease in this population. Pediatric brain tumors (PBT) are broadly classified into two major categories: glial and neuronal tumors. Various factors, including tumor histology, tumor location, and demographics, influence the incidence and prognosis of this heterogeneous group of neoplasms. Numerous epidemiologic studies have been conducted to identify genetic and environmental risk factors for these malignancies. Thus far, the only established risk factors for PBTs are exposure to ionizing radiation and some rare genetic syndromes. However, relatively consistent evidence of positive associations for birth defects, markers of fetal growth, advanced parental age, maternal dietary N-nitroso compounds, and exposure to pesticides have been reported. The genetic variants associated with susceptibility to PBTs were predominantly identified by a candidate-gene approach. The identified genetic variants belong to four main pathways, including xenobiotic detoxification, inflammation, DNA repair, and cell-cycle regulation. Conducting large and multi-institutional studies is warranted to systematically detect genetic and environmental risk factors for different histologic subtypes of PBTs. This, in turn, might lead to a better understanding of etiology of PBTs and eventually developing risk prediction models to prevent these clinically significate malignancies.
Collapse
Affiliation(s)
- Maral Adel Fahmideh
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, Texas. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Michael E Scheurer
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
36
|
Luo Z, Dong X, Yu J, Xia Y, Berry KP, Rao R, Xu L, Xue P, Chen T, Lin Y, Yu J, Huang G, Li H, Zhou W, Lu QR. Genomic and Transcriptomic Analyses Reveals ZNF124 as a Critical Regulator in Highly Aggressive Medulloblastomas. Front Cell Dev Biol 2021; 9:634056. [PMID: 33681213 PMCID: PMC7930499 DOI: 10.3389/fcell.2021.634056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor, however, the mechanisms underlying tumorigenesis in different MB subgroups remain incompletely understood. Although previous studies of MB predisposition have been conducted in tertiary referral centers primarily in Caucasian cohorts, it is not unclear clear whether there exist population-specific genetic alterations in MBs. In this study, we investigated the contribution of genomic and transcriptomic alterations to the risk of malignant MB in the Chinese population (designated as the Asian cohort). We analyze the genomic and transcriptomic alterations of the Asian MB cohort by using a combination of whole-exome sequencing (WES) and RNA-deep-sequencing. In addition, we integrate publicly available data with the Asian MB cohort and identify a subset of potential MB-driving genes specifically enriched in each of the MB subgroups. We further characterize a newly identified group-3-enriched transcriptional regulator, ZNF124, and demonstrate that ZNF124 is critical for the growth of the most aggressive group-3 MB cells. Together, our analyses indicate conserved yet distinct genetic alterations and gene expression patterns of MBs between different ethnic groups. Our studies further provide an important resource for identifying potential tumor-driving factors in MBs, enhancing our understanding of the disease process for developing ethnically targeted therapies in patients with MB.
Collapse
Affiliation(s)
- Zaili Luo
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinran Dong
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianzhong Yu
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yong Xia
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Kalen P Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lingli Xu
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ping Xue
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tong Chen
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Guoying Huang
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
37
|
Farouk Sait S, Walsh MF, Karajannis MA. Genetic syndromes predisposing to pediatric brain tumors. Neurooncol Pract 2021; 8:375-390. [PMID: 34277017 DOI: 10.1093/nop/npab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput sequencing approaches including paired tumor/normal sampling with therapeutic intent has demonstrated that 8%-19% of pediatric CNS tumor patients harbor a germline alteration in a classical tumor predisposition gene (NF1, P53). In addition, large-scale germline sequencing studies in unselected cohorts of pediatric neuro-oncology patients have demonstrated novel candidate tumor predisposition genes (ELP1 alterations in sonic hedgehog medulloblastoma). Therefore, the possibility of an underlying tumor predisposition syndrome (TPS) should be considered in all pediatric patients diagnosed with a CNS tumor which carries critical implications including accurate prognostication, selection of optimal therapy, screening, risk reduction, and family planning. The Pediatric Cancer Working Group of the American Association for Cancer Research (AACR) recently published consensus screening recommendations for children with the most common TPS. In this review, we provide an overview of the most relevant as well as recently identified TPS associated with the most frequently encountered pediatric CNS tumors with an emphasis on pathogenesis, genetic testing, clinical features, and treatment implications.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
38
|
Retrospective investigation of hereditary syndromes in patients with medulloblastoma in a single institution. Childs Nerv Syst 2021; 37:411-417. [PMID: 32930885 DOI: 10.1007/s00381-020-04885-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the incidence rate of hereditary disease in patients with medulloblastoma. METHODS The genetic reports of 129 patients with medulloblastoma from January 2016 to December 2019 were retrospectively analyzed. A panel sequence of 39 genes (Genetron Health) were used for all patients to evaluate the tumor subgroup. Four genes (TP53, APC, PTCH1, SUFU) were screened to routinely rule out germline mutation. RESULTS Five patients (3.9%) were found with hereditary disease, and all belonged to the sonic hedgehog (SHH) subgroup. Two patients were retrospectively diagnosed with Gorlin-Goltz disease with germline PTCH1 and SUFU mutations. One patient (PTCH1 mutation) accepted whole craniospinal irradiation and had scalp nevoid basal cell carcinoma 5 years later. The other patient (SUFU mutation) accepted chemotherapy and had local tumor relapse 1 year later. Three patients were diagnosed with Li-Fraumeni syndrome and carried the TP53 mutation; all three patients died. One of the patients had bone osteosarcoma, while all three had early tumor relapse. CONCLUSION Patients with SHH medulloblastoma should routinely undergo genetic testing. We propose that whole genome, whole exome sequence, or custom-designed panel-targeted exome sequencing should be performed.
Collapse
|
39
|
Kratz CP, Jongmans MC, Cavé H, Wimmer K, Behjati S, Guerrini-Rousseau L, Milde T, Pajtler KW, Golmard L, Gauthier-Villars M, Jewell R, Duncan C, Maher ER, Brugieres L, Pritchard-Jones K, Bourdeaut F. Predisposition to cancer in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:142-154. [PMID: 33484663 DOI: 10.1016/s2352-4642(20)30275-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Childhood malignancies are rarely related to known environmental exposures, and it has become increasingly evident that inherited genetic factors play a substantial causal role. Large-scale sequencing studies have shown that approximately 10% of children with cancer have an underlying cancer predisposition syndrome. The number of recognised cancer predisposition syndromes and cancer predisposition genes are constantly growing. Imaging and laboratory technologies are improving, and knowledge of the range of tumours and risk of malignancy associated with cancer predisposition syndromes is increasing over time. Consequently, surveillance measures need to be constantly adjusted to address these new findings. Management recommendations for individuals with pathogenic germline variants in cancer predisposition genes need to be established through international collaborative studies, addressing issues such as genetic counselling, cancer prevention, cancer surveillance, cancer therapy, psychological support, and social-ethical issues. This Review represents the work by a group of experts from the European Society for Paediatric Oncology (SIOPE) and aims to summarise the current knowledge and define future research needs in this evolving field.
Collapse
Affiliation(s)
- Christian P Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marjolijn C Jongmans
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Hélène Cavé
- Department of Genetics, Assistance Publique Hôpitaux de Paris-Robert Debre University Hospital, Paris, France; Denis Diderot School of Medicine, University of Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1131, Institut de Recherche Saint Louis, Paris, France
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Till Milde
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Kristian W Pajtler
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Kathy Pritchard-Jones
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Franck Bourdeaut
- SIREDO Paediatric Cancer Center, Institut Curie, Paris, France; INSERM U830, Laboratory of Translational Research in Paediatric Oncology, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
40
|
Kopinke D, Norris AM, Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 2021; 110:89-103. [PMID: 32540122 PMCID: PMC7736055 DOI: 10.1016/j.semcdb.2020.05.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
41
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
42
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
43
|
Carta R, Del Baldo G, Miele E, Po A, Besharat ZM, Nazio F, Colafati GS, Piccirilli E, Agolini E, Rinelli M, Lodi M, Cacchione A, Carai A, Boccuto L, Ferretti E, Locatelli F, Mastronuzzi A. Cancer Predisposition Syndromes and Medulloblastoma in the Molecular Era. Front Oncol 2020; 10:566822. [PMID: 33194646 PMCID: PMC7658916 DOI: 10.3389/fonc.2020.566822] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. In addition to sporadic cases, medulloblastoma may occur in association with cancer predisposition syndromes. This review aims to provide a complete description of inherited cancer syndromes associated with medulloblastoma. We examine their epidemiological, clinical, genetic, and diagnostic features and therapeutic approaches, including their correlation with medulloblastoma. Furthermore, according to the most recent molecular advances, we describe the association between the various molecular subgroups of medulloblastoma and each cancer predisposition syndrome. Knowledge of the aforementioned conditions can guide pediatric oncologists in performing adequate cancer surveillance. This will allow clinicians to promptly diagnose and treat medulloblastoma in syndromic children, forming a team with all specialists necessary for the correct management of the other various manifestations/symptoms related to the inherited cancer syndromes.
Collapse
Affiliation(s)
- Roberto Carta
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Nazio
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Piccirilli
- Department of Neuroscience, Imaging and Clinical Science, University “G.d’Annunzio” of Chieti, Chieti, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mariachiara Lodi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, United States
- School of Nursing, College of Behavioral, Social and Health Science, Clemson University, Clemson, SC, United States
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Maternal, Infantile, and Urological Sciences, University of Rome La Sapienza, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
44
|
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, Iolascon A. Genetic Predisposition to Solid Pediatric Cancers. Front Oncol 2020; 10:590033. [PMID: 33194750 PMCID: PMC7656777 DOI: 10.3389/fonc.2020.590033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Progresses over the past years have extensively improved our capacity to use genome-scale analyses—including high-density genotyping and exome and genome sequencing—to identify the genetic basis of pediatric tumors. In particular, exome sequencing has contributed to the evidence that about 10% of children and adolescents with tumors have germline genetic variants associated with cancer predisposition. In this review, we provide an overview of genetic variations predisposing to solid pediatric tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the biological processes affected by the involved mutated genes. A careful description of the genetic basis underlying a large number of syndromes associated with an increased risk of pediatric cancer is also reported. We place particular emphasis on the emerging view that interactions between germline and somatic alterations are a key determinant of cancer development. We propose future research directions, which focus on the biological function of pediatric risk alleles and on the potential links between the germline genome and somatic changes. Finally, the importance of developing new molecular diagnostic tests including all the identified risk germline mutations and of considering the genetic predisposition in screening tests and novel therapies is emphasized.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Maiorino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
45
|
Somatilaka BN, Hwang SH, Palicharla VR, White KA, Badgandi H, Shelton JM, Mukhopadhyay S. Ankmy2 Prevents Smoothened-Independent Hyperactivation of the Hedgehog Pathway via Cilia-Regulated Adenylyl Cyclase Signaling. Dev Cell 2020; 54:710-726.e8. [PMID: 32702291 PMCID: PMC9042708 DOI: 10.1016/j.devcel.2020.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/12/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
The mechanisms underlying subcellular targeting of cAMP-generating adenylyl cyclases and processes regulated by their compartmentalization are poorly understood. Here, we identify Ankmy2 as a repressor of the Hedgehog pathway via adenylyl cyclase targeting. Ankmy2 binds to multiple adenylyl cyclases, determining their maturation and trafficking to primary cilia. Mice lacking Ankmy2 are mid-embryonic lethal. Knockout embryos have increased Hedgehog signaling and completely open neural tubes showing co-expansion of all ventral neuroprogenitor markers, comparable to the loss of the Hedgehog receptor Patched1. Ventralization in Ankmy2 knockout is completely independent of the Hedgehog pathway transducer Smoothened. Instead, ventralization results from the reduced formation of Gli2 and Gli3 repressors and early depletion of adenylyl cyclase III in neuroepithelial cilia, implicating deficient pathway repression. Ventralization in Ankmy2 knockout requires both cilia and Gli2 activation. These findings indicate that cilia-dependent adenylyl cyclase signaling represses the Hedgehog pathway and promotes morphogenetic patterning.
Collapse
Affiliation(s)
| | - Sun-Hee Hwang
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vivek Reddy Palicharla
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Andrew White
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hemant Badgandi
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Michael Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
46
|
Dahlin AM, Wibom C, Andersson U, Bybjerg-Grauholm J, Deltour I, Hougaard DM, Scheurer ME, Lau CC, McKean-Cowdin R, Kennedy RJ, Hung LT, Yee J, Margol AS, Barrington-Trimis J, Gauderman WJ, Feychting M, Schüz J, Röösli M, Kjaerheim K, Januszkiewicz-Lewandowska D, Fichna M, Nowak J, Searles Nielsen S, Asgharzadeh S, Mirabello L, Hjalmars U, Melin B. A genome-wide association study on medulloblastoma. J Neurooncol 2020; 147:309-315. [PMID: 32056145 PMCID: PMC7136185 DOI: 10.1007/s11060-020-03424-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Medulloblastoma is a malignant embryonal tumor of the cerebellum that occurs predominantly in children. To find germline genetic variants associated with medulloblastoma risk, we conducted a genome-wide association study (GWAS) including 244 medulloblastoma cases and 247 control subjects from Sweden and Denmark. METHODS Genotyping was performed using Illumina BeadChips, and untyped variants were imputed using IMPUTE2. RESULTS Fifty-nine variants in 11 loci were associated with increased medulloblastoma risk (p < 1 × 10-5), but none were statistically significant after adjusting for multiple testing (p < 5 × 10-8). Thirteen of these variants were genotyped, whereas 46 were imputed. Genotyped variants were further investigated in a validation study comprising 249 medulloblastoma cases and 629 control subjects. In the validation study, rs78021424 (18p11.23, PTPRM) was associated with medulloblastoma risk with OR in the same direction as in the discovery cohort (ORT = 1.59, pvalidation = 0.02). We also selected seven medulloblastoma predisposition genes for investigation using a candidate gene approach: APC, BRCA2, PALB2, PTCH1, SUFU, TP53, and GPR161. The strongest evidence for association was found for rs201458864 (PALB2, ORT = 3.76, p = 3.2 × 10-4) and rs79036813 (PTCH1, ORA = 0.42, p = 2.6 × 10-3). CONCLUSION The results of this study, including a novel potential medulloblastoma risk loci at 18p11.23, are suggestive but need further validation in independent cohorts.
Collapse
Affiliation(s)
- Anna M Dahlin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ulrika Andersson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Jonas Bybjerg-Grauholm
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Isabelle Deltour
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
- Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - David M Hougaard
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ching C Lau
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rebekah J Kennedy
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Long T Hung
- Department of Pediatrics, Section of Hematology-Oncology, Children's Hospital Los Angeles and The Saban Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Janis Yee
- Department of Pediatrics, Section of Hematology-Oncology, Children's Hospital Los Angeles and The Saban Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Ashley S Margol
- Department of Pediatrics, Section of Hematology-Oncology, Children's Hospital Los Angeles and The Saban Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Jessica Barrington-Trimis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Danuta Januszkiewicz-Lewandowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Susan Searles Nielsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Shahab Asgharzadeh
- Department of Pediatrics, Section of Hematology-Oncology, Children's Hospital Los Angeles and The Saban Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Saban Research Institute at Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ulf Hjalmars
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.
| |
Collapse
|
47
|
Waszak SM, Robinson GW, Gudenas BL, Smith KS, Forget A, Kojic M, Garcia-Lopez J, Hadley J, Hamilton KV, Indersie E, Buchhalter I, Kerssemakers J, Jäger N, Sharma T, Rausch T, Kool M, Sturm D, Jones DTW, Vasilyeva A, Tatevossian RG, Neale G, Lombard B, Loew D, Nakitandwe J, Rusch M, Bowers DC, Bendel A, Partap S, Chintagumpala M, Crawford J, Gottardo NG, Smith A, Dufour C, Rutkowski S, Eggen T, Wesenberg F, Kjaerheim K, Feychting M, Lannering B, Schüz J, Johansen C, Andersen TV, Röösli M, Kuehni CE, Grotzer M, Remke M, Puget S, Pajtler KW, Milde T, Witt O, Ryzhova M, Korshunov A, Orr BA, Ellison DW, Brugieres L, Lichter P, Nichols KE, Gajjar A, Wainwright BJ, Ayrault O, Korbel JO, Northcott PA, Pfister SM. Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature 2020; 580:396-401. [PMID: 32296180 PMCID: PMC7430762 DOI: 10.1038/s41586-020-2164-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.
Collapse
Affiliation(s)
- Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Giles W Robinson
- Department of Oncology, Division of Neuro-Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Antoine Forget
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Marija Kojic
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Hadley
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kayla V Hamilton
- Department of Oncology, Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emilie Indersie
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Ivo Buchhalter
- Omics IT and Data Management Core Facility (W610), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jules Kerssemakers
- Omics IT and Data Management Core Facility (W610), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aksana Vasilyeva
- Cancer Center Administration, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruth G Tatevossian
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Joy Nakitandwe
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Anne Bendel
- Department of Pediatric Hematology and Oncology, Children's Hospitals and Clinics of Minnesota, Minnesota, MN, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - John Crawford
- Department of Neurosciences, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital and Brain Tumour Research Programme, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Amy Smith
- Arnold Palmer Hospital Center for Children's Cancer, Orlando, FL, USA
| | - Christelle Dufour
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tone Eggen
- The Cancer Registry of Norway, Majorstuen, Oslo, Norway
| | - Finn Wesenberg
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| | - Kristina Kjaerheim
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Lannering
- Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Christoffer Johansen
- Oncology Clinic, Finsen Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Tina V Andersen
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Martin Röösli
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine University of Bern, Bern, Switzerland
| | - Claudia E Kuehni
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine University of Bern, Bern, Switzerland
- Department of Paediatric Haematology and Oncology, University Children's Hospital, Bern, Switzerland
| | - Michael Grotzer
- University Children's Hospital of Zurich, Zurich, Switzerland
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Stéphanie Puget
- Department of Pediatric Neurosurgery, Necker Hospital, Université de Paris, Paris, France
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, Burdenko Neurosurgical Institute, Moscow, Russia
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital, Heidelberg, Germany
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Laurence Brugieres
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Peter Lichter
- Division of Molecular Genetics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Kim E Nichols
- Department of Oncology, Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, Division of Neuro-Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Olivier Ayrault
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
48
|
Molnár‐Gábor F, Korbel JO. Genomic data sharing in Europe is stumbling-Could a code of conduct prevent its fall? EMBO Mol Med 2020; 12:e11421. [PMID: 32072760 PMCID: PMC7059003 DOI: 10.15252/emmm.201911421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genomic data sharing is becoming more important as scientists join forces across borders in biomedical research for the benefit of patients and society. The EU's General Data Protection Regulation (GDPR) helps simplify sharing of such data at the European and international level. However, initial optimism has dried up as EU member states go their own ways in implementing the GDPR into national laws, and as legal cases challenging data sharing reach courts. Codes of conduct could facilitate data sharing in Europe and better connect it to global health research. This commentary explains the potential of codes of conduct for addressees and drafters. Codes are no panacea though; other measures may be necessary to ensure that Europe remains collaborative and competitive in biomedical research. Nevertheless, codes of conduct would bring immediate benefits and, in the long term, could foster a true European ecosystem for joint biomedical research and easier international data sharing.
Collapse
Affiliation(s)
| | - Jan O Korbel
- European Molecular Biology LaboratoryGenome Biology UnitHeidelbergGermany
| |
Collapse
|
49
|
Perez E, Capper D. Invited Review: DNA methylation-based classification of paediatric brain tumours. Neuropathol Appl Neurobiol 2020; 46:28-47. [PMID: 31955441 DOI: 10.1111/nan.12598] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
DNA methylation-based machine learning algorithms represent powerful diagnostic tools that are currently emerging for several fields of tumour classification. For various reasons, paediatric brain tumours have been the main driving forces behind this rapid development and brain tumour classification tools are likely further advanced than in any other field of cancer diagnostics. In this review, we will discuss the main characteristics that were important for this rapid advance, namely the high clinical need for improvement of paediatric brain tumour diagnostics, the robustness of methylated DNA and the consequential possibility to generate high-quality molecular data from archival formalin-fixed paraffin-embedded pathology specimens, the implementation of a single array platform by most laboratories allowing data exchange and data pooling to an unprecedented extent, as well as the high suitability of the data format for machine learning. We will further discuss the four most central output qualities of DNA methylation profiling in a diagnostic setting (tumour classification, tumour sub-classification, copy number analysis and guidance for additional molecular testing) individually for the most frequent types of paediatric brain tumours. Lastly, we will discuss DNA methylation profiling as a tool for the detection of new paediatric brain tumour classes and will give an overview of the rapidly growing family of new tumours identified with the aid of this technique.
Collapse
Affiliation(s)
- E Perez
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - D Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|