1
|
Cabello-Aguilar S, Vendrell JA, Evrard S, Thomas Q, Roch B, Escudié F, Solassol I, Brousset P, Mazières J, Solassol J. An Optimized Next-Generation Sequencing Method for Detecting De Novo MET Amplification in Non-Small Cell Lung Cancer: Prognostic and Therapeutic Implications. J Transl Med 2025; 105:104117. [PMID: 39986540 DOI: 10.1016/j.labinv.2025.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
MET amplification (METamp) is a noteworthy genomic alteration that can occur in patients with non-small cell lung cancer (NSCLC). It has been demonstrated to occur as a primary oncogenic driver that may exist prior to any treatment and is referred to as de novo METamp. Despite the recognized significance of this genetic alteration, routine large-scale screening for the early detection of de novo METamp is currently lacking in clinical practice and the clinical impact of de novo METamp on NSCLC remains poorly investigated. In this study, we developed a next-generation sequencing--based screening method for detecting and stratifying METamp optimized in silico, validated in a patient cohort (n = 72) and applied to 1932 patients with NSCLC. Clinical outcomes (overall survival [OS] and progression-free survival) were assessed in de novo METamp cases (n = 46). The optimized next-generation sequencing--based method achieved high confidence (F-score > 0.99) during in silico optimization. In vivo validation demonstrated high sensitivity (0.93) and specificity (0.97) compared with fluorescence in situ hybridization. De novo METamp was found in 2.4% of cases stratified into the following distinct amplification groups based on the amplification copy number ratio (CNR): low (1.5 < CNR ≤ 2.2), medium (2.2 < CNR ≤ 4), and high amplification (CNR > 4). Significant differences in patient outcome (P < .001) were observed between the low- (median OS: 35.9 months), medium- (median OS: 14.3 months) and high-amplification (median OS: 3.3 months) groups. Progression-free survival under chemotherapy was notably reduced in the medium-/high-amplification groups compared with the low-amplification group (P = .001). Screening for METamp detection followed by stratification based on METamp levels may be considered in all patients with NSCLC at diagnosis. This approach could potentially enhance treatment management effectiveness by facilitating inclusion in clinical trials.
Collapse
Affiliation(s)
- Simon Cabello-Aguilar
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, Université de Montpellier, Montpellier, France; Montpellier BioInformatics for Clinical Diagnosis, Plateau de Médecine Moléculaire et Génomique, CHU Montpellier, Montpellier, France
| | - Julie A Vendrell
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Solène Evrard
- Laboratoire de Pathologie Moléculaire, Institut Universitaire du Cancer Toulouse Oncopôle, CHU de Toulouse, Toulouse, France
| | - Quentin Thomas
- Département d'Oncologie Médicale, Institut du Cancer de Montpellier, Montpellier, France
| | - Benoît Roch
- Département d'Oncologie Thoracique, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Frédéric Escudié
- Laboratoire de Pathologie Moléculaire, Institut Universitaire du Cancer Toulouse Oncopôle, CHU de Toulouse, Toulouse, France
| | - Isabelle Solassol
- Unité de Recherche Translationnelle, Institut du Cancer de Montpellier, Montpellier, France
| | - Pierre Brousset
- Laboratoire de Pathologie Moléculaire, Institut Universitaire du Cancer Toulouse Oncopôle, CHU de Toulouse, Toulouse, France
| | - Julien Mazières
- Département d'Oncologie Thoracique, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Jérôme Solassol
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, Université de Montpellier, Montpellier, France; Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Ji M, Ganesan S, Xia B, Huo Y. Targeting c-MET Alterations in Cancer: A Review of Genetic Drivers and Therapeutic Implications. Cancers (Basel) 2025; 17:1493. [PMID: 40361420 PMCID: PMC12070916 DOI: 10.3390/cancers17091493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Recent research has increasingly highlighted alterations in the proto-oncogene MET, whose abnormal activation has been implicated in multiple cancers. MET encodes c-MET, a receptor tyrosine kinase critical for cellular growth, survival, and migration. Aberrant c-MET signaling, driven by mutations or gene amplification, promotes proliferation and invasion, contributing to tumorigenesis. SCOPE OF THE REVIEW While MET mutations are most often observed in non-small cell lung cancer (NSCLC), they also occur in other malignancies, including breast and gastric cancers. This review highlights key MET alterations, such as gene amplification, gene fusions, and exon 14 skipping deletions, and examines their prevalence across various tumor types. MAJOR CONCLUSIONS We discuss the clinical significance of c-MET as a therapeutic target and identify gaps in knowledge that could inform the development of alternative treatment strategies.
Collapse
Affiliation(s)
- Michelle Ji
- Department of Radiation Oncology, Rutgers Cancer Institute, 195 Little Albany Street, New Brunswick, NJ 08903, USA; (M.J.); (B.X.)
- University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Shridar Ganesan
- NYU Langone Perlmutter Cancer Center, 160 East 34th Street, New York, NY 10016, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute, 195 Little Albany Street, New Brunswick, NJ 08903, USA; (M.J.); (B.X.)
| | - Yanying Huo
- Department of Radiation Oncology, Rutgers Cancer Institute, 195 Little Albany Street, New Brunswick, NJ 08903, USA; (M.J.); (B.X.)
| |
Collapse
|
3
|
Feng H, Xia Y, Wang W, Xu C, Wang Q, Song Z, Li Z, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Zhan P, Liu H, Lyu T, Miao L, Min L, Lin G, Huang L, Yuan J, Jiang Z, Pu X, Rao C, Lyu D, Yu Z, Li X, Tang C, Zhou C, Mei Q, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhou J, Zhu Z, Pan W, Pang F, Hu M, Wang K, Wu F, Xu B, Xu L, Wang L, Zhu Y, Li J, Xie Y, Lin X, Cai J, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Kang J, Zhang J, Zhang C, Gao W, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lyu D, Jiao X, Shi L, Lan G, Yang S, Shang Y, Wang Y, Li B, Jin G, Zheng K, Ma J, Li W, Zhang Z, Li Z, Li Y, Liu Z, Ma X, Yang N, Wu L, Wang Q, Wang G, Hong Z, Wang J, Fang M, Fang Y, Zhu X, et alFeng H, Xia Y, Wang W, Xu C, Wang Q, Song Z, Li Z, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Zhan P, Liu H, Lyu T, Miao L, Min L, Lin G, Huang L, Yuan J, Jiang Z, Pu X, Rao C, Lyu D, Yu Z, Li X, Tang C, Zhou C, Mei Q, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhou J, Zhu Z, Pan W, Pang F, Hu M, Wang K, Wu F, Xu B, Xu L, Wang L, Zhu Y, Li J, Xie Y, Lin X, Cai J, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Kang J, Zhang J, Zhang C, Gao W, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lyu D, Jiao X, Shi L, Lan G, Yang S, Shang Y, Wang Y, Li B, Jin G, Zheng K, Ma J, Li W, Zhang Z, Li Z, Li Y, Liu Z, Ma X, Yang N, Wu L, Wang Q, Wang G, Hong Z, Wang J, Fang M, Fang Y, Zhu X, Shen Y, Wang K, Ren X, Zhang Y, Ma S, Zhang J, Song Y, Fang W, Lu Y. Expert consensus on the diagnosis and treatment of non-small cell lung cancer with MET alteration. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0503. [PMID: 40200811 PMCID: PMC11976709 DOI: 10.20892/j.issn.2095-3941.2024.0503] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/17/2025] [Indexed: 04/10/2025] Open
Abstract
Alterations in the mesenchymal-epithelial transition factor (MET) gene are critical drivers of non-small cell lung cancer (NSCLC). In recent years advances in precision therapies targeting MET alterations have significantly expanded treatment options for NSCLC patients. These alterations include MET exon 14 skipping mutations (MET exon 14 skipping), MET gene amplifications, MET point mutations (primarily kinase domain mutations), and MET protein overexpression. Accurate identification of these alterations and appropriate selection of patient populations and targeted therapies are essential for improving clinical outcomes. The East China Lung Cancer Group, Youth Committee (ECLUNG YOUNG, Yangtze River Delta Lung Cancer Cooperation Group) has synthesized insights from China's innovative drug development landscape and clinical practice to formulate an expert consensus on the diagnosis and treatment of NSCLC patients with MET alterations. This consensus addresses key areas, such as optimal testing timing, testing methods, testing strategies, quality control measures, and treatment approaches. By offering standardized recommendations, this guidance aims to streamline diagnostic and therapeutic processes and enhance clinical decision-making for NSCLC with MET alterations.
Collapse
Affiliation(s)
- Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou 510080, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tangfeng Lyu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou 350014, China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhansheng Jiang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Dongqing Lyu
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou 350025, China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510300, China
| | - Qi Mei
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen 361003, China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Fei Pang
- Shanghai OrigiMed Co, Ltd, Shanghai 201114, China
| | - Meizhen Hu
- Shanghai OrigiMed Co, Ltd, Shanghai 201114, China
| | - Kai Wang
- Shanghai OrigiMed Co, Ltd, Shanghai 201114, China
| | - Fan Wu
- Menarini Silicon Biosystems SpA, Shanghai 200333, China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei 230011, China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou 014000, China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui 323000, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510300, China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jing Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou 510080, China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou 510080, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou 510080, China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui 323000, China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710004, China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hong Wang
- Senior Department of Oncology, The 5th Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Zheng Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Bing Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Donglai Lyu
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei 230031, China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gang Lan
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong 675000, China
| | - Yanhong Shang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Gang Jin
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Kang Zheng
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Jun Ma
- Department of Thoracic Surgery, Shanxi Provincial People’s Hospital/The Fifth Hospital of Shanxi Medical University/The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5th Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhuan Hong
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 210000, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
4
|
Sheng J, Jiao J, Yan N, Pan H. De Novo MET-amplified NSCLC treated with savolitinib achieved remarkable tumor regression: a case report and review of literature. J Cancer Res Clin Oncol 2025; 151:82. [PMID: 39948189 PMCID: PMC11825637 DOI: 10.1007/s00432-025-06132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/01/2025] [Indexed: 02/16/2025]
Abstract
Primary MET amplification is an infrequent tumorigenic driver gene alteration identified in pulmonary neoplasms. Data on the effectiveness of MET-tyrosine kinase inhibitor (TKI) therapy in de novo MET amplification are relatively scarce, and there remains a dearth of empirical evidence supporting the use of precision therapy as first-line treatment for advanced non-small cell lung cancer (NSCLC) with primary MET amplification. We present a case of advanced lung adenocarcinoma in an elderly patient with primary MET amplification. The patient had an initial ECOG Performance Status (PS) 2. DNA-NGS analysis of tissue samples revealed a MET gene copy number (GCN) of 8, indicating MET amplification, without other oncogenic mutations associated with available drugs being detected. This finding was validated by MET fluorescence in situ hybridization (FISH), which showed cluster amplification. Initial treatment with savolitinib resulted in a sustained partial response lasting more than sixteen months. Our results suggest that savolitinib is effective and safe for the treatment of elderly patients with de novo amplified MET metastatic NSCLC and may therefore be considered a potential treatment option worthy of prospective study confirmation.
Collapse
Affiliation(s)
- Jin Sheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Juan Jiao
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Na Yan
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Mehlman C, Swalduz A, Monnet I, Morin C, Wislez M, Guisier F, Curcio H, Du Rusquec P, Cortot AB, Gounant V, Abbar B, Duchemann B, Giroux-Leprieur E, Pierret T, Quilot FM, Cadranel J, Fallet V. COMPOSIT study: evaluating osimertinib combination with targeted therapies in EGFR-mutated non-small cell lung cancer. Oncologist 2024:oyae312. [PMID: 39724403 DOI: 10.1093/oncolo/oyae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/17/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION The emergence of diverse resistance mechanisms after osimertinib therapy, including on-target epidermal growth factor receptor (EGFR) mutations and off-target alterations, warrants investigation of novel therapeutics to overcome these challenges and improve patient outcomes. METHODS COMPOSIT was a French, retrospective, multicenter, cohort study of the effectiveness and tolerability of osimertinib in combination with other targeted therapies in patients with advanced EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC) who harbored other oncogenic drivers as primary or acquired resistance mechanisms. Real-world progression-free survival (rwPFS), overall survival (OS), and objective response rate (ORR) were the primary endpoints. RESULTS The study included 61 patients (63.9% women; median age, 61 years). Chemotherapy was administered to 26 patients (42.6%) before the combinations. The most frequently targeted resistance mechanisms were MET amplification (n = 40) and BRAF alterations (n = 11). Sixteen combinations of osimertinib with other targeted therapies were reported. Overall (except for 10 patients in clinical trials), median rwPFS and OS were 3.9 (95% CI, 2.9-5.2) and 9.8 months (95% CI, 6.8-14.8). Best ORR (n = 54) was 50% (95% CI, 33.0-72.8). In patients with MET amplification (n = 29), median rwPFS and OS were 4.9 (95% CI, 2.9-7.2) and 8.6 months (95% CI, 5.3-21.6). Grade ≥3 adverse events occurred in 15 patients (24.6%). No deaths were related to treatment. CONCLUSIONS Combinations of osimertinib with other targeted therapies appeared to be feasible and safe and may offer clinical benefit to overcome resistance to osimertinib in EGFRm NSCLC, especially in patients with MET amplification.
Collapse
Affiliation(s)
- Camille Mehlman
- Department of Pneumology and Thoracic Oncology, Tenon Hospital, Assistance Publique Hôpitaux de Paris and GRC 4, Theranoscan, Sorbonne Université, Paris, France
| | - Aurelie Swalduz
- Department of Medical Oncology, Léon Bérard Cancer Centre, Lyon, France
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Leon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Isabelle Monnet
- Department of Pneumology, Centre Hospitalier Inter-Communal de Creteil (CHIC), Creteil, France
| | - Clara Morin
- Department of Thoracic Oncology, Centre Hospitalier Universitaire Larrey, Toulouse, France
| | - Marie Wislez
- Unité d'Oncologie Thoracique Service de Pneumologie Hopital Cochin, AP-HP Equipe "cancer, immune control and escape" Inserm U1138 Centre de Recherches des Cordeliers Université Paris Cité, France
| | - Florian Guisier
- Normandie Univ, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU Rouen, Department of Pneumology and Inserm CIC-CRB 1404, F-76000 Rouen, France
| | - Hubert Curcio
- Department of Medical Oncology, Centre Francois Baclesse, Caen, France
| | - Pauline Du Rusquec
- Institut Curie, Institut du Thorax Curie-Montsouris, Paris-St Cloud, France
- Unité de Recherche INSERM U900, Université Paris-Saclay, Saint-Cloud, France
| | - Alexis B Cortot
- Thoracic Oncology Department, Université de Lille, CHU Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S 1277-Canther, Lille, France
| | - Valerie Gounant
- Université Paris Cité, Thoracic Oncology Department, CIC INSERM 1425, Institut du Cancer AP-HP Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Baptiste Abbar
- Department of Medical Oncology Assistance Publique - Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Institut Universitaire de Cancérologie, INSERM U1135, CLIP² Galilée, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Boris Duchemann
- Departement of Thoracic and Medical Oncology, Assistance Publique - Hôpitaux de Paris (AP-HP), Avicenne, Bobigny, France
- INSERM UMR1272 Hypoxie et poumon, Paris 13 - Université Paris Nord, Bobigny, France
| | - Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, Université Paris-Saclay, UVSQ, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
| | - Thomas Pierret
- Department of Pneumology, Hospices Civils of Lyon, Lyon, France
| | - Fleur-Marie Quilot
- Department of Thoracic Oncology, University Hospital, Bourgogne-Franche Comté, Dijon, France
| | - Jacques Cadranel
- Department of Pneumology and Thoracic Oncology, Tenon Hospital, Assistance Publique Hôpitaux de Paris and GRC 4, Theranoscan, Sorbonne Université, Paris, France
| | - Vincent Fallet
- Department of Pneumology and Thoracic Oncology, Tenon Hospital, Assistance Publique Hôpitaux de Paris and GRC 4, Theranoscan, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Ye L, Wang W, Li H, Ji Y, Le X, Xu X. Targeting the MET gene: unveiling therapeutic opportunities in immunotherapy within the tumor immune microenvironment of non-small cell lung cancer. Ther Adv Med Oncol 2024; 16:17588359241290733. [PMID: 39483139 PMCID: PMC11526239 DOI: 10.1177/17588359241290733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the most prevalent histological subtype of lung cancer. Within this disease, the MET gene emerges as a critical therapeutic target, exhibiting various forms of dysregulation. Although MET tyrosine kinase inhibitors, HGF/c-MET targeting antibodies, and antibody-drug conjugates constitute the primary treatment modalities for patients with MET-altered NSCLC, numerous questions remain regarding their optimal application. The advent of immunotherapy holds promise for enhancing therapeutic outcomes in patients with MET-altered NSCLC. MET mutations can reshape the tumor immune microenvironment of NSCLC by reducing tumor immunogenicity, inducing exhaustion in immune-activated cells, and promoting immune evasion, which are crucial for modulating treatment responses. Furthermore, we emphasize the promising synergy of immunotherapy with emerging treatments and the challenges and opportunities in refining these approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Wenjing Wang
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Huihui Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yongling Ji
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No.1 Banshan East Road, Hangzhou, Zhejiang 310022, China
| | - Xiuning Le
- Division of Internal Medicine, Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4000, USA
| | - Xiaoling Xu
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Zhenmin Road, Shanghai 200433, China
| |
Collapse
|
7
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
8
|
Poliaková Turan M, Riedo R, Medo M, Pozzato C, Friese-Hamim M, Koch JP, Coggins SA, Li Q, Kim B, Albers J, Aebersold DM, Zamboni N, Zimmer Y, Medová M. E2F1-Associated Purine Synthesis Pathway Is a Major Component of the MET-DNA Damage Response Network. CANCER RESEARCH COMMUNICATIONS 2024; 4:1863-1880. [PMID: 38957115 PMCID: PMC11288008 DOI: 10.1158/2767-9764.crc-23-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/03/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Various lines of investigation support a signaling interphase shared by receptor tyrosine kinases and the DNA damage response. However, the underlying network nodes and their contribution to the maintenance of DNA integrity remain unknown. We explored MET-related metabolic pathways in which interruption compromises proper resolution of DNA damage. Discovery metabolomics combined with transcriptomics identified changes in pathways relevant to DNA repair following MET inhibition (METi). METi by tepotinib was associated with the formation of γH2AX foci and with significant alterations in major metabolic circuits such as glycolysis, gluconeogenesis, and purine, pyrimidine, amino acid, and lipid metabolism. 5'-Phosphoribosyl-N-formylglycinamide, a de novo purine synthesis pathway metabolite, was consistently decreased in in vitro and in vivo MET-dependent models, and METi-related depletion of dNTPs was observed. METi instigated the downregulation of critical purine synthesis enzymes including phosphoribosylglycinamide formyltransferase, which catalyzes 5'-phosphoribosyl-N-formylglycinamide synthesis. Genes encoding these enzymes are regulated through E2F1, whose levels decrease upon METi in MET-driven cells and xenografts. Transient E2F1 overexpression prevented dNTP depletion and the concomitant METi-associated DNA damage in MET-driven cells. We conclude that DNA damage following METi results from dNTP reduction via downregulation of E2F1 and a consequent decline of de novo purine synthesis. SIGNIFICANCE Maintenance of genome stability prevents disease and affiliates with growth factor receptor tyrosine kinases. We identified de novo purine synthesis as a pathway in which key enzymatic players are regulated through MET receptor and whose depletion via MET targeting explains MET inhibition-associated formation of DNA double-strand breaks. The mechanistic importance of MET inhibition-dependent E2F1 downregulation for interference with DNA integrity has translational implications for MET-targeting-based treatment of malignancies.
Collapse
Affiliation(s)
- Michaela Poliaková Turan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Rahel Riedo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Matúš Medo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Chiara Pozzato
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Manja Friese-Hamim
- Corporate Animal Using Vendor and Vivarium Governance (SQ-AV), Corporate Sustainability, Quality, Trade Compliance (SQ), Animal Affairs (SQ-A), The Healthcare Business of Merck KGaA, Darmstadt, Germany.
| | - Jonas P. Koch
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Si’Ana A. Coggins
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| | - Qun Li
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
- College of Pharmacy, Kyung-Hee University, Seoul, South Korea.
| | - Joachim Albers
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany.
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
- PHRT Swiss Multi-Omics Center, Zurich, Switzerland.
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Felip E, Metro G, Tan DSW, Wolf J, Mark M, Boyer M, Hughes BGM, Bearz A, Moro-Sibilot D, Le X, Puente J, Massuti B, Tiedt R, Wang Y, Xu C, Mardjuadi FI, Cobo M. Capmatinib plus nivolumab in pretreated patients with EGFR wild-type advanced non-small cell lung cancer. Lung Cancer 2024; 192:107820. [PMID: 38763104 DOI: 10.1016/j.lungcan.2024.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Dysregulated MET is an established oncogenic driver in non-small cell lung cancer (NSCLC). MET signaling may also suppress anticancer immune responses. Concomitant MET inhibition with capmatinib (a MET inhibitor) synergistically enhanced the efficacy of immunotherapies in murine cancer models, regardless of tumor dependency to MET signaling. Here, we report results of a multicenter, open-label, phase 2 study of capmatinib plus nivolumab (a PD-1 inhibitor) in patients with EGFR wild-type advanced NSCLC, previously treated with platinum-based chemotherapy. METHODS Patients were allocated into high-MET or low-MET groups according to MET expression determined by immunohistochemistry, MET gene copy number as assessed by fluorescence in-situ hybridization, and presence of MET exon 14 skipping mutation, then received capmatinib 400 mg, oral, twice daily in combination with nivolumab 3 mg/kg intravenously every 2 weeks. The primary endpoint was investigator-assessed 6-month progression-free survival (PFS) rate per RECIST v1.1. RESULTS The primary endpoint was met in both the high-MET (N = 16) and low-MET (N = 30) groups. In the high-MET and low-MET groups, respectively, the estimated mean 6-month PFS rate (95 % credible interval) by Bayesian analysis was 68.9 % (48.5-85.7) and 50.9 % (35.6-66.4). The Kaplan-Meier median PFS (95 % CI) was 6.2 months (3.5-19.2) and 4.2 months (1.8-7.4). The overall response rate (95 % CI) was 25.0 % (7.3-52.4) and 16.7 % (5.6-34.7). Most frequent treatment-related adverse events (≥30 % any grade, N = 46) were nausea (52.2 %), peripheral edema (34.8 %), and increased blood creatinine (30.4 %). CONCLUSIONS Capmatinib plus nivolumab showed clinical activity and manageable safety in pretreated patients with advanced EGFR wild-type NSCLC, independent of MET status. TRIAL REGISTRATION ClinicalTrials.gov NCT02323126.
Collapse
Affiliation(s)
- Enriqueta Felip
- Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Spain.
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliero-Universitaria di Perugia, Perugia, Italy
| | | | - Juergen Wolf
- Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Michael Mark
- Division of Oncology/Hematology, Kantonsspital Graubuenden, Chur, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland
| | - Michael Boyer
- Department of Oncology, Chris O'Brien Lifehouse, New South Wales, Australia
| | - Brett G M Hughes
- The Prince Charles Hospital and University of Queensland, Queensland, Australia
| | | | | | - Xiuning Le
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javier Puente
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, Madrid, Spain
| | | | | | - Yingying Wang
- Novartis Institutes for Biomedical Research Co., Ltd, Shanghai, China
| | - Chao Xu
- Novartis Institutes for Biomedical Research Co., Ltd, Shanghai, China
| | - Feby I Mardjuadi
- Novartis Institutes for Biomedical Research Co., Ltd, Shanghai, China
| | - Manuel Cobo
- Medical Oncology Intercenter Unit. Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| |
Collapse
|
10
|
Yu QX, Fu PY, Zhang C, Li L, Huang WT. Mesenchymal-epithelial transition factor amplification correlates with adverse pathological features and poor clinical outcome in colorectal cancer. World J Gastrointest Surg 2024; 16:1395-1406. [PMID: 38817281 PMCID: PMC11135301 DOI: 10.4240/wjgs.v16.i5.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer and the second most common cause of cancer-related mortality worldwide. Mesenchymal-epithelial transition factor (MET) gene participates in multiple tumor biology and shows clinical potential for pharmacological manipulation in tumor treatment. MET amplification has been reported in CRC, but data are very limited. Investigating pathological values of MET in CRC may provide new therapeutic and genetic screening options in future clinical practice. AIM To determine the pathological significance of MET amplification in CRC and to propose a feasible screening strategy. METHODS A number of 205 newly diagnosed CRC patients undergoing surgical resection without any preoperative therapy at Shenzhen Cancer Hospital of Chinese Academy of Medical Sciences were recruited. All patients were without RAS/RAF mutation or microsatellite instability-high. MET amplification and c-MET protein expression were analyzed using fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), respectively. Correlations between MET aberration and pathological features were detected using the chi-squared test. Progression free survival (PFS) during the two-year follow-up was detected using the Kaplan-Meier method and log rank test. The results of MET FISH and IHC were compared using one-way ANOVA. RESULTS Polysomy-induced MET amplification was observed in 14.4% of cases, and focal MET amplification was not detected. Polysomy-induced MET amplification was associated with a higher frequency of lymph node metastasis (LNM) (P < 0.001) and higher tumor budding grade (P = 0.02). In the survival analysis, significant difference was detected between patients with amplified- and non-amplified MET in a two-year follow-up after the first diagnosis (P = 0.001). C-MET scores of 0, 1+, 2+, and 3+ were observed in 1.4%, 24.9%, 54.7%, and 19.0% of tumors, respectively. C-MET overexpression correlated with higher frequency of LNM (P = 0.002), but no significant difference of PFS was detected between patients with different protein levels. In terms of concordance between MET FISH and IHC results, MET copy number showed no difference in c-MET IHC 0/1+ (3.35 ± 0.18), 2+ (3.29 ± 0.11) and 3+ (3.58 ± 0.22) cohorts, and the MET-to-CEP7 ratio showed no difference in three groups (1.09 ± 0.02, 1.10 ± 0.01, and 1.09 ± 0.03). CONCLUSION In CRC, focal MET amplification was a rare event. Polysomy-induced MET amplification correlated with adverse pathological characteristics and poor prognosis. IHC was a poor screening tool for MET amplification.
Collapse
Affiliation(s)
- Qiu-Xiao Yu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Ping-Ying Fu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Chi Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Li Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Wen-Ting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| |
Collapse
|
11
|
Hong DS, Cappuzzo F, Chul Cho B, Dowlati A, Hussein M, Kim DW, Percent I, Christensen JG, Morin J, Potvin D, Faltaos D, Tassell V, Der-Torossian H, Chao R. Phase II study investigating the efficacy and safety of glesatinib (MGCD265) in patients with advanced NSCLC containing MET activating alterations. Lung Cancer 2024; 190:107512. [PMID: 38417277 DOI: 10.1016/j.lungcan.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVES Dysregulated signaling by mesenchymal epithelial transition factor (MET) and heightened AXL activation are implicated in the pathogenesis of non-small cell lung cancer (NSCLC). Glesatinib (MGCD265) is an investigational, oral inhibitor of MET and AXL. MATERIALS AND METHODS This open-label, Phase II study investigated glesatinib (free-base suspension [FBS] capsule 1050 mg BID or spray-dried dispersion [SDD] tablet 750 mg BID) in patients with advanced, previously treated NSCLC across four cohorts grouped according to presence of MET activating mutations or amplification in tumor or ctDNA. The primary endpoint was objective response rate (ORR). RESULTS Sixty-eight patients were enrolled: n = 28 and n = 8 with MET exon 14 skipping mutations in tumor tissue and ctDNA, respectively, and n = 20 and n = 12 with MET gene amplification in tumor tissue and ctDNA, respectively. Overall, ORR was 11.8 %, median progression-free survival was 4.0 months, and median overall survival was 7.0 months. Among patients with MET activating mutations, ORR was 10.7 % with tumor testing and 25.0 % with ctDNA testing. For MET amplification, responses were observed only in patients enrolled by tumor testing (ORR 15.0 %). Diarrhea (82.4 %), nausea (50.0 %), increased alanine aminotransferase (41.2 %), fatigue (38.2 %), and increased aspartate aminotransferase (36.8 %) were the most frequent adverse events assessed as related to study medication. Glesatinib exposure was similar with the SDD tablet and FBS capsule formulations. The study was terminated early by the sponsor due to modest clinical activity. CONCLUSIONS Glesatinib had an acceptable safety profile in patients with advanced, pre-treated NSCLC with MET activating alterations. Modest clinical activity was observed, which likely reflects suboptimal drug bioavailability suggested by previously reported Phase I data, and pharmacodynamic findings of lower than anticipated increases in circulating soluble shed MET ectodomain (s-MET).
Collapse
Affiliation(s)
| | | | - Byoung Chul Cho
- Severence Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Afshin Dowlati
- University Hospitals Seidman Cancer Center and Case Western Reserve University, OH, USA
| | - Maen Hussein
- Florida Cancer Specialists, Saint Petersburg, FL, USA
| | - Dong-Wan Kim
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Ivor Percent
- SCRI Florida Cancer Specialists, Fort Myers, FL, USA
| | | | - Josée Morin
- Mirati Therapeutics Inc., San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chagas GCL, Rangel AR, El Osta B. MET alterations in advanced non-small cell lung cancer. Curr Probl Cancer 2024; 49:101075. [PMID: 38480027 DOI: 10.1016/j.currproblcancer.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 04/29/2024]
Abstract
Precision medicine has helped identify several tumor molecular aberrations to be treated with targeted therapies. These therapies showed substantial improvement in efficacy without excessive toxicity in patients with specific oncogenic drivers with advanced cancers. In metastatic lung cancers, the implementation of broad platforms for molecular tumor sequencing has helped oncology providers identify oncogenic drivers linked with better outcomes when treated upfront with targeted therapies. Mesenchymal-epithelial transition factor (MET) alterations are present in up to 60% of non-small cell lung cancer and are associated with a poor prognosis. Capmatinib and tepotinib are currently the only two approved targeted therapies by the U.S. Food and Drug Administration (FDA) for patients with MET exon 14 skipping mutation. Several agents are being developed to tackle an unmet need in patients with MET alterations. Some of these agents are being used in combination with EGFR targeted therapy to mitigate resistance to EGFR inhibitor. These agents are poised to provide new hope for these patients.
Collapse
Affiliation(s)
- Gabriel Cavalcante Lima Chagas
- Post-Graduation Program in Medical Sciences, Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Costa Mendes, 1608. 4(o) andar. Rodolfo Teófilo, Fortaleza, CE 60430-140, Brazil
| | - Amanda Ribeiro Rangel
- Post-Graduation Program in Medical Sciences, Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Costa Mendes, 1608. 4(o) andar. Rodolfo Teófilo, Fortaleza, CE 60430-140, Brazil
| | - Badi El Osta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta VA Medical Center, Winship Cancer Institute of Emory University, 1365 Clifton Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Xiang C, Lv X, Chen K, Guo L, Zhao R, Teng H, Ye M, Kuang T, Hou T, Liu C, Du H, Zhang Z, Han Y. Unraveling the Significance of MET Focal Amplification in Lung Cancer: Integrative NGS, FISH, and IHC Investigation. Mod Pathol 2024; 37:100451. [PMID: 38369190 DOI: 10.1016/j.modpat.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
MET amplification (METamp) represents a promising therapeutic target in non-small cell lung cancer, but no consensus has been established to identify METamp-dependent tumors that could potentially benefit from MET inhibitors. In this study, an analysis of MET amplification/overexpression status was performed in a retrospectively recruited cohort comprising 231 patients with non-small cell lung cancer from Shanghai Chest Hospital (SCH cohort) using 3 methods: fluorescence in situ hybridization (FISH), hybrid capture-based next-generation sequencing, and immunohistochemistry for c-MET and phospho-MET. The SCH cohort included 130 cases known to be METamp positive by FISH and 101 negative controls. The clinical relevance of these approaches in predicting the efficacy of MET inhibitors was evaluated. Additionally, next-generation sequencing data from another 2 cohorts including 22,010 lung cancer cases were utilized to examine the biological characteristics of different METamp subtypes. Of the 231 cases, 145 showed MET amplification/overexpression using at least 1 method, whereas only half of them could be identified by all 3 methods. METamp can occur as focal amplification or polysomy. Our study revealed that the inconsistency between next-generation sequencing and FISH primarily occurred in the polysomy subtype. Further investigations indicated that compared with polysomy, focal amplification correlated with fewer co-occurring driver mutations, higher protein expressions of c-MET and phospho-MET, and higher incidence in acquired resistance than in de novo setting. Moreover, patients with focal amplification presented a more robust response to MET inhibitors compared with those with polysomy. Notably, a strong correlation was observed between focal amplification and programmed cell death ligand-1 expression, indicating potential therapeutic implications with combined MET inhibitor and immunotherapy for patients with both alterations. Our findings provide insights into the molecular complexity and clinical relevance of METamp in lung cancer, highlighting the role of MET focal amplification as an oncogenic driver and its feasibility as a primary biomarker to further investigate the clinical activity of MET inhibitors in future studies.
Collapse
Affiliation(s)
- Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinze Lv
- Burning Rock Biotech, Guangzhou, China
| | - Ke Chen
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianying Guo
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haohua Teng
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ye
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ting Hou
- Burning Rock Biotech, Guangzhou, China
| | | | - Haiwei Du
- Burning Rock Biotech, Guangzhou, China
| | | | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Ramesh S, Cifci A, Javeri S, Minne R, Longhurst CA, Nickel KP, Kimple RJ, Baschnagel AM. MET Inhibitor Capmatinib Radiosensitizes MET Exon 14-Mutated and MET-Amplified Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1379-1390. [PMID: 37979706 PMCID: PMC12121486 DOI: 10.1016/j.ijrobp.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE The objective of this study was to investigate the effects of inhibiting the MET receptor with capmatinib, a potent and clinically relevant ATP-competitive tyrosine kinase inhibitor, in combination with radiation in MET exon 14-mutated and MET-amplified non-small cell lung (NSCLC) cancer models. METHODS AND MATERIALS In vitro effects of capmatinib and radiation on cell proliferation, colony formation, MET signaling, apoptosis, and DNA damage repair were evaluated. In vivo tumor responses were assessed in cell line xenograft and patient-derived xenograft models. Immunohistochemistry was used to confirm the in vitro results. RESULTS In vitro clonogenic survival assays demonstrated radiosensitization with capmatinib in both MET exon 14-mutated and MET-amplified NSCLC cell lines. No radiation-enhancing effect was observed in MET wild-type NSCLC and a human bronchial epithelial cell line. Minimal apoptosis was detected with the combination of capmatinib and radiation. Capmatinib plus radiation compared with radiation alone resulted in inhibition of DNA double-strand break repair, as measured by prolonged expression of γH2AX. In vivo, the combination of capmatinib and radiation significantly delayed tumor growth compared with vehicle control, capmatinib alone, or radiation alone. Immunohistochemistry indicated inhibition of phospho-MET and phospho-S6 and a decrease in Ki67 with inhibition of MET. CONCLUSIONS Inhibition of MET with capmatinib enhances the effect of radiation in both MET exon 14-mutated and MET-amplified NSCLC models.
Collapse
Affiliation(s)
- Shrey Ramesh
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ahmet Cifci
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Saahil Javeri
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Rachel Minne
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Colin A. Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Randall J. Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrew M. Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Crepaldi T, Gallo S, Comoglio PM. The MET Oncogene: Thirty Years of Insights into Molecular Mechanisms Driving Malignancy. Pharmaceuticals (Basel) 2024; 17:448. [PMID: 38675409 PMCID: PMC11054789 DOI: 10.3390/ph17040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The discovery and subsequent research on the MET oncogene's role in cancer onset and progression have illuminated crucial insights into the molecular mechanisms driving malignancy. The identification of MET as the hepatocyte growth factor (HGF) receptor has paved the path for characterizing the MET tyrosine kinase activation mechanism and its downstream signaling cascade. Over the past thirty years, research has established the importance of HGF/MET signaling in normal cellular processes, such as cell dissociation, migration, proliferation, and cell survival. Notably, genetic alterations that lead to the continuous activation of MET, known as constitutive activation, have been identified as oncogenic drivers in various cancers. The genetic lesions affecting MET, such as exon skipping, gene amplification, and gene rearrangements, provide valuable targets for therapeutic intervention. Moreover, the implications of MET as a resistance mechanism to targeted therapies emphasize the need for combination treatments that include MET inhibitors. The intriguing "flare effect" phenomenon, wherein MET inhibition can lead to post-treatment increases in cancer cell proliferation, underscores the dynamic nature of cancer therapeutics. In human tumors, increased protein expression often occurs without gene amplification. Various mechanisms may cause an overexpression: transcriptional upregulation induced by other oncogenes; environmental factors (such as hypoxia or radiation); or substances produced by the reactive stroma, such as inflammatory cytokines, pro-angiogenic factors, and even HGF itself. In conclusion, the journey to understanding MET's involvement in cancer onset and progression over the past three decades has not only deepened our knowledge, but has also paved the way for innovative therapeutic strategies. Selective pharmacological inactivation of MET stands as a promising avenue for achieving cancer remission, particularly in cases where MET alterations are the primary drivers of malignancy.
Collapse
Affiliation(s)
- Tiziana Crepaldi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (T.C.); (S.G.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (T.C.); (S.G.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Paolo Maria Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|
16
|
Su JW, Weng CD, Lin XC, Fang MM, Xiao X, Zhang YC, Zhang XC, Su J, Xu CR, Yan HH, Chen HJ, Wu YL, Yang JJ. Plasma ddPCR for the detection of MET amplification in advanced NSCLC patients: a comparative real-world study. Ther Adv Med Oncol 2024; 16:17588359241229435. [PMID: 38333112 PMCID: PMC10851729 DOI: 10.1177/17588359241229435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Background Mesenchymal-epithelial transition (MET) amplification is a crucial oncogenic driver and a resistance mechanism to epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) of non-small-cell lung cancer (NSCLC). Fluorescence in situ hybridization (FISH) is the gold standard for MET amplification detection. However, it is inapplicable when tissue samples are unavailable. Objective This study assessed the performance of plasma droplet digital polymerase chain reaction (ddPCR) in MET amplification detection in NSCLC patients. Design and methods A total of 87 NSCLC patients were enrolled, and 94 paired tissue and plasma samples were analyzed for the concordance between FISH and plasma ddPCR/tissue next-generation sequencing (NGS) in detecting MET amplification. In addition, the efficacy of patients with MET amplification using different detection methods who were treated with MET-TKIs was evaluated. Results Plasma ddPCR showed substantial concordance with FISH (74.1% sensitivity, 92.5% specificity, and 87.2% accuracy with a kappa value of 0.68) and outperformed tissue NGS (kappa value of 0.64) in MET amplification detection. Combined plasma ddPCR and tissue NGS showed substantial concordance with FISH (92.3% sensitivity, 89.2% specificity, and an accuracy of 90.1% with a kappa value of 0.77). The efficacy is comparable in these NSCLC patients with MET amplification detected by FISH and plasma ddPCR who were treated with MET-TKIs. Conclusion Plasma ddPCR is a potentially reliable method for detecting MET amplification in advanced NSCLC patients. Combined plasma ddPCR and tissue NGS might be an alternative or complementary method to MET amplification detection.
Collapse
Affiliation(s)
- Jun-Wei Su
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng-Di Weng
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Cheng Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mei-Mei Fang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao Xiao
- Shanghai Yuanqi Biomedical Technology Co., Ltd, Shanghai, China
| | - Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, China
| |
Collapse
|
17
|
Zhang Q, Wang R, Xu L. Clinical advances in EGFR-TKI combination therapy for EGFR-mutated NSCLC: a narrative review. Transl Cancer Res 2023; 12:3764-3778. [PMID: 38192990 PMCID: PMC10774042 DOI: 10.21037/tcr-23-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Mutations located in epidermal growth factor receptor (EGFR) tyrosine kinase domains have been described as the 'Achilles heel' of non-small cell lung cancer (NSCLC) and can be targeted by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). However, the clinical benefits of EGFR-TKIs are limited, and drug resistance inevitably occurs in NSCLC patients after long-term exposure to certain drugs. EGFR-TKI combination therapies, including combined targeted therapy, radiotherapy, chemotherapy, and immunotherapy, have shown promise in addressing this issue. This literature review analyzed the rationale and controversies of clinical research related to various EGFR-TKI combination therapies. METHODS The PubMed database was searched to retrieve articles published from January 1, 2001 to April 15, 2023 using the following Medical Subject Headings (MeSH) terms: "EGFR-mutated non-small cell lung cancer" and "clinical trial". Google Scholar was also reviewed to retrieve additional articles. The search was limited to articles published in English. KEY CONTENT AND FINDINGS In this review, we summarized EGFR-TKI combination therapies, including combined targeted therapy, radiotherapy, chemotherapy, and immunotherapy, most of which have shown efficacy and safety in patients with EGFR-mutated NSCLC. A number of clinical studies with large sample sizes have analyzed the activity and toxicity of combined therapies and explored potential and well-tolerated treatment options. CONCLUSIONS EGFR mutations have been detected in many NSCLC patients and can be targeted by EGFR-TKIs. However, drug resistance after long-term exposure remains a significant challenge for this type of treatment. Most clinical trials have shown that the combination of EGFR-TKIs and targeted therapy, chemotherapy, radiotherapy or immunotherapy is efficacious and safe in the treatment of EGFR-mutated NSCLC. It should be noted that in some instances, serious adverse events have led to the termination of trials. However, EGFR-TKI combination therapy is indeed an effective approach for the treatment of patients with EGFR-mutated NSCLC and deserves further development.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruo Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Le X, Paz-Ares LG, Van Meerbeeck J, Viteri S, Galvez CC, Smit EF, Garassino M, Veillon R, Baz DV, Pradera JF, Sereno M, Kozuki T, Kim YC, Yoo SS, Han JY, Kang JH, Son CH, Choi YJ, Stroh C, Juraeva D, Vioix H, Bruns R, Otto G, Johne A, Paik PK. Tepotinib in patients with non-small cell lung cancer with high-level MET amplification detected by liquid biopsy: VISION Cohort B. Cell Rep Med 2023; 4:101280. [PMID: 37944528 PMCID: PMC10694660 DOI: 10.1016/j.xcrm.2023.101280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
High-level MET amplification (METamp) is a primary driver in ∼1%-2% of non-small cell lung cancers (NSCLCs). Cohort B of the phase 2 VISION trial evaluates tepotinib, an oral MET inhibitor, in patients with advanced NSCLC with high-level METamp who were enrolled by liquid biopsy. While the study was halted before the enrollment of the planned 60 patients, the results of 24 enrolled patients are presented here. The objective response rate (ORR) is 41.7% (95% confidence interval [CI], 22.1-63.4), and the median duration of response is 14.3 months (95% CI, 2.8-not estimable). In exploratory biomarker analyses, focal METamp, RB1 wild-type, MYC diploidy, low circulating tumor DNA (ctDNA) burden at baseline, and early molecular response are associated with better outcomes. Adverse events include edema (composite term; any grade: 58.3%; grade 3: 12.5%) and constipation (any grade: 41.7%; grade 3: 4.2%). Tepotinib provides antitumor activity in high-level METamp NSCLC (ClinicalTrials.gov: NCT02864992).
Collapse
Affiliation(s)
- Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Luis G Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Jan Van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Santiago Viteri
- Instituto Oncologico Dr. Rosell, Hospital Universitari Dexeus, Grupo QuironSalud, 08028 Barcelona, Spain
| | - Carlos Cabrera Galvez
- Department of Medical Oncology, Hospital Universitari Sagrat Cor, 08029 Barcelona, Spain
| | - Egbert F Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Marina Garassino
- Department of Medicine, Section of Hematology/Oncology, Knapp Center for Biomedical Discovery, The University of Chicago, Chicago, IL 1084250, USA
| | - Remi Veillon
- CHU Bordeaux, Service des Maladies Respiratoires, 33000 Bordeaux, France
| | - David Vicente Baz
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Jose Fuentes Pradera
- Department of Medical Oncology, Hospital Universitario Nuestra Señora de Valme, 41014 Seville, Spain
| | - María Sereno
- Department of Medical Oncology, Hospital Universitario Infanta Sofia, San Sebastián de los Reyes, 28703 Madrid, Spain
| | - Toshiyuki Kozuki
- Department of Respiratory Medicine, NHO Shikoku Cancer Center, Matsuyama City 791-0280, Japan
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School and CNU Hwasun Hospital, Hwasun-Gun 58128, Rep. of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41566, Rep. of Korea
| | - Ji-Youn Han
- The Center for Lung Cancer, National Cancer Center, Goyang 10408, Rep. of Korea
| | - Jin-Hyoung Kang
- Division of Medical Oncology, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Rep. of Korea
| | - Choon-Hee Son
- Department of Internal Medicine, Dong-A University, 840 Hadan 2-dong, Saha-gu, Busan 604-714, Rep. of Korea
| | - Yoon Ji Choi
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Rep. of Korea
| | - Christopher Stroh
- Clinical Biomarkers & Companion Diagnostics, the healthcare business of Merck KGaA, 64293 Darmstadt, Germany
| | - Dilafruz Juraeva
- Oncology Bioinformatics, the healthcare business of Merck KGaA, 64293 Darmstadt, Germany
| | - Helene Vioix
- Global Evidence & Value Development, the healthcare business of Merck KGaA, 64293 Darmstadt, Germany
| | - Rolf Bruns
- Department of Biostatistics, the healthcare business of Merck KGaA, 64293 Darmstadt, Germany
| | - Gordon Otto
- Global Clinical Development, the healthcare business of Merck KGaA, 64293 Darmstadt, Germany
| | - Andreas Johne
- Global Clinical Development, the healthcare business of Merck KGaA, 64293 Darmstadt, Germany
| | - Paul K Paik
- Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York 14853, NY, USA
| |
Collapse
|
19
|
Ramesh S, Cifci A, Javeri S, Minne R, Longhurst CA, Nickel KP, Kimple RJ, Baschnagel AM. MET Inhibitor Capmatinib Radiosensitizes MET Exon 14-Mutated and MET-Amplified Non-Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564232. [PMID: 37961176 PMCID: PMC10634863 DOI: 10.1101/2023.10.26.564232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose The objective of this study was to investigate the effects of inhibiting the MET receptor with capmatinib, a potent and clinically relevant ATP-competitive tyrosine kinase inhibitor, in combination with radiation in MET exon 14-mutated and MET-amplified non-small cell lung (NSCLC) cancer models. Methods and Materials In vitro effects of capmatinib and radiation on cell proliferation, colony formation, MET signaling, apoptosis, and DNA damage repair were evaluated. In vivo tumor responses were assessed in cell line xenograft and patient-derived xenograft models. Immunohistochemistry (IHC) was used to confirm in vitro results. Results In vitro clonogenic survival assays demonstrated radiosensitization with capmatinib in both MET exon 14-mutated and MET-amplified NSCLC cell lines. No radiation-enhancing effect was observed in MET wild-type NSCLC and human bronchial epithelial cell line. Minimal apoptosis was detected with the combination of capmatinib and radiation. Capmatinib plus radiation compared to radiation alone resulted in inhibition of DNA double-strand break repair as measured by prolonged expression of γH2AX. In vivo, the combination of capmatinib and radiation significantly delayed tumor growth compared to vehicle control, capmatinib alone, or radiation alone. IHC indicated inhibition of phospho-MET and phospho-S6 and a decrease in Ki67 with inhibition of MET. Conclusions Inhibition of MET with capmatinib enhanced the effect of radiation in both MET exon 14-mutated and MET-amplified NSCLC models.
Collapse
Affiliation(s)
- Shrey Ramesh
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ahmet Cifci
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Saahil Javeri
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Rachel Minne
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Colin A. Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Randall J. Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrew M. Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Clavé S, Jackson JB, Salido M, Kames J, Gerding KMR, Verner EL, Kong EF, Weingartner E, Gibert J, Hardy-Werbin M, Rocha P, Riera X, Torres E, Hernandez J, Cerqueira G, Nichol D, Simmons J, Taus Á, Pijuan L, Bellosillo B, Arriola E. Comprehensive NGS profiling to enable detection of ALK gene rearrangements and MET amplifications in non-small cell lung cancer. Front Oncol 2023; 13:1225646. [PMID: 37927472 PMCID: PMC10623306 DOI: 10.3389/fonc.2023.1225646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Next-generation sequencing (NGS) is currently widely used for biomarker studies and molecular profiling to identify concurrent alterations that can lead to the better characterization of a tumor's molecular landscape. However, further evaluation of technical aspects related to the detection of gene rearrangements and copy number alterations is warranted. Methods There were 12 ALK rearrangement-positive tumor specimens from patients with non-small cell lung cancer (NSCLC) previously detected via fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and an RNA-based NGS assay, and 26 MET high gene copy number (GCN) cases detected by FISH, selected for this retrospective study. All 38 pre-characterized cases were reassessed utilizing the PGDx™ elio™ tissue complete assay, a 505 gene targeted NGS panel, to evaluate concordance with these conventional diagnostic techniques. Results The detection of ALK rearrangements using the DNA-based NGS assay demonstrated excellent sensitivity with the added benefit of characterizing gene fusion partners and genomic breakpoints. MET copy number alterations were also detected; however, some discordances were observed likely attributed to differences in algorithm, reporting thresholds and gene copy number state. TMB was also assessed by the assay and correlated to the presence of NSCLC driver alterations and was found to be significantly lower in cases with NGS-confirmed canonical driver mutations compared with those without (p=0.0019). Discussion Overall, this study validates NGS as an accurate approach for detecting structural variants while also highlighting the need for further optimization to enable harmonization across methodologies for amplifications.
Collapse
Affiliation(s)
- Sergi Clavé
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Marta Salido
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jacob Kames
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | | | - Ellen L. Verner
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Eric F. Kong
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | | | - Joan Gibert
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Max Hardy-Werbin
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pedro Rocha
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Xènia Riera
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Erica Torres
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - James Hernandez
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Gustavo Cerqueira
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Donna Nichol
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - John Simmons
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Álvaro Taus
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Edurne Arriola
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
21
|
Spitaleri G, Trillo Aliaga P, Attili I, Del Signore E, Corvaja C, Corti C, Uliano J, Passaro A, de Marinis F. MET in Non-Small-Cell Lung Cancer (NSCLC): Cross 'a Long and Winding Road' Looking for a Target. Cancers (Basel) 2023; 15:4779. [PMID: 37835473 PMCID: PMC10571577 DOI: 10.3390/cancers15194779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Non-Small-Cell Lung Cancer (NSCLC) can harbour different MET alterations, such as MET overexpression (MET OE), MET gene amplification (MET AMP), or MET gene mutations. Retrospective studies of surgical series of patients with MET-dysregulated NSCLC have shown worse clinical outcomes irrespective of the type of specific MET gene alteration. On the other hand, earlier attempts failed to identify the 'druggable' molecular gene driver until the discovery of MET exon 14 skipping mutations (METex14). METex14 are rare and amount to around 3% of all NSCLCs. Patients with METex14 NSCLC attain modest results when they are treated with immune checkpoint inhibitors (ICIs). New selective MET inhibitors (MET-Is) showed a long-lasting clinical benefit in patients with METex14 NSCLC and modest activity in patients with MET AMP NSCLC. Ongoing clinical trials are investigating new small molecule tyrosine kinase inhibitors, bispecific antibodies, or antibodies drug conjugate (ADCs). This review focuses on the prognostic role of MET, the summary of pivotal clinical trials of selective MET-Is with a focus on resistance mechanisms. The last section is addressed to future developments and challenges.
Collapse
Affiliation(s)
- Gianluca Spitaleri
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Ester Del Signore
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Carla Corvaja
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (C.C.); (J.U.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Jacopo Uliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (C.C.); (J.U.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| |
Collapse
|
22
|
Cao W, Tang Q, Zeng J, Jin X, Zu L, Xu S. A Review of Biomarkers and Their Clinical Impact in Resected Early-Stage Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:4561. [PMID: 37760531 PMCID: PMC10526902 DOI: 10.3390/cancers15184561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The postoperative survival of early-stage non-small-cell lung cancer (NSCLC) patients remains unsatisfactory. In this review, we examined the relevant literature to ascertain the prognostic effect of related indicators on early-stage NSCLC. The prognostic effects of the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), mesenchymal-epithelial transition (MET), C-ros oncogene 1 (ROS1), or tumour protein p53 (TP53) alterations in resected NSCLC remains debatable. Kirsten rat sarcoma viral oncogene homologue (KRAS) alterations indicate unfavourable outcomes in early-stage NSCLC. Meanwhile, adjuvant or neoadjuvant EGFR-targeted agents can substantially improve prognosis in early-stage NSCLC with EGFR alterations. Based on the summary of current studies, resected NSCLC patients with overexpression of programmed death-ligand 1 (PD-L1) had worsening survival. Conversely, PD-L1 or PD-1 inhibitors can substantially improve patient survival. Considering blood biomarkers, perioperative peripheral venous circulating tumour cells (CTCs) and pulmonary venous CTCs predicted unfavourable prognoses and led to distant metastases. Similarly, patients with detectable perioperative circulating tumour DNA (ctDNA) also had reduced survival. Moreover, patients with perioperatively elevated carcinoembryonic antigen (CEA) in the circulation predicted significantly worse survival outcomes. In the future, we will incorporate mutated genes, immune checkpoints, and blood-based biomarkers by applying artificial intelligence (AI) to construct prognostic models that predict patient survival accurately and guide individualised treatment.
Collapse
Affiliation(s)
- Weibo Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Quanying Tang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Jin
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
23
|
Kumaki Y, Oda G, Ikeda S. Targeting MET Amplification: Opportunities and Obstacles in Therapeutic Approaches. Cancers (Basel) 2023; 15:4552. [PMID: 37760522 PMCID: PMC10526812 DOI: 10.3390/cancers15184552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The MET gene plays a vital role in cellular proliferation, earning it recognition as a principal oncogene. Therapies that target MET amplification have demonstrated promising results both in preclinical models and in specific clinical cases. A significant obstacle to these therapies is the ability to distinguish between focal amplification and polysomy, a task for which simple MET copy number measurement proves insufficient. To effectively differentiate between the two, it is crucial to utilize comparative measures, including in situ hybridization (ISH) with the centromere or next generation sequencing (NGS) with adjacent genes. Despite the promising potential of MET amplification treatment, the judicious selection of patients is paramount to maximize therapeutic efficacy. The effectiveness of MET inhibitors can fluctuate depending on the extent of MET amplification. Future research must seek to establish the ideal threshold value for MET amplification, identify the most efficacious combination therapies, and innovate new targeted treatments for patients exhibiting MET amplification.
Collapse
Affiliation(s)
- Yuichi Kumaki
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | - Goshi Oda
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | - Sadakatsu Ikeda
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Gu Y, Xiao M, Chen Z, Li Q. Advanced hepatocellular carcinoma with MET-amplified contained excellent response to crizotinib: a case report. Front Oncol 2023; 13:1196211. [PMID: 37655101 PMCID: PMC10467267 DOI: 10.3389/fonc.2023.1196211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Several novel therapeutic strategies have been developed to prolong the survival of patients with advanced HCC. However, therapeutic decision-making biomarkers owing to the extensive heterogeneity of HCC. Next-generation sequencing (NGS) is generally used in treatment decisions to help patients benefit from genome-directed targeting. Case presentation A 56 year-old male with type-B hepatitis for more than 20 years was admitted to our department and underwent laparoscopic left lateral hepatic lobectomy for hepatocellular carcinoma. Unfortunately, the tumor recurred 1 year later. Despite multiple treatments, the tumor continued to progress and invaded the patient's 5th thoracic vertebras, leading to hypoesthesia and hypokinesia below the nipple line plane 2 years later. NGS revealed MET amplification, and crizotinib, an inhibitor of MET, was recommended. After administration for a month, tumor marker levels decreased, and the tumor shrunk. The patient has remained in remission since that time. Conclusions We report that a patient with high MET amplification benefited from its inhibitor, which was recommended by NGS. This indicates the potential clinical decision support value of NGS and the satisfactory effect of MET inhibitors.
Collapse
Affiliation(s)
| | | | | | - Qiyong Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
25
|
Heydt C, Ihle MA, Merkelbach-Bruse S. Overview of Molecular Detection Technologies for MET in Lung Cancer. Cancers (Basel) 2023; 15:cancers15112932. [PMID: 37296895 DOI: 10.3390/cancers15112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
MET tyrosine kinase receptor pathway activation has become an important actionable target in solid tumors. Aberrations in the MET proto-oncogene, including MET overexpression, the activation of MET mutations, MET mutations that lead to MET exon 14 skipping, MET gene amplifications, and MET fusions, are known to be primary and secondary oncogenic drivers in cancer; these aberrations have evolved as predictive biomarkers in clinical diagnostics. Thus, the detection of all known MET aberrations in daily clinical care is essential. In this review, current molecular technologies for the detection of the different MET aberrations are highlighted, including the benefits and drawbacks. In the future, another focus will be on the standardization of detection technologies for the delivery of reliable, quick, and affordable tests in clinical molecular diagnostics.
Collapse
Affiliation(s)
- Carina Heydt
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Michaela Angelika Ihle
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
26
|
Cooper AJ, Heist RS. New Therapies on the Horizon. Hematol Oncol Clin North Am 2023; 37:623-658. [PMID: 37029036 DOI: 10.1016/j.hoc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Although lung cancer treatment has been transformed by the advent of checkpoint inhibitor immunotherapies, there remains a high unmet need for new effective therapies for patients with progressive disease. Novel treatment strategies include combination therapies with currently available programmed death ligand 1 inhibitors, targeting alternative immune checkpoints, and the use of novel immunomodulatory therapies. In addition, antibody-drug conjugates offer great promise as potent management options. As these agents are further tested in clinical trials, we anticipate that more effective therapies for patients with lung cancer are integrated into regular clinical practice.
Collapse
|
27
|
Van Herpe F, Van Cutsem E. The Role of cMET in Gastric Cancer—A Review of the Literature. Cancers (Basel) 2023; 15:cancers15071976. [PMID: 37046637 PMCID: PMC10093530 DOI: 10.3390/cancers15071976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Gastric cancer (GC) is an important cause of cancer worldwide with over one million new cases yearly. The vast majority of cases present in stage IV disease, and it still bears a poor prognosis. However, since 2010, progress has been made with the introduction of targeted therapies against HER2 and with checkpoint inhibitors (PDL1). More agents interfering with other targets (FGFR2B, CLDN18.2) are being investigated. cMET is a less frequent molecular target that has been studied for gastric cancer. It is a proto-oncogene that leads to activation of the MAPK pathway and the PI3K pathway, which is responsible for activating the MTOR pathway. The prevalence of cMET is strongly debated as different techniques are being used to detect MET-driven tumors. Because of the difference in diagnostic assays, selecting patients who benefit from cMET inhibitors is difficult. In this review, we discuss the pathway of cMET, its clinical significance and the different diagnostic assays that are currently used, such as immunohistochemy (IHC), fluorescence in situ hybridization (FISH), the H-score and next-generation sequencing (NGS). Next, we discuss all the current data on cMET inhibitors in gastric cancer. Since the data on cMET inhibitors are very heterogenous, it is difficult to provide a general consensus on the outcome, as inclusion criteria differ between trials. Diagnosing cMET-driven gastric tumors is difficult, and potentially the only accurate determination of cMET overexpression/amplification may be next-generation sequencing (NGS).
Collapse
|
28
|
Sakamoto M, Patil T. MET alterations in advanced non-small cell lung cancer. Lung Cancer 2023; 178:254-268. [PMID: 36924573 DOI: 10.1016/j.lungcan.2023.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Targeting the MET pathway in advanced NSCLC has been of particular interest due to its role as both a primary oncogenic driver and secondary oncogenic driver of acquired resistance. Activation of the MET pathway can occur through several mechanisms, which can complicate the diagnostic and treatment approach. Recently, several MET-directed therapies have been developed with promising results. In this narrative review, we summarize the biology and mechanism of MET as a clinically relevant driver mutation, distinct MET alterations including diagnostic challenges, significance in the setting of acquired resistance, and novel treatment strategies in advanced NSCLC.
Collapse
Affiliation(s)
- Mandy Sakamoto
- Department of Medicine, Division of Medical Oncology, United States
| | - Tejas Patil
- Department of Medicine, Division of Medical Oncology, United States.
| |
Collapse
|
29
|
Qin K, Hong L, Zhang J, Le X. MET Amplification as a Resistance Driver to TKI Therapies in Lung Cancer: Clinical Challenges and Opportunities. Cancers (Basel) 2023; 15:612. [PMID: 36765572 PMCID: PMC9913224 DOI: 10.3390/cancers15030612] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Targeted therapy has emerged as an important pillar for the standard of care in oncogene-driven non-small cell lung cancer (NSCLC), which significantly improved outcomes of patients whose tumors harbor oncogenic driver mutations. However, tumors eventually develop resistance to targeted drugs, and mechanisms of resistance can be diverse. MET amplification has been proven to be a driver of resistance to tyrosine kinase inhibitor (TKI)-treated advanced NSCLC with its activation of EGFR, ALK, RET, and ROS-1 alterations. The combined therapy of MET-TKIs and EGFR-TKIs has shown outstanding clinical efficacy in EGFR-mutated NSCLC with secondary MET amplification-mediated resistance in a series of clinical trials. In this review, we aimed to clarify the underlying mechanisms of MET amplification-mediated resistance to tyrosine kinase inhibitors, discuss the ways and challenges in the detection and diagnosis of MET amplifications in patients with metastatic NSCLC, and summarize the recently published clinical data as well as ongoing trials of new combination strategies to overcome MET amplification-mediated TKI resistance.
Collapse
Affiliation(s)
- Kang Qin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Doumat G, Daher D, Zerdan MB, Nasra N, Bahmad HF, Recine M, Poppiti R. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems. Curr Oncol 2023; 30:704-719. [PMID: 36661704 PMCID: PMC9858415 DOI: 10.3390/curroncol30010055] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths in 2022. The majority (80%) of lung cancer cases belong to the non-small cell lung carcinoma (NSCLC) subtype. Despite the increased screening efforts, the median five-year survival of metastatic NSCLC remains low at approximately 3%. Common treatment approaches for NSCLC include surgery, multimodal chemotherapy, and concurrent radio and chemotherapy. NSCLC exhibits high rates of resistance to treatment, driven by its heterogeneity and the plasticity of cancer stem cells (CSCs). Drug repurposing offers a faster and cheaper way to develop new antineoplastic purposes for existing drugs, to help overcome therapy resistance. The decrease in time and funds needed stems from the availability of the pharmacokinetic and pharmacodynamic profiles of the Food and Drug Administration (FDA)-approved drugs to be repurposed. This review provides a synopsis of the drug-repurposing approaches and mechanisms of action of potential candidate drugs used in treating NSCLC, including but not limited to antihypertensives, anti-hyperlipidemics, anti-inflammatory drugs, anti-diabetics, and anti-microbials.
Collapse
Affiliation(s)
- George Doumat
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Morgan Bou Zerdan
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nasri Nasra
- Faculty of Medicine, University of Aleppo, Aleppo 15310, Syria
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Monica Recine
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
31
|
Longitudinal Plasma Proteomics-Derived Biomarkers Predict Response to MET Inhibitors for MET-Dysregulated NSCLC. Cancers (Basel) 2023; 15:cancers15010302. [PMID: 36612298 PMCID: PMC9818927 DOI: 10.3390/cancers15010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
MET inhibitors have shown promising efficacy for MET-dysregulated non-small cell lung cancer (NSCLC). However, quite a few patients cannot benefit from it due to the lack of powerful biomarkers. This study aims to explore the potential role of plasma proteomics-derived biomarkers for patients treated with MET inhibitors using mass spectrometry. We analyzed the plasma proteomics from patients with MET dysregulation (including MET amplification and MET overexpression) treated with MET inhibitors. Thirty-three MET-dysregulated NSCLC patients with longitudinal 89 plasma samples were included. We classified patients into the PD group and non-PD group based on clinical response. The baseline proteomic profiles of patients in the PD group were distinct from those in the non-PD group. Through protein screening, we found that a four-protein signature (MYH9, GNB1, ALOX12B, HSD17B4) could predict the efficacy of patients treated with MET inhibitors, with an area under the curve (AUC) of 0.93, better than conventional fluorescence in situ hybridization (FISH) or immunohistochemistry (IHC) tests. In addition, combining the four-protein signature with FISH or IHC test could also reach higher predictive performance. Further, the combined signature could predict progression-free survival for MET-dysregulated NSCLC (p < 0.001). We also validated the performance of the four-protein signature in another cohort of plasma using an enzyme-linked immunosorbent assay. In conclusion, the four plasma protein signature (MYH9, GNB1, ALOX12B, and HSD17B4 proteins) might play a substitutable or complementary role to conventional MET FISH or IHC tests. This exploration will help select patients who may benefit from MET inhibitors.
Collapse
|
32
|
Di WY, Chen YN, Cai Y, Geng Q, Tan YL, Li CH, Wang YN, Shang YH, Fang C, Cheng SJ. The diagnostic significance of cerebrospinal fluid cytology and circulating tumor DNA in meningeal carcinomatosis. Front Neurol 2023; 14:1076310. [PMID: 36937524 PMCID: PMC10022429 DOI: 10.3389/fneur.2023.1076310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective The objective of this research is to investigate the clinical application value of cerebrospinal fluid (CSF) cytology and circulating tumor DNA (ctDNA) in lung adenocarcinoma (LUAD) meningeal metastasis-meningeal carcinomatosis (MC), and to further explore the possible molecular mechanisms and drug treatment targets of LUAD meningeal metastasis by next-generation sequencing (NGS). Methods We retrospectively analyzed LUAD with MC in 52 patients. CSF cytology was carried out using the slide centrifugation precipitation method and May-Grüwald-Giemsa (MGG) staining. Tumor tissue, plasma and CSF ctDNA of some MC patients were detected by NGS. Results Of the 52 MC patients, 46 (88.46%) were positive for CSF cytology and 34 (65.38%) were positive for imaging, with statistically significant differences in diagnostic positivity (P < 0.05). In 32 of these patients, CSF cytology, cerebrospinal fluid ctDNA, plasma ctDNA and MRI examination were performed simultaneously, and the positive rates were 84.38, 100, 56.25, and 62.50% respectively, the difference was statistically significant (P < 0.001). Analysis of the NGS profiles of tumor tissues, plasma and CSF of 12 MC patients: the mutated gene with the highest detection rate was epidermal growth factor receptor (EGFR) and the detection rate were 100, 58.33, and 100% respectively in tumor tissues, plasma and CSF, and there were 6 cases of concordance between plasma and tissue EGFR mutation sites, with a concordance rate of 50.00%, and 12 cases of concordance between CSF and tissue EGFR mutation sites, with a concordance rate of 100%. In addition, mutations not found in tissue or plasma were detected in CSF: FH mutation, SETD2 mutation, WT1 mutation, CDKN2A mutation, CDKN2B mutation, and multiple copy number variants (CNV), with the most detected being CDKN2A mutation and MET amplification. Conclusion CSF cytology is more sensitive than traditional imaging in the diagnosis of meningeal carcinomatosis and has significant advantages in the early screening and diagnosis of MC patients. CSF ctDNA can be used as a complementary diagnostic method to negative results of CSF cytology and MRI, and CSF ctDNA can be used as an important method for liquid biopsy of patients with MC, which has important clinical significance in revealing the possible molecular mechanisms and drug treatment targets of meningeal metastasis of LUAD.
Collapse
Affiliation(s)
- Wei-Ying Di
- Clinical Medical College, Hebei University, Baoding, China
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ya-Nan Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yun Cai
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Qiang Geng
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan-Li Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Chun-Hui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ya-Nan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan-Hong Shang
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- *Correspondence: Chuan Fang
| | - Shu-Jie Cheng
- Clinical Medical College, Hebei University, Baoding, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
- Shu-Jie Cheng
| |
Collapse
|
33
|
Yao Y, Yang H, Zhu B, Wang S, Pang J, Wu X, Xu Y, Zhang J, Zhang J, Ou Q, Tian H, Zhao Z. Mutations in the MET tyrosine kinase domain and resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Respir Res 2023; 24:28. [PMID: 36698189 PMCID: PMC9875465 DOI: 10.1186/s12931-023-02329-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The Mesenchymal epithelial transition factor (MET) gene encodes a receptor tyrosine kinase with pleiotropic functions in cancer. MET exon 14 skipping alterations and high-level MET amplification are oncogenic and targetable genetic changes in patients with non-small-cell lung cancer (NSCLC). Resistance to tyrosine kinase inhibitors (TKIs) has been a major challenge for targeted therapies that impairs their clinical efficacies. METHODS Eighty-six NSCLC patients were categorized into three cohorts based on the time of detecting MET tyrosine kinase domain (TKD) mutations (cohort 1: at baseline; cohort 2: after MET-TKI treatment; cohort 3: after EGFR-TKI treatment). Baseline and paired TKI treatment samples were analyzed by targeted next-generation sequencing. RESULTS MET TKD mutations were highly prevalent in METex14-positive NSCLC patients after MET-TKI treatment, including L1195V, D1228N/H/Y/E, Y1230C/H/N/S, and a double-mutant within codons D1228 and M1229. Missense mutations in MET TKD were also identified at baseline and in post-EGFR-TKI treatment samples, which showed different distribution patterns than those in post-MET-TKI treatment samples. Remarkably, H1094Y and L1195F, absent from MET-TKI-treated patients, were the predominant type of MET TKD mutations in patients after EGFR-TKI treatment. D1228H, which was not found in treatment-naïve patients, also accounted for 14.3% of all MET TKD mutations in EGFR-TKI-treated samples. Two patients with baseline EGFR-sensitizing mutations who acquired MET-V1092I or MET-H1094Y after first-line EGFR-TKI treatment experienced an overall improvement in their clinical symptoms, followed by targeted therapy with MET-TKIs. CONCLUSIONS MET TKD mutations were identified in both baseline and patients treated with TKIs. MET-H1094Y might play an oncogenic role in NSCLC and may confer acquired resistance to EGFR-TKIs. Preliminary data indicates that EGFR-mutated NSCLC patients who acquired MET-V1092I or MET-H1094Y may benefit from combinatorial therapy with EGFR-TKI and MET-TKI, providing insights into personalized medical treatment.
Collapse
Affiliation(s)
- Yu Yao
- grid.452438.c0000 0004 1760 8119Department of Medical Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Huaping Yang
- grid.216417.70000 0001 0379 7164Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Bo Zhu
- grid.452438.c0000 0004 1760 8119Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Song Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210000 Jiangsu China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210000 Jiangsu China
| | - Xiaoying Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210000 Jiangsu China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210000 Jiangsu China
| | - Junli Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210000 Jiangsu China
| | - Jinfeng Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210000 Jiangsu China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210000 Jiangsu China
| | - Hui Tian
- Department of Thoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315046 China
| | - Zheng Zhao
- Shaanxi Cancer Hospital, 309 Yanta West Road, Xi’an, 710000 Shaanxi China
| |
Collapse
|
34
|
An oncogene addiction phosphorylation signature and its derived scores inform tumor responsiveness to targeted therapies. Cell Mol Life Sci 2022; 80:6. [PMID: 36494469 PMCID: PMC9734221 DOI: 10.1007/s00018-022-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Oncogene addiction provides important therapeutic opportunities for precision oncology treatment strategies. To date the cellular circuitries associated with driving oncoproteins, which eventually establish the phenotypic manifestation of oncogene addiction, remain largely unexplored. Data suggest the DNA damage response (DDR) as a central signaling network that intersects with pathways associated with deregulated addicting oncoproteins with kinase activity in cancer cells. EXPERIMENTAL DESIGN: We employed a targeted mass spectrometry approach to systematically explore alterations in 116 phosphosites related to oncogene signaling and its intersection with the DDR following inhibition of the addicting oncogene alone or in combination with irradiation in MET-, EGFR-, ALK- or BRAF (V600)-positive cancer models. An NSCLC tissue pipeline combining patient-derived xenografts (PDXs) and ex vivo patient organotypic cultures has been established for treatment responsiveness assessment. RESULTS We identified an 'oncogene addiction phosphorylation signature' (OAPS) consisting of 8 protein phosphorylations (ACLY S455, IF4B S422, IF4G1 S1231, LIMA1 S490, MYCN S62, NCBP1 S22, P3C2A S259 and TERF2 S365) that are significantly suppressed upon targeted oncogene inhibition solely in addicted cell line models and patient tissues. We show that the OAPS is present in patient tissues and the OAPS-derived score strongly correlates with the ex vivo responses to targeted treatments. CONCLUSIONS We propose a score derived from OAPS as a quantitative measure to evaluate oncogene addiction of cancer cell samples. This work underlines the importance of protein phosphorylation assessment for patient stratification in precision oncology and corresponding identification of tumor subtypes sensitive to inhibition of a particular oncogene.
Collapse
|
35
|
Moiseenko F, Bogdanov A, Egorenkov V, Volkov N, Moiseyenko V. Management and Treatment of Non-small Cell Lung Cancer with MET Alteration and Mechanisms of Resistance. Curr Treat Options Oncol 2022; 23:1664-1698. [PMID: 36269457 DOI: 10.1007/s11864-022-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT MET-driven tumors are a heterogenous group of non-small cell lung cancers (NSCLC) with activating mutations. Pathologic activation of MET can be achieved with increased number of gene copies overexpression, or decreased protein degradation through several mechanisms, including mutations, amplifications, or fusions. Besides its role as primary driver, MET activation might also mediate resistance to kinase inhibitors in NSCLC with various other actionable alterations. While checkpoint inhibitors have modest efficacy in MET-driven tumors, several approaches of targeted blockade are available. Among them the most promising are small tyrosine kinase inhibitors, antibody-drug conjugates, and bispecific antibodies. Unfortunately, resistance is virtually inevitable. Resistance to small kinase inhibitors might be mediated by kinase domain mutations or activation of shunting cascades. Various resistance mechanisms might be present in one patient, making it overcoming an unresolved problem.
Collapse
Affiliation(s)
- Fedor Moiseenko
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia. .,N.N. Petrov National Medical Research Center of Oncology, Ministry of Public Health of the Russian Federation, 68, Leningradskaya st., Pesochny, St. Petersburg, 197758, Russia. .,State Budget Institution of Higher Education "North-Western State Medical University named after I.I Mechnikov" under the Ministry of Public Health of the Russian Federation, 41, Kirochnaya str, Saint Petersburg, 191015, Russia.
| | - Alexey Bogdanov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Vitaliy Egorenkov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Nikita Volkov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Vladimir Moiseyenko
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| |
Collapse
|
36
|
Solomon JP, Yang SR, Choudhury NJ, Ptashkin RN, Eslamdoost N, Falcon CJ, Martin A, Plodkowski A, Wilhelm C, Shen R, Ladanyi M, Berger M, Zhang Y, Drilon A, Arcila ME. Bioinformatically Expanded Next-Generation Sequencing Analysis Optimizes Identification of Therapeutically Relevant MET Copy Number Alterations in >50,000 Tumors. Clin Cancer Res 2022; 28:4649-4659. [PMID: 36044468 PMCID: PMC9633455 DOI: 10.1158/1078-0432.ccr-22-1321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Clinical relevance thresholds and laboratory methods are poorly defined for MET amplification, a targetable biomarker across malignancies. EXPERIMENTAL DESIGN The utility of next-generation sequencing (NGS) in assessing MET copy number alterations was determined in >50,000 solid tumors. Using fluorescence in situ hybridization as reference, we validated and optimized NGS analysis. RESULTS Incorporating read-depth and focality analyses achieved 91% concordance, 97% sensitivity, and 89% specificity. Tumor heterogeneity, neoplastic cell proportions, and genomic focality affected MET amplification assessment. NGS methodology showed superiority in capturing overall amplification status in heterogeneous tumors and defining amplification focality among other genomic alterations. MET copy gains and amplifications were found in 408 samples across 23 malignancies. Total MET copy number inversely correlated with amplified segment size. High-level/focal amplification was enriched in certain genomic subgroups and associated with targeted therapy response. CONCLUSIONS Leveraging our integrated bioinformatic approach, targeted therapy benefit was observed across diverse MET amplification contexts.
Collapse
Affiliation(s)
- James P. Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Soo-Ryum Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan N. Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nasrin Eslamdoost
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina J. Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Axel Martin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Clare Wilhelm
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronglai Shen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Correspondence: Maria E. Arcila, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065. Phone: 212-639-7879;
| |
Collapse
|
37
|
Xu L, Wang F, Luo F. MET-targeted therapies for the treatment of non-small-cell lung cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1013299. [PMID: 36387098 PMCID: PMC9646943 DOI: 10.3389/fonc.2022.1013299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Dysregulation of the mesenchymal epithelial transition (MET) pathway contributes to poor clinical outcomes in patients with non-small cell lung cancer (NSCLC). Numerous clinical trials are currently investigating several therapies based on modulation of the MET pathway. OBJECTIVES This study aimed to systematically evaluate the activity and safety of MET inhibitors in patients with NSCLC. METHODS We searched PubMed, Embase, and the Cochrane Library from inception to June 02, 2022. The objective response rate (ORR) and disease control rate (DCR) were extracted as the main outcomes and pooled using the weighted mean proportion with fixed- or random-effects models in cases of significant heterogeneity (I 2>50%). Safety analysis was performed based on adverse events reported in all studies. RESULTS Eleven studies (882 patients) were included in the meta-analysis. The pooled ORR was 28.1% (95% confidence interval [CI], 0.223-0.354), while the pooled DCR was 69.1% (95% CI, 0.631-0.756). ORRs were higher for tepotinib (44.7% [95% CI, 0.365-0.530]) and savolitinib (42.9% [95% CI, 0.311-0.553]) than for other types of MET inhibitors. Patients with NSCLC with exon 14 skipping exhibited higher ORRs (39.3% (95% CI, 0.296-0.522)) and DCRs (77.8% (95% CI, 0.714-0.847)) than those with MET protein overexpression or amplification. Intracranial response rate and intracranial disease control rates were 40.1% (95% CI, 0.289-0.556) and 95.4% (95% CI, 0.892-0.100), respectively. Adverse events were mild (grade 1 to 2) in 87.2% of patients. Common adverse events above grade 3 included lower extremity edema (3.5% [95% CI, 0.027-0.044]), alanine aminotransferase (ALT) elevation (2.4% [95% CI, 0.014-0.033]), and lipase elevation (2.2% [95% CI, 0.016-0.031]). CONCLUSION MET inhibitors, which exhibited a satisfactory safety profile in the current study, may become a new standard of care for addressing MET dysregulation in patients with advanced or metastatic NSCLC, and even in those with brain metastases, particularly tepotinib, savolitinib and capmatinib. Further randomized trials are required to establish standard predictive biomarkers for MET therapies and to compare the effects of different MET inhibitors in NSCLC with MET dysregulation.
Collapse
Affiliation(s)
- Linrui Xu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Ma YX, Liu FR, Zhang Y, Chen Q, Chen ZQ, Liu QW, Huang Y, Yang YP, Fang WF, Xi N, Kang N, Zhuang YL, Zhang Q, Jiang YZ, Zhang L, Zhao HY. Preclinical characterization and phase I clinical trial of CT053PTSA targets MET, AXL, and VEGFR2 in patients with advanced solid tumors. Front Immunol 2022; 13:1024755. [PMID: 36341335 PMCID: PMC9632963 DOI: 10.3389/fimmu.2022.1024755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND CT053PTSA is a novel tyrosine kinase inhibitor that targets MET, AXL, VEGFR2, FLT3 and MERTK. Here, we present preclinical data about CT053PTSA, and we conducted the first-in-human (FIH) study to evaluate the use of CT053PTSA in adult patients with pretreated advanced solid tumors. METHODS The selectivity and antitumor activity of CT053PTSA were assessed in cell lines in vitro through kinase and cellular screening panels and in cell line-derived tumor xenograft (CDX) and patient-derived xenograft (PDX) models in vivo. The FIH, phase I, single-center, single-arm, dose escalation (3 + 3 design) study was conducted, patients received at least one dose of CT053PTSA (15 mg QD, 30 mg QD, 60 mg QD, 100 mg QD, and 150 mg QD). The primary objectives were to assess safety and tolerability, to determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and the recommended dose of CT053PTSA for further study. Secondary objectives included pharmacokinetics, antitumor activity. RESULTS CT053 (free-base form of CT053PTSA) inhibited MET, AXL, VEGFR2, FLT3 and MERTK phosphorylation and suppressed tumor cell angiogenesis by blocking VEGF and HGF, respectively, in vitro. Moreover, cell lines with high MET expression exhibited strong sensitivity to CT053, and CT053 blocked the MET and AXL signaling pathways. In an in vivo study, CT053 significantly inhibited tumor growth in CDX and PDX models. Twenty eligible patients were enrolled in the FIH phase I trial. The most common treatment-related adverse events were transaminase elevation (65%), leukopenia (45%) and neutropenia (35%). DLTs occurred in 3 patients, 1/6 in the 100 mg group and 2/4 in the 150 mg group, so the MTD was set to 100 mg. CT053PTSA was rapidly absorbed after the oral administration of a single dose, and the Cmax and AUC increased proportionally as the dose increased. A total of 17 patients in this trial underwent tumor imaging evaluation, and 29.4% had stable disease. CONCLUSIONS CT053PTSA has potent antitumor and antiangiogenic activity in preclinical models. In this FIH phase I trial, CT053PTSA was well tolerated and had a satisfactory safety profile. Further trials evaluating the clinical activity of CT053PTSA are ongoing.
Collapse
Affiliation(s)
- Yu-Xiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fu-Rong Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Qiang Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qian-Wen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Peng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Feng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ning Xi
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Ning Kang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Yu-Lei Zhuang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Qi Zhang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Ying-Zhi Jiang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong-Yun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
39
|
[Consensus on Postoperative Recurrence Prediction of Non-small Cell Lung Cancer
Based on Molecular Markers]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:701-714. [PMID: 36285390 PMCID: PMC9619343 DOI: 10.3779/j.issn.1009-3419.2022.102.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Significant progress has been made in lung cancer screening, surgery, chemoradiation, targeted therapy, and immunotherapy recently. Surgical resection is the most important treatment for localized non-small cell lung cancer (NSCLC) so far, but there are still many patients who develop local recurrence or distant metastases within 5 years of surgery. Currently, the risk factors of recurrence in patients with NSCLC are mainly based on clinical and pathological features, which hardly identify patients at high risk of recurrence accurately. With the development of new detection technologies, a number of molecular markers that may have a predictive risk of recurrence in NSCLC have been discovered over the years. In order to summarize the molecular markers related to postoperative recurrence in NSCLC patients, we have formulated a consensus on the prediction of postoperative recurrence of NSCLC based on molecular markers. This consensus mainly focuses on the early stage NSCLC patients, discusses and summarizes the risk factors of disease recurrence from the molecular level. It is hoped that more and more valuable information can be provided for the management of patients, so as to provide more guidance for the perioperative management of the patients with early stage NSCLC in the future.
.
Collapse
|
40
|
Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol 2022; 15:143. [PMID: 36209184 PMCID: PMC9548212 DOI: 10.1186/s13045-022-01362-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future.
Collapse
Affiliation(s)
- Qing Wu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Wei Qian
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xiaoli Sun
- Department of Radiation Oncology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
41
|
Remon J, Hendriks LE, Mountzios G, García-Campelo R, Saw SP, Uprety D, Recondo G, Villacampa G, Reck M. MET alterations in NSCLC—Current Perspectives and Future Challenges. J Thorac Oncol 2022; 18:419-435. [PMID: 36441095 DOI: 10.1016/j.jtho.2022.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
Targeted therapies have revolutionized the treatment and improved the outcome for oncogene-driven NSCLC and an increasing number of oncogenic driver therapies have become available. For MET-dysregulated NSCLC (especially MET exon 14 skipping mutations and MET-amplifications, which is one of the most common bypass mechanisms of resistance in oncogene-addicted NSCLC), several anti-MET-targeted therapies have been approved recently (MET exon 14 skipping mutation) and multiple others are in development. In this narrative review, we summarize the role of MET as an oncogenic driver in NSCLC, discuss the different testing methods for exon 14 skipping mutations, gene amplification, and protein overexpression, and review the existing data and ongoing clinical trials regarding targeted therapies in MET-altered NSCLC. As immunotherapy with or without chemotherapy has become the standard of care for advanced NSCLC, immunotherapy data for MET-dysregulated NSCLC are put into perspective. Finally, we discuss future challenges in this rapidly evolving landscape.
Collapse
|
42
|
Mutational Landscape and Expression of PD-L1 in Patients with Non-Small Cell Lung Cancer Harboring Genomic Alterations of the MET gene. Target Oncol 2022; 17:683-694. [PMID: 36136211 PMCID: PMC9684265 DOI: 10.1007/s11523-022-00918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Background Mesenchymal-to-epithelial transition (MET) exon 14 skipping mutations and MET gene amplification occur in 3–5% of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) targeting MET alterations have shown promising results in these patients. Objective The aim of this study was to describe the genomic profile, PD-L1 expression and clinicopathological features of MET dysregulated NSCLC. Patients and Methods We identified 188 patients with advanced-stage NSCLC with data on MET expression by immunohistochemistry (IHC). IHC for PD-L1 expression was performed in 131 patient samples, and next-generation sequencing (NGS) analysis was performed in 109 patient samples. Results MET exon 14 skipping alterations were identified in 16 (14.7%) samples, MET amplifications with cut-off ≥4 copy number variations were identified in 11 (10.1%) samples, and an oncogenic MET mutation (MET p.D1228N) was identified in 1 (0.9%) sample. 12/15 tumors (80.0%) harboring MET exon 14 alterations and 7/11 (63.6%) MET-amplified tumors expressed PD-L1 in ≥1% of tumor cells. Tumors harboring MET exon 14 skipping alterations expressed PD-L1 more frequently than MET wild-type IHC-positive tumors (p = 0.045). Twenty-five percent of MET exon 14-altered cases and 33% of MET-amplified cases harbored potentially targetable oncogenic co-mutations in KRAS, BRAF, and EGFR. The most frequent co-occurring mutations in all MET-altered tumors were TP53, KRAS, BRAF, and CDK4. Conclusions We demonstrated that MET exon 14 skipping alterations and MET amplification are not mutually exclusive to other oncogenic co-mutations, and report the association of genomic MET alterations with PD-L1 expression. Since genomic MET alterations are emerging targets requiring upfront treatment, optimal understanding of the co-mutational landscape for this patient population is needed. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00918-6.
Collapse
|
43
|
SH005S7 Overcomes Primary and Acquired Resistance of Non-Small Cell Lung Cancer by Combined MET/EGFR/HER3 Inhibition. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1840541. [PMID: 36158893 PMCID: PMC9499774 DOI: 10.1155/2022/1840541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
In this study, we have examined the anticancer effects of SH005S7 on MET-amplified and (HCC827GR) NSCLC cells and their primary HCC827 cells. In vitro, first of all, cell viability and colony formation assay confirmed the growth inhibitory effects of SH005S7 on both cells. Second, SH005S7 inactivated EGFR-related multiple cell signaling, which was associated with a marked decrease in the constitutive phosphorylation of EGFR, HER3, MET, AKT, and ERK. Third, SH005S7 attenuated the anchorage-independent cell growth. Fourth, SH005S7 blocked invasive and metastatic capability by downregulation of mesenchymal markers—vimentin, snail, and MMP-9. Fifth, BrdU assay confirmed the cell cycle arrest of SH005S7 on these cells. When administered orally to nude mice xenografically transplanted human NSCLC, SH005S7 inhibited the growth of tumor and did not cause hepatotoxicity and nephrotoxicity in animals. Immunohistochemical and Western blot analyses of tissue showed that the suppression of growth correlated with inhibition of proliferation (Ki-67, PCNA), invasiveness (vimentin, snail), and angiogenesis (CD31) marker and decrement in the constitutive and phosphorylation of EGFR, HER3, MET, AKT, and ERK. Additionally, SH005S7 had immune stimulatory effects by TNF-α cytokine release on macrophage, without cell cytotoxicity. Overall, our results suggest that SH005S7 can inhibit the growth of MET-amplified and gefitinib-resistant NSCLC cells through the suppression of EGFR-related multiple targets linked to overcome gefitinib resistance.
Collapse
|
44
|
MET Expression Level in Lung Adenocarcinoma Loosely Correlates with MET Copy Number Gain/Amplification and Is a Poor Predictor of Patient Outcome. Cancers (Basel) 2022; 14:cancers14102433. [PMID: 35626038 PMCID: PMC9139916 DOI: 10.3390/cancers14102433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MET is a proto-oncogene and plays an important role on tumor cell survival, proliferation, metastasis, and drug resistance. Patient with MET amplification has shown an inferior outcome comparing to patients without MET amplification. Fluorescence in situ hybridization (FISH) is often used to detect MET amplification, and immunohistochemistry (IHC) is often used to assess MET expression level. Though some institutions provide both tests, IHC is more readily available in most pathology laboratories and is cheaper than FISH. This study evaluated the correlation of MET expression level with MET copy number gain/amplification, and the MET overexpression with patient’s outcome. By studying 446 patients with lung adenocarcinoma, we found that the concordance of MET expression and MET copy number gain/amplification was low; high-level of MET expression was associated with inferior outcome, but it was not an independent poor prognostic factor. These findings indicate that IHC for MET expression can’t substitute FISH analysis for MET amplification. Abstract MET amplification has been associated with shorter survival in cancer patients, however, the potential correlation of MET overexpression with either MET amplification or patient outcome is controversial. The aim of this study was to address these questions by correlating MET expression level with MET copy number and patient outcome in a cohort of 446 patients who had a lung adenocarcinoma: 88 with MET amplification, 118 with polysomy 7, and 240 with negative results by fluorescence in situ hybridization. MET expression assessed by immunohistochemistry was semi-quantified by expression level: absent (0+), weak (1+), moderate (2+) and strong (3+); or by H-score: 0–99, 100–199, and ≥200. MET expression level or H-score was positively but weakly correlated with MET copy number or MET/CEP7 ratio. Strong expression of MET (3+ or H-score ≥ 200) was associated with a shorter overall survival, but it was not an independent hazard for survival by multivariant analysis. We conclude that MET expression is loosely correlated with MET copy number gain/amplification. Strong expression of MET does not independently predict patient outcome.
Collapse
|
45
|
Peng KC, Su JW, Xie Z, Wang HM, Fang MM, Li WF, Chen YQ, Guan XH, Su J, Yan HH, Zhang XC, Tu HY, Zhou Q, Chen HJ, Wu YL, Yang JJ. Clinical outcomes of EGFR+/METamp+ vs. EGFR+/METamp- untreated patients with advanced non-small cell lung cancer. Thorac Cancer 2022; 13:1619-1630. [PMID: 35437920 PMCID: PMC9161327 DOI: 10.1111/1759-7714.14429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND MET dysregulation has been implicated in the development of primary and secondary resistance to EGFR tyrosine kinase inhibitor (TKI) therapy. However, the clinicopathological characteristics and outcomes of patients harboring EGFR-sensitive mutations and de novo MET amplifications still need to be explored. METHODS A total of 54 patients from our hospital with non-small cell lung cancer harboring EGFR-sensitive mutations and/or de novo MET amplifications were included in this study. Survival rates were estimated by the Kaplan-Meier method with log-rank statistics. Lung cancer organoids (LCOs) were generated from patient-derived malignant pleural effusion to perform drug sensitivity assays. RESULTS Fifty-four patients with the appropriate clinicopathological characteristics were enrolled. MET FISH was performed in 40 patients who were stratified accordingly into two groups: EGFR+/METamp- (n = 22) and EGFR+/METamp + (n = 18). Survival rates for EGFR+/METamp- and EGFR+/METamp + patients respectively, were as follows: the median progression-free survival (PFS) was 12.1 and 1.9 months (p<0.001); the median post-progression overall survival (pOS) was 25.6 and 11.6 months (p = 0.023); the median overall survival (OS) was 33.2 and 12.7 months (p = 0.013). Drug testing conducted in LCOs derived from malignant pleural effusion from EGFR+/METamp + patients showed that dual targeted therapy was more effective than TKI monotherapy. CONCLUSION EGFR+/METamp + patients treated with first-line TKI monotherapy had poor clinical outcomes. Dual targeted therapy showed potent anticancer activity in the LCO drug testing assay, suggesting that it is a promising first-line treatment for EGFR+/METamp + patients. Randomized controlled trials are needed to further validate these results.
Collapse
Affiliation(s)
- Kai-Cheng Peng
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jun-Wei Su
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi Xie
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Han-Min Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mei-Mei Fang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Feng Li
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Qing Chen
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Hui Guan
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Ji Yang
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
46
|
Hamilton G, Rath B. Met inhibitors in the treatment of lung cancer: the evidence to date. Expert Opin Pharmacother 2022; 23:815-825. [PMID: 35377279 DOI: 10.1080/14656566.2022.2062227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The hepatocyte growth factor (HGF) receptor MET is an oncogenic driver in a subpopulation of Non-small Lung Cancer Cells (NSCLC) at the primary tumor stage or in acquired resistance to treatment with tumor-targeting tyrosine kinase inhibitors (TKIs). AREAS COVERED This article summarizes the mechanisms leading to overexpression and activation of MET by amplification and mutations including exon 14 aberrations. Furthermore, the methods to detect and categorize MET as a tumor driver and the selective TKIs for patient treatment are discussed. EXPERT OPINION : Activating mutations and rearrangements of kinases in NSCLC are the target of successful therapeutic intervention. However, MET activation involves a number of complex alterations including gene amplification, prevention of degradation by METex14 exon skipping and a host of gene mutations. A high-level of MET expression is the precondition for tumor responses to TKIs and the confirmation of MET-dependent tumor progression is difficult in primary lesions and in tumors exhibiting resistance to mutated EGFR-directed therapy in absence of standardized and concordant assays of MET amplification.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Ramani NS, Morani AC, Zhang S. MET Gene High Copy Number (Amplification/Polysomy) Identified in Melanoma for Potential Targeted Therapy. Am J Clin Pathol 2022; 157:502-505. [PMID: 34617988 DOI: 10.1093/ajcp/aqab171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Aberrant expression of the mesenchymal epithelial transition factor (MET) gene has been observed in several malignancies, and drugs targeting the MET gene have been implicated in clinical trials with promising results. Hence, MET is a potentially targetable oncogenic driver. We explored the frequency of MET gene high copy number in melanomas and carcinomas. METHODS The study group included 135 patients. Tissue microarrays were constructed with 19 melanomas and 116 carcinomas diagnosed from 2010 to 2012. We screened MET gene copy number by fluorescence in situ hybridization analysis using probes for MET gene and CEP7 as control. RESULTS We found MET gene amplification in 2 (11%) of 19 melanoma cases, whereas 5 (26%) of 19 melanoma cases showed polysomy. For carcinomas, there was no MET gene amplification identified. However, 8 (7%) of 116 cases showed polysomy. CONCLUSIONS In our study, MET gene amplification was identified in 11% of melanomas and is relatively concordant with few reported studies. However, about 26% of the additional melanoma cases showed MET gene polysomy, which has not been reported as per our knowledge. If these results are validated with further orthogonal studies, more of the melanoma cases could potentially benefit from targeted therapy with MET tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Nisha S Ramani
- Department of Pathology, Upstate Medical University, Syracuse, NY, USA
| | | | - Shengle Zhang
- Department of Pathology, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
48
|
Met–HER3 crosstalk supports proliferation via MPZL3 in MET-amplified cancer cells. Cell Mol Life Sci 2022; 79:178. [PMID: 35249128 PMCID: PMC8898245 DOI: 10.1007/s00018-022-04149-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
AbstractReceptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3–tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in vitro and in vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression can partially rescue proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3–MPZL3 axis in MET-amplified cancers.
Collapse
|
49
|
F Smit E, Dooms C, Raskin J, Nadal E, Tho LM, Le X, Mazieres J, S Hin H, Morise M, W Zhu V, Tan D, H Holmberg K, Ellers-Lenz B, Adrian S, Brutlach S, Schumacher KM, Karachaliou N, Wu YL. INSIGHT 2: a phase II study of tepotinib plus osimertinib in MET-amplified NSCLC and first-line osimertinib resistance. Future Oncol 2022; 18:1039-1054. [PMID: 34918545 DOI: 10.2217/fon-2021-1406] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MET amplification (METamp), a mechanism of acquired resistance to EGFR tyrosine kinase inhibitors, occurs in up to 30% of patients with non-small-cell lung cancer (NSCLC) progressing on first-line osimertinib. Combining osimertinib with a MET inhibitor, such as tepotinib, an oral, highly selective, potent MET tyrosine kinase inhibitor, may overcome METamp-driven resistance. INSIGHT 2 (NCT03940703), an international, open-label, multicenter phase II trial, assesses tepotinib plus osimertinib in patients with advanced/metastatic EGFR-mutant NSCLC and acquired resistance to first-line osimertinib and METamp, determined centrally by fluorescence in situ hybridization (gene copy number ≥5 and/or MET/CEP7 ≥2) at time of progression. Patients will receive tepotinib 500 mg (450 mg active moiety) plus osimertinib 80 mg once-a-day. The primary end point is objective response, and secondary end points include duration of response, progression-free survival, overall survival and safety. Trial registration number: NCT03940703 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Egbert F Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christophe Dooms
- Department of Respiratory Diseases & Respiratory Oncology Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jo Raskin
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet, Barcelona, Spain
| | - Lye M Tho
- Department of Oncology, Pantai Hospital, Kuala Lumpur, Malaysia
| | - Xiuning Le
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Julien Mazieres
- CHU de Toulouse, Institut Universitaire du Cancer, Toulouse, France
| | - How S Hin
- Hospital Tengku Ampuan Afzan, Pahang, Malaysia
| | - Masahire Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Viola W Zhu
- University of California Irvine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Daniel Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Kristina H Holmberg
- EMD Serono Research & Development Institute, Inc., MA, USA, an affiliate of Merck KGaA
| | | | - Svenja Adrian
- Global Clinical Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sabine Brutlach
- Late Stage Development Operations, Merck Healthcare KGaA, Darmstadt, Germany
| | - Karl M Schumacher
- Global Clinical Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Niki Karachaliou
- Global Clinical Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
50
|
Lefler DS, Tierno MB, Bashir B. Partial treatment response to capmatinib in MET-amplified metastatic intrahepatic cholangiocarcinoma: case report & review of literature. Cancer Biol Ther 2022; 23:112-116. [PMID: 35129063 PMCID: PMC8820818 DOI: 10.1080/15384047.2022.2029128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma is a highly morbid gastrointestinal malignancy for which available therapies are limited. Standard of care includes cytotoxic chemotherapies such as gemcitabine, platinum agents, nab-paclitaxel, and fluoropyrimidine analogues. However, tolerability of these regimens varies, and patients who do not tolerate chemotherapy have limited targeted therapies and immunotherapy options. In cholangiocarcinoma, mesenchymal–epithelial transition factor (MET) amplification may present an additional opportunity for a targeted therapeutic approach, especially considering emerging data in non-small cell lung cancer. In this case, we present a metastatic cholangiocarcinoma patient with high-level MET gene amplification for whom capmatinib, a tyrosine kinase inhibitor with activity against c-MET, provided a partial response after cessation of chemotherapy.
Collapse
Affiliation(s)
- Daniel S Lefler
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Babar Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|