1
|
Ningombam A, Verma D, Kumar R, Singh J, Shadab Ali M, Pandey AK, Singh I, Bakhshi S, Sharma A, Pushpam D, Palanichamy JK, Tanwar P, Ranjan Singh A, Chopra A. Refinement of Risk-Stratification of Cytogenetically Normal Acute Myeloid Leukemia Adult Patients by MN1 Expression. Asian Pac J Cancer Prev 2024; 25:2283-2289. [PMID: 39068559 PMCID: PMC11480590 DOI: 10.31557/apjcp.2024.25.7.2283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Acute myeloid leukemia with normal cytogenetics (CN-AML) represents a heterogeneous group having diverse genetic mutations. Understanding the significance of each of these mutations is necessary. In this study, we evaluated the prognostic role of MN1 expression in adult CN-AML patients. METHOD One hundred and sixty-three de-novo adult AML patients were evaluated for MN1 expression by real-time PCR. MN1 expression was correlated with the clinical characteristics of the patients and their outcomes. RESULTS Higher MN1 expression was associated with NPM1 wild-type (p<0.0001), CD34 positivity (p=0.006), and lower clinical remission rate (p=0.027). FLT3-ITD and CEBPA mutations had no association with MN1 expression. On survival analysis, a high MN1 expression was associated with poor event-free survival (Hazard Ratio 2.47, 95% Confidence Interval: 1.42-4.3; p<0.0001) and overall survival (Hazard Ratio 4.18, 95% Confidence Interval: 2.17-8.08; p<0.0001). On multivariate analysis, the MN1 copy number emerged as an independent predictor of EFS (p<0.0001) and OS (p<0.0001). CONCLUSION MN1 expression is an independent predictor of outcome in CN-AML.
Collapse
Affiliation(s)
| | - Deepak Verma
- Laboratory Oncology, Dr. BRAICH, AIIMS, New Delhi, India.
| | - Rajive Kumar
- Laboratory Oncology, Dr. BRAICH, AIIMS, New Delhi, India.
| | - Jay Singh
- Laboratory Oncology, Dr. BRAICH, AIIMS, New Delhi, India.
| | | | | | | | | | | | | | | | - Pranay Tanwar
- Laboratory Oncology, Dr. BRAICH, AIIMS, New Delhi, India.
| | | | - Anita Chopra
- Laboratory Oncology, Dr. BRAICH, AIIMS, New Delhi, India.
| |
Collapse
|
2
|
Zhang B, Liu H, Wu F, Ding Y, Wu J, Lu L, Bajpai AK, Sang M, Wang X. Identification of hub genes and potential molecular mechanisms related to drug sensitivity in acute myeloid leukemia based on machine learning. Front Pharmacol 2024; 15:1359832. [PMID: 38650628 PMCID: PMC11033397 DOI: 10.3389/fphar.2024.1359832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is the most common form of leukemia among adults and is characterized by uncontrolled proliferation and clonal expansion of hematopoietic cells. There has been a significant improvement in the treatment of younger patients, however, prognosis in the elderly AML patients remains poor. Methods: We used computational methods and machine learning (ML) techniques to identify and explore the differential high-risk genes (DHRGs) in AML. The DHRGs were explored through multiple in silico approaches including genomic and functional analysis, survival analysis, immune infiltration, miRNA co-expression and stemness features analyses to reveal their prognostic importance in AML. Furthermore, using different ML algorithms, prognostic models were constructed and validated using the DHRGs. At the end molecular docking studies were performed to identify potential drug candidates targeting the selected DHRGs. Results: We identified a total of 80 DHRGs by comparing the differentially expressed genes derived between AML patients and normal controls and high-risk AML genes identified by Cox regression. Genetic and epigenetic alteration analyses of the DHRGs revealed a significant association of their copy number variations and methylation status with overall survival (OS) of AML patients. Out of the 137 models constructed using different ML algorithms, the combination of Ridge and plsRcox maintained the highest mean C-index and was used to build the final model. When AML patients were classified into low- and high-risk groups based on DHRGs, the low-risk group had significantly longer OS in the AML training and validation cohorts. Furthermore, immune infiltration, miRNA coexpression, stemness feature and hallmark pathway analyses revealed significant differences in the prognosis of the low- and high-risk AML groups. Drug sensitivity and molecular docking studies revealed top 5 drugs, including carboplatin and austocystin-D that may significantly affect the DHRGs in AML. Conclusion: The findings from the current study identified a set of high-risk genes that may be used as prognostic and therapeutic markers for AML patients. In addition, significant use of the ML algorithms in constructing and validating the prognostic models in AML was demonstrated. Although our study used extensive bioinformatics and machine learning methods to identify the hub genes in AML, their experimental validations using knock-out/-in methods would strengthen our findings.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fengxia Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yuhong Ding
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiarun Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mengmeng Sang
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
4
|
Othman J, Meggendorfer M, Tiacci E, Thiede C, Schlenk R, Dillon R, Stasik S, Venanzi A, Bertoli S, Delabesse E, Dumas PY, Pigneux A, Bidet A, Gilkes AF, Thomas I, Voso MT, Rambaldi A, Brunetti L, Perriello VM, Andresen V, Gjertsen BT, Martelli MP, Récher C, Röllig C, Bornhäuser M, Serve H, Müller-Tidow C, Baldus CD, Haferlach T, Russell N, Falini B. Overlapping features of therapy-related and de novo NPM1-mutated AML. Blood 2023; 141:1846-1857. [PMID: 36508705 DOI: 10.1182/blood.2022018108] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
NPM 1-mutated acute myeloid leukemia (AML) shows unique features. However, the characteristics of "therapy-related" NPM1-mutated AML (t-NPM1 AML) are poorly understood. We compared the genetics, transcriptional profile, and clinical outcomes of t-NPM1 AML, de novo NPM1-mutated AML (dn-NPM1 AML), and therapy-related AML (t-AML) with wild-type NPM1 (t-AML). Normal karyotype was more frequent in t-NPM1 AML (n = 78/96, 88%) and dn-NPM1 (n = 1986/2394, 88%) than in t-AML (n = 103/390, 28%; P < .001). DNMT3A and TET2 were mutated in 43% and 40% of t-NPM1 AML (n = 107), similar to dn-NPM1 (n = 88, 48% and 30%; P > 0.1), but more frequently than t-AML (n = 162; 14% and 10%; P < 0.001). Often mutated in t-AML, TP53 and PPM1D were wild-type in 97% and 96% of t-NPM1 AML, respectively. t-NPM1 and dn-NPM1 AML were transcriptionally similar, (including HOX genes upregulation). At 62 months of median follow-up, the 3-year overall survival (OS) for t-NPM1 AML (n = 96), dn-NPM1 AML (n = 2394), and t-AML (n = 390) were 54%, 60%, and 31%, respectively. In multivariable analysis, OS was similar for the NPM1-mutated groups (hazard ratio [HR] 0.9; 95% confidence interval [CI], 0.65-1.25; P = .45), but better in t-NPM1 AML than in t-AML (HR, 1.86; 95% CI, 1.30-2.68; P < .001). Relapse-free survival was similar between t-NPM1 and dn-NPM1 AML (HR, 1.02; 95% CI, 0.72-1.467; P = .90), but significantly higher in t-NPM1 AML versus t-AML (HR, 1.77; 95% CI, 1.19-2.64; P = .0045). t-NPM1 and dn-NPM1 AML have overlapping features, suggesting that they should be classified as a single disease entity.
Collapse
Affiliation(s)
- Jad Othman
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
- Department of Haematology, Guy's and St Thomas Hospitals NHS Trust, London, United Kingdom
| | | | - Enrico Tiacci
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Christian Thiede
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Richard Schlenk
- Department of Hematology/Oncology and NCT Trial Center, Heidelberg University Hospital, and German Cancer Research Center, Heidelberg, Germany
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
- Department of Haematology, Guy's and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Sebastian Stasik
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Alessandra Venanzi
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Sarah Bertoli
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Eric Delabesse
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | | | - Arnaud Pigneux
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Audrey Bidet
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Amanda F Gilkes
- Department of Hematology and Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ian Thomas
- Department of Hematology and Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vincenzo M Perriello
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Vibeke Andresen
- Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Bjorn T Gjertsen
- Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Maria Paola Martelli
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Christian Récher
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Christoph Röllig
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Martin Bornhäuser
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Carsten Müller-Tidow
- Department of Hematology/Oncology and NCT Trial Center, Heidelberg University Hospital, and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Nigel Russell
- Department of Haematology, Guy's and St Thomas Hospitals NHS Trust, London, United Kingdom
- Nottingham University, Nottingham, United Kingdom
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Freitas AC, Maia T, Desterro J, Pierdomenico F, Nunes A, Ferreira I, Cabeçadas J, Gomes da Silva M. Extramedullary T-lymphoblastic Crisis in a Myelodysplastic/Myeloproliferative Neoplasm with a t(12;22)/MN1::ETV6 Translocation. Hematol Rep 2023; 15:212-219. [PMID: 36975735 PMCID: PMC10048276 DOI: 10.3390/hematolrep15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are not a single disease, but rather a heterogenous group of entities which are increasingly subclassified according to recurrent genetic abnormalities. Chromosomal translocations involving meningioma 1 (MN1) and ETS variant 6 (ETV6) genes are extremely rare, but recurrent in myeloid neoplasms. We describe the case of a patient with a myelodysplastic/myeloproliferative neoplasm with neutrophilia, who developed an extramedullary T-lymphoblastic crisis with the t(12;22)(p13;q12) translocation as the only cytogenetic abnormality. This case shares several clinical and molecular features with myeloid/lymphoid neoplasms with eosinophilia. The treatment of this patient was challenging, as the disease proved to be highly refractory to chemotherapy, with allogenic stem cell transplantation as the only curative option. This clinical presentation has not been reported in association with these genetic alterations and supports the concept of a hematopoietic neoplasm originating in an early uncommitted precursor cell. Additionally, it stresses the importance of molecular characterization in the classification and prognostic stratification of these entities.
Collapse
Affiliation(s)
- Ana Carolina Freitas
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
- Correspondence:
| | - Tiago Maia
- Department of Pathology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Joana Desterro
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Francesca Pierdomenico
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Albertina Nunes
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Isabelina Ferreira
- Department of Bone Marrow Transplantation, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - José Cabeçadas
- Department of Pathology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Maria Gomes da Silva
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| |
Collapse
|
6
|
Li Y, Jiang D, Zhang Q, Liu E, Shao H. Clinical implications and genetical insights of SOX6 expression in acute myeloid leukemia. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04349-8. [PMID: 36117190 DOI: 10.1007/s00432-022-04349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Transcription factor SOX6 belongs to Sry-related high-mobility-group box (SOX) family, has been reported to be downregulated and acts as a tumor-suppressor gene in various solid tumors, but in acute myeloid leukemia (AML) is incompletely understood. METHODS The SOX6 expression was analyzed between AML patients and normal controls from public data and our research cohort. Correlations between SOX6 expression and clinical, genetic features together with survival were further analyzed. RESULTS In both public and our present datasets, we demonstrated that SOX6 expression is notably downregulated in AML patients compared with normal controls. Moreover, the expression level of SOX6 was dynamic, along with the disease status. SOX6 was significantly decreased in relapsed/refractory AML compared with complete remission AML. Clinically, SOX6 underexpression was significantly correlated with bone marrow blasts, and WBC counts. Furthermore, decreased expression of SOX6 was more common in core binding factor AML (CBF-AML), rarely found in complex karyotype AML (CK-AML), and correlated with FLT3 mutations. By survival analyses, low-expression of SOX6 was associated with shorter overall survival (OS) and event-free survival (EFS) among cytogenetic normal AML (CN-AML) patients. Moreover, both univariate and multivariate analyses showed that low SOX6 expression was an independent unfavorable prognostic biomarker for CN-AML. CONCLUSIONS Our findings indicated that SOX6 underexpression, as a frequent event in AML, was associated with genetic abnormalities and prognosis in AML. SOX6 might be a valuable biomarker for risk stratification, predicting prognosis and relapse of AML.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Duanfeng Jiang
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, 570311, Hainan, China
| | - Qin Zhang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haigang Shao
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res 2021; 111:106727. [PMID: 34700049 DOI: 10.1016/j.leukres.2021.106727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults that affects the myeloid lineage. The recent advances have upgraded our understanding of the cytogenetic abnormalities and molecular mutations associated with AML that further aids in prognostication and risk stratification of the disease. Based on the highly heterogeneous nature of the disease and cytogenetic profile, AML patients can be stratified into favourable, intermediate and adverse-risk groups. The recurrent genetic alterations provide novel insights into the pathogenesis, clinical characteristics and also into the overall survival of the patients. In this review we are discussing about the cytogenetics of AML and the recurrent gene alterations such us NPM1, FLT3, CEBPA, TET-2, c-KIT, DNMT3A, IDH, RUNX1, AXSL1, WT1, Ras gene mutations etc. These gene mutations serve as important prognostic markers as well as potential therapeutic targets. AML patients respond to induction chemotherapy initially and subsequently achieve complete remission (CR), eventually most of them get relapsed.
Collapse
|
8
|
Alnagar AA, Hagrassy HMA, Abdullah RM, Shabrawy RME, Salah H. Brain and Acute Leukemia, Cytoplasmic Gene Overexpression as a Prognostic Factor in Egyptian De novo Adult Acute Myeloid Leukemia Patients. Indian J Med Paediatr Oncol 2021. [DOI: 10.4103/ijmpo.ijmpo_215_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Abstract
Background: Brain and acute leukemia, cytoplasmic (BAALC) gene is identified on chromosome 8q22.3 and implicated in normal hematopoiesis. BAALC gene overexpression is associated with poor outcome. Methods: We aimed to evaluate BAALC expression in de novo Egyptian acute myeloid leukemia (AML) cases and determine its prognostic value. We recruited 70 patients with de novo AML diagnosed and treated at clinical pathology and medical oncology departments, fulfilling inclusion criteria in our prospective study and evaluated BAALC expression level. Patients received induction therapy. The Institutional Review Board approved our study. Results: The mean age was 39.2 years ± 11.87, (18–60) with a male/female ratio of 3/2. The cutoff value of BAALC as a prognostic factor was 2.11 with sensitivity (86.1%), specificity (80%), positive predictive value (88.6%), and negative predictive value (76.2%.) (P < 0.001), 43 (61.4%) patients had high BAALC expression. Seventy-two percent of patients in the low BAALC group achieved complete remission (CR) compared to 42.1% in high BAALC expression group (P = 0.03). Patients with low BAALC (123.1 ± 4.9) had longer mean survival time than high BAALC group (45.85 ± 5.1) (P = 0.000). Conclusion: High-BAALC expression is an adverse prognostic factor, with a higher risk of relapse, lower CR rates, and lower survival in Egyptian de novo AML patients.
Collapse
Affiliation(s)
- Ahmed A Alnagar
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hesham M Al Hagrassy
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania M Abdullah
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M El Shabrawy
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hossam Salah
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML. Mol Cell 2021; 81:2332-2348.e9. [PMID: 33974912 DOI: 10.1016/j.molcel.2021.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.
Collapse
|
10
|
Computational analysis of fused co-expression networks for the identification of candidate cancer gene biomarkers. NPJ Syst Biol Appl 2021; 7:17. [PMID: 33712625 PMCID: PMC7955132 DOI: 10.1038/s41540-021-00175-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/08/2021] [Indexed: 11/08/2022] Open
Abstract
The complexity of cancer has always been a huge issue in understanding the source of this disease. However, by appreciating its complexity, we can shed some light on crucial gene associations across and in specific cancer types. In this study, we develop a general framework to infer relevant gene biomarkers and their gene-to-gene associations using multiple gene co-expression networks for each cancer type. Specifically, we infer computationally and biologically interesting communities of genes from kidney renal clear cell carcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma data sets of The Cancer Genome Atlas (TCGA) database. The gene communities are extracted through a data-driven pipeline and then evaluated through both functional analyses and literature findings. Furthermore, we provide a computational validation of their relevance for each cancer type by comparing the performance of normal/cancer classification for our identified gene sets and other gene signatures, including the typically-used differentially expressed genes. The hallmark of this study is its approach based on gene co-expression networks from different similarity measures: using a combination of multiple gene networks and then fusing normal and cancer networks for each cancer type, we can have better insights on the overall structure of the cancer-type-specific network.
Collapse
|
11
|
Seipel K, Kopp B, Bacher U, Pabst T. BMI1-Inhibitor PTC596 in Combination with MCL1 Inhibitor S63845 or MEK Inhibitor Trametinib in the Treatment of Acute Leukemia. Cancers (Basel) 2021; 13:cancers13030581. [PMID: 33540760 PMCID: PMC7867282 DOI: 10.3390/cancers13030581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Prognosis for acute myeloid leukemia (AML) patients is poor, particularly in TP53 mutated AML, secondary, relapsed, and refractory AML, and in patients unfit for intensive treatment, thus highlighting an unmet need for novel therapeutic approaches. Targeting the stem cell oncoprotein BMI1 in leukemic cells may represent a promising novel treatment option for poor risk AML patients, especially in combination with other targeted therapies. Here we tested the BMI1 inhibitor PTC596 in combination with a variety of targeted therapies in AML cell lines and patient samples in vitro. In addition, we defined the biomarkers of response to the combination treatments in the leukemic cells. The combination treatment with the BMI1 inhibitor PTC596 and the MCL1 inhibitor S63845 may be an effective treatment in CD34+ adverse risk AML with elevated MN1 gene expression and MCL1 protein levels, while combination treatment with BMI1 inhibitor PTC596 and the MEK inhibitor trametinib may be more effective in CD34+ adverse risk AML with elevated BMI1 gene expression and MEK protein levels. The determination of gene and protein expression levels in leukemic cells as biomarkers of response to targeted combination therapies may be helpful to optimize treatment efficacy. Abstract Purpose: Prognosis for acute myeloid leukemia (AML) patients is poor, particularly in TP53 mutated AML, secondary, relapsed, and refractory AML, and in patients unfit for intensive treatment, thus highlighting an unmet need for novel therapeutic approaches. The combined use of compounds targeting the stem cell oncoprotein BMI1 and activating the tumor suppressor protein p53 may represent a promising novel treatment option for poor risk AML patients. Experimental Design: The BMI1 inhibitor PTC596, MCL1 inhibitor S63845, and MEK inhibitor trametinib, as well as the p53 activator APR-246 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells. AML cells represented all major morphologic and molecular subtypes including FLT3-ITD and FLT3 wild type, NPM1 mutant and wild type, as well as TP53 mutant and wild type AML cell lines and a variety of patient derived AML cells. Results: AML cell lines were variably susceptible to PTC596 and to combination treatments with PTC596 and MCL1 inhibitor S63845, MEK inhibitor trametinib, or TP53 activator APR-246, independent of TP53 mutational status. Susceptibility of patient samples for PTC596 in combination with S63845 or trametinib was significant for the majority of adverse risk primary and secondary AML with minimal efficacy in favorable risk AML, and correlated significantly with CD34 positivity of the samples. BMI1 and MN1 gene expression, and MCL1 and MEK1 protein levels were identified as biomarkers for response to PTC596 combination treatments. Conclusions: The combination of PTC596 and S63845 may be an effective treatment in CD34+ adverse risk AML with elevated MN1 gene expression and MCL1 protein levels, while PTC596 and trametinib may be more effective in CD34+ adverse risk AML with elevated BMI1 gene expression and MEK protein levels.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research (DBMR), University of Berne, 3008 Bern, Switzerland or (K.S.); (B.K.)
- Department of Medical Oncology, University Hospital Berne, 3010 Bern, Switzerland
| | - Basil Kopp
- Department for Biomedical Research (DBMR), University of Berne, 3008 Bern, Switzerland or (K.S.); (B.K.)
| | - Ulrike Bacher
- Department of Hematology, University Hospital Berne, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Berne, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-8430; Fax: +41-31-632-3410
| |
Collapse
|
12
|
Libbrecht C, Xie HM, Kingsley MC, Haladyna JN, Riedel SS, Alikarami F, Lenard A, McGeehan GM, Ernst P, Bernt KM. Menin is necessary for long term maintenance of meningioma-1 driven leukemia. Leukemia 2021; 35:1405-1417. [PMID: 33542482 PMCID: PMC8102197 DOI: 10.1038/s41375-021-01146-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Translocations of Meningioma-1 (MN1) occur in a subset of acute myeloid leukemias (AML) and result in high expression of MN1, either as a full-length protein, or as a fusion protein that includes most of the N-terminus of MN1. High levels of MN1 correlate with poor prognosis. When overexpressed in murine hematopoietic progenitors, MN1 causes an aggressive AML characterized by an aberrant myeloid precursor-like gene expression program that shares features of KMT2A-rearranged (KMT2A-r) leukemia, including high levels of Hoxa and Meis1 gene expression. Compounds that target a critical KMT2A-Menin interaction have proven effective in KMT2A-r leukemia. Here, we demonstrate that Menin (Men1) is also critical for the self-renewal of MN1-driven AML through the maintenance of a distinct gene expression program. Genetic inactivation of Men1 led to a decrease in the number of functional leukemia-initiating cells. Pharmacologic inhibition of the KMT2A-Menin interaction decreased colony-forming activity, induced differentiation programs in MN1-driven murine leukemia and decreased leukemic burden in a human AML xenograft carrying an MN1-ETV6 translocation. Collectively, these results nominate Menin inhibition as a promising therapeutic strategy in MN1-driven leukemia.
Collapse
Affiliation(s)
- Clara Libbrecht
- grid.239552.a0000 0001 0680 8770Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.452431.50000 0004 0442 349XInstitut d’Hématologie et d’Oncologie Pédiatrique, Lyon, France
| | - Hongbo M. Xie
- grid.239552.a0000 0001 0680 8770Department of Bioinformatics and Health Informatics (DBHI), Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Molly C. Kingsley
- grid.239552.a0000 0001 0680 8770Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Jessica N. Haladyna
- grid.430503.10000 0001 0703 675XDepartment of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO USA
| | - Simone S. Riedel
- grid.239552.a0000 0001 0680 8770Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Fatemeh Alikarami
- grid.239552.a0000 0001 0680 8770Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Alexandra Lenard
- grid.239552.a0000 0001 0680 8770Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | | | - Patricia Ernst
- grid.430503.10000 0001 0703 675XDepartment of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO USA
| | - Kathrin M. Bernt
- grid.239552.a0000 0001 0680 8770Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, 3501 Civic Center Boulevard, CTRB 3064, Philadelphia, PA 19104 USA
| |
Collapse
|
13
|
Marjanovic I, Karan-Djurasevic T, Kostic T, Virijevic M, Vukovic NS, Pavlovic S, Tosic N. Prognostic significance of combined BAALC and MN1 gene expression level in acute myeloid leukemia with normal karyotype. Int J Lab Hematol 2020; 43:433-440. [PMID: 33242229 DOI: 10.1111/ijlh.13405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Acute myeloid leukemia with normal karyotype (AML-NK) is the largest group of AML patients with very heterogeneous disease outcome. In order to ensure more precise risk stratification new molecular markers have been introduced, like expression level for BAALC (Brain and Acute Leukemia, Cytoplasmic) and MN1 (Meningioma 1) genes. METHODS In this study, we investigated expression level of both genes in 111 adult AML-NK at diagnosis and examined their prognostic potential. RESULTS BAALC and MN1 expression were detected in about one third of the patients, and positive correlation between these two genes was found. The BAALC+ /or MN1+ status was not associated with the presence of FLT3-ITD mutations, but exhibited strong correlation with NPM1wt status (P < .001). Therefore, among BAALC+ /or MN1+ patients the most frequent ones were FLT3-ITD- /NPM1- double negative patients with intermediate prognosis. When BAALC+ /or MN1+ patients were divided into BAALChigh /BAALClow (21/21) and MN1high /MN1low (21/22) groups, we detected that BAALChigh /or MN1high patients had a tendency toward lower complete remission rate. Also, survival analysis showed that BAALChigh /or MN1high patients had shorter disease-free survival and overall survival (OS). The most pronounced influence on prognosis was detected in FLT3-ITD- /NPM1- group of patients that are lacking reliable prognostic markers, where OS in BAALChigh /or MN1high was only 5 months vs 25 months in BAALClow /or MN1low . CONCLUSION These findings indicate that BAALC and MN1 expression level could be used for more precise risk stratification of AML-NK patients and especially FLT3-ITD- /NPM1- patients, transforming this intermediate-risk group, into a group with an adverse prognosis.
Collapse
Affiliation(s)
- Irena Marjanovic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurasevic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tatjana Kostic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marijana Virijevic
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Suvajdzic Vukovic
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Tosic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Zuo W, Zhou K, Deng M, Lin Q, Yin Q, Zhang C, Zhou J, Song Y. LINC00963 facilitates acute myeloid leukemia development by modulating miR-608/MMP-15. Aging (Albany NY) 2020; 12:18970-18981. [PMID: 33012724 PMCID: PMC7732318 DOI: 10.18632/aging.103252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023]
Abstract
Despite continuous improvements of AML therapy, the prognosis of AML patients remains unsatisfactory. Recently, lncRNAs have been reported to participate in the development of AML. Our data demonstrated that MMP15 and LINC00963 were upregulated and miR-608 was decreased in AML cells (THP-1, HL-60, HEL and MOLM-13) compared to HS-5 cells. RT-qPCR results showed that LINC00963 levels were higher in the serum and bone marrow of AML cases than in controls. Moreover, overexpression of LINC00963 promoted AML cell growth and EMT progression in both THP-1 and HL-60 cells. Furthermore, miR-608 levels were downregulated in the serum and bone marrow of AML cases compared with controls, and Pearson's correlation analysis indicated that LINC00963 was negatively correlated with miR-608 in the serum and bone marrow of AML samples. In addition, we demonstrated that LINC00963 sponged miR-608 expression and that MMP-15 was a target of miR-608 in AML cells. Finally, rescue experiments indicated that ectopic expression of LINC00963 accelerated cell growth and EMT development by modulating MMP-15. These data demonstrated that LINC00963 acted as an oncogene and may be a potential target for AML treatment.
Collapse
Affiliation(s)
- Wenli Zuo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Mei Deng
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Qingsong Yin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Chunlei Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Jian Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| |
Collapse
|
15
|
Jentzsch M, Bill M, Grimm J, Brauer D, Backhaus D, Goldmann K, Schulz J, Niederwieser D, Platzbecker U, Schwind S. Allogeneic stem cell transplantation mitigates the adverse prognostic impact of high diagnostic BAALC and MN1 expression in AML. Ann Hematol 2020; 99:2417-2427. [PMID: 32862286 PMCID: PMC7481166 DOI: 10.1007/s00277-020-04235-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
For most acute myeloid leukemia (AML) patients, an allogeneic hematopoietic stem cell transplantation (HSCT) offers the highest chance of sustained remissions and long-term survival. At diagnosis, high expression of the AML-associated genes BAALC (brain and acute leukemia, cytoplasmic) and MN1 (meningioma-1) were repeatedly linked to inferior outcomes in patients consolidated with chemotherapy while data for patients receiving HSCT remain limited. Using clinically applicable digital droplet PCR assays, we analyzed the diagnostic BAALC/ABL1 and MN1/ABL1 copy numbers in 302 AML patients. High BAALC/ABL1 and MN1/ABL1 copy numbers associated with common adverse prognostic factors at diagnosis. However, while high diagnostic copy numbers of both genes associated with shorter event free survival (EFS) and overall survival (OS) in patients receiving chemotherapy, there was no prognostic impact in patients undergoing HSCT. Our data suggests that the adverse prognostic impact of high BAALC and MN1 expression are mitigated by allogeneic HSCT. But preHSCT BAALC/ABL1 and MN1/ABL1 assessed in remission prior to HSCT remained prognosticators for EFS and OS independent of the diagnostic expression status. Whether allogeneic HSCT may improve survival for AML patients with high diagnostic BAALC or MN1 expression should be investigated prospectively and may improve informed decisions towards individualized consolidation options in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Allografts
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow/chemistry
- Bone Marrow/pathology
- Combined Modality Therapy
- Cytarabine/administration & dosage
- Disease-Free Survival
- Female
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Peripheral Blood Stem Cell Transplantation
- Polymerase Chain Reaction/methods
- Prognosis
- Proto-Oncogene Proteins c-abl/genetics
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Treatment Outcome
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
- Young Adult
Collapse
Affiliation(s)
- Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Marius Bill
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Juliane Grimm
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Dominic Brauer
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Donata Backhaus
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Karoline Goldmann
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Julia Schulz
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Dietger Niederwieser
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany
| | - Sebastian Schwind
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Liebigstraße 22, Haus 7, 04103, Leipzig, Germany.
| |
Collapse
|
16
|
Effective drug treatment identified by in vivo screening in a transplantable patient-derived xenograft model of chronic myelomonocytic leukemia. Leukemia 2020; 34:2951-2963. [PMID: 32576961 PMCID: PMC7116758 DOI: 10.1038/s41375-020-0929-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
To establish novel and effective treatment combinations for chronic myelomonocytic leukemia (CMML) preclinically, we hypothesized that supplementation of CMML cells with the human oncogene Meningioma 1 (MN1) promotes expansion and serial transplantability in mice, while maintaining the functional dependencies of these cells on their original genetic profile. Using lentiviral expression of MN1 for oncogenic supplementation and transplanting transduced primary mononuclear CMML cells into immunocompromised mice, we established three serially transplantable CMML-PDX models with disease-related gene mutations that recapitulate the disease in vivo. Ectopic MN1 expression was confirmed to enhance the proliferation of CMML cells, which otherwise did not engraft upon secondary transplantation. Furthermore, MN1-supplemented CMML cells were serially transplantable into recipient mice up to 5 generations. This robust engraftment enabled an in vivo RNA interference screening targeting CMML-related mutated genes including NRAS, confirming that their functional relevance is preserved in the presence of MN1. The novel combination treatment with azacitidine and the MEK-inhibitor trametinib additively inhibited ERK-phosphorylation and thus depleted the signal from mutated NRAS. The combination treatment significantly prolonged survival of CMML mice compared to single-agent treatment. Thus, we identified the combination of azacitidine and trametinib as an effective treatment in NRAS-mutated CMML and propose its clinical development.
Collapse
|
17
|
Coccaro N, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. Digital PCR: A Reliable Tool for Analyzing and Monitoring Hematologic Malignancies. Int J Mol Sci 2020; 21:ijms21093141. [PMID: 32365599 PMCID: PMC7247671 DOI: 10.3390/ijms21093141] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The digital polymerase chain reaction (dPCR) is considered to be the third-generation polymerase chain reaction (PCR), as it yields direct, absolute and precise measures of target sequences. dPCR has proven particularly useful for the accurate detection and quantification of low-abundance nucleic acids, highlighting its advantages in cancer diagnosis and in predicting recurrence and monitoring minimal residual disease, mostly coupled with next generation sequencing. In the last few years, a series of studies have employed dPCR for the analysis of hematologic malignancies. In this review, we will summarize these findings, attempting to focus on the potential future perspectives of the application of this promising technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Correspondence: ; Tel.: +39-(0)80-5478031; Fax: +39-(0)80-5508369
| |
Collapse
|
18
|
Papaioannou D, Volinia S, Nicolet D, Świerniak M, Petri A, Mrózek K, Bill M, Pepe F, Walker CJ, Walker AE, Carroll AJ, Kohlschmidt J, Eisfeld AK, Powell BL, Uy GL, Kolitz JE, Wang ES, Kauppinen S, Dorrance A, Stone RM, Byrd JC, Bloomfield CD, Garzon R. Clinical and functional significance of circular RNAs in cytogenetically normal AML. Blood Adv 2020; 4:239-251. [PMID: 31945158 PMCID: PMC6988408 DOI: 10.1182/bloodadvances.2019000568] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Circular RNAs (circRNAs) are noncoding RNA molecules that display a perturbed arrangement of exons, called backsplicing. To examine the prognostic and biologic significance of circRNA expression in cytogenetically normal acute myeloid leukemia (CN-AML), we conducted whole-transcriptome profiling in 365 younger adults (age 18-60 years) with CN-AML. We applied a novel pipeline, called Massive Scan for circRNA, to identify and quantify circRNA expression. We validated the high sensitivity and specificity of our pipeline by performing RNase R treatment and RNA sequencing in samples of AML patients and cell lines. Unsupervised clustering analyses identified 3 distinct circRNA expression-based clusters with different frequencies of clinical and molecular features. After dividing our cohort into training and validation data sets, we identified 4 circRNAs (circCFLAR, circKLHL8, circSMC1A, and circFCHO2) that were prognostic in both data sets; high expression of each prognostic circRNA was associated with longer disease-free, overall, and event-free survival. In multivariable analyses, high circKLHL8 and high circFCHO2 expression were independently associated with better clinical outcome of CN-AML patients, after adjusting for other covariates. To examine the biologic relevance of circRNA expression, we performed knockdown screening experiments in a subset of prognostic and gene mutation-related candidate circRNAs. We identified circFBXW7, but not its linear messenger RNA, as a regulator of the proliferative capacity of AML blasts. In summary, our findings underscore the molecular associations, prognostic significance, and functional relevance of circRNA expression in CN-AML.
Collapse
Affiliation(s)
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | - Michał Świerniak
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Marius Bill
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Felice Pepe
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Allison E Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | | | - Bayard L Powell
- The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC
| | - Geoffrey L Uy
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY
| | - Eunice S Wang
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY; and
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Richard M Stone
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
19
|
Wang T, Chen X, Hui S, Ni J, Yin Y, Cao W, Zhang Y, Wang X, Ma X, Cao P, Liu M, Chen KN, Wang F, Zhang Y, Nie D, Yuan L, Liu H. Ectopia associated MN1 fusions and aberrant activation in myeloid neoplasms with t(12;22)(p13;q12). Cancer Gene Ther 2020; 27:810-818. [PMID: 31902945 DOI: 10.1038/s41417-019-0159-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Chromosome translocation t(12;22)(p13;q12)/MN1-ETV6 and MN1 overexpression confer a subset of adverse prognostic AML but so far lack in-depth research. We focused on the clinical course and comprehensive genetic analysis of eight cases with t(12;22)(p13;q12) and one with t(12;17;22) (p13;q21;q13) to elucidate their molecular etiology and outcomes of allogeneic hemopoietic stem cell transplantation (allo-HSCT). The total incidence of t(12;22)(p13;q12) and related translocations was 0.32% in myeloid neoplasms. These patients were confirmed to have dismal prognosis when treated only with chemotherapy, and we firstly provided evidence that they can significantly benefit from timely allo-HSCT. Five cases were MN1-ETV6 positive, and a novel MN1-STAT3 fusion was identified in the patient with triadic translocation. Significant MN1 overexpression was observed in all three MN1-fusion-negative cases. Genetic analysis highlighted the evidence of an ectopic super-enhancer associated orchestrated mechanism of MN1 overexpression and ETV6 haploinsufficiency in t(12;22)(p13;q12) myeloid neoplasms, rather than the conventional thought of MN1-ETV6 fusion formation. We also disclosed the high concomitance of trisomy 8 and 531 Kbps focal 8q duplication in t(12;22)(p13;q12) cases. The new perspective about this entity of disease will enlighten further research to define the mechanism of tumorigenesis and discover effective treatments for MN1-driven malignancies.
Collapse
Affiliation(s)
- Tong Wang
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China.,Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China.,Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Xue Chen
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Shuang Hui
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Jingbo Ni
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Ying Yin
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Wei Cao
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Yan Zhang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xinyu Wang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xiaoli Ma
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Panxiang Cao
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Mingyue Liu
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Kylan N Chen
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China
| | - Fang Wang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Yang Zhang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Daijing Nie
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Lili Yuan
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Hongxing Liu
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China. .,Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China. .,Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China.
| |
Collapse
|
20
|
Seipel K, Messerli C, Wiedemann G, Bacher U, Pabst T. MN1, FOXP1 and hsa-miR-181a-5p as prognostic markers in acute myeloid leukemia patients treated with intensive induction chemotherapy and autologous stem cell transplantation. Leuk Res 2020; 89:106296. [PMID: 31927137 DOI: 10.1016/j.leukres.2020.106296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The meningioma-1 (MN1) gene is expressed in hematopoietic CD34+ cells and down-regulated during myeloid differentiation. MN1 overexpression has been linked to shorter overall and disease free survival in AML patients treated with intensive induction chemotherapy. MN1 overexpression may still be an adverse prognostic marker in AML patients treated with autologous stem cell transplant (auto-SCT) after intensive induction chemotherapy. METHODS We retrospectively analysed 54 peripheral blood mononuclear cell (PBMC) samples of AML patients who received auto-SCT at remission (CR1) after intensive induction chemotherapy. MN1 and putative MN1-associated mRNAs, as well as MN1-associated micro-RNAs were assessed at diagnosis in peripheral blood mononuclear cells using Taqman gene expression assays. RESULTS AML patients with elevated MN1 or FoxP1 gene expression at diagnosis had a significantly shorter progression-free and overall survival after intensive induction chemo-therapy and auto-SCT. The presence of the favourable risk NPM1 mutation associated with reduced MN1 gene expression. In contrast to MN1 and FOXP1, elevated expression of the putative tumor suppressive micro-RNA hsa-miR-181a-5p was predictive for positive outcome. Correlation analysis of MN1 with myeloid gene expression levels revealed association of MN1 and BMI-1, CD34, FOXP1 and MDM2 expression. Analysis of non-coding RNAs revealed an inverse correlation of MN1 with hsa-miR-20a-5p and hsa-miR-181b-5p expression. CONCLUSIONS MN1, FOXP1 and hsa-miR-181a-5p are prognostic markers in AML patients treated with intensive induction chemotherapy and auto-SCT. While MDM2 is a validated therapeutic target, the transcription factors MN1 and FOXP1, and the chromatin modulator BMI-1 are potential therapeutic targets in the treatment of AML. The tumor suppressor hsa-miR-181a-5p may be a candidate miRNA mimic for therapeutic use.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- Female
- Forkhead Transcription Factors/genetics
- Gene Expression Regulation, Neoplastic
- Hematopoietic Stem Cell Transplantation
- Humans
- Induction Chemotherapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- MicroRNAs/genetics
- Middle Aged
- Models, Biological
- Mutation
- Nucleophosmin
- Prognosis
- Repressor Proteins/genetics
- Retrospective Studies
- Trans-Activators/genetics
- Transplantation, Autologous
- Treatment Outcome
- Tumor Suppressor Proteins/genetics
- Young Adult
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland; Department of Medical Oncology, University Hospital, Inselspital, Bern, Switzerland.
| | - Christian Messerli
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology, University Hospital, Inselspital, Bern, Switzerland; Center of Laboratory Medicine (ZLM), University Hospital, Inselspital, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology, University Hospital, Inselspital, Bern, Switzerland; Center of Laboratory Medicine (ZLM), University Hospital, Inselspital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
21
|
Xu ZJ, Gu Y, Wang CZ, Jin Y, Wen XM, Ma JC, Tang LJ, Mao ZW, Qian J, Lin J. The M2 macrophage marker CD206: a novel prognostic indicator for acute myeloid leukemia. Oncoimmunology 2019; 9:1683347. [PMID: 32002295 PMCID: PMC6959428 DOI: 10.1080/2162402x.2019.1683347] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/13/2023] Open
Abstract
Hematological malignancies possess a distinctive immunologic microenvironment compared with solid tumors. Here, using an established computational algorithm (CIBERSORT), we systematically analyzed the overall distribution of 22 tumor-infiltrating leukocyte (TIL) populations in more than 2000 bone marrow (BM) samples from 5 major hematological malignancies and healthy controls. Focusing on significantly altered TILs in acute myeloid leukemia (AML), we found that patients with AML exhibited increased frequencies of M2 macrophages, compared to either healthy controls or the other four malignancies. High infiltration of M2 macrophages was associated with poor outcome in AML. Further analysis revealed that CD206, a M2 marker gene, could faithfully reflect variation in M2 fractions and was more highly expressed in AML than normal controls. High CD206 expression predicted inferior overall survival (OS) and event-free survival (EFS) in two independent AML cohorts. Among 175 patients with intermediate-risk cytogenetics, the survival still differed greatly between low and high CD206 expressers (OS; P < .0001; 3-year rates, 56% v 32%; EFS; P < .001; 3-year rates, 47% v 25%). When analyzed in a meta-analysis, CD206 as a continuous variable showed superior predictive performance than classical prognosticators in AML (BAALC, ERG, EVI1, MN1, and WT1). In summary, M2 macrophages are preferentially enriched in AML. The M2 marker CD206 may serve as a new prognostic marker in AML.
Collapse
Affiliation(s)
- Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Yu Gu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Cui-Zhu Wang
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Zhen-Wei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
22
|
Sharma A, Jyotsana N, Gabdoulline R, Heckl D, Kuchenbauer F, Slany RK, Ganser A, Heuser M. Meningioma 1 is indispensable for mixed lineage leukemia-rearranged acute myeloid leukemia. Haematologica 2019; 105:1294-1305. [PMID: 31413090 PMCID: PMC7193500 DOI: 10.3324/haematol.2018.211201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Mixed lineage leukemia (MLL/KMT2A) rearrangements (MLL-r) are one of the most frequent chromosomal aberrations in acute myeloid leukemia. We evaluated the function of Meningioma 1 (MN1), a co-factor of HOXA9 and MEIS1, in human and murine MLL-rearranged leukemia by CRISPR-Cas9 mediated deletion of MN1. MN1 was required for in vivo leukemogenicity of MLL positive murine and human leukemia cells. Loss of MN1 inhibited cell cycle and proliferation, promoted apoptosis and induced differentiation of MLL-rearranged cells. Expression analysis and chromatin immunoprecipitation with sequencing from previously reported data sets demonstrated that MN1 primarily maintains active transcription of HOXA9 and HOXA10, which are critical downstream genes of MLL, and their target genes like BCL2, MCL1 and Survivin. Treatment of MLL-rearranged primary leukemia cells with anti-MN1 siRNA significantly reduced their clonogenic potential in contrast to normal CD34+ hematopoietic progenitor cells, suggesting a therapeutic window for MN1 targeting. In summary, our findings demonstrate that MN1 plays an essential role in MLL fusion leukemias and serve as a therapeutic target in MLL-rearranged acute myeloid leukemia.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nidhi Jyotsana
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Razif Gabdoulline
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Dirk Heckl
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Not Only Mutations Matter: Molecular Picture of Acute Myeloid Leukemia Emerging from Transcriptome Studies. JOURNAL OF ONCOLOGY 2019; 2019:7239206. [PMID: 31467542 PMCID: PMC6699387 DOI: 10.1155/2019/7239206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
The last two decades of genome-scale research revealed a complex molecular picture of acute myeloid leukemia (AML). On the one hand, a number of mutations were discovered and associated with AML diagnosis and prognosis; some of them were introduced into diagnostic tests. On the other hand, transcriptome studies, which preceded AML exome and genome sequencing, remained poorly translated into clinics. Nevertheless, gene expression studies significantly contributed to the elucidation of AML pathogenesis and indicated potential therapeutic directions. The power of transcriptomic approach lies in its comprehensiveness; we can observe how genome manifests its function in a particular type of cells and follow many genes in one test. Moreover, gene expression measurement can be combined with mutation detection, as high-impact mutations are often present in transcripts. This review sums up 20 years of transcriptome research devoted to AML. Gene expression profiling (GEP) revealed signatures distinctive for selected AML subtypes and uncovered the additional within-subtype heterogeneity. The results were particularly valuable in the case of AML with normal karyotype which concerns up to 50% of AML cases. With the use of GEP, new classes of the disease were identified and prognostic predictors were proposed. A plenty of genes were detected as overexpressed in AML when compared to healthy control, including KIT, BAALC, ERG, MN1, CDX2, WT1, PRAME, and HOX genes. High expression of these genes constitutes usually an unfavorable prognostic factor. Upregulation of FLT3 and NPM1 genes, independent on their mutation status, was also reported in AML and correlated with poor outcome. However, transcriptome is not limited to the protein-coding genes; other types of RNA molecules exist in a cell and regulate genome function. It was shown that microRNA (miRNA) profiles differentiated AML groups and predicted outcome not worse than protein-coding gene profiles. For example, upregulation of miR-10a, miR-10b, and miR-196b and downregulation of miR-192 were found as typical of AML with NPM1 mutation whereas overexpression of miR-155 was associated with FLT3-internal tandem duplication (FLT3-ITD). Development of high-throughput technologies and microarray replacement by next generation sequencing (RNA-seq) enabled uncovering a real variety of leukemic cell transcriptomes, reflected by gene fusions, chimeric RNAs, alternatively spliced transcripts, miRNAs, piRNAs, long noncoding RNAs (lncRNAs), and their special type, circular RNAs. Many of them can be considered as AML biomarkers and potential therapeutic targets. The relations between particular RNA puzzles and other components of leukemic cells and their microenvironment, such as exosomes, are now under investigation. Hopefully, the results of this research will shed the light on these aspects of AML pathogenesis which are still not completely understood.
Collapse
|
24
|
Pieters T, T'Sas S, Demoen L, Almeida A, Haenebalcke L, Matthijssens F, Lemeire K, D'Hont J, Van Rockeghem F, Hochepied T, Lintermans B, Reunes L, Lammens T, Berx G, Haigh JJ, Goossens S, Van Vlierberghe P. Novel strategy for rapid functional in vivo validation of oncogenic drivers in haematological malignancies. Sci Rep 2019; 9:10577. [PMID: 31332244 PMCID: PMC6646380 DOI: 10.1038/s41598-019-46853-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
In cancer research, it remains challenging to functionally validate putative novel oncogenic drivers and to establish relevant preclinical models for evaluation of novel therapeutic strategies. Here, we describe an optimized and efficient pipeline for the generation of novel conditional overexpression mouse models in which putative oncogenes, along with an eGFP/Luciferase dual reporter, are expressed from the endogenous ROSA26 (R26) promoter. The efficiency of this approach was demonstrated by the generation and validation of novel R26 knock-in (KI) mice that allow conditional overexpression of Jarid2, Runx2, MN1 and a dominant negative allele of ETV6. As proof of concept, we confirm that MN1 overexpression in the hematopoietic lineage is sufficient to drive myeloid leukemia. In addition, we show that T-cell specific activation of MN1 in combination with loss of Pten increases tumour penetrance and stimulates the formation of Lyl1+ murine T-cell lymphoblastic leukemias or lymphomas (T-ALL/T-LBL). Finally, we demonstrate that these luciferase-positive murine AML and T-ALL/T-LBL cells are transplantable into immunocompromised mice allowing preclinical evaluation of novel anti-leukemic drugs in vivo.
Collapse
Affiliation(s)
- Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T'Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lieven Haenebalcke
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Kelly Lemeire
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jinke D'Hont
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frederique Van Rockeghem
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Beatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Geert Berx
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jody J Haigh
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,VIB Inflammation Research Center, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
25
|
High expression of meningioma 1 is correlated with reduced survival rates in colorectal cancer patients. Acta Histochem 2019; 121:628-637. [PMID: 31133374 DOI: 10.1016/j.acthis.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
The identification of prognostic markers for colorectal cancer (CRC) has important clinical implications. However, the association between meningioma 1 (MN1) expression and clinical outcomes of CRC has not been fully investigated. The aim of this study was to investigate the expression of MN1 in the clinical context of CRC. We first used immunohistochemistry (IHC) staining to examine and compare MN1 expression between multiple human cancer tissues and normal tissues. Initial screening revealed that the expression of MN1 proteins was significantly higher in tumor tissues of the breast, colon, and liver than in normal tissues. In further testing conducted on 59 paired CRC samples, we observed that the expression of MN1 in CRC tissue samples was significantly higher than in adjacent normal tissues. Moreover, high MN1 expression was not significantly associated with clinicopathological characteristics. Kaplan-Meier survival analysis revealed that high expression of MN1 mRNA or MN1 protein was significantly associated with poor CRC prognosis. Furthermore, univariate Cox analysis revealed that a high MN1 score was significantly associated with prognostic factors. Multivariate Cox analysis further indicated that gender, histologic grade, tumor-node-metastasis (TNM) stage, and a high MN1 score were independent factors of overall CRC survival rates. Finally, MN1 and PCNA protein levels were positively correlated, which suggests that MN1 may be involved in the cell proliferation process during CRC formation. Our results, which confirm those of other studies, indicate that (1) high levels of MN1 expression contribute to poor CRC prognosis and (2) MN1 can serve as a novel potential biomarker in predicting the prognosis of CRC patients.
Collapse
|
26
|
Angenendt L, Bormann E, Pabst C, Alla V, Görlich D, Braun L, Dohlich K, Schwöppe C, Bohlander SK, Arteaga MF, Wethmar K, Hartmann W, Angenendt A, Kessler T, Mesters RM, Stelljes M, Rothenberg-Thurley M, Spiekermann K, Hébert J, Sauvageau G, Valk PJM, Löwenberg B, Serve H, Müller-Tidow C, Lenz G, Wörmann BJ, Sauerland MC, Hiddemann W, Berdel WE, Krug U, Metzeler KH, Mikesch JH, Herold T, Schliemann C. The neuropeptide receptor calcitonin receptor-like (CALCRL) is a potential therapeutic target in acute myeloid leukemia. Leukemia 2019; 33:2830-2841. [PMID: 31182782 DOI: 10.1038/s41375-019-0505-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022]
Abstract
Calcitonin receptor-like (CALCRL) is a G-protein-coupled neuropeptide receptor involved in the regulation of blood pressure, angiogenesis, cell proliferation, and apoptosis, and is currently emerging as a novel target for the treatment of migraine. This study characterizes the role of CALCRL in acute myeloid leukemia (AML). We analyzed CALCRL expression in collectively more than 1500 well-characterized AML patients from five international cohorts (AMLCG, HOVON, TCGA, Leucegene, and UKM) and evaluated associations with survival. In the AMLCG analytic cohort, increasing transcript levels of CALCRL were associated with decreasing complete remission rates (71.5%, 53.7%, 49.6% for low, intermediate, high CALCRL expression), 5-year overall (43.1%, 26.2%, 7.1%), and event-free survival (29.9%, 15.8%, 4.7%) (all P < 0.001). CALCRL levels remained associated with all endpoints on multivariable regression analyses. The prognostic impact was confirmed in all validation sets. Genes highly expressed in CALCRLhigh AML were significantly enriched in leukemic stem cell signatures and CALCRL levels were positively linked to the engraftment capacity of primary patient samples in immunocompromised mice. CRISPR-Cas9-mediated knockout of CALCRL significantly impaired colony formation in human myeloid leukemia cell lines. Overall, our study demonstrates that CALCRL predicts outcome beyond existing risk factors and is a potential therapeutic target in AML.
Collapse
Affiliation(s)
- Linus Angenendt
- Department of Medicine A, University Hospital Münster, Münster, Germany.
| | - Eike Bormann
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Caroline Pabst
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijay Alla
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Leonie Braun
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Kim Dohlich
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | | | - Stefan K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | - Klaus Wethmar
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Adrian Angenendt
- Department of Biophysics, Faculty of Medicine, Centre for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Torsten Kessler
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Rolf M Mesters
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Matthias Stelljes
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | | | - Karsten Spiekermann
- Department of Medicine III, University Hospital Grosshadern, LMU Munich, Munich, Germany
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hubert Serve
- Department of Hematology and Oncology, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Bernhard J Wörmann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - M Christina Sauerland
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital Grosshadern, LMU Munich, Munich, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Klaus H Metzeler
- Department of Medicine III, University Hospital Grosshadern, LMU Munich, Munich, Germany
| | | | - Tobias Herold
- Department of Medicine III, University Hospital Grosshadern, LMU Munich, Munich, Germany. .,Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Munich, Germany.
| | | |
Collapse
|
27
|
Papaioannou D, Nicolet D, Ozer HG, Mrózek K, Volinia S, Fadda P, Carroll AJ, Kohlschmidt J, Kolitz JE, Wang ES, Stone RM, Byrd JC, Garzon R, Bloomfield CD. Prognostic and Biologic Relevance of Clinically Applicable Long Noncoding RNA Profiling in Older Patients with Cytogenetically Normal Acute Myeloid Leukemia. Mol Cancer Ther 2019; 18:1451-1459. [PMID: 31164409 DOI: 10.1158/1535-7163.mct-18-1125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/29/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023]
Abstract
We have previously shown that expression levels of 48 long noncoding RNAs (lncRNA) can generate a prognostic lncRNA score that independently associates with outcome of older patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the techniques used to identify and measure prognostic lncRNAs (i.e., RNA sequencing and microarrays) are not tailored for clinical testing. Herein, we report on an assay (based on the nCounter platform) that is designed to produce targeted measurements of prognostic lncRNAs in a clinically applicable manner. We analyzed a new cohort of 76 older patients with CN-AML and found that the nCounter assay yielded reproducible measurements and that the lncRNA score retained its prognostic value; patients with high lncRNA scores had lower complete remission (CR) rates (P = 0.009; 58% vs. 87%), shorter disease-free (P = 0.05; 3-year rates: 0% vs. 21%), overall (OS; P = 0.02, 3-year rates: 10% vs. 29%), and event-free survival (EFS; P = 0.002, 3-year rates: 0% vs. 18%) than patients with low lncRNA scores. In multivariable analyses, the lncRNA score independently associated with CR rates (P = 0.02), OS (P = 0.02), and EFS (P = 0.02). To gain biological insights, we examined our initial cohort of 71 older patients with CN-AML, previously analyzed with RNA sequencing. Genes involved in immune response and B-cell receptor signaling were enriched in patients with high lncRNA scores. We conclude that clinically applicable lncRNA profiling is feasible and potentially useful for risk stratification of older patients with CN-AML. Furthermore, we identify potentially targetable molecular pathways that are active in the high-risk patients with high lncRNA scores.
Collapse
Affiliation(s)
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Alliance Statistics and Data Center, The Ohio State University, Columbus, Ohio
| | - Hatice G Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Alliance Statistics and Data Center, The Ohio State University, Columbus, Ohio
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, New York
| | - Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Richard M Stone
- Dana-Farber/Partners Cancer Care, Harvard University, Boston, Massachusetts
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | |
Collapse
|
28
|
Jentzsch M, Bill M, Grimm J, Schulz J, Beinicke S, Häntschel J, Goldmann K, Pönisch W, Franke GN, Vucinic V, Cross M, Behre G, Lange T, Niederwieser D, Schwind S. Prognostic Impact of Blood MN1 Copy Numbers Before Allogeneic Stem Cell Transplantation in Patients With Acute Myeloid Leukemia. Hemasphere 2019; 3:e167. [PMID: 31723806 PMCID: PMC6745933 DOI: 10.1097/hs9.0000000000000167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 01/02/2023] Open
Abstract
High expression of the leukemia-associated gene meningioma-1 (MN1) is frequently found at diagnosis of acute myeloid leukemia (AML) and associates with adverse outcomes. The presence of measurable residual disease (MRD) in complete remission (CR) indicates high risk of relapse and worse outcome in AML patients. However, the prognostic impact of MN1 expression levels as MRD marker has not been evaluated. Digital droplet polymerase chain reaction (ddPCR) is a novel technique allowing sensitive and specific absolute gene expression quantification. We retrospectively analyzed 124 AML patients who received allogeneic hematopoietic stem cell transplantation (HSCT) in CR or CR with incomplete peripheral recovery. Absolute MN1 copy numbers in peripheral blood were assessed prior to HSCT (median 7; range 0-29 days) using ddPCR. High pre-HSCT MN1/Abelson murine leukemia viral oncogene homolog 1 gene (ABL1) copy numbers associated with a higher cumulative incidence of relapse after HSCT and-in relapsing patients-shorter time to relapse. In multivariable analysis, high pre-HSCT MN1/ABL1 copy numbers remained an independent prognosticator for relapse after HSCT. Patients with the highest pre-HSCT MN1/ABL1 copy numbers also had the highest risk of relapse. MN1 copy number assessment also added prognostic information to nucleophosmin 1 gene (NPM1) mutation- and brain and acute leukemia, cytoplasmic (BAALC) and Wilm's tumor gene 1 (WT1) expression-based MRD evaluation. Our study demonstrates the feasibility of the novel ddPCR technique for MN1/ABL1 copy number assessment as a marker for MRD. Evaluation of MN1/ABL1 copy numbers allows the identification of patients at high risk of relapse, independently of other diagnostic risk factors and MRD markers.
Collapse
Affiliation(s)
- Madlen Jentzsch
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Marius Bill
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Juliane Grimm
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Julia Schulz
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Stefanie Beinicke
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Janine Häntschel
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Karoline Goldmann
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Wolfram Pönisch
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | | | - Vladan Vucinic
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Michael Cross
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Gerhard Behre
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Thoralf Lange
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | | | - Sebastian Schwind
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Shao H, Cen J, Chen S, Qiu H, Pan J. Myeloid neoplasms with t(12;22)(p13;q12)/MN1-EVT6: a systematic review of 12 cases. Ann Hematol 2018; 97:417-424. [PMID: 29273914 DOI: 10.1007/s00277-017-3208-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
t(12;22)(p13;q12) is a rare but recurrent chromosomal abnormality involving the ETS transcription factor ETV6 and meningioma 1 (MN1) genes. In this study, we analyzed the clinical, cytogenetic, and molecular features of five new patients with the t(12;22)/MN1-EVT6 who presented with acute myeloid leukemia or chronic myelomonocytic leukemia. We subsequently reviewed the literature and identified seven additional cases reported with t(12;22)/MN1-EVT6. Our data suggest that neoplasms carrying the t(12;22)/MN1-ETV6, although rare, can commonly present as myeloid neoplasms at the initial diagnosis, including acute myeloid leukemia (n = 8), myelodysplastic syndrome (n = 2), and myelodysplastic/myeloproliferative neoplasms (n = 2). There were five men and seven women with a median age of 43 years (range, 15-63 years) at initial diagnosis. Cytogenetics revealed t(12;22) as the sole abnormality in five patients, with the remaining seven patients harboring additional chromosomal aberrations. Of the five patients who received known therapy regimens, all of them had poor response to the idarubicin/mitoxantrone + cytarabine regimen. Of the seven patients with follow-up information, six patients died with a median overall survival time of only 5 months (range, 1-12 months) after the emergence of t(12;22). In summary, patients with t(12;22) are frequently associated with myeloid neoplasms, poor response to chemotherapy, and inferior outcome.
Collapse
Affiliation(s)
- Haigang Shao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Jiannong Cen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Suning Chen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Huiying Qiu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Jinlan Pan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
30
|
Loss of RKIP is a frequent event in myeloid sarcoma and promotes leukemic tissue infiltration. Blood 2018; 131:826-830. [PMID: 29295844 DOI: 10.1182/blood-2017-09-804906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Gene expression and risk of leukemic transformation in myelodysplasia. Blood 2017; 130:2642-2653. [DOI: 10.1182/blood-2017-05-783050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
Key Points
Through a comprehensive transcriptomic analysis, we discovered 2 major subgroups of myelodysplasia defined by gene expression profiles. The gene expression–based subgroups had independent prognostic value, which was validated in an external cohort.
Collapse
|
32
|
Pogosova-Agadjanyan EL, Moseley A, Othus M, Appelbaum FR, Chauncey TR, Chen IML, Erba HP, Godwin JE, Fang M, Kopecky KJ, List AF, Pogosov GL, Radich JP, Willman CL, Wood BL, Meshinchi S, Stirewalt DL. Impact of Specimen Heterogeneity on Biomarkers in Repository Samples from Patients with Acute Myeloid Leukemia: A SWOG Report. Biopreserv Biobank 2017; 16:42-52. [PMID: 29172682 DOI: 10.1089/bio.2017.0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Current prognostic models for acute myeloid leukemia (AML) are inconsistent at predicting clinical outcomes for individual patients. Variability in the quality of specimens utilized for biomarker discovery and validation may contribute to this prognostic inconsistency. METHODS We evaluated the impact of sample heterogeneity on prognostic biomarkers and methods to mitigate any adverse effects of this heterogeneity in 240 cryopreserved bone marrow and peripheral blood specimens from AML patients enrolled on SWOG (Southwest Oncology Group) trials. RESULTS Cryopreserved samples displayed a broad range in viability (37% with viabilities ≤60%) and nonleukemic cell contamination (13% with lymphocyte percentages >20%). Specimen viability was impacted by transport time, AML immunophenotype, and, potentially, patients' age. The viability and cellular heterogeneity in unsorted samples significantly altered biomarker results. Enriching for viable AML blasts improved the RNA quality from specimens with poor viability and refined results for both DNA and RNA biomarkers. For example, FLT3-ITD allelic ratio, which is currently utilized to risk-stratify AML patients, was on average 1.49-fold higher in the viable AML blasts than in the unsorted specimens. CONCLUSION To our knowledge, this is the first study to provide evidence that using cryopreserved specimens can introduce uncontrollable variables that may impact biomarker results and enrichment for viable AML blasts may mitigate this impact.
Collapse
Affiliation(s)
| | - Anna Moseley
- 2 SWOG Statistical Center , Fred Hutch, Seattle, Washington
| | - Megan Othus
- 2 SWOG Statistical Center , Fred Hutch, Seattle, Washington
| | - Frederick R Appelbaum
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington
| | - Thomas R Chauncey
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington.,4 VA Puget Sound Health Care System , Seattle, Washington
| | - I-Ming L Chen
- 5 Department of Pathology, University of New Mexico , UNM Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Harry P Erba
- 6 Division of Hematology and Oncology, University of Alabama at Birmingham , Birmingham, Alabama
| | - John E Godwin
- 7 Providence Cancer Center, Earle A. Chiles Research Institute , Portland, Oregon
| | - Min Fang
- 8 Departments of Laboratory Medicine and Pathology, University of Washington , Seattle, Washington
| | | | - Alan F List
- 9 Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute , Tampa, Florida
| | | | - Jerald P Radich
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington
| | - Cheryl L Willman
- 5 Department of Pathology, University of New Mexico , UNM Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Brent L Wood
- 8 Departments of Laboratory Medicine and Pathology, University of Washington , Seattle, Washington
| | - Soheil Meshinchi
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,10 Department of Pediatrics, University of Washington , Seattle, Washington
| | - Derek L Stirewalt
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington
| |
Collapse
|
33
|
Lai CK, Norddahl GL, Maetzig T, Rosten P, Lohr T, Sanchez Milde L, von Krosigk N, Docking TR, Heuser M, Karsan A, Humphries RK. Meis2 as a critical player in MN1-induced leukemia. Blood Cancer J 2017; 7:e613. [PMID: 28960191 PMCID: PMC5709755 DOI: 10.1038/bcj.2017.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
Meningioma 1 (MN1) is an independent prognostic marker for normal karyotype acute myeloid leukemia (AML), with high expression linked to all-trans retinoic acid resistance and poor survival. MN1 is also a potent and sufficient oncogene in murine leukemia models, strongly dependent on the MEIS1/AbdB-like HOX protein complex to transform common myeloid progenitors, block myeloid differentiation, and promote leukemic stem cell self-renewal. To identify key genes and pathways underlying leukemic activity, we functionally assessed MN1 cell phenotypic heterogeneity, revealing leukemic and non-leukemic subsets. Using gene expression profiling of these subsets combined with previously published comparisons of full-length MN1 and mutants with varying leukemogenic activity, we identified candidate genes critical to leukemia. Functional analysis identified Hlf and Hoxa9 as critical to MN1 in vitro proliferation, self-renewal and impaired myeloid differentiation. Although critical to transformation, Meis1 knockdown had little impact on these properties in vitro. However, we identified Meis2 as critical to MN1-induced leukemia, with essential roles in proliferation, self-renewal, impairment of differentiation and disease progression in vitro and in vivo. Here, we provide evidence of phenotypic and functional hierarchy in MN1-induced leukemic cells, characterise contributions of Hlf, Hoxa9 and Meis1 to in vitro leukemic properties, and reveal Meis2 as a novel player in MN1-induced leukemogenesis.
Collapse
Affiliation(s)
- C K Lai
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - G L Norddahl
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - T Maetzig
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - P Rosten
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - T Lohr
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - L Sanchez Milde
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - N von Krosigk
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - T R Docking
- Genome Sciences Centre, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Karsan
- Genome Sciences Centre, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - R K Humphries
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Fu L, Fu H, Wu Q, Pang Y, Xu K, Zhou L, Qiao J, Ke X, Xu K, Shi J. High expression of ETS2 predicts poor prognosis in acute myeloid leukemia and may guide treatment decisions. J Transl Med 2017; 15:159. [PMID: 28724426 PMCID: PMC5518161 DOI: 10.1186/s12967-017-1260-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022] Open
Abstract
Background ETS2 is a downstream effector of the RAS/RAF/ERK pathway, which plays a critical role in the development of malignant tumor. However, the clinical impact of ETS2 expression in AML remains unknown. Methods In this study, we evaluated the prognostic significance of ETS2 expression using two relatively large cohorts of AML patients. Results In the first cohort, compared to low expression of ETS2 (ETS2low), high expression of ETS2 (ETS2high) showed significant shorter OS, EFS and RFS in the current treatments including the allogeneic HCT group (n = 72) and the chemotherapy group (n = 100). Notably, among ETS2high patients, those received allogeneic HCT had longer OS, EFS and RFS than those with chemotherapy alone (allogeneic HCT, n = 39 vs. chemotherapy, n = 47), but treatment modules play insignificant role in the survival of ETS2low patients (allogeneic HCT, n = 33 vs. chemotherapy, n = 53). Moreover, gene/microRNA expression data provides insights into the biological changes associated with varying ETS2 expression levels in AML. The prognostic value of ETS2 was further validated in the second AML cohort (n = 329). Conclusions Our results indicate that ETS2high is a poor prognostic factor in AML and may guide treatment decisions towards allogeneic HCT. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1260-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Huaping Fu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yifan Pang
- Department of Medicine, Wil-liam Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Keman Xu
- Northeastern University, Boston, MA, 02115, USA
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianlin Qiao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jinlong Shi
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China. .,Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China. .,Department of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
35
|
Shafik RE, Hassan NM, El Meligui YM, Shafik HE. The Meningioma 1 (MN1) Gene is an Independent Poor Prognostic Factor in Adult Egyptian Acute Myeloid Leukemia Patients. Asian Pac J Cancer Prev 2017; 18:609-613. [PMID: 28440611 PMCID: PMC5464473 DOI: 10.22034/apjcp.2017.18.3.609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: To determine the prognostic importance of meningioma 1 (MN1) gene expression levels in the context of other predictive markers for acute myeloid leukemia (AML) cases. Methods: MN1 expression was measured in 85 newly diagnosed adults younger than 60 years by real-time reverse-transcriptase polymerase chain reaction. Results: At diagnosis 67.4% of cases had elevated MN1 expression, this being associated with a worse prognosis, higher incidence of lymphadenopathy and CD34 transcript expression (p=0.02 and <0.001, respectively). No other molecular or clinical characteristics were significantly associated with MN1expression. Patients with high MN1 expression had lower complete response rate at day 15 compared to patients with low MN1 expression (p=0.09) and a significantly higher relapse rate (21.1% versus 7.7%, respectively, p=0.04). Patients with high MN1 expression had shorter TTP compared to those with low expression, p= 0.07. Conclusion: MN1 expression may predict outcome in AML patients. The MN1 gene and micro RNA expression suggest a biological feature that could be used as therapeutic targets.
Collapse
Affiliation(s)
- Roxan E Shafik
- National Cancer Institute, Cairo University, Medical Oncology Department, Egypt.
| | | | | | | |
Collapse
|
36
|
Shi JL, Fu L, Ang Q, Wang GJ, Zhu J, Wang WD. Overexpression of ATP1B1 predicts an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 2016; 7:2585-95. [PMID: 26506237 PMCID: PMC4823057 DOI: 10.18632/oncotarget.6226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/09/2015] [Indexed: 11/25/2022] Open
Abstract
ATP1B1 encodes the Na,K-ATPase β subunit, a key regulator of the Na+ and K+ electrochemical gradients across the plasma membrane and an essential regulator of cellular activity. We used several microarray datasets to test the prognostic efficacy of ATP1B1 expression in cytogenetically normal acute myeloid leukemia (CN-AML). Within the primary cohort (n = 157), high ATP1B1 expression (ATP1B1high) was associated with shorter overall survival (OS) and event-free survival (EFS) (P = 0.0068, P = 0.0039, respectively). Similar results were also obtained in the European Leukemia Net (ELN) Intermediate-I genetic category (OS: P = 0.0035, EFS: P = 0.0007). Multivariable analyses confirmed ATP1B1high is an independent predictor of shorter OS (P = 0.042) and EFS (P = 0.035). Analysis of another CN-AML cohort confirmed that ATP1B1high is associated with shorter OS (P = 0.0046, n = 162). In addition, up-regulation of oncogenes/onco-microRNAs such as MYCN, CCND2, CDK6, KIT and miR-155, among others, was associated with ATP1B1high, which may be indicative of ATP1B1's leukemogenicity. Our results may improve risk stratification and indicate new therapeutic targets for CN-AML.
Collapse
Affiliation(s)
- Jin-long Shi
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Qing Ang
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| | - Guo-jing Wang
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| | - Jun Zhu
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| | - Wei-dong Wang
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Abstract
Pediatric central nervous system primitive neuro-ectodermal brain tumors (CNS-PNETs) are rare tumors with ill-defined biological features. In this issue of Cell, Sturm et al. used state-of-the-art methods to interrogate these tumors' biology. Their integrated molecular analyses led them to propose a new molecular classification, with four new entities identified, that should get oncologists' attention.
Collapse
Affiliation(s)
- Wafik Zaky
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Qu X, Davison J, Du L, Storer B, Stirewalt DL, Heimfeld S, Estey E, Appelbaum FR, Fang M. Identification of differentially methylated markers among cytogenetic risk groups of acute myeloid leukemia. Epigenetics 2016; 10:526-35. [PMID: 25996682 DOI: 10.1080/15592294.2015.1048060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups. We found distinct profiles in each group, with the high-risk group showing overall increased methylation compared with low- and mid-risk groups. The differentially methylated regions (DMRs) distinguishing cytogenetic risk groups of AML were enriched in the CpG island shores. Specific risk-group associated DMRs were located near genes previously known to play a role in AML or other malignancies, such as MN1, UHRF1, HOXB3, and HOXB4, as well as TRIM71, the function of which in cancer is not well characterized. These findings were verified by quantitative bisulfite pyrosequencing and by comparison with results available at the TCGA cancer genome browser. To explore the potential biological significance of the observed methylation changes, we correlated our findings with gene expression data available through the TCGA database. The results showed that decreased methylation at HOXB3 and HOXB4 was associated with increased gene expression of both HOXB genes specific to the mid-risk AML, while increased DNA methylation at DCC distinctive to the high-risk AML was associated with increased gene expression. Our results suggest that the differential impact of cytogenetic changes on AML prognosis may, in part, be mediated by changes in methylation.
Collapse
Affiliation(s)
- Xiaoyu Qu
- a Fred Hutchinson Cancer Research Center ; Seattle , WA , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Riedel SS, Haladyna JN, Bezzant M, Stevens B, Pollyea DA, Sinha AU, Armstrong SA, Wei Q, Pollock RM, Daigle SR, Jordan CT, Ernst P, Neff T, Bernt KM. MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia. J Clin Invest 2016; 126:1438-50. [PMID: 26927674 DOI: 10.1172/jci80825] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin-derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L. Together, these data point to DOT1L as a potential therapeutic target in MN1hi AML. In addition, our findings suggest that epigenetic modulation of the interplay between an oncogenic lesion and its cooperating developmental program has therapeutic potential in AML.
Collapse
|
40
|
MN1-Fli1 oncofusion transforms murine hematopoietic progenitor cells into acute megakaryoblastic leukemia cells. Oncogenesis 2015; 4:e179. [PMID: 26690545 PMCID: PMC4688398 DOI: 10.1038/oncsis.2015.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 11/08/2022] Open
Abstract
Long-term outcome of acute megakaryoblastic leukemia (AMKL) patients without Down's syndrome remains poor. Founding mutations and chimeric oncogenes characterize various AMKL subtypes. However, for around one third of all cases the underlying mechanisms of AMKL leukemogenesis are still largely unknown. Recently, an in-frame fusion of meningeoma 1-friend leukemia virus integration 1 (MN1-Fli1) gene was detected in a child with AMKL. We intended to investigate the potential role of this oncofusion in leukemogenesis of acute myeloid leukemia. Strikingly, expression of MN1-Fli1 in murine hematopoietic progenitor cells was sufficient to induce leukemic transformation generating immature myeloid cells with cytomorphology and expression of surface markers typical for AMKL. Systematic structure function analyses revealed FLS and 3'ETS domains of Fli1 as decisive domains for the AMKL phenotype. Our data highlight an important role of MN1-Fli1 in AMKL leukemogenesis and provide a basis for research assessing the value of this oncofusion as a future diagnostic marker and/or therapeutic target in AMKL patients.
Collapse
|
41
|
Rashed RA, Kadry DY, El Taweel M, Abd El Wahab N, Abd El Hameed T. Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases. Asian Pac J Cancer Prev 2015; 16:7875-82. [PMID: 26625814 DOI: 10.7314/apjcp.2015.16.17.7875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objectives of this study were to evaluate the expression of brain and acute leukemia, cytoplasmic (BAALC) gene and erythroblast transformation-specific related gene (ERG) in de novo cases of acute myeloid leukemia (AML) and identify roles in disease progression and outcome. MATERIALS AND METHODS This study included 50 newly diagnosed AML patients, along with 10 apparently healthy normal controls. BAALC and ERG expression was detected in the bone marrow of both patients and controls using real-time RT-PCR. RESULTS BAALC and ERG expression was detected in 52% of cases but not in any controls. There was a statistically significant correlation between BAALC and ERG gene expression and age (p- value=0.004 and 0.019, respectively). No statistical significance was noted for sex, lymphadenopathy, hepatomegaly, splenomegaly, other hematological findings, immunophenotyping and FAB sub-classification except for ERG gene and FAB (p-value=0.058). A statistical significant correlation was found between response to treatment with ERG expression (p-value=0.028) and age (p-value=0.014). A statistically significant variation in overall survival was evident with patient age, BM blast cells, FAB subgroups, BAALC and ERG expression (p-value= <0.001, 0.045, 0.041, <0.008 and 0.025 respectively). CONCLUSIONS Our results suggest that BAALC and ERG genes are specific significant molecular markers in AML disease progression, response to treatment and survival.
Collapse
Affiliation(s)
- Reham A Rashed
- Clinical Pathology, Medicine, National Cancer Institute, Cairo, Egypt E-mail :
| | | | | | | | | |
Collapse
|
42
|
Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun 2015; 5:3231. [PMID: 24488081 PMCID: PMC3951205 DOI: 10.1038/ncomms4231] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/10/2014] [Indexed: 12/16/2022] Open
Abstract
Prognostic genes are key molecules informative for cancer prognosis and treatment. Previous studies have focused on the properties of individual prognostic genes, but have lacked a global view of their system-level properties. Here we examined their properties in gene co-expression networks for four cancer types using data from The Cancer Genome Atlas. We found that prognostic mRNA genes tend not to be hub genes (genes with an extremely high connectivity), and this pattern is unique to the corresponding cancer-type specific network. In contrast, the prognostic genes are enriched in modules (., a group of highly interconnected genes), especially in module genes conserved across different cancer co-expression networks. The target genes of prognostic miRNA genes show similar patterns. We identified the modules enriched in various prognostic genes, some of which show cross-tumor conservation. Given the cancer types surveyed, our study presents a view of emergent properties of prognostic genes.
Collapse
|
43
|
Nowek K, Sun SM, Dijkstra MK, Bullinger L, Döhner H, Erkeland SJ, Löwenberg B, Jongen-Lavrencic M. Expression of a passenger miR-9* predicts favorable outcome in adults with acute myeloid leukemia less than 60 years of age. Leukemia 2015; 30:303-9. [PMID: 26464168 DOI: 10.1038/leu.2015.282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/16/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022]
Abstract
In double-stranded miRNA/miRNA* duplexes, one of the strands represents an active miRNA, whereas another, known as a passenger strand (miRNA*), is typically degraded. MiR-9* is not detectable in normal myeloid cells. Here we show that miR-9* is expressed in 59% of acute myeloid leukemia (AML) cases and we investigate its clinical impact in 567 adults with de novo AML (age⩽60 years). AML cases with detectable miR-9* included a lower percentage of cases with favorable risk (P<0.001) as compared with those with no detectable miR-9*. High levels of miR-9* expression independently predicted for higher complete remission (odds ratio=1.28, P=0.013) and better event-free survival (EFS) (hazard ratio (HR)=0.86, P=0.001), relapse-free survival (RFS) (HR=0.84, P=0.008) and overall survival (OS) (HR=0.86, P=0.002). Among the subgroup of adverse risk patients, high miR-9* expressers had strikingly longer median survival than low miR-9* expressers (EFS: 16 vs 5 months, P=0.020; RFS: 12 vs 4, P=0.060; OS: 23 vs 8, P=0.021). Comparative transcriptome analysis suggests that miR-9* regulates genes involved in leukemogenesis, for example, MN1 and MLLT3. This is the first report showing that an miRNA* has prognostic value in AML.
Collapse
Affiliation(s)
- K Nowek
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - S M Sun
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - M K Dijkstra
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - L Bullinger
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - H Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - S J Erkeland
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - B Löwenberg
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - M Jongen-Lavrencic
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Steinmetz B, Hackl H, Slabáková E, Schwarzinger I, Smějová M, Spittler A, Arbesu I, Shehata M, Souček K, Wieser R. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Cell Cycle 2015; 13:2931-43. [PMID: 25486480 PMCID: PMC4613657 DOI: 10.4161/15384101.2014.946869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed.
Collapse
Key Words
- AML, acute myeloid leukemia
- APL, acute promyelocytic leukemia
- ATRA, all-trans retinoic acid
- Ar, ATRA regulation
- DMSO, dimethyl sulfoxide
- EVI1
- Em, EVI1 modulation
- Er, EVI1 regulation
- FBS, fetal bovine serum
- FC, fold change
- FDR, false discovery rate
- GDF15
- GFP, green fluorescent protein
- MDS, myelodysplastic syndrome
- PSG, penicillin streptomycin glutamine
- RAR, retinoic acid receptor
- RARE, retinoic acid response element
- SE, standard error
- all-trans retinoic acid
- apoptosis
- cell cycle
- gene expression profiling
- mcoEvi1, murine codon optimized Evi1
- myeloid differentiation
Collapse
Affiliation(s)
- Birgit Steinmetz
- a Department of Medicine I ; Medical University of Vienna ; Währinger Gürtel, Vienna , Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Valdivieso M, Corn BW, Dancey JE, Wickerham DL, Horvath LE, Perez EA, Urton A, Cronin WM, Field E, Lackey E, Blanke CD. The Globalization of Cooperative Groups. Semin Oncol 2015; 42:693-712. [PMID: 26433551 DOI: 10.1053/j.seminoncol.2015.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The National Cancer Institute (NCI)-supported adult cooperative oncology research groups (now officially Network groups) have a longstanding history of participating in international collaborations throughout the world. Most frequently, the US-based cooperative groups work reciprocally with the Canadian national adult cancer clinical trial group, NCIC CTG (previously the National Cancer Institute of Canada Clinical Trials Group). Thus, Canada is the largest contributor to cooperative groups based in the United States, and vice versa. Although international collaborations have many benefits, they are most frequently utilized to enhance patient accrual to large phase III trials originating in the United States or Canada. Within the cooperative group setting, adequate attention has not been given to the study of cancers that are unique to countries outside the United States and Canada, such as those frequently associated with infections in Latin America, Asia, and Africa. Global collaborations are limited by a number of barriers, some of which are unique to the countries involved, while others are related to financial support and to US policies that restrict drug distribution outside the United States. This article serves to detail the cooperative group experience in international research and describe how international collaboration in cancer clinical trials is a promising and important area that requires greater consideration in the future.
Collapse
Affiliation(s)
- Manuel Valdivieso
- Division of Hematology/Oncology, University of Michigan; and SWOG, Executive Officer, Quality Assurance and International Initiatives, Ann Arbor, MI.
| | - Benjamin W Corn
- Institute of Radiotherapy, Tel Aviv Medical Center, Tel Aviv, Israel; and Department of Radiation Oncology, Jefferson Medical College, Philadelphia, PA
| | - Janet E Dancey
- Director, NCIC Clinical Trials Group; Scientific Director Canadian Cancer Clinical Trials Network; Program Leader, High Impact Clinical Trials, Ontario Institute for Cancer Research; Professor of Oncology, Queen's University, Kingston, Ontario, Canada
| | - D Lawrence Wickerham
- Deputy Chairman, NRG Oncology, Pittsburgh, PA; Department of Human Oncology, Pittsburgh Campus, Drexel University School of Medicine; Allegheny Cancer Center at Allegheny General Hospital, Pittsburgh, PA
| | - L Elise Horvath
- Executive Officer, Alliance for Clinical Trials in Oncology, Chicago, IL
| | - Edith A Perez
- Deputy Director at Large, Mayo Clinic Cancer Center; Group Vice Chair, Alliance for Clinical Trials in Oncology; Hematology/Oncology and Cancer Biology Mayo Clinic, Jacksonville, FL
| | - Alison Urton
- Group Administrator, NCIC Clinical Trials Group, Queen's University, Kingston, Ontario, Canada
| | - Walter M Cronin
- Associate Director, NRG Oncology Statistics and Data Management Center (SDMC); Associate Director, Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Erica Field
- Project Specialist III, RTOG, Philadelphia, PA
| | - Evonne Lackey
- Coordinating Center Manager, SWOG Statistical Center, Seattle, WA
| | - Charles D Blanke
- Chair, SWOG; Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University and Knight Cancer Institute, Portland, OR
| |
Collapse
|
46
|
Numata M, Yener MD, Ekmekçi SS, Aydın M, Grosveld G, Cardone M, Terranova S, Geltink RK, Özbek U, Özçelik E, Güleç Ç, Anak S, Karaman S, Öztürk G, Akbıyık M, Kandilci A. High MN1 expression increases the in vitro clonogenic activity of primary mouse B-cells. Leuk Res 2015; 39:906-12. [PMID: 26111797 DOI: 10.1016/j.leukres.2015.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/01/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
The MN1 (Meningioma 1) gene is overexpressed in certain subtypes of acute myeloid leukemia (AML) and high levels of MN1 expression in mouse bone marrow cells results in myeloid leukemia. We showed that compared with control bone marrow (BM) MN1 expression was increased (2-fold or more) in 29 out of 73 (40%) pediatric B-cell acute lymphoblastic leukemia (B-ALL) patient BM. Additional analysis of MN1 expression in sub-groups within our cohort carrying different chromosome translocations showed that carriers of the good prognostic marker t(12;21)(TEL-AML1) (n=27) expressed significantly more MN1 than both healthy controls (n=9) (P=0.02) and the group carrying the t(9;22)(BCR-ABL) (n=9) (P=0.001). In addition, AML1 expression was also upregulated in 31 out of 45 (68%) B-ALL patient BM compared with control and there was a significant correlation between MN1 and AML1 expression (r=0.3552, P=0.0167). Retroviral MN1 overexpression increased the colony forming activity of mouse Pro-B/Pre-B cells in vitro. Our results suggest that deregulated MN1 expression contributes to the pathogenesis of pediatric B-ALL. Further investigation into the clinical and biological significance of elevated MN1 expression in TEL-AML1(positive) leukemia might provide insight into additional molecular mechanisms contributing to B-ALL and may lead to improved treatment options for patients.
Collapse
Affiliation(s)
- Masashi Numata
- St Jude Children's Research Hospital, Department of Genetics, Memphis, TN, USA
| | - Mehmet Deniz Yener
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
| | - Sema Sırma Ekmekçi
- Institute for Experimental Medicine, Department of Genetics, Istanbul University, Istanbul, Turkey
| | - Müge Aydın
- Institute for Experimental Medicine, Department of Genetics, Istanbul University, Istanbul, Turkey
| | - Gerard Grosveld
- St Jude Children's Research Hospital, Department of Genetics, Memphis, TN, USA
| | - Monica Cardone
- St Jude Children's Research Hospital, Department of Genetics, Memphis, TN, USA
| | - Sabrina Terranova
- St Jude Children's Research Hospital, Department of Genetics, Memphis, TN, USA
| | - Ramon Klein Geltink
- St Jude Children's Research Hospital, Department of Genetics, Memphis, TN, USA
| | - Uğur Özbek
- Institute for Experimental Medicine, Department of Genetics, Istanbul University, Istanbul, Turkey
| | - Emrah Özçelik
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
| | - Çağrı Güleç
- Pediatric Hematology Division of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sema Anak
- Pediatric Hematology Division of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Serap Karaman
- Pediatric Hematology Division of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gülyüz Öztürk
- Medical Park Hospitals, Bahçelievler, İstanbul, Turkey
| | - Meral Akbıyık
- Medical Park Hospitals, Bahçelievler, İstanbul, Turkey
| | - Ayten Kandilci
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey.
| |
Collapse
|
47
|
Wang J, Figueroa JD, Wallstrom G, Barker K, Park JG, Demirkan G, Lissowska J, Anderson KS, Qiu J, LaBaer J. Plasma Autoantibodies Associated with Basal-like Breast Cancers. Cancer Epidemiol Biomarkers Prev 2015; 24:1332-40. [PMID: 26070530 DOI: 10.1158/1055-9965.epi-15-0047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to be detected through mammographic screening. Identification of circulating markers associated with BLBC could have promise in detecting and managing this deadly disease. METHODS Using samples from the Polish Breast Cancer study, a high-quality population-based case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC classifier was constructed. RESULTS We identified 13 AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also discovered a strong association of TP53 AAb with its protein expression (P = 0.009) in BLBC patients. In addition, MN1 and TP53 AAbs were associated with worse survival [MN1 AAb marker HR = 2.25, 95% confidence interval (CI), 1.03-4.91; P = 0.04; TP53, HR = 2.02, 95% CI, 1.06-3.85; P = 0.03]. We found limited evidence that AAb levels differed by demographic characteristics. CONCLUSIONS These AAbs warrant further investigation in clinical studies to determine their value for further understanding the biology of BLBC and possible detection. IMPACT Our study identifies 13 AAb markers associated specifically with BLBC and may improve detection or management of this deadly disease.
Collapse
Affiliation(s)
- Jie Wang
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Kristi Barker
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jin G Park
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Gokhan Demirkan
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | | | | | - Ji Qiu
- Biodesign Institute, Arizona State University, Tempe, Arizona.
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|
48
|
Ma QL, Wang JH, Wang YG, Hu C, Mu QT, Yu MX, Wang L, Wang DM, Yang M, Yin XF, Chen FF, Lu SS, Chen J, Zhu ZJ, Chen SJ, Jin J. High IDH1 expression is associated with a poor prognosis in cytogenetically normal acute myeloid leukemia. Int J Cancer 2015; 137:1058-65. [PMID: 25523507 DOI: 10.1002/ijc.29395] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022]
Abstract
The prognostic value of IDH1 mutations has been systematically evaluated in acute myeloid leukemia (AML) patients recently. However, the role of IDH1 expression in AML is still under exploration. To investigate the clinical significance, we analyzed the IDH1/2 expression in 320 patients with cytogenetically normal AML (CN-AML) by quantitative real-time reverse-transcription polymerase chain reaction. High expression of IDH1 was predominant in patients with FLT3-ITD and DNMT3A mutations and less prevalent in cases with CEBPA double allele mutations. Strong association was observed between high IDH1 expression and low expression of microRNA 181 family. Prognosis was adversely affected by high IDH1 expression, with shorter overall survival and event-free survival in the context of clinical characteristics, including age, WBC count, and gene mutations of NPM1, FLT3-ITD, CEBPA, IDH1, IDH2 and DNMT3A in CN-AML. Moreover, the clinical outcome of IDH1 expression in terms of overall survival, event-free survival and complete remission rate still remained in multivariate models in CN-AML. Importantly, the prognostic value was validated using the published microarray data from 79 adult patients treated according to the German AMLCG-1999 protocol. Our results demonstrated that high IDH1 expression is associated with a poor prognosis of CN-AML.
Collapse
Affiliation(s)
- Qiu-Ling Ma
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Henan College of Traditional Chinese Medicine, Zhengzhou, China
| | - Jing-Han Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yun-Gui Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chao Hu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qi-Tian Mu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Meng-Xia Yu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lei Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dong-Mei Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Min Yang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiu-Feng Yin
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fei-Fei Chen
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Sha-Sha Lu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhi-Juan Zhu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to SJTU School of Medicine and Key Laboratory of Systems Biomedicine Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Jie Jin
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
49
|
Lai CK, Moon Y, Kuchenbauer F, Starzcynowski DT, Argiropoulos B, Yung E, Beer P, Schwarzer A, Sharma A, Park G, Leung M, Lin G, Vollett S, Fung S, Eaves CJ, Karsan A, Weng AP, Humphries RK, Heuser M. Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene. PLoS One 2014; 9:e112671. [PMID: 25401736 PMCID: PMC4234417 DOI: 10.1371/journal.pone.0112671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/10/2014] [Indexed: 12/02/2022] Open
Abstract
Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia (T-ALL), share similar pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of leukemias. We dissected the functional aspects of different protein regions of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal region of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal region resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the N-terminal region. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active gene regions. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.
Collapse
Affiliation(s)
- Courteney K. Lai
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yeonsook Moon
- Department of Laboratory Medicine, Medical School of Inha University, Incheon, Korea
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital of Ulm, Ulm, Germany
| | - Daniel T. Starzcynowski
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bob Argiropoulos
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Eric Yung
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Philip Beer
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Amit Sharma
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Gyeongsin Park
- Department of Hospital Pathology, Catholic University of Korea, Seoul, Korea
| | - Malina Leung
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Grace Lin
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Sarah Vollett
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Stephen Fung
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Aly Karsan
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - R. Keith Humphries
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
50
|
CBFB-MYH11 hypomethylation signature and PBX3 differential methylation revealed by targeted bisulfite sequencing in patients with acute myeloid leukemia. J Hematol Oncol 2014; 7:66. [PMID: 25266220 PMCID: PMC4197269 DOI: 10.1186/s13045-014-0066-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background Studying DNA methylation changes in the context of structural rearrangements and point mutations as well as gene expression changes enables the identification of genes that are important for disease onset and progression in different subtypes of acute myeloid leukemia (AML) patients. The aim of this study was to identify differentially methylated genes with potential impact on AML pathogenesis based on the correlation of methylation and expression data. Methods The primary method of studying DNA methylation changes was targeted bisulfite sequencing capturing approximately 84 megabases (Mb) of the genome in 14 diagnostic AML patients and a healthy donors’ CD34+ pool. Subsequently, selected DNA methylation changes were confirmed by 454 bisulfite pyrosequencing in a larger cohort of samples. Furthermore, we addressed gene expression by microarray profiling and correlated methylation of regions adjacent to transcription start sites with expression of corresponding genes. Results Here, we report a novel hypomethylation pattern, specific to CBFB-MYH11 fusion resulting from inv(16) rearrangement that is associated with genes previously described as upregulated in inv(16) AML. We assume that this hypomethylation and corresponding overexpresion occurs in the genes whose function is important in inv(16) leukemogenesis. Further, by comparing all targeted methylation and microarray expression data, PBX3 differential methylation was found to correlate with its gene expression. PBX3 has been recently shown to be a key interaction partner of HOX genes during leukemogenesis and we revealed higher incidence of relapses in PBX3-overexpressing patients. Conclusions We discovered new genomic regions with aberrant DNA methylation that are associated with expression of genes involved in leukemogenesis. Our results demonstrate the potential of the targeted approach for DNA methylation studies to reveal new regulatory regions. Electronic supplementary material The online version of this article (doi:10.1186/s13045-014-0066-4) contains supplementary material, which is available to authorized users.
Collapse
|