1
|
Xu M, Li W, He J, Wang Y, Lv J, He W, Chen L, Zhi H. DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm. Int J Mol Sci 2024; 25:5267. [PMID: 38791306 PMCID: PMC11121335 DOI: 10.3390/ijms25105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
Collapse
Affiliation(s)
- Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150000, China;
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
2
|
Nelson AR, Christiansen SL, Naegle KM, Saucerman JJ. Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2303513121. [PMID: 38266046 PMCID: PMC10835125 DOI: 10.1073/pnas.2303513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high-content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high-content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models. We apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Steven L. Christiansen
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
- Department of Biochemistry, Brigham Young University, Provo, UT84602
| | - Kristen M. Naegle
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| |
Collapse
|
3
|
Raji L, Tetteh A, Amin ARMR. Role of c-Src in Carcinogenesis and Drug Resistance. Cancers (Basel) 2023; 16:32. [PMID: 38201459 PMCID: PMC10778207 DOI: 10.3390/cancers16010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The aberrant transformation of normal cells into cancer cells, known as carcinogenesis, is a complex process involving numerous genetic and molecular alterations in response to innate and environmental stimuli. The Src family kinases (SFK) are key components of signaling pathways implicated in carcinogenesis, with c-Src and its oncogenic counterpart v-Src often playing a significant role. The discovery of c-Src represents a compelling narrative highlighting groundbreaking discoveries and valuable insights into the molecular mechanisms underlying carcinogenesis. Upon oncogenic activation, c-Src activates multiple downstream signaling pathways, including the PI3K-AKT pathway, the Ras-MAPK pathway, the JAK-STAT3 pathway, and the FAK/Paxillin pathway, which are important for cell proliferation, survival, migration, invasion, metastasis, and drug resistance. In this review, we delve into the discovery of c-Src and v-Src, the structure of c-Src, and the molecular mechanisms that activate c-Src. We also focus on the various signaling pathways that c-Src employs to promote oncogenesis and resistance to chemotherapy drugs as well as molecularly targeted agents.
Collapse
Affiliation(s)
| | | | - A. R. M. Ruhul Amin
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV 25755, USA; (L.R.); (A.T.)
| |
Collapse
|
4
|
Nelson AR, Christiansen SL, Naegle KM, Saucerman JJ. Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530599. [PMID: 36909540 PMCID: PMC10002757 DOI: 10.1101/2023.03.01.530599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models, apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Steven L. Christiansen
- University of Virginia School of Medicine, Charlottesville, VA 22903
- Brigham Young University Department of Biochemistry, Provo, UT 84602
| | - Kristen M. Naegle
- University of Virginia School of Medicine, Charlottesville, VA 22903
| | | |
Collapse
|
5
|
Wang X, Wang B, Li F, Li X, Guo T, Gao Y, Wang D, Huang W. The c-Src/LIST Positive Feedback Loop Sustains Tumor Progression and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300115. [PMID: 37156751 PMCID: PMC10369257 DOI: 10.1002/advs.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Chemotherapy resistance and treatment failure hinder clinical cancer treatment. Src, the first mammalian proto-oncogene to be discovered, is a valuable anti-cancer therapeutic target. Although several c-Src inhibitors have reached the clinical stage, drug resistance remains a challenge during treatment. Herein, a positive feedback loop between a previously uncharacterized long non-coding RNA (lncRNA), which the authors renamed lncRNA-inducing c-Src tumor-promoting function (LIST), and c-Src is uncovered. LIST directly binds to and regulates the Y530 phosphorylation activity of c-Src. As a c-Src agonist, LIST promotes tumor chemoresistance and progression in vitro and in vivo in multiple cancer types. c-Src can positively regulate LIST transcription by activating the NF-κB signaling pathway and then recruiting the P65 transcription factor to the LIST promoter. Interestingly, the LIST/c-Src interaction is associated with evolutionary new variations of c-Src. It is proposed that the human-specific LIST/c-Src axis renders an extra layer of control over c-Src activity. Additionally, the LIST/c-Src axis is of high physiological relevance in cancer and may be a valuable prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Bing Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Fang Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xingkai Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Ting Guo
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Yushun Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Dawei Wang
- Department of Thoracic SurgeryChifeng Municipal HospitalChifeng024000China
| | - Weiren Huang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
6
|
Qin S, Li W, Yu H, Xu M, Li C, Fu L, Sun S, He Y, Lv J, He W, Chen L. Guiding Drug Repositioning for Cancers Based on Drug Similarity Networks. Int J Mol Sci 2023; 24:ijms24032244. [PMID: 36768566 PMCID: PMC9917231 DOI: 10.3390/ijms24032244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Drug repositioning aims to discover novel clinical benefits of existing drugs, is an effective way to develop drugs for complex diseases such as cancer and may facilitate the process of traditional drug development. Meanwhile, network-based computational biology approaches, which allow the integration of information from different aspects to understand the relationships between biomolecules, has been successfully applied to drug repurposing. In this work, we developed a new strategy for network-based drug repositioning against cancer. Combining the mechanism of action and clinical efficacy of the drugs, a cancer-related drug similarity network was constructed, and the correlation score of each drug with a specific cancer was quantified. The top 5% of scoring drugs were reviewed for stability and druggable potential to identify potential repositionable drugs. Of the 11 potentially repurposable drugs for non-small cell lung cancer (NSCLC), 10 were confirmed by clinical trial articles and databases. The targets of these drugs were significantly enriched in cancer-related pathways and significantly associated with the prognosis of NSCLC. In light of the successful application of our approach to colorectal cancer as well, it provides an effective clue and valuable perspective for drug repurposing in cancer.
Collapse
Affiliation(s)
- Shimei Qin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongzheng Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shibin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150001, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
- Correspondence: ; Tel.: +86-451-8667-4768
| |
Collapse
|
7
|
Zhou J, Chen D, Zhang S, Wang C, Zhang L. Identification of two molecular subtypes and a novel prognostic model of lung adenocarcinoma based on a cuproptosis-associated gene signature. Front Genet 2023; 13:1039983. [PMID: 36712848 PMCID: PMC9877306 DOI: 10.3389/fgene.2022.1039983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Lung adenocarcinoma is the most common subtype of lung cancer clinically, with high mortality and poor prognosis. Cuproptosis present a newly discovered mode of cell death characterized by aggregation of fatty acylated proteins, depletion of iron-sulfur clusterin, triggering of HSP70, and induction of intracellular toxic oxidative stress. However, the impact of cuproptosis on lung adenocarcinoma development, prognosis, and treatment has not been elucidated. By systematically analyzing the genetic alterations of 10 cuproptosis-related genes in lung adenocarcinoma, we found that CDKN2A, DLAT, LIAS, PDHA1, FDX1, GLS, and MTF1 were differentially expressed between lung cancer tissues and adjacent tissues. Based on the expression levels of 10 cuproptosis-related genes, we classified lung adenocarcinoma patients into two molecular subtypes using the Consensus clustering method, of which subtype 2 had a worse prognosis. Differential expression genes associated with prognosis between the two subtypes were obtained by differential analysis and survival analysis, and cox lasso regression was applied to construct a cuproptosis-related prognostic model. Its survival predicting ability was validated in three extrinsic validation cohorts. The results of multivariate cox analysis indicated that cuproptosis risk score was an independent prognostic predictor, and the mixed model formed by cupproptosis prognostic model combined with stage had more robust prognostic prediction accuracy. We found the differences in cell cycle, mitosis, and p53 signaling pathways between high- and low-risk groups according to GO and KEGG enrichment analysis. The results of immune microenvironment analysis showed that the enrichment score of activated dendritic cells, mast cells, and type 2 interferon response were down-regulated in the high-risk group, while the fraction of neutrophils and M0 macrophages were upregulated in the high-risk group. Compared with the high-risk group, subjects in the low-risk group had higher Immunophenoscore and may be more sensitive to immunotherapy. We identified seven chemotherapy agents may improve the curative effect in LUAD samples with higher risk score. Overall, we discovered that cuproptosis is closely related to the occurrence, prognosis, and treatment of lung adenocarcinoma. The cuproptosis prognostic model is a potential prognostic predictor and may provide new strategies for precision therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jinlin Zhou
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Dehe Chen
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Shiguo Zhang
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Chunmei Wang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China,*Correspondence: Li Zhang,
| |
Collapse
|
8
|
Liu C, Amin R, Shatila M, Short N, Altan M, Shah A, Alhalabi O, Okhuysen P, Thomas AS, Wang Y. Clinical characteristics and outcomes of tyrosine kinase inhibitor-related lower GI adverse effects. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04316-3. [DOI: 10.1007/s00432-022-04316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
|
9
|
Tumor-Associated Regulatory T Cells in Non-Small-Cell Lung Cancer: Current Advances and Future Perspectives. J Immunol Res 2022; 2022:4355386. [PMID: 35497874 PMCID: PMC9054468 DOI: 10.1155/2022/4355386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME). Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions, blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.
Collapse
|
10
|
Kim C, Liu SV, Crawford J, Torres T, Chen V, Thompson J, Tan M, Esposito G, Subramaniam DS, Giaccone G. A Phase I Trial of Dasatinib and Osimertinib in TKI Naïve Patients With Advanced EGFR-Mutant Non-Small-Cell Lung Cancer. Front Oncol 2021; 11:728155. [PMID: 34568058 PMCID: PMC8457399 DOI: 10.3389/fonc.2021.728155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background Osimertinib is an effective first-line therapy option for EGFR-mutant NSCLC, but virtually all patients develop resistance. CRIPTO, through Src activation, has been implicated in resistance to EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy. Dasatinib, a Src inhibitor, has shown preclinical synergy with EGFR-TKI therapy. Method This is a single-arm phase I/II trial of osimertinib and dasatinib in TKI-naïve advanced EGFR-mutant NSCLC (NCT02954523). A 3 + 3 design was used in the phase I to establish the recommended phase II dose (RP2D). Osimertinib 80 mg QD was combined with dasatinib 70 mg BID (DL2), 50 mg BID (DL1), 70 mg QD (DL-1), and 50 mg QD (DL-2). Results Ten patients (DL2: 3, DL1: 6, DL -1: 1) were enrolled. 3 (50%) of 6 patients at DL1 experienced a DLT (grade 3 headaches/body pain, neutropenia, rash, one each). Common treatment-related adverse events included pleural effusion (n=10), diarrhea (n=8), rash (n=7), transaminitis (n=7), thrombocytopenia (n=7), and neutropenia (n=7). While the MTD was not determined by protocol-defined DLT criteria, DL-2 was chosen as the RP2D, considering overall tolerability. Nine (90%) patients had a PR, including 1 unconfirmed PR. Median PFS was 19.4 months and median OS 36.1 months. The trial was closed to accrual prematurely due to slow accrual after the approval of osimertinib as first-line therapy. Conclusions The combination of dasatinib and osimertinib demonstrated anticancer activity. The treatment was limited by chronic toxicities mainly attributed to dasatinib. To improve the safety and tolerability of Src and EGFR co-inhibition, Src inhibitors with a more favorable safety profile should be utilized in future studies. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT02954523.
Collapse
Affiliation(s)
- Chul Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Stephen V Liu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jennifer Crawford
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Tisdrey Torres
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Vincent Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jillian Thompson
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Ming Tan
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University, Washington, DC, United States
| | - Giuseppe Esposito
- Department of Radiology, Georgetown University Hospital, Washington, DC, United States
| | - Deepa S Subramaniam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States.,AstraZeneca Plc., Gaithersburg, MD, United States
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States.,Weill-Cornell Medicine, New York, NY, United States
| |
Collapse
|
11
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
12
|
Elkamhawy A, Lu Q, Nada H, Woo J, Quan G, Lee K. The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight Against Cancer. Int J Mol Sci 2021; 22:ijms22126535. [PMID: 34207360 PMCID: PMC8235339 DOI: 10.3390/ijms22126535] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Guofeng Quan
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Correspondence:
| |
Collapse
|
13
|
Cheng CC, Chao WT, Shih JH, Lai YS, Hsu YH, Liu YH. Sorafenib combined with dasatinib therapy inhibits cell viability, migration, and angiogenesis synergistically in hepatocellular carcinoma. Cancer Chemother Pharmacol 2021; 88:143-153. [PMID: 33860837 DOI: 10.1007/s00280-021-04272-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Sorafenib is a multikinase inhibitor used for treatment of advanced hepatocellular carcinoma. Sorafenib resistance may be related to Src-induced cell migration and angiogenesis, which are regulated by cancer stem cell activation and release of vascular endothelial growth factor. Dasatinib is a Src inhibitor that inhibits Src phosphorylation and suppresses Src-associated cell migration and angiogenesis. This study investigated whether combined treatment with dasatinib can overcome sorafenib resistance. METHODS Hepatoma cell lines were used for sorafenib and/or dasatinib treatment. Cell viability, cell migration, molecular expressions, and release of vascular endothelial growth factor by hepatoma cells were evaluated. Hepatoma cell culture medium was applied on human umbilical vein endothelial cells to monitor angiogenesis promoted by the hepatoma cells. RESULTS Sorafenib and dasatinib combined therapy suppressed cell viability of hepatoma cells synergistically. Dasatinib suppressed sorafenib-induced cell migration via inhibiting sorafenib-induced Src/FAK phosphorylation, cell-to-cell contact and cancer stem cell activation. Culture medium from Chang liver and PLC/PRF/5 cells suppressed angiogenesis of human umbilical vein endothelial cells with any treatment, whereas sorafenib-treated medium of HepG2 cells induced angiogenesis. This sorafenib-induced angiogenesis was then suppressed by dasatinib. Vascular endothelial growth factor released from hepatoma cells was also inhibited by combined treatment. CONCLUSION Src/FAK phosphorylation and cancer stem cell activation inducing cell migration and angiogenesis may be the key factors of sorafenib resistance. Sorafenib and dasatinib combined treatment suppresses cell migration and angiogenesis by inhibiting the Src/FAK phosphorylation, cell-to-cell contact, cancer stem cell activation, and release of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Chiung-Chi Cheng
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan
- Center for General Education, Providence University, 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City, 433, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 407, Taiwan
| | - Jing-Hao Shih
- Department of Life Science, Tunghai University, 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 407, Taiwan
| | - Yih-Shyong Lai
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Tzu Chi University, 701, Section 3, Jhongyang Road, Hualien, 97004, Taiwan
| | - Yi-Hsiang Liu
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan.
- Department of Pathology, Tzu Chi University, 701, Section 3, Jhongyang Road, Hualien, 97004, Taiwan.
| |
Collapse
|
14
|
Nallanthighal S, Heiserman JP, Cheon DJ. Collagen Type XI Alpha 1 (COL11A1): A Novel Biomarker and a Key Player in Cancer. Cancers (Basel) 2021; 13:935. [PMID: 33668097 PMCID: PMC7956367 DOI: 10.3390/cancers13050935] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Collagen type XI alpha 1 (COL11A1), one of the three alpha chains of type XI collagen, is crucial for bone development and collagen fiber assembly. Interestingly, COL11A1 expression is increased in several cancers and high levels of COL11A1 are often associated with poor survival, chemoresistance, and recurrence. This review will discuss the recent discoveries in the biological functions of COL11A1 in cancer. COL11A1 is predominantly expressed and secreted by a subset of cancer-associated fibroblasts, modulating tumor-stroma interaction and mechanical properties of extracellular matrix. COL11A1 also promotes cancer cell migration, metastasis, and therapy resistance by activating pro-survival pathways and modulating tumor metabolic phenotype. Several inhibitors that are currently being tested in clinical trials for cancer or used in clinic for other diseases, can be potentially used to target COL11A1 signaling. Collectively, this review underscores the role of COL11A1 as a promising biomarker and a key player in cancer.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (S.N.); (J.P.H.)
| |
Collapse
|
15
|
Zhang M, Tian J, Wang R, Song M, Zhao R, Chen H, Liu K, Shim JH, Zhu F, Dong Z, Lee MH. Dasatinib Inhibits Lung Cancer Cell Growth and Patient Derived Tumor Growth in Mice by Targeting LIMK1. Front Cell Dev Biol 2020; 8:556532. [PMID: 33344441 PMCID: PMC7746816 DOI: 10.3389/fcell.2020.556532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a leading cause cancer-related death with diversity. A promising approach to meet the need for improved cancer treatment is drug repurposing. Dasatinib, a second generation of tyrosine kinase inhibitors (TKIs), is a potent treatment agent for chronic myeloid leukemia (CML) approved by FDA, however, its off-targets and the underlying mechanisms in lung cancer have not been elucidated yet. LIM kinase 1 (LIMK1) is a serine/threonine kinase, which is highly upregulated in human cancers. Herein, we demonstrated that dasatinib dose-dependently blocked lung cancer cell proliferation and repressed LIMK1 activities by directly targeting LIMK1. It was confirmed that knockdown of LIMK1 expression suppressed lung cancer cell proliferation. From the in silico screening results, dasatinib may target to LIMK1. Indeed, dasatinib significantly inhibited the LIMK1 activity as evidenced by kinase and binding assay, and computational docking model analysis. Dasatinib inhibited lung cancer cell growth, while induced cell apoptosis as well as cell cycle arrest at the G1 phase. Meanwhile, dasatinib also suppressed the expression of markers relating cell cycle, cyclin D1, D3, and CDK2, and increased the levels of markers involved in cell apoptosis, cleaved caspase-3 and caspase-7 by downregulating phosphorylated LIMK1 (p-LIMK1) and cofilin (p-cofilin). Furthermore, in patient-derived xenografts (PDXs), dasatinib (30 mg/kg) significantly inhibited the growth of tumors in SCID mice which highly expressed LIMK1 without changing the bodyweight. In summary, our results indicate that dasatinib acts as a novel LIMK1 inhibitor to suppress the lung cancer cell proliferation in vitro and tumor growth in vivo, which suggests evidence for the application of dasatinib in lung cancer therapy.
Collapse
Affiliation(s)
- Man Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jie Tian
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Rui Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiu Song
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ran Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Minneapolis, MN, United States
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jung-Hyun Shim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, South Korea
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
16
|
Houron C, Danielou M, Mir O, Fromenty B, Perlemuter G, Voican CS. Multikinase inhibitor-induced liver injury in patients with cancer: A review for clinicians. Crit Rev Oncol Hematol 2020; 157:103127. [PMID: 33161366 DOI: 10.1016/j.critrevonc.2020.103127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multikinase inhibitors (MKI) are targeted molecular agents that have revolutionized cancer management. However, there is a paucity of data concerning MKI-related liver injury risk and clinical guidelines for the management of liver toxicity in patients receiving MKI for cancer are scarce. DESIGN We conducted a PubMed search of articles in English published from January 2000 to December 2018 related to hepatotoxicity of the 29 FDA-approved MKIs at doses used in clinical practice. The search terms were the international non-proprietary name of each agent cross-referenced with «hepatotoxicity», «hepatitis», «hepatic adverse event», or «liver failure», and «phase II clinical trial», «phase III clinical trial», or «case report». RESULTS Following this search, 140 relevant studies and 99 case reports were considered. Although asymptomatic elevation of aminotransferase levels has been frequently observed in MKI clinical trials, clinically significant hepatotoxicity is a rare event. In most cases, the interval between treatment initiation and the onset of liver injury is between one week and two months. Liver toxicity is often hepatocellular and less frequently mixed. Life-threatening MKI-induced hepatic injury has been described, involving fulminant liver failure or death. Starting from existing data, a description of MKI-related liver events, grading of hepatotoxicity risk, and recommendations for management are also given for various MKI molecules. CONCLUSION All MKIs can potentially cause liver injury, which is sometimes irreversible. As there is still no strategy available to prevent MKI-related hepatotoxicity, early detection remains crucial. The surveillance of liver function during treatment may help in the early detection of hepatotoxicity. Furthermore, the exclusion of potential causes of hepatic injury is essential to avoid unnecessary MKI withdrawal.
Collapse
Affiliation(s)
- Camille Houron
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France
| | - Marie Danielou
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France
| | - Olivier Mir
- Gustave Roussy Cancer Campus, Department of Ambulatory Care, F-94805, Villejuif, France
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Gabriel Perlemuter
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France.
| | - Cosmin Sebastian Voican
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France
| |
Collapse
|
17
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
18
|
Ahmad S, He Q, Williams KP, Scott JE. Identification of a Triple Drug Combination That Is Synergistically Cytotoxic for Triple-Negative Breast Cancer Cells Using a Novel Combination Discovery Approach. SLAS DISCOVERY 2020; 25:923-938. [PMID: 32441190 DOI: 10.1177/2472555220924478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive form of breast cancer with few molecularly targeted therapies. We used a novel unbiased approach to identify higher-order synergistic or enhancer combinations of marketed kinase inhibitor drugs that inhibit cell viability of TNBC cell lines. We mixed all 33 kinase-targeted drugs on the market at the time of this study, which allowed for all possible combinations to exist in the initial mixture. A kinase inhibitor group dropout approach was used to identify active groups and then single active drugs. After only three rounds of deconvolution, we identified five single drugs to test further. After further testing, we focused on one novel subset consisting of three kinase inhibitor drugs: dasatinib, afatinib, and trametinib (DAT) that target src family kinases, HER2/EGFR, and MEK, respectively. The DAT combination potently inhibited the proliferation of three TNBC cell lines and modestly inhibited a fourth. However, it was not significantly more potent or synergistic than other two drug combinations of these drugs. The cytotoxic activities of all possible combinations of these three drugs were also analyzed. Compared with all two-way combinations, the three-way DAT combination generated the most cytotoxicity and the highest synergies for two of the four cell lines tested, with possibly mild synergy in a third cell line. These data indicated that the DAT combination should be evaluated for efficacy in an in vivo model of TNBC and may provide a novel combination of existing drugs for the treatment of a subset of TNBC cases.
Collapse
Affiliation(s)
- Syed Ahmad
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Qingping He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - John E Scott
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
19
|
Min KW, Kim WS, Kim DH, Son BK, Oh YH, Kwon MJ, Lee HS, Lee SE, Kim IA, Moon JY, Kim KY, Park JH. High polymerase ε expression associated with increased CD8+T cells improves survival in patients with non-small cell lung cancer. PLoS One 2020; 15:e0233066. [PMID: 32433714 PMCID: PMC7239475 DOI: 10.1371/journal.pone.0233066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/27/2020] [Indexed: 11/18/2022] Open
Abstract
DNA replicase polymerase ε (POLE) is critical in proofreading and correcting errors of DNA replication. Low POLE expression plays a pivotal role in accumulation of mutations and onset of cancer, contributing to development and growth of tumor cells. The aim of this study is to reveal the survival, alternative genes and antitumoral immune activities in non-small cell lung cancer (NSCLC) patients with low POLE expression and provide treatment strategies that can increase their survival rates. This study investigated the clinicopathologic parameters, various tumor-infiltrating lymphocytes (TILs), endogenous retrovirus, molecular interactions and in vitro drug screen according to POLE mutation/expression in 168 and 1,019 NSCLC patients from the Konkuk University Medical Center (KUMC) and the Cancer Genome Atlas, respectively. We identified mutations of 75 genes in the sequencing panels, with POLE frame shift p.V1446fs being the most frequent (56.8%) in KUMC based on 170 targeted sequencing panels. Mutant and high expression of POLE correlated with favorable prognosis with increased TILs and tumor mutation burden, compared with wild type and low expression of POLE. We found specific molecular interactions associated with cell cycle and antigen presentation. An in vitro drug screen identified dasatinib that inhibited growth of the NSCLC cell line with low POLE expression. POLE could contribute to the future development of anticancer drugs for patients with NSCLC.
Collapse
Affiliation(s)
- Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Young Ha Oh
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - In Ae Kim
- Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yong Moon
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | | | | |
Collapse
|
20
|
Lima NC, Atkinson E, Bunney TD, Katan M, Huang PH. Targeting the Src Pathway Enhances the Efficacy of Selective FGFR Inhibitors in Urothelial Cancers with FGFR3 Alterations. Int J Mol Sci 2020; 21:E3214. [PMID: 32370101 PMCID: PMC7246793 DOI: 10.3390/ijms21093214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Selective FGFR inhibitors such as infigratinib (BGJ398) and erdafitinib (JNJ-42756493) have been evaluated in clinical trials for cancers with FGFR3 molecular alterations, particularly in urothelial carcinoma patients. However, a substantial proportion of these patients (up to 50%) display intrinsic resistance to these drugs and receive minimal clinical benefit. There is thus an unmet need for alternative therapeutic strategies to overcome primary resistance to selective FGFR inhibitors. In this study, we demonstrate that cells expressing cancer-associated activating FGFR3 mutants and the FGFR3-TACC3 fusion showed primary resistance to infigratinib in long-term colony formation assays in both NIH-3T3 and urothelial carcinoma models. We find that expression of these FGFR3 molecular alterations resulted in elevated constitutive Src activation compared to wildtype FGFR3 and that cells co-opted this pathway as a means to achieve intrinsic resistance to infigratinib. Targeting the Src pathway with low doses of the kinase inhibitor dasatinib synergistically sensitized multiple urothelial carcinoma lines harbouring endogenous FGFR3 alterations to infigratinib. Our data provide preclinical rationale that supports the use of dasatinib in combination with selective FGFR inhibitors as a means to overcome intrinsic drug resistance in the salvage therapy setting in urothelial cancer patients with FGFR3 molecular alterations.
Collapse
Affiliation(s)
- Nadia Carvalho Lima
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Eliza Atkinson
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| |
Collapse
|
21
|
Dual EGFR and ABL Tyrosine Kinase Inhibitor Treatment in a Patient with Concomitant EGFR-Mutated Lung Adenocarcinoma and BCR-ABL1-Positive CML. Case Rep Oncol Med 2020; 2020:4201727. [PMID: 32257476 PMCID: PMC7106872 DOI: 10.1155/2020/4201727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/28/2020] [Indexed: 01/29/2023] Open
Abstract
Tyrosine kinase inhibitor (TKI) combination is expected to increase in the era of precision medicine. TKI combination may be required to treat double primary cancers, each having a targetable gene, or to treat a single malignancy with multiple targetable genes. Here, we demonstrate the first report of dual EGFR and ABL TKI treatment in a patient with concomitant EGFR-mutated lung adenocarcinoma and BCR-ABL1-positive chronic myeloid leukemia (CML). A 60-year-old man with an 8-year history of CML was diagnosed as advanced EGFR-mutated lung adenocarcinoma. Complete molecular response of CML had been achieved by imatinib, and ABL-TKI had been switched to nilotinib four years previously due to muscle cramps. We discontinued nilotinib and started afatinib. Although partial response of lung adenocarcinoma was achieved, cytogenetic relapse of CML was observed following nilotinib discontinuation. We applied the previously described framework of cytochrome P450 3A4-mediated oral drug-drug interactions and selected gefitinib and nilotinib to treat both malignancies. We effectively and safely administered this combination for seven months. The present report is the first to demonstrate the safety and efficacy of dual EGFR and ABL TKI treatment in a patient with concomitant EGFR-mutated lung adenocarcinoma and CML.
Collapse
|
22
|
Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Semin Cancer Biol 2020; 68:209-229. [PMID: 32044472 DOI: 10.1016/j.semcancer.2020.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Targeted drugs and precision medicine have transformed the landscape of cancer therapy and significantly improved patient outcomes in many cases. However, as therapies are becoming more and more tailored to smaller patient populations and acquired resistance is limiting the duration of clinical responses, there is an ever increasing demand for new drugs, which is not easily met considering steadily rising drug attrition rates and development costs. Considering these challenges drug repurposing is an attractive complementary approach to traditional drug discovery that can satisfy some of these needs. This is facilitated by the fact that most targeted drugs, despite their implicit connotation, are not singularly specific, but rather display a wide spectrum of target selectivity. Importantly, some of the unintended drug "off-targets" are known anticancer targets in their own right. Others are becoming recognized as such in the process of elucidating off-target mechanisms that in fact are responsible for a drug's anticancer activity, thereby revealing potentially new cancer vulnerabilities. Harnessing such beneficial off-target effects can therefore lead to novel and promising precision medicine approaches. Here, we will discuss experimental and computational methods that are employed to specifically develop single target and network-based off-target repurposing strategies, for instance with drug combinations or polypharmacology drugs. By illustrating concrete examples that have led to clinical translation we will furthermore examine the various scientific and non-scientific factors that cumulatively determine the success of these efforts and thus can inform the future development of new and potentially lifesaving off-target based drug repurposing strategies for cancers that constitute important unmet medical needs.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Liu Y, Li YY, Ke XX, Lu Y. The primary pulmonary NUT carcinomas and some uncommon somatic mutations identified by next-generation sequencing: a case report. AME Case Rep 2020; 4:24. [PMID: 33178996 PMCID: PMC7608724 DOI: 10.21037/acr-19-168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 06/12/2020] [Indexed: 02/05/2023]
Abstract
Nuclear protein in testis (NUT) carcinoma (NUT-C) is an exceedingly rare and aggressive squamous tumor characterized by an acquired rearrangement of the NUT gene involving the NUTM1 (Nut midline carcinoma, family member 1, NUT) gene encoding the nuclear protein of the testis on 15q14. As a rare tumor, there is little information available on the clinicopathologic and molecular cytogenetic findings of NMC. We herein reported a case of a 69-year-old man diagnosed with lung NMC involving the rearrangement of chromosomal region 15q14 harboring the NUTM1 gene. It was exceptionally rare for the patient's involving of the lung but having the chance to be totally resected. After radical surgery, the patient accepted further four cycles of chemotherapy and remains disease-free after 10 months. The immunohistochemical staining of PDL1 was negative and next-generation sequencing technology identified genomic alterations in discoidin domain receptor tyrosine kinase 2 (DDR2), cyclin D1 (CCND1), B-cell leukemia/lymphoma 1 (BCL1), colony-stimulating factor 1 receptor (CSF1R), runt related transcription factor 1 (RUNX1) and death domain-associated protein 6 (DAXX6) from the paraffin-embedded tissue. This case will contribute to not only a better understanding of the molecular mechanism of the primary pulmonary NUT carcinomas but also the potential therapeutic option for the patient.
Collapse
Affiliation(s)
- Ying Liu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Ying Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Xuan Ke
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Chen F, Wu J, Teng J, Li W, Zheng J, Bai J. HCRP-1 regulates cell migration, invasion and angiogenesis via Src/ FAK signaling in human prostate cancer. Int J Biol Sci 2020; 16:342-352. [PMID: 31929761 PMCID: PMC6949154 DOI: 10.7150/ijbs.38112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is the third leading malignancy engendering mortality among men globally. The present study aimed at determining the expression of hepatocellular carcinoma-related protein-1 (HCRP-1) in PCa, to explore its potential role in prostate tumorigenesis in vitro and in vivo. We evaluated HCRP-1 protein with immunohistochemistry (IHC) technology and found HCRP-1 expression was significantly low in PCa tissues (PCTs); In addition, the decreased HCRP-1 was significantly associated with TNM (tumor node metastasis) stage, advanced histology grade and gleason score. Transwell, tube formation, Western blot and co-immunoprecipitation (Co-IP) assays were utilized to determine the role of down-regulating HCRP-1 in PCa cell migration, invasion and angiogenesis. Meanwhile, we found HCRP-1 depletion induced Src and focal adhesion kinase (FAK) phosphorylation, which could be reversed by Src inhibitor PP2 or FAK inhibitor. Furthermore, down-regulated HCRP-1 evidently induced lung metastasis of PCa cells in xenograft mode. Taken together, our study indicates HCRP-1 plays an important role in PCa metastasis. HCRP-1 may serve as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Feifei Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianqiang Wu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingwei Teng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wang Li
- The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Guo Y, Cao R, Zhang X, Huang L, Sun L, Zhao J, Ma J, Han C. Recent Progress in Rare Oncogenic Drivers and Targeted Therapy For Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:10343-10360. [PMID: 31819518 PMCID: PMC6886531 DOI: 10.2147/ott.s230309] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/09/2019] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is frequently associated with oncogenic driver mutations, which play an important role in carcinogenesis and cancer progression. Targeting epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase rearrangements has become standard therapy for patients with these aberrations because of the greater improvement of survival, tolerance, and quality-of-life compared to chemotherapy. Clinical trials for emerging therapies that target other less common driver genes are generating mixed results. Here, we review the literature on rare drivers in NSCLC with frequencies lower than 5% (e.g., ROS1, RET, MET, BRAF, NTRK, HER2, NRG1, FGFR1, PIK3CA, DDR2, and EGFR exon 20 insertions). In summary, targeting rare oncogenic drivers in NSCLC has achieved some success. With the development of new inhibitors that target these rare drivers, the spectrum of targeted therapy has been expanded, although acquired resistance is still an unavoidable problem.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Rui Cao
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Xiangyan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
26
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
27
|
Yuan M, Xu LF, Zhang J, Kong SY, Wu M, Lao YZ, Zhou H, Zhang L, Xu H. SRC and MEK Co-inhibition Synergistically Enhances the Anti-tumor Effect in Both Non-small-cell Lung Cancer (NSCLC) and Erlotinib-Resistant NSCLC. Front Oncol 2019; 9:586. [PMID: 31428570 PMCID: PMC6689998 DOI: 10.3389/fonc.2019.00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/17/2019] [Indexed: 01/29/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant form of lung cancer, and it is regulated by a complex signal transduction network. Single-agent targeted therapy often results in acquired resistance, which leads to treatment failure. In this study, we demonstrated that a combination of the kinase inhibitors trametinib and bosutinib can synergistically suppress the growth of NSCLC by inhibiting both the mitogen-activated protein kinase (MAPK) and proto-oncogene tyrosine-protein kinase (SRC) pathways. The combination was profiled against a panel of 22 NSCLC cell lines, including one erlotinib-resistant cell line, and this combination was found to show synergistic effects against 16 cell lines. NSCLC cell lines (HCC827, HCC827-erlotinib-resistant, and H1650) were treated with trametinib, bosutinib, or a combination of these drugs. The drug combination inhibited colony formation and induced cell apoptosis. A mechanism study showed that the phosphorylation of multiple kinases in the epidermal growth factor receptor (EGFR) signaling pathway in NSCLC was down-regulated. In addition, the combination significantly attenuated tumor growth of HCC827 xenografts with low toxicity. Our findings provide a theoretical basis for further study of the combination of MAPK and SRC pathway inhibitors in NSCLC, especially in the treatment of erlotinib-resistant NSCLC.
Collapse
Affiliation(s)
- Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Feng Xu
- Shanghai Chempartner Co., Ltd, Shanghai, China
| | - Juan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Yuan Kong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
QT Interval Prolongation Associated With Cytotoxic and Targeted Cancer Therapeutics. Curr Treat Options Oncol 2019; 20:55. [DOI: 10.1007/s11864-019-0657-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Gaule P, Mukherjee N, Corkery B, Eustace AJ, Gately K, Roche S, O'Connor R, O'Byrne KJ, Walsh N, Duffy MJ, Crown J, O'Donovan N. Dasatinib Treatment Increases Sensitivity to c-Met Inhibition in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2019; 11:E548. [PMID: 30999598 PMCID: PMC6520724 DOI: 10.3390/cancers11040548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 11/27/2022] Open
Abstract
In pre-clinical studies, triple-negative breast cancer (TNBC) cells have demonstrated sensitivity to the multi-targeted kinase inhibitor dasatinib; however, clinical trials with single-agent dasatinib showed limited efficacy in unselected populations of breast cancer, including TNBC. To study potential mechanisms of resistance to dasatinib in TNBC, we established a cell line model of acquired dasatinib resistance (231-DasB). Following an approximately three-month exposure to incrementally increasing concentrations of dasatinib (200 nM to 500 nM) dasatinib, 231-DasB cells were resistant to the agent with a dasatinib IC50 value greater than 5 μM compared to 0.04 ± 0.001 µM in the parental MDA-MB-231 cells. 231-DasB cells also showed resistance (2.2-fold) to the Src kinase inhibitor PD180970. Treatment of 231-DasB cells with dasatinib did not inhibit phosphorylation of Src kinase. The 231-DasB cells also had significantly increased levels of p-Met compared to the parental MDA-MB-231 cells, as measured by luminex, and resistant cells demonstrated a significant increase in sensitivity to the c-Met inhibitor, CpdA, with an IC50 value of 1.4 ± 0.5 µM compared to an IC50 of 6.8 ± 0.2 µM in the parental MDA-MB-231 cells. Treatment with CpdA decreased p-Met and p-Src in both 231-DasB and MDA-MB-231 cells. Combined treatment with dasatinib and CpdA significantly inhibited the growth of MDA-MB-231 parental cells and prevented the emergence of dasatinib resistance. If these in vitro findings can be extrapolated to human cancer treatment, combined treatment with dasatinib and a c-Met inhibitor may block the development of acquired resistance and improve response rates to dasatinib treatment in TNBC.
Collapse
Affiliation(s)
- Patricia Gaule
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Nupur Mukherjee
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Brendan Corkery
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Alex J Eustace
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Kathy Gately
- Trinity Translational Medicine Institute, St. James's Hospital Dublin, Dublin 8, Ireland.
| | - Sandra Roche
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Robert O'Connor
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Kenneth J O'Byrne
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba QLD 4059, Australia.
| | - Naomi Walsh
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Michael J Duffy
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland.
| | - John Crown
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland.
| | - Norma O'Donovan
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| |
Collapse
|
30
|
Creelan BC, Gray JE, Tanvetyanon T, Chiappori AA, Yoshida T, Schell MJ, Antonia SJ, Haura EB. Phase 1 trial of dasatinib combined with afatinib for epidermal growth factor receptor- (EGFR-) mutated lung cancer with acquired tyrosine kinase inhibitor (TKI) resistance. Br J Cancer 2019; 120:791-796. [PMID: 30880334 PMCID: PMC6474279 DOI: 10.1038/s41416-019-0428-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bypass activation of Src family kinases can confer resistance to EGFR tyrosine kinase inhibitors (TKIs) based on preclinical models. We prospectively assessed the safety and clinical activity of dasatinib and afatinib in combination for patients with resistant EGFR-mutant lung cancer. METHODS An open-label, dose-escalation phase 1/2 trial (NCT01999985) with 2-stage expansion was conducted with 25 lung cancer patients. Dose expansion required activating EGFR mutations and progression following prior EGFR TKI. RESULTS Patients were 72% Caucasian and received median of 2 prior lines of therapy. Maximum-tolerated dose was 30 mg afatinib with 100 mg dasatinib. New or increased pleural effusions were observed in 56% of patients. No radiologic responses were observed, although several EGFR-mutant TKI-resistant patients (26%) had prolonged stable disease over 6 months. The combination reduced the EGFR mutation and T790M variant allele frequency in cell-free DNA (p < .05). Nonetheless, the threshold for futility was met, based on 6-month progression-free survival. For EGFR TKI-resistant patients, median progression-free survival was 3.7 months (95% confidence interval (CI), 2.3-5.0) and overall survival was 14.7 months (95% CI, 8.5-20.9). CONCLUSIONS The combination had a manageable toxicity profile and in vivo T790M modulation, but no objective clinical responses were observed.
Collapse
Affiliation(s)
- Ben C Creelan
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA.
| | - Jhanelle E Gray
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Tawee Tanvetyanon
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Alberto A Chiappori
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Takeshi Yoshida
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2, Ono-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Scott J Antonia
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Eric B Haura
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| |
Collapse
|
31
|
Dosch AR, Dai X, Gaidarski Iii AA, Shi C, Castellanos JA, VanSaun MN, Merchant NB, Nagathihalli NS. Src kinase inhibition restores E-cadherin expression in dasatinib-sensitive pancreatic cancer cells. Oncotarget 2019; 10:1056-1069. [PMID: 30800218 PMCID: PMC6383685 DOI: 10.18632/oncotarget.26621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023] Open
Abstract
The Src family of non-receptor tyrosine kinases are frequently activated in pancreatic ductal adenocarcinoma (PDAC), contributing to disease progression through downregulation of E-cadherin and induction of epithelial-to-mesenchymal transition (EMT). The purpose of this study was to examine the efficacy of Src kinase inhibition in restoring E-cadherin levels in PDAC. Immunohistochemical analysis of human PDAC samples showed Src activation is inversely correlated with E-cadherin levels. Protein and mRNA levels of E-cadherin, the gene expression of its various transcriptional repressors (Zeb1, Snail, Slug, LEF-1, TWIST), and changes in sub-cellular localization of E-cadherin/β-catenin in PDAC cells were characterized in response to treatment with the Src inhibitor, dasatinib (DST). DST repressed Slug mRNA expression, promoted E-cadherin transcription, and increased total and membranous E-cadherin/β-catenin levels in drug-sensitive PDAC cells (BxPC3 and SW1990), however no change was observed in drug-resistant PANC1 cells. BxPC3, PANC1, and MiaPaCa-2 flank tumor xenografts were treated with DST to examine changes in E-cadherin levels in vivo. Although DST inhibited Src phosphorylation in all xenograft models, E-cadherin levels were only restored in BxPC3 xenograft tumors. These results suggest that Src kinase inhibition reverses EMT in drug-sensitive PDAC cells through Slug-mediated repression of E-cadherin and identifies E-cadherin as potential biomarker for determining response to DST treatment.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Alexander A Gaidarski Iii
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jason A Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael N VanSaun
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
32
|
Manzotti G, Torricelli F, Benedetta D, Lococo F, Sancisi V, Rossi G, Piana S, Ciarrocchi A. An Epithelial-to-Mesenchymal Transcriptional Switch Triggers Evolution of Pulmonary Sarcomatoid Carcinoma (PSC) and Identifies Dasatinib as New Therapeutic Option. Clin Cancer Res 2018; 25:2348-2360. [PMID: 30587547 DOI: 10.1158/1078-0432.ccr-18-2364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive form of NSCLC. Rarity and poor characterization have limited the development of PSC-tailored treatment protocols, leaving patients with inadequate therapeutic options. In this study, we investigated the gene expression profile of PSCs, with the aim to characterize the molecular mechanisms responsible for their evolution and to identify new drugs for their treatment. EXPERIMENTAL DESIGN A training set of 17 biphasic PSCs was selected and tested for the expression of a large panel of 770 genes related to cancer progression using NanoString technology. Computational analyses were used to characterize a PSCs-gene specific signature from which pathways and drivers of PSC evolution were identified and validated using functional assays in vitro. This signature was validated in a separate set of 15 PSCs and 8 differentiated NSCLC and used to interrogate the cMAP database searching for FDA-approved small molecules able to counteract PSC phenotype. RESULTS We demonstrated that the transcriptional activation of an epithelial mesenchymal transition (EMT) program drives PSC phylogeny in vivo. We showed that loss of the epithelial-associated transcription factor (TF) OVOL2 characterizes the transition to sarcomatoid phenotype triggering the expression of EMT promoting TFs, including TWIST and ZEB and the expression of the membrane kinase DDR2. Finally, using a drug repurposing approach, we identified dasatinib as potential inhibitor of the PSC-gene expression signature and we confirmed in vitro that this drug efficiently restrains proliferation and reverts the sarcomatoid-associated phenotype. CONCLUSIONS Our data provide new insights into PSC evolution and provide the rationale for further clinical studies with dasatinib.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Donati Benedetta
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Filippo Lococo
- Thoracic Surgery Unit, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Giulio Rossi
- Operative Unit of Pathologic Anatomy, Azienda Unità Sanitaria Locale della Romagna, Hospital St. Maria delle Croci, Ravenna, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
33
|
Fathi MAA, Abd El-Hafeez AA, Abdelhamid D, Abbas SH, Montano MM, Abdel-Aziz M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg Chem 2018; 84:150-163. [PMID: 30502626 DOI: 10.1016/j.bioorg.2018.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/03/2023]
Abstract
A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 μM), Src (IC50 = 0.96 μM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.
Collapse
Affiliation(s)
- Marwa Ali A Fathi
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Monica M Montano
- Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
34
|
Src regulates amino acid-mediated mTORC1 activation by disrupting GATOR1-Rag GTPase interaction. Nat Commun 2018; 9:4351. [PMID: 30341294 PMCID: PMC6195609 DOI: 10.1038/s41467-018-06844-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell survival and autophagy, and its activity is regulated by amino acid availability. Rag GTPase-GATOR1 interactions inhibit mTORC1 in the absence of amino acids, and GATOR1 release and activation of RagA/B promotes mTORC1 activity in the presence of amino acids. However, the factors that play a role in Rag-GATOR1 interaction are still poorly characterized. Here, we show that the tyrosine kinase Src is crucial for amino acid-mediated activation of mTORC1. Src acts upstream of the Rag GTPases by promoting dissociation of GATOR1 from the Rags, thereby determining mTORC1 recruitment and activation at the lysosomal surface. Accordingly, amino acid-mediated regulation of Src/mTORC1 modulates autophagy and cell size expansion. Finally, Src hyperactivation overrides amino acid signaling in the activation of mTORC1. These results shed light on the mechanisms underlying pathway dysregulation in many cancer types.
Collapse
|
35
|
Cardin DB, Goff LW, Chan E, Whisenant JG, Dan Ayers G, Takebe N, Arlinghaus LR, Yankeelov TE, Berlin J, Merchant N. Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results : A phase I clinical trial. Invest New Drugs 2018; 36:442-450. [PMID: 28990119 PMCID: PMC5891394 DOI: 10.1007/s10637-017-0519-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Pancreatic adenocarcinoma remains a major therapeutic challenge, as the poor (<8%) 5-year survival rate has not improved over the last three decades. Our previous preclinical data showed cooperative attenuation of pancreatic tumor growth when dasatinib (Src inhibitor) was added to erlotinib (EGFR inhibitor) and gemcitabine. Thus, this study was designed to determine the maximum-tolerated dose of the triplet combination. Standard 3 + 3 dose escalation was used, starting with daily oral doses of 70 mg dasatinib and 100 mg erlotinib with gemcitabine on days 1, 8, and 15 (800 mg/m2) of a 28-day cycle (L0). Nineteen patients were enrolled, yet 18 evaluable for dose-limiting toxicities (DLTs). One DLT observed at L0, however dasatinib was reduced to 50 mg (L-1) given side effects observed in the first two patients. At L-1, a DLT occurred in 1/6 patients and dose was re-escalated to L0, where zero DLTs reported in next four patients. Dasatinib was escalated to 100 mg (L1) where 1/6 patients experienced a DLT. Although L1 was tolerable, dose escalation was stopped as investigators felt L1 was within the optimal therapeutic window. Most frequent toxicities were anemia (89%), elevated aspartate aminotransferase (79%), fatigue (79%), nausea (79%), elevated alanine aminotransferase (74%), lymphopenia (74%), leukopenia (74%), neutropenia (63%), and thrombocytopenia (63%), most Grade 1/2. Stable disease as best response was observed in 69% (9/13). Median progression-free and overall survival was 3.6 and 8 months, respectively. Dasatinib, erlotinib, and gemcitabine was safe with manageable side effects, and with encouraging preliminary clinical activity in advanced pancreatic cancer.
Collapse
Affiliation(s)
- Dana B Cardin
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Laura W Goff
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Jennifer G Whisenant
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G Dan Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Lori R Arlinghaus
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas E Yankeelov
- Institute for Computational and Engineering Sciences, Departments of Biomedical Engineering and Diagnostic Medicine, Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Jordan Berlin
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nipun Merchant
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
36
|
Guo S, Martin MG, Tian C, Cui J, Wang L, Wu S, Gu W. Evaluation of Detection Methods and Values of Circulating Vascular Endothelial Growth Factor in Lung Cancer. J Cancer 2018; 9:1287-1300. [PMID: 29675110 PMCID: PMC5907677 DOI: 10.7150/jca.22020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world. Angiogenesis plays a crucial role of the incidence, progression, and metastasis in lung cancer. Angiogenesis inhibitors are used to treat non-small cell lung cancer (NSCLC) patients, and the molecular biomarkers are also being assessed to predict treatment response/therapeutic response and patients' prognosis. Vascular endothelial growth factor (VEGF) is a signal protein produced by cells that stimulates angiogenesis. Due to its predictive values of prognosis on NSCLC, a large number of methods have been developed and evaluated to detect VEGF levels in a variety of studies. In this article, we review the detection methods designed to measure the VEGF levels in different body fluids and prognosticate the value of VEGF in treatment, diagnosis and survival in lung cancer.
Collapse
Affiliation(s)
- Sumin Guo
- Department of Oncology, Hebei Chest Hospital, Lung Cancer Control and Prevention Center of Hebei Province, Shijiazhuang, Hebei, 050041, China.,Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michael G Martin
- West Cancer Center, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Cheng Tian
- Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinglin Cui
- Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center of Integrative Research, The First Hospital of Qiqihaer City, Qiqihaer, Heilongjiang, 161005, PR China
| | - Lishi Wang
- Department of Basic Medicine (Basic Medical Research), Inner Mongolia Medical University, Inner Mongolia, 010110, PR China
| | - Shucai Wu
- Department of Oncology, Hebei Chest Hospital, Lung Cancer Control and Prevention Center of Hebei Province, Shijiazhuang, Hebei, 050041, China
| | - Weikuan Gu
- Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis TN 38104, USA
| |
Collapse
|
37
|
Kim YJ, Hong S, Sung M, Park MJ, Jung K, Noh KW, Oh DY, Lee MS, Oh E, Shin YK, Choi YL. LYN expression predicts the response to dasatinib in a subpopulation of lung adenocarcinoma patients. Oncotarget 2018; 7:82876-82888. [PMID: 27756880 PMCID: PMC5347739 DOI: 10.18632/oncotarget.12657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/01/2016] [Indexed: 01/07/2023] Open
Abstract
Therapies targeting SRC family kinases (SFKs) have shown efficacy in treating non-small cell lung cancer (NSCLC). However, recent clinical trials have found that the SFK inhibitor dasatinib is ineffective in some patient cohorts. Regardless, dasatinib treatment may benefit some NSCLC patient subgroups. Here, we investigated whether expression of LYN, a member of the SFK family, is associated with patient survival, the efficacy of dasatinib, and/or NSCLC cell viability. LYN expression was associated with poor overall survival in a multivariate analysis, and this association was strongest in non-smoker female patients with adenocarcinoma (ADC). In lung ADC cells, LYN expression enhanced cell proliferation, migration, and invasion. Dasatinib inhibited LYN activity and decreased cell viability in LYN-positive ADC cell lines and xenografts. Additionally, we identified the SFKs SRC and YES as candidate dasatinib targets in LYN-negative ADC cell lines. Our findings suggest that LYN is a useful prognostic marker and a selective target of dasatinib therapy in the lung ADC subpopulation especially in female non-smokers with lung ADC.
Collapse
Affiliation(s)
- Yu Jin Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sungyoul Hong
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Minjung Sung
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Jeong Park
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Kyungsoo Jung
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ka-Won Noh
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Doo-Yi Oh
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Mi-Sook Lee
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ensel Oh
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea.,The Center for Anti-cancer Companion Diagnostics, Bio-MAX/N-Bio, Seoul National University, Seoul, Korea
| | - Yoon-La Choi
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Lee TF, Tseng YC, Nguyen PA, Li YC, Ho CC, Wu CW. Enhanced YAP expression leads to EGFR TKI resistance in lung adenocarcinomas. Sci Rep 2018; 8:271. [PMID: 29321482 PMCID: PMC5762715 DOI: 10.1038/s41598-017-18527-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutation is prevalently expressed in lung adenocarcinoma cases and acts as one of the major driving oncogenes. EGFR tyrosine kinase inhibitors (TKIs) have been used in patients with EGFR-mutant as an effective targeted therapy in lung adenocarcinoma, but drug resistance and tumor recurrence inevitably occurs. Recently, Yes-associate protein (YAP) has been reported to promote multiple cancer cell properties, such as promoting cell proliferation, epithelial-mesenchymal transition and drug resistance. This study investigated the roles of YAP in TKI-resistant lung adenocarcinoma. In TKI-sensitive cells, enhanced YAP expression leads to TKI resistant. Also, upregulated YAP expression and activation were detected in long-term TKI-induced resistant cells. With reduced YAP expression using shRNA or YAP inhibitors, TKI-resistant cells become TKI-sensitive. reduced xenograft tumor size in nude mice and Moreover, combined EGFR TKI and a YAP inhibitor, statin, prolonged survival among lung cancer patients analyzed by Taiwan National Health Insurance Research database. These observations revealed the importance of YAP in promoting TKI-resistance and combined YAP inhibition can be a potential therapy delaying the occurrence of TKI-resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ting-Fang Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chi Tseng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Phung Anh Nguyen
- College of medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Population & Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Yu-Chuan Li
- College of medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Dermatology Department, Wan-Fang Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
39
|
Porta-Sánchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, Thavendiranathan P. Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J Am Heart Assoc 2017; 6:JAHA.117.007724. [PMID: 29217664 PMCID: PMC5779062 DOI: 10.1161/jaha.117.007724] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The cardiovascular complications of cancer therapeutics are the focus of the burgeoning field of cardio‐oncology. A common challenge in this field is the impact of cancer drugs on cardiac repolarization (ie, QT prolongation) and the potential risk for the life‐threatening arrhythmia torsades de pointes. Although QT prolongation is not a perfect marker of arrhythmia risk, this has become a primary safety metric among oncologists. Cardiologists caring for patients receiving cancer treatment should become familiar with the drugs associated with QT prolongation, its incidence, and appropriate management strategies to provide meaningful consultation in this complex clinical scenario. Methods and Results In this article, we performed a systematic review (using Preferred Reporting Items of Systematic Reviews and Meta‐Analyses (PRISMA) guidelines) of commonly used cancer drugs to determine the incidence of QT prolongation and clinically relevant arrhythmias. We calculated summary estimates of the incidence of all and clinically relevant QT prolongation as well as arrhythmias and sudden cardiac death. We then describe strategies to prevent, identify, and manage QT prolongation in patients receiving cancer therapy. We identified a total of 173 relevant publications. The weighted incidence of any corrected QT (QTc) prolongation in our systematic review in patients treated with conventional therapies (eg, anthracyclines) ranged from 0% to 22%, although QTc >500 ms, arrhythmias, or sudden cardiac death was extremely rare. The risk of QTc prolongation with targeted therapies (eg, small molecular tyrosine kinase inhibitors) ranged between 0% and 22.7% with severe prolongation (QTc >500 ms) reported in 0% to 5.2% of the patients. Arrhythmias and sudden cardiac death were rare. Conclusions Our systematic review demonstrates that there is variability in the incidence of QTc prolongation of various cancer drugs; however, the clinical consequence, as defined by arrhythmias or sudden cardiac death, remains rare.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Cameron Gilbert
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Danna Spears
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Eitan Amir
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Joyce Chan
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Centre, Ted Rogers Program in Cardiotoxicity Prevention and Department of Medical Imaging, University Health Network University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Genomic Characterization of Lung Cancer and Its Impact on the Use and Timing of PET in Therapeutic Response Assessment. PET Clin 2017; 13:33-42. [PMID: 29157384 DOI: 10.1016/j.cpet.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Significant advances in understanding the genomic landscape of non-small cell lung cancer (NSCLC) together with the coupling discovery of key oncogenic drivers and the development of effective targeted and immunotherapeutic agents have revolutionized the management of this malignancy. Although these therapies have resulted in improved outcomes for a subgroup of patients, their benefit may not necessarily be reflected by conventional response assessment criteria, because these therapeutic agents differ in their mechanism of action and response time compared with cytotoxic chemotherapy. Here the authors review available therapies in NSCLC and the utility of PET in therapeutic response assessment.
Collapse
|
41
|
Lai YH, Lin SY, Wu YS, Chen HW, Chen JJW. AC-93253 iodide, a novel Src inhibitor, suppresses NSCLC progression by modulating multiple Src-related signaling pathways. J Hematol Oncol 2017; 10:172. [PMID: 29132432 PMCID: PMC5683468 DOI: 10.1186/s13045-017-0539-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
Background The tyrosine kinase Src is involved in the progression of many cancers. Moreover, inhibiting Src activity has been shown to obstruct several signaling pathways regulated by the EGFR. Thus, Src is a valuable target molecule in drug development. The purpose of this study was to identify compounds that directly or indirectly modulate Src to suppress lung cancer cell growth and motility and to investigate the molecular mechanisms underlying the effects of these compounds. Methods Human non-small cell lung cancer (NSCLC) cell lines (PC9, PC9/gef, A549, and H1975) with different EGFR statuses were tested by cytotoxicity and proliferation assays after AC-93253 iodide treatment. Src and Src-related protein expression in AC-93253 iodide-treated PC9, PC9/gef, and A549 cells were assessed by western blotting. The effects of AC-93253 iodide on cancer cell colony formation, invasion, and migration were assessed in PC9 and PC9/gef cells. The synergistic effects of gefitinib and AC-93253 iodide were evaluated by combination index (CI)-isobologram analysis in gefitinib-resistant cell lines. The efficacy of AC-93253 iodide in vivo was determined using nude mice treated with either the compound or the vehicle. Results Among the compounds, AC-93253 iodide exhibited the most potent dose-independent inhibitory effects on the activity of Src as well as on that of the Src-related proteins EGFR, STAT3, and FAK. Furthermore, AC-93253 iodide significantly suppressed cancer cell proliferation, colony formation, invasion, and migration in vitro and tumor growth in vivo. AC-93253 iodide sensitized tumor cells to gefitinib treatment regardless of whether the cells were gefitinib-sensitive (PC9) or resistant (H1975 and PC9/gef), indicating that it may exert synergistic effects when used in combination with established therapeutic agents. Our findings also suggested that the inhibitory effects of AC-93253 iodide on lung cancer progression may be attributable to its ability to modulate multiple proteins, including Src, PI3K, JNK, Paxillin, p130cas, MEK, ERK, and EGFR. Conclusions Our data suggest that AC-93253 iodide inhibits NSCLC cell growth and motility by regulating multiple Src-related pathways. Our findings may facilitate the development of therapeutic strategies and anti-tumor drugs that may be useful for treating lung cancer in the future. Electronic supplementary material The online version of this article (10.1186/s13045-017-0539-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Hua Lai
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China
| | - Sih-Yin Lin
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
42
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
43
|
Daoud A, Chu QS. Targeting Novel but Less Common Driver Mutations and Chromosomal Translocations in Advanced Non-Small Cell Lung Cancer. Front Oncol 2017; 7:222. [PMID: 29034207 PMCID: PMC5626928 DOI: 10.3389/fonc.2017.00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/01/2017] [Indexed: 01/25/2023] Open
Abstract
Discovery of the epidermal growth factor receptor gene mutation and the anaplastic lymphoma kinase chromosomal translocation in non-small cell lung cancer has prompted efforts around the world to identify many less common targetable oncogenic drivers. Such concerted efforts have been variably successful in both non-squamous and squamous cell carcinomas of the lung. Some of the targeted therapies for these oncogenic drivers have received regulatory approval for clinical use, while others have modest clinical benefit. In this mini-review, several of these targets will be reviewed.
Collapse
Affiliation(s)
- Alia Daoud
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Quincy S. Chu
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Emdal KB, Dittmann A, Reddy RJ, Lescarbeau RS, Moores SL, Laquerre S, White FM. Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance. Mol Cancer Ther 2017; 16:2572-2585. [PMID: 28830985 DOI: 10.1158/1535-7163.mct-17-0413] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/21/2017] [Accepted: 08/10/2017] [Indexed: 12/28/2022]
Abstract
Approximately 10% of non-small cell lung cancer (NSCLC) patients in the United States and 40% of NSCLC patients in Asia have activating epidermal growth factor receptor (EGFR) mutations and are eligible to receive targeted anti-EGFR therapy. Despite an extension of life expectancy associated with this treatment, resistance to EGFR tyrosine kinase inhibitors and anti-EGFR antibodies is almost inevitable. To identify additional signaling routes that can be cotargeted to overcome resistance, we quantified tumor-specific molecular changes that govern resistant cancer cell growth and survival. Mass spectrometry-based quantitative proteomics was used to profile in vivo signaling changes in 41 therapy-resistant tumors from four xenograft NSCLC models. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. Tumor-specific increases in tyrosine-phosphorylated peptides from EGFR family members, Shc1 and Gab1 or Src family kinase (SFK) substrates were observed, underscoring a differential ability of tumors to uniquely escape EGFR inhibition. Although most resistant tumors within each treatment group displayed a marked inhibition of EGFR as well as SFK signaling, the combination of EGFR inhibition (osimertinib) and SFK inhibition (saracatinib or dasatinib) led to further decrease in cell growth in vitro This result suggests that residual SFK signaling mediates therapeutic resistance and that elimination of this signal through combination therapy may delay onset of resistance. Overall, analysis of individual resistant tumors captured unique in vivo signaling rewiring that would have been masked by analysis of in vitro cell population averages. Mol Cancer Ther; 16(11); 2572-85. ©2017 AACR.
Collapse
Affiliation(s)
- Kristina B Emdal
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Antje Dittmann
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Raven J Reddy
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rebecca S Lescarbeau
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sheri L Moores
- Oncology, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Sylvie Laquerre
- Oncology, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Forest M White
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
45
|
Lee TF, Tseng YC, Chang WC, Chen YC, Kao YR, Chou TY, Ho CC, Wu CW. YAP1 is essential for tumor growth and is a potential therapeutic target for EGFR-dependent lung adenocarcinomas. Oncotarget 2017; 8:89539-89551. [PMID: 29163769 PMCID: PMC5685690 DOI: 10.18632/oncotarget.19647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are found in lung adenocarcinomas leading to tumor cells proliferation and survival. EGFR tyrosine kinase inhibitors (TKIs) that block EGFR activity are effective therapeutics for EGFR-mutant lung adenocarcinoma patients, but TKI-resistance inevitably occurs. The YES-associated protein (YAP1) transcription coactivator has been implicated as an oncogene and is amplified in human cancers and provides tumor cells strong proliferation and survival cues. This study investigated the roles of YAP1 in lung adenocarcinoma by exploring its regulation and functions mediated by EGFR signaling. In this study, we detected a correlation between YAP1 level and EGFR mutation status in lung adenocarcinoma tissues. Using lung adenocarcinoma cell lines, enhanced YAP1 expression and activity mediated by EGFR signaling was detected through enhanced protein stability. A SRC family protein, YES, was involved in EGFR-regulated YAP1 expression and this pathway was crucial for proliferation in EGFR-dependent cells. Small molecules that reduced YAP1 levels by mechanisms bypassing EGFR signaling were effective in reducing viability in EGFR-dependent cells including those with EGFR T790M, the major cause of TKI-resistance. These observations unveiled the significance of YAP1 in EGFR mutant lung adenocarcinomas and identified YAP1 as a promising therapeutic target for EGFR-dependent lung adenocarcinoma patients, including those with EGFR T790M-caused TKI resistance.
Collapse
Affiliation(s)
- Ting-Fang Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chi Tseng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chin Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Rung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Riahi RR, Cohen PR. Dasatinib-induced Seborrheic Dermatitis-like Eruption. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2017; 10:23-27. [PMID: 29104720 PMCID: PMC5605220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dasatinib is an oral tyrosine kinase inhibitor approved for imatinib-resistant chronic myelogenous leukemia. It has been investigated in treating other neoplasms, including non-small-cell lung cancer and a subset of melanomas. Seborrheic dermatitis is characterized by erythematous patches or plaques with scaling typically affecting the external ear, glabella, hair-bearing areas of the face, nasolabial fold, and scalp. Antitumor agents are often associated with mucocutaneous side effects, including seborrheic dermatitis. We describe the case of a 79-year-old woman with a history of sinonasal melanoma who developed a seborrheic dermatitis-like eruption while taking dasatinib. We also review the molecular abnormalities associated with melanoma, summarize the mucocutaneous side effects of dasatinib, and list the other antineoplastic agents associated with a seborrheic dermatitis-like eruption.
Collapse
Affiliation(s)
- Ryan R Riahi
- Dr. Riahi is with DermSurgery Associates, Houston, Texas
| | - Philip R Cohen
- Dr. Riahi is with DermSurgery Associates, Houston, Texas
| |
Collapse
|
47
|
Soldera SV, Leighl NB. Update on the Treatment of Metastatic Squamous Non-Small Cell Lung Cancer in New Era of Personalized Medicine. Front Oncol 2017; 7:50. [PMID: 28396848 PMCID: PMC5366319 DOI: 10.3389/fonc.2017.00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/09/2017] [Indexed: 12/26/2022] Open
Abstract
Despite advances in molecular characterization and lung cancer treatment in recent years, treatment options for patients diagnosed with squamous cell carcinoma of the lung (SCC) remain limited as actionable mutations are rarely detected in this subtype. This article reviews potential molecular targets and associated novel agents for the treatment of advanced SCC in the era of personalized medicine. Elements of various pathways including epidermal growth factor receptor, PI3KCA, fibroblast growth factor receptor, retinoblastoma, cyclin-dependent kinases, discoidin domain receptor tyrosine kinase 2, and mesenchymal-to-epithelial transition may play pivotal roles in the development of SCC and are under investigation for drug development.
Collapse
Affiliation(s)
| | - Natasha B. Leighl
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
48
|
Bauman JE, Duvvuri U, Gooding WE, Rath TJ, Gross ND, Song J, Jimeno A, Yarbrough WG, Johnson FM, Wang L, Chiosea S, Sen M, Kass J, Johnson JT, Ferris RL, Kim S, Hirsch FR, Ellison K, Flaherty JT, Mills GB, Grandis JR. Randomized, placebo-controlled window trial of EGFR, Src, or combined blockade in head and neck cancer. JCI Insight 2017; 2:e90449. [PMID: 28352657 DOI: 10.1172/jci.insight.90449] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND. EGFR and Src family kinases are upregulated in head and neck squamous cell carcinoma (HNSCC). EGFR interacts with Src to activate STAT3 signaling, and dual EGFR-Src targeting is synergistic in HNSCC preclinical models. pSrc overexpression predicted resistance to the EGFR inhibitor, erlotinib, in a prior window trial. We conducted a 4-arm window trial to identify biomarkers associated with response to EGFR and/or Src inhibition. METHODS. Patients with operable stage II-IVa HNSCC were randomized to 7-21 days of neoadjuvant erlotinib, the Src inhibitor dasatinib, the combination of both, or placebo. Paired tumor specimens were collected before and after treatment. Pharmacodynamic expression of EGFR and Src pathway components was evaluated by IHC of tissue microarrays and reverse-phase protein array of tissue lysates. Candidate biomarkers were assessed for correlation with change in tumor size. RESULTS. From April 2009 to December 2012, 58 patients were randomized and 55 were treated. There was a significant decrease in tumor size in both erlotinib arms (P = 0.0014); however, no effect was seen with dasatinib alone (P = 0.24). High baseline pMAPK expression was associated with response to erlotinib (P = 0.03). High baseline pSTAT3 was associated with resistance to dasatinib (P = 0.099). CONCLUSIONS. Brief exposure to erlotinib significantly decreased tumor size in operable HNSCC, with no additive effect from dasatinib. Baseline pMAPK expression warrants further study as a response biomarker for anti-EGFR therapy. Basal expression of pSTAT3 may be independent of Src, explain therapeutic resistance, and preclude development of dasatinib in biomarker-unselected cohorts. TRIAL REGISTRATION. NCT00779389. FUNDING. National Cancer Institute, American Cancer Society, Pennsylvania Department of Health, V Foundation for Cancer Research, Bristol-Myers Squibb, and Astellas Pharma.
Collapse
Affiliation(s)
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William E Gooding
- Biostatistics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Tanya J Rath
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Neil D Gross
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| | | | - Antonio Jimeno
- Division of Medical Oncology University of Colorado, Denver, Colorado, USA
| | - Wendell G Yarbrough
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, USA
| | - Faye M Johnson
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simion Chiosea
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Kass
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonas T Johnson
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungwon Kim
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fred R Hirsch
- Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Kimberly Ellison
- Department of Medicine, University of Colorado, Denver, Colorado, USA
| | | | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Shum E, Wang F, Kim S, Perez-Soler R, Cheng H. Investigational therapies for squamous cell lung cancer: from animal studies to phase II trials. Expert Opin Investig Drugs 2017; 26:415-426. [PMID: 28277882 DOI: 10.1080/13543784.2017.1302425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION It remains challenging to treat squamous cell lung cancer (SCC) with limited therapeutic options. However, recent breakthroughs in targeted therapies and immunotherapies have shed some light on the management of this deadly disease. Areas covered: The article first reviews the current treatment options for advanced SCC, especially recent FDA approved molecular agents (afatinib, ramucirumab and necitumumab) and immunotherapies (nivolumab, pembrolizumab and atezolimumab). We then provide an overview on investigational therapies with data ranging from preclinical to phase II studies, focusing on new cytotoxic agents, emerging molecularly targeted agents (including a PARP inhibitor for Homologous Recombinant Deficiency positive SCC) and novel immunotherapeutic strategies. Expert opinion summary: Identification of potential therapeutic targets, development of novel clinical trials and the rapid approvals of immune checkpoint inhibitors have shifted the management paradigm for squamous cell lung cancer. On the other hand, continued efforts are needed to identify the predictive biomarkers and to investigate novel mechanistically-driven mono- and combination therapies. We need to learn more about the biology behind immune checkpoint blockade and tumor genomics in SCC for better patient selection and future trial design.
Collapse
Affiliation(s)
- Elaine Shum
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Feng Wang
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Salem Kim
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Roman Perez-Soler
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
50
|
Sesumi Y, Suda K, Mizuuchi H, Kobayashi Y, Sato K, Chiba M, Shimoji M, Tomizawa K, Takemoto T, Mitsudomi T. Effect of dasatinib on EMT-mediated-mechanism of resistance against EGFR inhibitors in lung cancer cells. Lung Cancer 2016; 104:85-90. [PMID: 28213007 DOI: 10.1016/j.lungcan.2016.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The epithelial to mesenchymal transition (EMT) is associated with acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in certain non-small cell lung cancers that harbor EGFR mutations. Because no currently available drugs specifically kill cancer cells via EMT, novel treatment strategies that overcome or prevent EMT are needed. A recent report suggested that dasatinib (an ABL/Src kinase inhibitor) inhibits EMT induced by transforming growth factor (TGF)-beta in lung cancer cells (Wilson et al., 2014). In this study, we analyzed effects of dasatinib on the resistance mechanism in HCC4006 cells, which tend to acquire resistance to EGFR-TKIs via EMT. MATERIALS AND METHODS Sensitivity to dasatinib in HCC4006 and HCC4006 erlotinib-resistant (ER) cells with an EMT phenotype was analyzed. HCC4006 cells acquired resistance against the combination of erlotinib and dasatinib (HCC4006EDR) following chronic treatment with these drugs. The expression of EMT markers and the resistance mechanism were analyzed. RESULTS Short-term or long-term treatment with dasatinib did not reverse EMT in HCC4006ER. In contrast, HCC4006EDR cells maintained an epithelial phenotype, and the mechanism underlying resistance to erlotinib plus dasatinib combination therapy was attributable to a T790M secondary mutation. HCC4006EDR cells, but not HCC4006ER cells, were highly sensitive to a third-generation EGFR-TKI, osimertinib. CONCLUSIONS Although dasatinib monotherapy did not reverse EMT in HCC4006ER cells, preemptive combination treatment with erlotinib and dasatinib prevented the emergence of acquired resistance via EMT, and led to the emergence of T790M. Our results indicate that preemptive combination therapy may be a promising strategy to prevent the emergence of EMT-mediated resistance.
Collapse
Affiliation(s)
- Yuichi Sesumi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Hiroshi Mizuuchi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Yoshihisa Kobayashi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Katsuaki Sato
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Kenji Tomizawa
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| |
Collapse
|