1
|
Sefland Ø, Gullaksen SE, Omsland M, Reikvam H, Galteland E, Tran HTT, Spetalen S, Singh SK, Van Zeeburg HJT, Van De Loosdrecht AA, Gjertsen BT. Mass cytometric single cell immune profiles of peripheral blood from acute myeloid leukemia patients in complete remission with measurable residual disease. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 39078053 DOI: 10.1002/cyto.b.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Measurable residual disease (MRD) is detected in approximately a quarter of AML chemotherapy responders, serving as a predictor for relapse and shorter survival. Immunological control of residual disease is suggested to prevent relapse, but the mechanisms involved are not fully understood. We present a peripheral blood single cell immune profiling by mass cytometry using a 42-antibody panel with particular emphasis on markers of cellular immune response. Six healthy donors were compared with four AML patients with MRD (MRD+) in first complete remission (CR1MRD+). Three of four patients demonstrated a favorable genetic risk profile, while the fourth patient had an unfavorable risk profile (complex karyotype, TP53-mutation) and a high level of MRD. Unsupervised clustering using self-organizing maps and dimensional reduction analysis was performed for visualization and analysis of immune cell subsets. CD57+ natural killer (NK)-cell subsets were found to be less abundant in patients than in healthy donors. Both T and NK cells demonstrated elevated expression of activity and maturation markers (CD44, granzyme B, and phosho-STAT5 Y694) in patients. Although mass cytometry remains an expensive method with limited scalability, our data suggest the utility for employing a 42-plex profiling for cellular immune surveillance in whole blood, and possibly as a biomarker platform in future clinical trials. The findings encourage further investigations of single cell immune profiling in CR1MRD+ AML-patients.
Collapse
Affiliation(s)
- Øystein Sefland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein-Erik Gullaksen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Maria Omsland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eivind Galteland
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Hoa Thi Tuyet Tran
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | | | - Arjan A Van De Loosdrecht
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Jin D, He J, Chen H, Wu W, Han X, Le J, Shu W, Yang Q, Pei S, Cai Z, He D. Impact of monocytic differentiation on acute myeloid leukemia patients treated with venetoclax and hypomethylating agents. Cancer Med 2024; 13:e7378. [PMID: 39031026 PMCID: PMC11258555 DOI: 10.1002/cam4.7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Although the combination of venetoclax (VEN) and hypomethylating agents (HMAs) results in impressive efficacy in acute myeloid leukemia (AML), there is still a subset of patients who are refractory. We investigated the outcomes of AML patients with monocytic differentiation who were treated with frontline VEN/HMA. METHODS A total of 155 patients with newly diagnosed AML treated with frontline VEN/HMA were enrolled in the study. Monocyte-like AML was identified by flow cytometry with typical expression of monocytic markers, and M5 was identified according to French, American, and British category. We compared the outcomes of patients with different characteristics. RESULTS The rate of complete remission (CR) and CR with incomplete recovery of blood counts (CRi), progression-free survival (PFS), and overall survival (OS) in monocyte-like AML were inferior to those in nonmonocyte-like AML (CR/CRi rates, 26.7% vs. 80.0%, p < 0.001; median PFS, 2.1 vs. 8.8 months, p < 0.001; median OS, 9.2 vs. 19 months, p = 0.013). CR/CRi rate in M5 was lower than that in non-M5 (60.7% vs. 75.5%, p = 0.049). Multivariate analyses showed that monocyte-like AML was associated with lower odds of CR/CRi and higher risk of progression. CONCLUSION Our study suggested that newly diagnosed AML with a monocytic immunophenotype had a poor prognosis with VEN/HMA treatment.
Collapse
Affiliation(s)
- Dian Jin
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Haoguang Chen
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Jing Le
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Wenxiu Shu
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Qianqian Yang
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Shanshan Pei
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
3
|
Guijarro F, Garrote M, Villamor N, Colomer D, Esteve J, López-Guerra M. Novel Tools for Diagnosis and Monitoring of AML. Curr Oncol 2023; 30:5201-5213. [PMID: 37366878 DOI: 10.3390/curroncol30060395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, major advances in the understanding of acute myeloid leukemia (AML) pathogenesis, together with technological progress, have led us into a new era in the diagnosis and follow-up of patients with AML. A combination of immunophenotyping, cytogenetic and molecular studies are required for AML diagnosis, including the use of next-generation sequencing (NGS) gene panels to screen all genetic alterations with diagnostic, prognostic and/or therapeutic value. Regarding AML monitoring, multiparametric flow cytometry and quantitative PCR/RT-PCR are currently the most implemented methodologies for measurable residual disease (MRD) evaluation. Given the limitations of these techniques, there is an urgent need to incorporate new tools for MRD monitoring, such as NGS and digital PCR. This review aims to provide an overview of the different technologies used for AML diagnosis and MRD monitoring and to highlight the limitations and challenges of current versus emerging tools.
Collapse
Affiliation(s)
- Francesca Guijarro
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marta Garrote
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Neus Villamor
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Dolors Colomer
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jordi Esteve
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Hematology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
4
|
Teixeira A, Carreira L, Abalde-Cela S, Sampaio-Marques B, Areias AC, Ludovico P, Diéguez L. Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review. Cancers (Basel) 2023; 15:cancers15051362. [PMID: 36900154 PMCID: PMC10000116 DOI: 10.3390/cancers15051362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Luís Carreira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Anabela C. Areias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| |
Collapse
|
5
|
Meddi E, Savi A, Moretti F, Mallegni F, Palmieri R, Paterno G, Buzzatti E, Del Principe MI, Buccisano F, Venditti A, Maurillo L. Measurable Residual Disease (MRD) as a Surrogate Efficacy-Response Biomarker in AML. Int J Mol Sci 2023; 24:ijms24043062. [PMID: 36834477 PMCID: PMC9967250 DOI: 10.3390/ijms24043062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In acute myeloid leukemia (AML) many patients experience relapse, despite the achievement of morphological complete remission; therefore, conventional morphologic criteria are currently considered inadequate for assessing the quality of the response after treatment. Quantification of measurable residual disease (MRD) has been established as a strong prognostic marker in AML and patients that test MRD negative have lower relapse rates and better survival than those who test positive. Different techniques, varying in their sensitivity and applicability to patients, are available for the measurement of MRD and their use as a guide for selecting the most optimal post-remission therapy is an area of active investigation. Although still controversial, MRD prognostic value promises to support drug development serving as a surrogate biomarker, potentially useful for accelerating the regulatory approval of new agents. In this review, we will critically examine the methods used to detect MRD and its potential role as a study endpoint.
Collapse
Affiliation(s)
- Elisa Meddi
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Arianna Savi
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Federico Moretti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Flavia Mallegni
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | | | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | | | - Francesco Buccisano
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
- Correspondence:
| | - Luca Maurillo
- Hematology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
Ciurea SO, Kothari A, Sana S, Al Malki MM. The mythological chimera and new era of relapse prediction post-transplant. Blood Rev 2023; 57:100997. [PMID: 35961800 DOI: 10.1016/j.blre.2022.100997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Allogeneic hemopoietic stem cell transplantation is the treatment of choice for high-risk or relapsed acute leukemia. However, unfortunately, relapse post-transplant continues to be the most common cause of treatment failure with 20-80% of patients relapsing based on disease risk and status at transplant. Advances in molecular profiling of different hematological malignancies have enabled us to monitor low level disease before and after transplant and develop a more personalized approach to the management of these disease including early detection post-transplant. While, in general, detectable disease by morphology remains the gold standard to diagnosing relapse, multiple approaches have allowed detection of cancer cells earlier, using peripheral blood-based methods with sensitivities as high as 1:106, together called minimal/measurable residual disease (MRD) detection. However, a in significant number of patients with acute leukemia where no such molecular markers exist it remains challenging to detect early relapse. In such patients who receive transplantation, chimerism monitoring remains the only option. An increase in mixed chimerism in post allogeneic HCT patients has been correlated with relapse in multiple studies. However, chimerism monitoring, while commonly accepted as a tool for assessing engraftment, has not been routinely used for relapse detection, at least in part because of the lack of standardized, high sensitivity, reliable methods for chimerism detection. In this paper, we review the various methods employed for MRD and chimerism detection post-transplant and discuss future trends in MRD and chimerism monitoring from the viewpoint of the practicing transplant physician.
Collapse
Affiliation(s)
- Stefan O Ciurea
- University of California Irvine, Orange, CA, United States of America.
| | | | - Sean Sana
- CareDx Inc., Brisbane, CA, United States of America
| | - Monzr M Al Malki
- City of Hope National Medical Center, Duarte, CA, United States of America
| |
Collapse
|
7
|
Hoffmann J, Thrun MC, Röhnert MA, von Bonin M, Oelschlägel U, Neubauer A, Ultsch A, Brendel C. Identification of critical hemodilution by artificial intelligence in bone marrow assessed for MRD analysis in acute myeloid leukemia: the Cinderella method. Cytometry A 2022; 103:304-312. [PMID: 36030398 DOI: 10.1002/cyto.a.24686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
Minimal residual disease (MRD) detection is a strong predictor for survival and relapse in acute myeloid leukemia (AML). MRD can be either determined by molecular assessment strategies or via multiparameter flow cytometry. The degree of bone marrow (BM) dilution with peripheral blood (PB) increases with aspiration volume causing consecutive underestimation of the residual AML blast amount. In order to prevent false-negative MRD results, we developed Cinderella, a simple automated method for one-tube simultaneous measurement of hemodilution in BM samples and MRD level. The explainable artificial intelligence (XAI) Cinderella was trained and validated with the digital raw data of a flow cytometric "8-color" AML-MRD antibody panel in 126 BM and 23 PB samples from 35 patients. Cinderella predicted PB dilution with high accordance compared to the results of the Holdrinet formula (Pearson's correlation coefficient r = 0.94, R2 = 0.89, p < 0.001). Unlike conventional neuronal networks Cinderella calculated the distributions of 12 different cell populations that were assigned to true hematopoietic counterparts as a Human in the Loop (HIL) approach. Besides characteristic BM cells such as myelocytes and myeloid progenitor cells the XAI identified discriminating populations, which were not specific for BM or PB (e.g., T cell/ NK cell subpopulations, CD45 negative cells) and considered their frequency differences. Thus, Cinderella represents a HIL-XAI algorithm capable to calculate the degree of hemodilution in bone marrow samples with an AML MRD immunophenotype panel. It is explicable, transparent and paves a simple way to prevent false negative MRD reports. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joerg Hoffmann
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Michael C Thrun
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany.,Databionics, Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Maximilian A Röhnert
- Department of Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Malte von Bonin
- Department of Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Uta Oelschlägel
- Department of Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| | - Alfred Ultsch
- Databionics, Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Marburg, Germany
| |
Collapse
|
8
|
Leotta S, Condorelli A, Sciortino R, Milone GA, Bellofiore C, Garibaldi B, Schininà G, Spadaro A, Cupri A, Milone G. Prevention and Treatment of Acute Myeloid Leukemia Relapse after Hematopoietic Stem Cell Transplantation: The State of the Art and Future Perspectives. J Clin Med 2022; 11:253. [PMID: 35011994 PMCID: PMC8745746 DOI: 10.3390/jcm11010253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) for high-risk acute myeloid leukemia (AML) represents the only curative option. Progress has been made in the last two decades in the pre-transplant induction therapies, supportive care, selection of donors and conditioning regimens that allowed to extend the HSCT to a larger number of patients, including those aged over 65 years and/or lacking an HLA-identical donor. Furthermore, improvements in the prophylaxis of the graft-versus-host disease and of infection have dramatically reduced transplant-related mortality. The relapse of AML remains the major reason for transplant failure affecting almost 40-50% of the patients. From 10 to 15 years ago to date, treatment options for AML relapsing after HSCT were limited to conventional cytotoxic chemotherapy and donor leukocyte infusions (DLI). Nowadays, novel agents and targeted therapies have enriched the therapeutic landscape. Moreover, very recently, the therapeutic landscape has been enriched by manipulated cellular products (CAR-T, CAR-CIK, CAR-NK). In light of these new perspectives, careful monitoring of minimal-residual disease (MRD) and prompt application of pre-emptive strategies in the post-transplant setting have become imperative. Herein, we review the current state of the art on monitoring, prevention and treatment of relapse of AML after HSCT with particular attention on novel agents and future directions.
Collapse
Affiliation(s)
| | - Annalisa Condorelli
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95124 Catania, Italy; (S.L.); (R.S.); (G.A.M.); (C.B.); (B.G.); (G.S.); (A.S.); (A.C.); (G.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vonk CM, Al Hinai ASA, Hanekamp D, Valk PJM. Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:5431. [PMID: 34771594 PMCID: PMC8582498 DOI: 10.3390/cancers13215431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Initial induction chemotherapy to eradicate the bulk of acute myeloid leukemia (AML) cells results in complete remission (CR) in the majority of patients. However, leukemic cells persisting in the bone marrow below the morphologic threshold remain unaffected and have the potential to proliferate and re-emerge as AML relapse. Detection of minimal/measurable residual disease (MRD) is a promising prognostic marker for AML relapse as it can assess an individual patients' risk profile and evaluate their response to treatment. With the emergence of molecular techniques, such as next generation sequencing (NGS), a more sensitive assessment of molecular MRD markers is available. In recent years, the detection of MRD by molecular assays and its association with AML relapse and survival has been explored and verified in multiple studies. Although most studies show that the presence of MRD leads to a worse clinical outcome, molecular-based methods face several challenges including limited sensitivity/specificity, and a difficult distinction between mutations that are representative of AML rather than clonal hematopoiesis. This review describes the studies that have been performed using molecular-based assays for MRD detection in the context of other MRD detection approaches in AML, and discusses limitations, challenges and opportunities.
Collapse
Affiliation(s)
- Christian M Vonk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Adil S A Al Hinai
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- National Genetic Center, Ministry of Health, Muscat 111, Oman
| | - Diana Hanekamp
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- Department of Hematology, Cancer Center VU University Medical Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
10
|
Yu T, Chi J, Wang L. Clinical values of gene alterations as marker of minimal residual disease in non-M3 acute myeloid leukemia. Hematology 2021; 26:848-859. [PMID: 34674615 DOI: 10.1080/16078454.2021.1990503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the hematopoietic system. Residual leukemic cells after treatment are associated with relapse. Thus, detecting minimal residual disease (MRD) is significant. Major techniques for MRD assessment include multiparameter flow cytometry (MFC), polymerase chain reaction (PCR), and next-generation sequencing (NGS). At a molecular level, AML is the consequence of collaboration of several gene alterations. Some of these gene alterations can also be used as MRD markers to evaluate the level of residual leukemic cells by PCR and NGS. However, when as MRD markers, different gene alterations have different clinical values. This paper aims to summarize the characteristics of various MRD markers, so as to better predict the clinical outcome of AML patients and guide the treatment.
Collapse
Affiliation(s)
- Tingyu Yu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianxiang Chi
- Center for the Study of Hematological Malignancies, Nicosia, Cyprus
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Talami A, Bettelli F, Pioli V, Giusti D, Gilioli A, Colasante C, Galassi L, Giubbolini R, Catellani H, Donatelli F, Maffei R, Martinelli S, Barozzi P, Potenza L, Marasca R, Trenti T, Tagliafico E, Comoli P, Luppi M, Forghieri F. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines 2021; 9:biomedicines9080953. [PMID: 34440157 PMCID: PMC8391269 DOI: 10.3390/biomedicines9080953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) carrying inv(16)/t(16;16), resulting in fusion transcript CBFB-MYH11, belongs to the favorable-risk category. However, even if most patients obtain morphological complete remission after induction, approximately 30% of cases eventually relapse. While well-established clinical features and concomitant cytogenetic/molecular lesions have been recognized to be relevant to predict prognosis at disease onset, the independent prognostic impact of measurable residual disease (MRD) monitoring by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), mainly in predicting relapse, actually supersedes other prognostic factors. Although the ELN Working Party recently indicated that patients affected with CBFB-MYH11 AML should have MRD assessment at informative clinical timepoints, at least after two cycles of intensive chemotherapy and after the end of treatment, several controversies could be raised, especially on the frequency of subsequent serial monitoring, the most significant MRD thresholds (most commonly 0.1%) and on the best source to be analyzed, namely, bone marrow or peripheral blood samples. Moreover, persisting low-level MRD positivity at the end of treatment is relatively common and not predictive of relapse, provided that transcript levels remain stably below specific thresholds. Rising MRD levels suggestive of molecular relapse/progression should thus be confirmed in subsequent samples. Further prospective studies would be required to optimize post-remission monitoring and to define effective MRD-based therapeutic strategies.
Collapse
Affiliation(s)
- Annalisa Talami
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Corrado Colasante
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Laura Galassi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rachele Giubbolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Hillary Catellani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Donatelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Silvia Martinelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy;
| | - Enrico Tagliafico
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy;
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| |
Collapse
|
12
|
Prognostic value of measurable residual disease at allogeneic transplantation for adults with core binding factor acute myeloid leukemia in complete remission. Bone Marrow Transplant 2021; 56:2779-2787. [PMID: 34272486 DOI: 10.1038/s41409-021-01409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Pretransplant measurable residual disease (MRD) has been shown to be associated with relapse incidence following allogeneic hematopoietic cell transplantation (HCT) for acute myeloid leukemia (AML). However, it remains less clear whether pretransplant MRD status affects transplant outcomes in core binding factor AML (CBF-AML). We retrospectively evaluated the effect of pretransplant MRD, which was measured by a polymerase chain reaction of RUNX1-RUNX1T1 or CBFB-MYH11 fusion transcripts, on transplant outcomes for a cohort of 959 adult patients with t(8;21) or inv(16) AML treated by allogeneic HCT during complete remission (CR), between 2000 and 2018. Multivariate analysis showed the absence of pretransplant MRD was significantly associated with lower relapse (hazard ratio [HR], 0.46; P < 0.001), treatment failure (HR, 0.66; P = 0.004), and overall mortality (HR, 0.72; P = 0.037) among patients with t(8;21). However, pretransplant MRD negativity was not associated with relapse (HR, 0.73; P = 0.420), treatment failure (HR, 0.64; P = 0.063), or overall mortality (HR, 0.69; P = 0.149) among patients with inv(16). In subgroup analysis, pretransplant MRD status significantly affected relapse and LFS only in patients with t(8;21) undergoing allogeneic HCT during CR2. In conclusion, our data demonstrate the different prognostic values of pretransplant MRD for CBF-AML, highlighting the need to develop effective therapeutic strategies for such MRD-positive patients.
Collapse
|
13
|
Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv 2021; 4:66-75. [PMID: 31899799 DOI: 10.1182/bloodadvances.2019000709] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
The prognostic impact of KIT mutation on core-binding factor acute myeloid leukemia (CBF-AML) remains controversial. We registered 199 newly diagnosed de novo CBF-AML patients, aged 16 to 64 years, who achieved complete remission. They received 3 courses of high-dose cytarabine therapy and no further treatment until hematological relapse. Mutations in exons 8, 10-11, and 17 of the KIT gene were analyzed. Furthermore, we analyzed mutations in 56 genes that are frequently identified in myeloid malignancies and evaluated minimal residual disease (MRD). The primary end point was relapse-free survival (RFS) according to KIT mutations. The RFS in KIT-mutated patients was inferior to that in unmutated patients (hazard ratio, 1.92; 95% confidence interval, 1.23-3.00; P = .003). Based on subgroup analysis, KIT mutations had a prognostic impact in patients with RUNX1-RUNX1T1, but not in those with CBFB-MYH11, and only exon 17 mutation had a significant prognostic impact. Multivariate Cox regression analysis with stepwise selection revealed that the KIT exon 17 mutation and the presence of extramedullary tumors in patients with RUNX1-RUNX1T1, and loss of chromosome X or Y and NRAS mutation in patients with CBFB-MYH11 were poor prognostic factors for RFS. MRD was evaluated in 112 patients, and it was associated with a poorer RFS in the patients with CBFB-MYH11, but not in those with RUNX1-RUNX1T1. These results suggested that it is necessary to separately evaluate AML with RUNX1-RUNX1T1 or CBFB-MYH11 according to appropriate prognostic factors. This study was registered at www.umin.ac.jp/ctr/ as #UMIN000003434.
Collapse
|
14
|
Skou AS, Juul-Dam KL, Ommen HB, Hasle H. Peripheral blood molecular measurable residual disease is sufficient to identify patients with acute myeloid leukaemia with imminent clinical relapse. Br J Haematol 2021; 195:310-327. [PMID: 33851435 DOI: 10.1111/bjh.17449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal molecular measurable residual disease (MRD) sampling after completion of therapy serves as a refined tool for identification of imminent relapse of acute myeloid leukaemia (AML) among patients in long-term haematological complete remission. Tracking of increasing quantitative polymerase chain reaction MRD before cytomorphological reappearance of blasts may instigate individual management decisions and has paved the way for development of pre-emptive treatment strategies to substantially delay or perhaps even revert leukaemic regrowth. Traditionally, MRD monitoring is performed using repeated bone marrow aspirations, albeit the current European LeukemiaNet MRD recommendations acknowledge the use of peripheral blood as an alternative source for MRD assessment. Persistent MRD positivity in the bone marrow despite continuous morphological remission is frequent in both core binding factor leukaemias and nucleophosmin 1-mutated AML. In contrast, monthly assessment of MRD in peripheral blood superiorly separates patients with imminent haematological relapse from long-term remitters and may allow pre-emptive therapy of AML relapse.
Collapse
Affiliation(s)
- Anne-Sofie Skou
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
Descriptive and Functional Genomics in Acute Myeloid Leukemia (AML): Paving the Road for a Cure. Cancers (Basel) 2021; 13:cancers13040748. [PMID: 33670178 PMCID: PMC7916915 DOI: 10.3390/cancers13040748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, genetic advances have allowed a more precise molecular characterization of AML with the identification of novel oncogenes and tumor suppressors as part of a comprehensive AML molecular landscape. Recent advances in genetic sequencing tools also enabled a better understanding of AML leukemogenesis from the preleukemic state to posttherapy relapse. These advances resulted in direct clinical implications with the definition of molecular prognosis classifications, the development of treatment recommendations based on minimal residual disease (MRD) measurement and the discovery of novel targeted therapies, ultimately improving AML patients' overall survival. The more recent development of functional genomic studies, pushed by novel molecular biology technologies (short hairpin RNA (shRNA) and CRISPR-Cas9) and bioinformatics tools design on one hand, along with the engineering of humanized physiologically relevant animal models on the other hand, have opened a new genomics era resulting in a greater knowledge of AML physiopathology. Combining descriptive and functional genomics will undoubtedly open the road for an AML cure within the next decades.
Collapse
|
16
|
Pollyea DA, Bixby D, Perl A, Bhatt VR, Altman JK, Appelbaum FR, de Lima M, Fathi AT, Foran JM, Gojo I, Hall AC, Jacoby M, Lancet J, Mannis G, Marcucci G, Martin MG, Mims A, Neff J, Nejati R, Olin R, Percival ME, Prebet T, Przespolewski A, Rao D, Ravandi-Kashani F, Shami PJ, Stone RM, Strickland SA, Sweet K, Vachhani P, Wieduwilt M, Gregory KM, Ogba N, Tallman MS. NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021. J Natl Compr Canc Netw 2021; 19:16-27. [PMID: 33406488 DOI: 10.6004/jnccn.2021.0002] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The NCCN Guidelines for Acute Myeloid Leukemia (AML) provide recommendations for the diagnosis and treatment of adults with AML based on clinical trials that have led to significant improvements in treatment, or have yielded new information regarding factors with prognostic importance, and are intended to aid physicians with clinical decision-making. These NCCN Guidelines Insights focus on recent select updates to the NCCN Guidelines, including familial genetic alterations in AML, postinduction or postremission treatment strategies in low-risk acute promyelocytic leukemia or favorable-risk AML, principles surrounding the use of venetoclax-based therapies, and considerations for patients who prefer not to receive blood transfusions during treatment.
Collapse
Affiliation(s)
| | - Dale Bixby
- University of Michigan Rogel Cancer Center
| | - Alexander Perl
- Abramson Cancer Center at the University of Pennsylvania
| | | | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Marcos de Lima
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | - Ivana Gojo
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Aric C Hall
- University of Wisconsin Carbone Cancer Center
| | - Meagan Jacoby
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | - Michael G Martin
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Alice Mims
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | - Rebecca Olin
- UCSF Helen Diller Family Comprehensive Cancer Center
| | | | | | | | - Dinesh Rao
- UCLA Jonsson Comprehensive Cancer Center
| | | | - Paul J Shami
- Huntsman Cancer Institute at the University of Utah
| | | | | | | | | | | | | | - Ndiya Ogba
- National Comprehensive Cancer Network; and
| | | |
Collapse
|
17
|
Puckrin R, Atenafu EG, Claudio JO, Chan S, Gupta V, Maze D, McNamara C, Murphy T, Shuh AC, Yee K, Sibai H, Minden MD, Wei C, Stockley T, Kamel-Reid S, Schimmer AD. Measurable residual disease monitoring provides insufficient lead-time to prevent morphologic relapse in the majority of patients with core-binding factor acute myeloid leukemia. Haematologica 2021; 106:56-63. [PMID: 31896684 PMCID: PMC7776265 DOI: 10.3324/haematol.2019.235721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Core-binding factor acute myeloid leukemia is characterized by t(8;21) or inv(16) and the fusion proteins RUNX1-RUNX1T1 and CBFB-MYH11. International guidelines recommend monitoring for measurable residual disease every 3 months for 2 years after treatment. However, it is not known whether serial molecular monitoring can predict and prevent morphological relapse. We conducted a retrospective singlecenter study of 114 patients in complete remission who underwent molecular monitoring with real-time quantitative polymerase chain reaction analysis of RUNX1-RUNX1T1 or CBFB-MYH11 transcripts every 3 months. Morphological relapse was defined as re-emergence of >5% blasts and molecular relapse as ≥1 log increase in transcript level between two samples. Over a median follow-up time of 3.7 years (range, 0.2-14.3), remission persisted in 71 (62.3%) patients but 43 (37.7%) developed molecular or morphological relapse. Patients who achieved <3 log reduction in RUNX1- RUNX1T1 or CBFB-MYH11 transcripts at the end of chemotherapy had a significantly higher risk of relapse compared to patients who achieved ≥3 log reduction (61.1% vs. 33.7%, P=0.004). The majority of relapses (74.4%, n=32) were not predicted by molecular monitoring and occurred rapidly with <100 days from molecular to morphological relapse. Molecular monitoring enabled the detection of impending relapse and permitted pre-emptive intervention prior to morphological relapse in only 11 (25.6%) patients. The current practice of molecular monitoring every 3 months provided insufficient lead-time to identify molecular relapses and prevent morphological relapse in the majority of patients with core-binding factor acute myeloid leukemia treated at our institution. Further research is necessary to determine the optimal monitoring strategies for these patients.
Collapse
Affiliation(s)
- Robert Puckrin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Eshetu G Atenafu
- Deo. of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Jaime O Claudio
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Steven Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Dawn Maze
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Caroline McNamara
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tracy Murphy
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Andre C Shuh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Karen Yee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hassan Sibai
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Cuihong Wei
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tracy Stockley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Suzanne Kamel-Reid
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
18
|
Short NJ, Zhou S, Fu C, Berry DA, Walter RB, Freeman SD, Hourigan CS, Huang X, Nogueras Gonzalez G, Hwang H, Qi X, Kantarjian H, Ravandi F. Association of Measurable Residual Disease With Survival Outcomes in Patients With Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Oncol 2020; 6:1890-1899. [PMID: 33030517 PMCID: PMC7545346 DOI: 10.1001/jamaoncol.2020.4600] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Measurable residual disease (MRD) refers to neoplastic cells that cannot be detected by standard cytomorphologic analysis. In patients with acute myeloid leukemia (AML), determining the association of MRD with survival may improve prognostication and inform selection of efficient clinical trial end points. OBJECTIVE To examine the association between MRD status and disease-free survival (DFS) and overall survival (OS) in patients with AML using scientific literature. DATA SOURCES Clinical studies on AML published between January 1, 2000, and October 1, 2018, were identified via searches of PubMed, Embase, and MEDLINE. STUDY SELECTION Literature search and study screening were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Studies that assessed DFS or OS by MRD status in patients with AML were included. Reviews, non-English-language articles, and studies reporting only outcomes after hematopoietic cell transplantation or those with insufficient description of MRD information were excluded. DATA EXTRACTION AND SYNTHESIS Study sample size, median patient age, median follow-up time, MRD detection method, MRD assessment time points, AML subtype, specimen source, and survival outcomes were extracted. Meta-analyses were performed separately for DFS and OS using bayesian hierarchical modeling. MAIN OUTCOMES AND MEASURES Meta-analyses of survival probabilities and hazard ratios (HRs) were conducted for OS and DFS according to MRD status. RESULTS Eighty-one publications reporting on 11 151 patients were included. The average HR for achieving MRD negativity was 0.36 (95% bayesian credible interval [CrI], 0.33-0.39) for OS and 0.37 (95% CrI, 0.34-0.40) for DFS. The estimated 5-year DFS was 64% for patients without MRD and 25% for those with MRD, and the estimated OS was 68% for patients without MRD and 34% for those with MRD. The association of MRD negativity with DFS and OS was significant for all subgroups, with the exception of MRD assessed by cytogenetics or fluorescent in situ hybridization. CONCLUSIONS AND RELEVANCE The findings of this meta-analysis suggest that achievement of MRD negativity is associated with superior DFS and OS in patients with AML. The value of MRD negativity appears to be consistent across age groups, AML subtypes, time of MRD assessment, specimen source, and MRD detection methods. These results support MRD status as an end point that may allow for accelerated evaluation of novel therapies in AML.
Collapse
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Shouhao Zhou
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Chenqi Fu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Donald A. Berry
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sylvie D. Freeman
- Institute of Infection and Immunity, University of Birmingham, Birmingham, United Kingdom
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | | | - Hyunsoo Hwang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Xinyue Qi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
19
|
Rotchanapanya W, Hokland P, Tunsing P, Owattanapanich W. Clinical Outcomes Based on Measurable Residual Disease Status in Patients with Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. J Pers Med 2020; 10:jpm10040250. [PMID: 33256157 PMCID: PMC7711894 DOI: 10.3390/jpm10040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Measurable residual disease (MRD) response during acute myeloid leukemia (AML) treatment is a gold standard for determining treatment strategy, especially in core-binding factor (CBL) AML. The aim of this study was to critically review the literature on MRD status in the CBF-AML to determine the overall impact of MRD status on clinical outcomes. Published studies in the MEDLINE and EMBASE databases from their inception up to 1 June 2019 were searched. The primary end-point was either overall survival (OS) or recurrence-free survival (RFS) between MRD negative and MRD positive CBF-AML patients. The secondary variable was cumulative incidence of relapse (CIR) between groups. Of the 736 articles, 13 relevant studies were included in this meta-analysis. The MRD negative group displayed more favorable recurrence-free survival (RFS) than those with MRD positivity, with a pooled odds ratio (OR) of 4.5. Moreover, OS was also superior in the MRD negative group, with a pooled OR of 7.88. Corroborating this, the CIR was statistically significantly lower in the MRD negative group, with a pooled OR of 0.06. The most common cutoff MRD level was 1 × 10−3. These results suggest that MRD assessment should be a routine investigation in clinical practice in this AML subset.
Collapse
Affiliation(s)
- Wannaphorn Rotchanapanya
- Division of Hematology, Department of Medicine, Chiangrai Prachanukroh Hospital, Chiang Rai 57000, Thailand;
| | - Peter Hokland
- Division of Hematology, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Pattaraporn Tunsing
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Correspondence: ; Tel.: +66-2419-4448
| |
Collapse
|
20
|
Palmieri R, Buccisano F, Maurillo L, Del Principe MI, Paterno G, Venditti A, Martinelli G, Cerchione C. Current strategies for detection and approach to measurable residual disease in acute myeloid leukemia. Minerva Med 2020; 111:386-394. [PMID: 32955825 DOI: 10.23736/s0026-4806.20.07016-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Baseline cytogenetic/genetic features have been widely recognized to play a critical prognostic role in acute myeloid leukemia (AML) and have proven useful in designing risk-adapted treatment strategies. Nevertheless, to improve further the outcome of AML patients we are still in need of accurate methods to explore the quality of response and to adequately discriminate patients who are likely to relapse over time from those who are in deep and stable remission. In this view, is it well established that measurement of leukemic cells surviving chemotherapy (called measurable residual disease, MRD) during the course of treatment may be a reliable biomarker in predicting relapse. Detection of MRD relies on highly sensitive techniques, such as quantitative polymerase chain reaction and multiparametric flow cytometry, which, due to their levels of specificity and sensitivity, are increasingly included in the decision-making process of AML treatment. In the present manuscript, we will review the current techniques of MRD investigation and their clinical contribution to AML management.
Collapse
Affiliation(s)
- Raffaele Palmieri
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy -
| | - Luca Maurillo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | | | | | - Adriano Venditti
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
21
|
Hasan SK, Patkar NV, Rajamanickam D, Gokarn A, Lucena-Araujo AR, Tembhare P, Bagal B, Kadam Amare P, Jain H, Gujral S, Sengar M, Subramanian PG, Khattry N. Over expression of brain and acute leukemia, cytoplasmic and ETS-related gene is associated with poor outcome in acute myeloid leukemia. Hematol Oncol 2020; 38:808-816. [PMID: 32893896 DOI: 10.1002/hon.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 11/07/2022]
Abstract
The high expression of brain and acute leukemia, cytoplasmic (BAALC) and ETS-related gene (ERG) has been reported to influence the outcome in acute myeloid leukemia (AML), but due to limited prospective studies, their role as prognostic factors is unclear. At diagnosis, the prognostic value of BAALC and ERG expression with respect to other cytogenetic and molecular markers was analyzed in 149 AML patients. Patients were divided into quartiles which resulted in the formation of four groups (G1-G4) based on expression values of BAALC and ERG and clinical response defined across groups. Groups with similar survival probabilities were merged together and categorized subsequently as high versus low expressers. Patients with high BAALC and ERG expression had significantly lower overall survival (OS; BAALC: p = 0.001 at 5 years 29.4% vs. 69.8%; ERG: p < 0.0001 at 5 years 4% vs. 50.4%) and disease-free survival (BAALC: p = 0.001 at 5 years 19.5% vs. 69.8%; ERG: p < 0.0001 at 5 years 4.2% vs. 47%). Patients were further stratified combining BAALC and ERG expression in an integrative prognostic risk score (IPRS). After a median follow-up of 54 months (95% CI 45-63 months) among survivors, IPRS for high versus low expressers was a significant predictor for OS (BAALC + ERG: 4% vs. 71.6%, p < 0.0001) and DFS (BAALC + ERG: 4.5% vs. 74.1%, p < 0.0001). In a multivariate model, IPRS of BAALC + ERG expression retained prognostic significance for OS (hazard ratio [HR] 2.96, 95%CI 1.91-4.59, p < 0.001) and DFS (HR 3.61, 95%CI 2.26-5.76, p < 0.001).
Collapse
Affiliation(s)
- Syed Khizer Hasan
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Deepan Rajamanickam
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Anant Gokarn
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | | | - Prashant Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | | | - Hasmukh Jain
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | | | - Navin Khattry
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| |
Collapse
|
22
|
Bewersdorf JP, Shallis RM, Boddu PC, Wood B, Radich J, Halene S, Zeidan AM. The minimal that kills: Why defining and targeting measurable residual disease is the “Sine Qua Non” for further progress in management of acute myeloid leukemia. Blood Rev 2020; 43:100650. [DOI: 10.1016/j.blre.2019.100650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
23
|
Abstract
OPINION STATEMENT There is increasing awareness that AML is a widely heterogeneous disease, not only based on clinical characteristics and demographics of the patients we treat but also based on the genomics of the disease. Wider accessibility to next-generation DNA sequencing in AML has identified recurrent genetic abnormalities that drive disease biology, define overall prognosis, and predict for response to newly developed target-specific therapies. This knowledge has allowed the field to move away from a "one-size-fits-all" approach in newly diagnosed AML, to a more thoughtful, individualized approachy based on these factors. The first steps in realizing this new approach involve developing systems to efficiently obtain and analyze patient- and disease-related factors prior to starting therapy and having available clinical trials to address each subtype.
Collapse
|
24
|
Moffitt AB, Spector MS, Andrews P, Kendall J, Alexander J, Stepansky A, Ma B, Kolitz J, Chiorazzi N, Allen SL, Krasnitz A, Wigler M, Levy D, Wang Z. Multiplex accurate sensitive quantitation (MASQ) with application to minimal residual disease in acute myeloid leukemia. Nucleic Acids Res 2020; 48:e40. [PMID: 32083660 PMCID: PMC7144909 DOI: 10.1093/nar/gkaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 11/30/2022] Open
Abstract
Measuring minimal residual disease in cancer has applications for prognosis, monitoring treatment and detection of recurrence. Simple sequence-based methods to detect nucleotide substitution variants have error rates (about 10−3) that limit sensitive detection. We developed and characterized the performance of MASQ (multiplex accurate sensitive quantitation), a method with an error rate below 10−6. MASQ counts variant templates accurately in the presence of millions of host genomes by using tags to identify each template and demanding consensus over multiple reads. Since the MASQ protocol multiplexes 50 target loci, we can both integrate signal from multiple variants and capture subclonal response to treatment. Compared to existing methods for variant detection, MASQ achieves an excellent combination of sensitivity, specificity and yield. We tested MASQ in a pilot study in acute myeloid leukemia (AML) patients who entered complete remission. We detect leukemic variants in the blood and bone marrow samples of all five patients, after induction therapy, at levels ranging from 10−2 to nearly 10−6. We observe evidence of sub-clonal structure and find higher target variant frequencies in patients who go on to relapse, demonstrating the potential for MASQ to quantify residual disease in AML.
Collapse
Affiliation(s)
- Andrea B Moffitt
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mona S Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joan Alexander
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Asya Stepansky
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - BeiCong Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jonathan Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alex Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
25
|
Juul-Dam KL, Ommen HB, Nyvold CG, Walter C, Vålerhaugen H, Kairisto V, Abrahamsson J, Alm SJ, Jahnukainen K, Lausen B, Reinhardt D, Zeller B, von Neuhoff N, Fogelstrand L, Hasle H. Measurable residual disease assessment by qPCR in peripheral blood is an informative tool for disease surveillance in childhood acute myeloid leukaemia. Br J Haematol 2020; 190:198-208. [PMID: 32175599 DOI: 10.1111/bjh.16560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
Abstract
Serial assessments of measurable (or minimal) residual disease (MRD) by qPCR may identify nascent relapse in children with acute myeloid leukaemia (AML) and enable pre-emptive therapy. We investigated the kinetics and prognostic impact of recurrent fusion transcripts (RUNX1-RUNX1T1, CBFB-MYH11, KMT2A-MLLT3 or KMT2A-ELL) in 774 post-induction samples from bone marrow (BM, 347) and peripheral blood (PB, 427) from 75 children with AML. BM MRD persistence during consolidation did not increase the risk of relapse, and MRD at therapy completion did not correlate to outcome (HR = 0·64/MRD log reduction (CI: 0·32-1·26), P = 0·19). In contrast, 8/8 patients with detectable MRD in PB after first consolidation relapsed. Persistence (n = 4) and shifting from negative to positive (n = 10) in PB during follow-up predicted relapse in 14/14 patients. All 253 PB samples collected during follow-up from 36 patients in continuous complete remission were MRD negative. In core-binding factor AML, persistent low-level MRD positivity in BM during follow-up was frequent but an increment to above 5 × 10-4 heralded subsequent haematological relapse in 12/12 patients. We demonstrate that MRD monitoring in PB after induction therapy is highly informative and propose an MRD increment above 5 × 10-4 in PB and BM as a definition of molecular relapse since it always leads to haematological relapse.
Collapse
Affiliation(s)
| | - Hans B Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte G Nyvold
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.,Haematology-Pathology Research Laboratory, Department of Haematology, Odense University Hospital, Odense, Denmark
| | - Christiane Walter
- Department of Paediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helen Vålerhaugen
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
| | - Veli Kairisto
- Laboratory of Molecular Haematology and Pathology, Turku University Central Hospital, Turku, Finland
| | - Jonas Abrahamsson
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofie J Alm
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kirsi Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dirk Reinhardt
- Department of Paediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernward Zeller
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nils von Neuhoff
- Department of Paediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Linda Fogelstrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Yalniz FF, Patel KP, Bashir Q, Marin D, Ahmed S, Alousi AM, Chen J, Ciurea SO, Rezvani K, Popat UR, Shpall EJ, Champlin RE, Oran B. Significance of minimal residual disease monitoring by real‐time quantitative polymerase chain reaction in core binding factor acute myeloid leukemia for transplantation outcomes. Cancer 2020; 126:2183-2192. [DOI: 10.1002/cncr.32769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Fevzi F. Yalniz
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur P. Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas
| | - Qaiser Bashir
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Sairah Ahmed
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Julianne Chen
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Stefan O. Ciurea
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Uday R. Popat
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| | - Betül Oran
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
27
|
Measurable residual disease monitoring in acute myeloid leukemia with t(8;21)(q22;q22.1): results from the AML Study Group. Blood 2020; 134:1608-1618. [PMID: 31554635 DOI: 10.1182/blood.2019001425] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
We performed serial measurable residual disease (MRD) monitoring in bone marrow (BM) and peripheral blood (PB) samples of 155 intensively treated patients with RUNX1-RUNX1T1+ AML, using a qRT-PC-based assay with a sensitivity of up to 10-6. We assessed both reduction of RUNX1-RUNX1T1 transcript levels (TLs) and achievement of MRD negativity (MRD-) for impact on prognosis. Achievement of MR2.5 (>2.5 log reduction) after treatment cycle 1 and achievement of MR3.0 after treatment cycle 2 were significantly associated with a reduced risk of relapse (P = .034 and P = .028, respectively). After completion of therapy, achievement of MRD- in both BM and PB was an independent, favorable prognostic factor in cumulative incidence of relapse (4-year cumulative incidence relapse: BM, 17% vs 36%, P = .021; PB, 23% vs 55%, P = .001) and overall survival (4-year overall survival rate BM, 93% vs 70%, P = .007; PB, 87% vs 47%, P < .0001). Finally, during follow-up, serial qRT-PCR analyses allowed prediction of relapse in 77% of patients exceeding a cutoff value of 150 RUNX1-RUNX1T1 TLs in BM, and in 84% of patients exceeding a value of 50 RUNX1-RUNX1T1 TLs in PB. The KIT mutation was a significant factor predicting a lower CR rate and inferior outcome, but its prognostic impact was outweighed by RUNX1-RUNX1T1 TLs during treatment. Virtually all relapses occurred within 1 year after the end of treatment, with a very short latency from molecular to morphologic relapse, necessitating MRD assessment at short intervals during this time period. Based on our data, we propose a refined practical guideline for MRD assessment in RUNX1-RUNX1T1+ AML.
Collapse
|
28
|
Abstract
OPINION STATEMENT The expanding availability of minimal or more precisely measurable residual disease (MRD) assessment in acute myeloid leukemia (AML) with its possible implications for therapeutic decisions is of high interest to clinicians treating AML patients. A variety of mostly retrospective studies have shown that AML patients with a positive MRD test, assessed by different techniques at defined cutoffs and time-points, are at significantly higher risk of relapse and experience shorter overall survival compared to MRD-negative patients. How this valuable information may be adapted in the daily routine of patients' treatment to distinguish individuals who need more aggressive therapy from the ones who can be spared additional therapy to avoid treatment-related toxicities is still being investigated. With the exception of MRD analyses in acute promyelocitic leukemia (APL), the clinical implications of MRD tests for the individual AML patient are still mostly unknown. We currently lack hard evidence that MRD-based therapy modulation during treatment or pre-emptive intervention in MRD-positive patients after therapy would improve outcomes in non-APL AML patients. These questions will be evaluated in prospective randomized clinical trials. Today, however, some conclusions with regard to MRD assessment in AML can be drawn from the published data and are reviewed in this article.
Collapse
|
29
|
|
30
|
Balagopal V, Hantel A, Kadri S, Steinhardt G, Zhen CJ, Kang W, Wanjari P, Ritterhouse LL, Stock W, Segal JP. Measurable residual disease monitoring for patients with acute myeloid leukemia following hematopoietic cell transplantation using error corrected hybrid capture next generation sequencing. PLoS One 2019; 14:e0224097. [PMID: 31658273 PMCID: PMC6816574 DOI: 10.1371/journal.pone.0224097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022] Open
Abstract
Improved systems for detection of measurable residual disease (MRD) in acute myeloid leukemia (AML) are urgently needed, however attempts to utilize broad-scale next-generation sequencing (NGS) panels to perform multi-gene surveillance in AML post-induction have been stymied by persistent premalignant mutation-bearing clones. We hypothesized that this technology may be more suitable for evaluation of fully engrafted patients following hematopoietic cell transplantation (HCT). To address this question, we developed a hybrid-capture NGS panel utilizing unique molecular identifiers (UMIs) to detect variants at 0.1% VAF or below across 22 genes frequently mutated in myeloid disorders and applied it to a retrospective sample set of blood and bone marrow DNA samples previously evaluated as negative for disease via standard-of-care short tandem repeat (STR)-based engraftment testing and hematopathology analysis in our laboratory. Of 30 patients who demonstrated trackable mutations in the 22 genes at eventual relapse by standard NGS analysis, we were able to definitively detect relapse-associated mutations in 18/30 (60%) at previously disease-negative timepoints collected 20-100 days prior to relapse date. MRD was detected in both bone marrow (15/28, 53.6%) and peripheral blood samples (9/18, 50%), while showing excellent technical specificity in our sample set. We also confirmed the disappearance of all MRD signal with increasing time prior to relapse (>100 days), indicating true clinical specificity, even using genes commonly associated with clonal hematopoiesis of indeterminate potential (CHIP). This study highlights the efficacy of a highly sensitive, NGS panel-based approach to early detection of relapse in AML and supports the clinical validity of extending MRD analysis across many genes in the post-transplant setting.
Collapse
Affiliation(s)
- Vidya Balagopal
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Andrew Hantel
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Sabah Kadri
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - George Steinhardt
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Chao Jie Zhen
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Wenjun Kang
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, United States of America
| | - Pankhuri Wanjari
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lauren L. Ritterhouse
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Wendy Stock
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeremy P. Segal
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Jentzsch M, Schwind S, Bach E, Stasik S, Thiede C, Platzbecker U. Clinical Challenges and Consequences of Measurable Residual Disease in Non-APL Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:E1625. [PMID: 31652787 PMCID: PMC6893483 DOI: 10.3390/cancers11111625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to detect residual levels of leukemic blasts (measurable residual disease, MRD) has already been integrated in the daily routine for treatment of patients with chronic myeloid and acute lymphoblastic leukemia. In acute myeloid leukemia (AML), a variety of mostly retrospective studies have shown that individuals in AML remission who tested positive for MRD at specific time-points or had increasing MRD levels are at significantly higher risk of relapse and death compared to MRD-negative patients. However, these studies differ with respect to the "MRD-target", time-point of MRD determination, material analyzed, and method applied. How this probably very valuable MRD information in individual patients may be adapted in the daily clinical routine, e.g., to separate patients who need more aggressive therapies from those who may be spared additional-potentially toxic-therapies is still a work-in-progress. With the exception of MRD assessment in acute promyelocytic leukemia (APL), the lack of randomized, prospective trials renders MRD-based decisions and clinical implications in AML a difficult task. As of today, we still do not have proof that early intervention in MRD-positive AML patients would improve outcomes, although this is very likely. In this article, we review the current knowledge on non-APL AML MRD assessment and possible clinical consequences.
Collapse
Affiliation(s)
- Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, 04103 Leipzig, Germany.
| | - Sebastian Schwind
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, 04103 Leipzig, Germany.
| | - Enrica Bach
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, 04103 Leipzig, Germany.
| | - Sebastian Stasik
- Medical Department I, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Christian Thiede
- Medical Department I, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, 04103 Leipzig, Germany.
| |
Collapse
|
32
|
Voso MT, Ottone T, Lavorgna S, Venditti A, Maurillo L, Lo-Coco F, Buccisano F. MRD in AML: The Role of New Techniques. Front Oncol 2019; 9:655. [PMID: 31396481 PMCID: PMC6664148 DOI: 10.3389/fonc.2019.00655] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022] Open
Abstract
In the context of precision medicine, assessment of minimal residual disease (MRD) has been used in acute myeloid leukemia (AML) to direct individual treatment programs, including allogeneic stem cell transplantation in patients at high-risk of relapse. One of the limits of this approach has been in the past the paucity of AML markers suitable for MRD assessment. Recently, the number of biomarkers has increased, due to the identification of highly specific leukemia-associated immunophenotypes by multicolor flow-cytometry, and of rare mutated gene sequences by digital droplet PCR, or next-generation sequencing (NGS). In addition, NGS allowed unraveling of clonal heterogeneity, present in AML at initial diagnosis or developing during treatment, which influences reliability of specific biomarkers, that may be unstable during the disease course. The technological advances have increased the application of MRD-based strategies to a significantly higher number of AML patients, and the information deriving from MRD assessment has been used to design individual post-remission protocols and pre-emptive treatments in patients with sub-clinical relapse. This led to the definition of MRD-negative complete remission as outcome definition in the recently published European Leukemianet MRD guidelines. In this review, we summarized the principles of modern technologies and their clinical applications for MRD detection in AML patients, according to the specific leukemic markers.
Collapse
Affiliation(s)
- Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Santa Lucia Foundation, IRCCS, Neuro-Oncohematology, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Santa Lucia Foundation, IRCCS, Neuro-Oncohematology, Rome, Italy
| | - Serena Lavorgna
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
33
|
Abstract
Increasing evidence supports the prognostic significance of measurable residual disease (MRD) in acute myeloid leukemia (AML). Dynamic MRD assessment for patients with AML complements baseline patient risk assessment factors in determining patient prognosis. MRD status may also be helpful in informing therapeutic decisions. The European Leukemia Net MRD working party recently issued consensus recommendations for the use of MRD in AML. The Food and Drug Administration also issued advice for using MRD in trials of hematologic malignancies. This article discusses MRD testing, highlights the challenges in adopting MRD testing in clinical practice, and provides insights into the future of the field.
Collapse
|
34
|
Ehinger M, Pettersson L. Measurable residual disease testing for personalized treatment of acute myeloid leukemia. APMIS 2019; 127:337-351. [PMID: 30919505 DOI: 10.1111/apm.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
This review summarizes - with the practicing hematologist in mind - the methods used to determine measurable residual disease (MRD) in everyday practice with some future perspectives, and the current knowledge about the prognostic impact of MRD on outcome in acute myeloid leukemia (AML), excluding acute promyelocytic leukemia. Possible implications for choice of MRD method, timing of MRD monitoring, and guidance of therapy are discussed in general and in some detail for certain types of leukemia with specific molecular markers to monitor, including core binding factor (CBF)-leukemias and NPM1-mutated leukemias.
Collapse
Affiliation(s)
- Mats Ehinger
- Department of Clinical Sciences, Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Faculty of Medicine, Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Shin HJ, Min WS, Min YH, Cheong JW, Lee JH, Kim IH, Hong DS, Ahn JS, Kim HJ, Lee WS, Jung CW, Jang JH, Park Y, Kim HJ. Different prognostic effects of core-binding factor positive AML with Korean AML registry data. Ann Hematol 2019; 98:1135-1147. [PMID: 30758645 DOI: 10.1007/s00277-019-03624-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
Abstract
Core-binding factor acute myeloid leukemia (CBF-AML) data in Asian countries has been rarely reported. We analyzed 392 patients with CBF-AML [281 with t(8;21), 111 with inv.(16)/t(16;16)] among data from 3041 patients with AML from the Korean AML Registry. Interestingly, del(9q) was less frequently detected in Korean than in German patients with t(8;21) (7.5% vs. 17%), and del(7q) was more frequently detected in Korean patients with inv(16). Overall survival (OS) was similar between patients in the first complete remission (CR) who received allogeneic (alloSCT) and autologous stem cell transplantation (ASCT) for CBF-AML. OS of t(8;21) patients was poor when undergoing alloSCT in second/third CR, while OS of inv(16) patients in second/third CR was similar to that in first CR. Patients with > 3-log reduction of RUNX1/RUNX1T1 qPCR had improved 3-year event-free survival (EFS) than those without (73.2% vs. 50.3%). Patients with t(8;21) AML with D816 mutation of the c-Kit gene showed inferior EFS and OS. These poor outcomes might be overcome by alloSCT. Multivariate analysis for OS in patients with t(8;21) revealed older age, > 1 course of induction chemotherapy to achieve CR, loss of sex chromosome, del(7q), and second/third CR or not in CR before SCT as independent prognostic variables. Especially, del(7q) is the most powerful prediction factor of poor outcomes, especially in patients with t(8;21) (hazard ratio, 27.23; P < 0.001). Further study is needed to clarify the clinical effect of cytogenetics and gene mutation in patients with CBF-AML, between Asian and Western countries.
Collapse
Affiliation(s)
- Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, School of Medicine, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Woo-Sung Min
- Division of Hematology, Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, Republic of Korea
| | - Yoo Hong Min
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Ho Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Dae Sik Hong
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, South Korea
| | - Jae-Sook Ahn
- Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do, South Korea
| | - Hyeoung-Joon Kim
- Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do, South Korea
| | - Won-Sik Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, South Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jun-Ho Jang
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Park
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Medical Center, Seoul, South Korea
| | - Hee-Je Kim
- Division of Hematology, Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, Republic of Korea.
| | | |
Collapse
|
36
|
Rautenberg C, Germing U, Haas R, Kobbe G, Schroeder T. Relapse of Acute Myeloid Leukemia after Allogeneic Stem Cell Transplantation: Prevention, Detection, and Treatment. Int J Mol Sci 2019; 20:E228. [PMID: 30626126 PMCID: PMC6337734 DOI: 10.3390/ijms20010228] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and prognostically heterogeneous hematopoietic stem cell disease that may be cured in eligible patients with intensive chemotherapy and/or allogeneic stem cell transplantation (allo-SCT). Tremendous advances in sequencing technologies have revealed a large amount of molecular information which has markedly improved our understanding of the underlying pathophysiology and enables a better classification and risk estimation. Furthermore, with the approval of the FMS-like tyrosine kinase 3 (FLT3) inhibitor Midostaurin a first targeted therapy has been introduced into the first-line therapy of younger patients with FLT3-mutated AML and several other small molecules targeting molecular alterations such as isocitrate dehydrogenase (IDH) mutations or the anti-apoptotic b-cell lymphoma 2 (BCL-2) protein are currently under investigation. Despite these advances, many patients will have to undergo allo-SCT during the course of disease and depending on disease and risk status up to half of them will finally relapse after transplant. Here we review the current knowledge about the molecular landscape of AML and how this can be employed to prevent, detect and treat relapse of AML after allo-SCT.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/prevention & control
- Leukemia, Myeloid, Acute/therapy
- Mutation/genetics
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/drug therapy
- Recurrence
- Transplantation, Homologous
Collapse
Affiliation(s)
- Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| |
Collapse
|
37
|
Moors I, Vandepoele K, Philippé J, Deeren D, Selleslag D, Breems D, Straetmans N, Kerre T, Denys B. Clinical implications of measurable residual disease in AML: Review of current evidence. Crit Rev Oncol Hematol 2019; 133:142-148. [DOI: 10.1016/j.critrevonc.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023] Open
|
38
|
Kantarjian HM, Keating MJ, Freireich EJ. Toward the potential cure of leukemias in the next decade. Cancer 2018; 124:4301-4313. [DOI: 10.1002/cncr.31669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Hagop M. Kantarjian
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Michael J. Keating
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Emil J Freireich
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
39
|
Chen X, Wang F, Zhang Y, Wang M, Tian W, Teng W, Ma X, Guo L, Fang J, Zhang Y, Zhu P, Liu H. Panoramic view of common fusion genes in a large cohort of Chinese de novo acute myeloid leukemia patients. Leuk Lymphoma 2018; 60:1071-1078. [PMID: 30277115 DOI: 10.1080/10428194.2018.1516876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fusion genes are major molecular biological abnormalities in hematological malignancies. This study aimed to depict the common recurrent gene-fusion landscape in acute myeloid leukemia (AML). 3135 de novo AML cases were enrolled and 36 recurrent fusion genes were assessed using multiplex-nested RT-PCR. Twenty-three distinct fusion genes were detected in 1292 (41.21%) cases. The incidence of fusion genes was higher in pediatric AML than in adult cases. The pediatric patients had higher incidences of RUNX1-RUNX1T1, KMT2A-MLLT3, KMT2A-MLLT10, KMT2A-MLLT11, KMT2A-MLLT6, and FUS-ERG, whereas KMT2A-PTD was more common in adult patients. The occurrence of molecular abnormalities involving the KMT2A gene and CBFB-MYH11 was lower in Chinese pediatric AML compared to Western reports. The incidence of RUNX1-RUNX1T1 was higher in both pediatric and adult patients in our study than in Western countries. This study provides a genetic landscape of common fusion genes in Chinese AML and confirms different incidences between age groups and races.
Collapse
Affiliation(s)
- Xue Chen
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China
| | - Fang Wang
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China
| | - Yang Zhang
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China
| | - Mangju Wang
- b Department of Hematology , Peking University First Hospital , Beijing , China
| | - Wenjun Tian
- c Department of Clinical Laboratory , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Wen Teng
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China
| | - Xiaoli Ma
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China
| | - Lei Guo
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China
| | - Jiancheng Fang
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China
| | - Ying Zhang
- b Department of Hematology , Peking University First Hospital , Beijing , China
| | - Ping Zhu
- b Department of Hematology , Peking University First Hospital , Beijing , China
| | - Hongxing Liu
- a Division of Pathology and Laboratory Medicine , Hebei Yanda Lu Daopei Hospital , Langfang , China.,d Translational Medicine Research Center, Beijing Lu Daopei Institute of Hematology , Beijing , China
| |
Collapse
|
40
|
Tian X, Wang Y, Liu Y, Yin J, Chen D, Ke X, Ma W. Comparison of spatial chromosomal organization between bone marrow and peripheral blood in acute myeloid leukemia. Oncol Lett 2018; 16:4656-4662. [PMID: 30214600 DOI: 10.3892/ol.2018.9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia associated with t(8;21)(q22;q22)/runt related transcription factor (RUNX)1-RUNX1 translocation partner 1 has been reported to exhibit a favorable outcome. The quantitative polymerase chain reaction is a reliable method for assessing minimal residual disease persistence, and peripheral blood (PB) samples are as informative as bone marrow (BM) samples during follow-up monitoring. However, few studies have compared the spatial organization of leukemia-specific chromosomes between BM and PB. In the present study, paired BM and PB samples were extracted from 6 patients with acute myeloid leukaemia-M2 and compared using three-dimensional fluorescence in situ hybridization. Cells were classified into three types: Normal, proximal and malignant. Comparisons of proportions (% of all cells) of different cell types revealed no significant difference between BM and PB samples. The relative radial positions (RRPs; d/R) of chromosomes 8 and 21 were consistent for 2/3 of BM and PB samples. The RRPs of chromosomes in proximal pairs were more interior in nuclei compared with chromosomes in normal pairs for BM and PB samples. The consistency of the spatial organization of chromosomes between BM and PB suggests that PB may be an alternative to BM for research and clinical diagnosis.
Collapse
Affiliation(s)
- Xueli Tian
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Yanfang Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yu Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Jun Yin
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Dieyan Chen
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaoyan Ke
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Wanyun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P.R. China.,Collaborative Innovation Centre of Quantum Matter, Beijing 100084, P.R. China
| |
Collapse
|
41
|
Xiaosu Z, Leqing C, Yazhen Q, Yu W, Xiaohui Z, Lanping X, Xiaojun H, Yingjun C. Classifying AML patients with inv(16) into high-risk and low-risk relapsed patients based on peritransplantation minimal residual disease determined by CBFβ/MYH11 gene expression. Ann Hematol 2018; 98:73-81. [DOI: 10.1007/s00277-018-3480-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022]
|
42
|
Molecular remission at the end of treatment is a necessary goal for a good outcome in ELN favorable-risk acute myeloid leukemia: a real-life analysis on 201 patients by the Rete Ematologica Lombarda network. Ann Hematol 2018; 97:2107-2115. [PMID: 30009341 DOI: 10.1007/s00277-018-3424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Favorable acute myeloid leukemia (AML) patients (pts.) demonstrate a relatively good outcome with standard induction; thus, pts. are generally not addressed to allogeneic transplant in first remission. However, it is not clear if also in a real-life setting, the outcome is homogeneous in the different favorable molecular groups and which are the parameters significantly associated to an increased relapse risk, useful to suggest the need of an intensified approach. In order to clarify this point, we collected clinical data on consecutive unselected AML pts. assigned to favorable category (modified ELN 2010 due to the inclusion of double-mutated CEBPA-positive cases), diagnosed and treated in six centers of the Italian network Rete Ematologica Lombarda (REL) from 2007 to 2015. We assessed response (CR, mCR), relapse rate (CIR), and outcome (OS, DFS) after first-line treatment. A total of 201 pts. was studied and the analysis was performed globally and in each molecular group: t(8;21)(q22;q22)/RUNX1-RUNX1T1 (30 pts., 14.9%), inv. (16)(p13q22) or t(16;16)(p13q22)/CBFB-MIH11 (35 pts., 17.4%), normal karyotype and mutated NPM1 and negative FLT3-ITD (116 pts., 57.7%) or double-mutated CEBPA (CEBPAdm) (20 pts., 10%). Complete remission (CR) was obtained in 188 pts. (93.5%), molecular CR (mCR) in 114 (67.5%); After a median follow-up of 2.4 years, cumulative incidence of relapse (CIR) was documented in 78 of 188 responding pts. (41%) after a median time of 11.3 months. CIR was higher in the CBFB-MIH11 group, in pts. achieving only a hematological response without mCR (72.1 vs 28.1%, p < 0.001), in older pts. and it resulted independently associated with a lower median cytarabine cumulative dose (CCD). Median OS was not reached: after 5 years it was 66.3%, and median DFS was 5.3 years, both without difference among groups. Molecular CR reached at any time, during or after the end of first-line treatment, was significantly associated with better DFS, and in particular, mCR assessed at the end of treatment was confirmed in multivariate analysis as an independent prognostic factor both for DFS and OS. In conclusion, the present study confirms in a real-life context the overall good prognosis of favorable-risk AML; the achievement of any molecular negativity during first-line treatment, particularly when assessed at the end of treatment, is associated with lower relapse and better survival. Increasing age at diagnosis has a negative prognostic impact, while CCD higher than 18 g/sqm is associated with better outcome.
Collapse
|
43
|
Molecular Minimal Residual Disease Testing in Acute Myeloid Leukemia: A Review for the Practicing Clinician. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:636-647. [PMID: 30006258 DOI: 10.1016/j.clml.2018.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022]
Abstract
Minimal residual disease (MRD) testing in acute myeloid leukemia is increasingly being used to assess treatment response and stratify the risk of relapse for individual patients. Molecular methods for MRD testing began with PCR-based assays for individual recurrent mutations. To date, there is robust evidence for testing NPM1, CBFB-MYH11, and RUNX1/RUNXT1 mutations using this approach, though the best timing and threshold level for each mutation varies. More recent approaches have been with PCR-based multigene panels, occasionally combined with flow cytometric techniques, and next-generation sequencing techniques. This review outlines the various techniques used in molecular approaches to MRD, the evidence behind individual mutation testing, and the novel approaches for evaluating multigene MRD so that clinicians can understand and incorporate these evaluations into their practice.
Collapse
|
44
|
Abstract
The presence of measurable ("minimal") residual disease (MRD) after induction and/or consolidation chemotherapy is a significant risk factor for relapse in patients with acute myeloid leukemia (AML). In recognition of the clinical significance of AML MRD, the European LeukemiaNet (ELN) recently recommended the establishment of CR-MRDNegative as a separate category of treatment response. This recommendation represents a major milestone in the integration of AML MRD testing in standard clinical practice. This review article summarizes the methodologies employed in AML MRD detection and their application in clinical studies that provide evidence supporting the clinical utility of AML MRD testing. Future MRD evaluations in AML likely will require an integrated approach combining multi-parameter flow cytometry and high-sensitivity molecular techniques applied to time points during and after completion of therapy in order to provide the most accurate and comprehensive assessment of treatment response.
Collapse
|
45
|
Coustan-Smith E, Song G, Shurtleff S, Yeoh AEJ, Chng WJ, Chen SP, Rubnitz JE, Pui CH, Downing JR, Campana D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight 2018; 3:98561. [PMID: 29720577 DOI: 10.1172/jci.insight.98561] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Optimal management of acute myeloid leukemia (AML) requires monitoring of treatment response, but minimal residual disease (MRD) may escape detection. We sought to identify distinctive features of AML cells for universal MRD monitoring. METHODS We compared genome-wide gene expression of AML cells from 157 patients with that of normal myeloblasts. Markers encoded by aberrantly expressed genes, including some previously associated with leukemia stem cells, were studied by flow cytometry in 240 patients with AML and in nonleukemic myeloblasts from 63 bone marrow samples. RESULTS Twenty-two (CD9, CD18, CD25, CD32, CD44, CD47, CD52, CD54, CD59, CD64, CD68, CD86, CD93, CD96, CD97, CD99, CD123, CD200, CD300a/c, CD366, CD371, and CX3CR1) markers were aberrantly expressed in AML. Leukemia-associated profiles defined by these markers extended to immature CD34+CD38- AML cells; expression remained stable during treatment. The markers yielded MRD measurements matching those of standard methods in 208 samples from 52 patients undergoing chemotherapy and revealed otherwise undetectable MRD. They allowed MRD monitoring in 129 consecutive patients, yielding prognostically significant results. Using a machine-learning algorithm to reduce high-dimensional data sets to 2-dimensional data, the markers allowed a clear visualization of MRD and could detect 1 leukemic cell among more than 100,000 normal cells. CONCLUSION The markers uncovered in this study allow universal and sensitive monitoring of MRD in AML. In combination with contemporary analytical tools, the markers improve the discrimination between leukemic and normal cells, thus facilitating data interpretation and, hence, the reliability of MRD results. FUNDING National Cancer Institute (CA60419 and CA21765); American Lebanese Syrian Associated Charities; National Medical Research Council of Singapore (1299/2011); Viva Foundation for Children with Cancer, Children's Cancer Foundation, Tote Board & Turf Club, and Lee Foundation of Singapore.
Collapse
Affiliation(s)
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allen Eng-Juh Yeoh
- Department of Pediatrics, National University of Singapore, Singapore.,National University Cancer Institute, Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- National University Cancer Institute, Singapore, National University of Singapore, Singapore
| | - Siew Peng Chen
- Department of Pediatrics, National University of Singapore, Singapore
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dario Campana
- Department of Pediatrics, National University of Singapore, Singapore.,National University Cancer Institute, Singapore, National University of Singapore, Singapore
| |
Collapse
|
46
|
Coltoff A, Houldsworth J, Keyzner A, Renteria AS, Mascarenhas J. Role of minimal residual disease in the management of acute myeloid leukemia-a case-based discussion. Ann Hematol 2018; 97:1155-1167. [PMID: 29704019 DOI: 10.1007/s00277-018-3330-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 01/04/2023]
Abstract
AML is stratified into risk-categories based on cytogenetic and molecular features that prognosticate survival and facilitate treatment algorithms, though there is still significant heterogeneity within risk groupings with regard to risk of relapse and prognosis. The ambiguity regarding prognosis is due in large part to the relatively outdated criteria used to determine response to therapy. Whereas risk assessment has evolved to adopt cytogenetic and molecular profiling, response criteria are still largely determined by bone marrow morphologic assessment and peripheral cell count recovery. Minimal residual disease refers to the detection of a persistent population of leukemic cells below the threshold for morphologic CR determination. MRD assessment represents standard of care for ALL and PML, but concerns over prognostic capability and standardization have limited its use in AML. However, recent advancements in MRD assessment and research supporting the use of MRD assessment in AML require the reconsideration and review of this clinical tool in this disease entity. This review article will first compare and contrast the major modalities used to assess MRD in AML, such as RQ-PCR and flow cytometry, as well as touching upon newer technologies such as next-generation sequencing and digital droplet PCR. The majority of the article will discuss the evidence supporting the use of MRD assessment to prognosticate disease at various time points during treatment, and review the limited number of studies that have incorporated MRD assessment into novel treatment algorithms for AML. The article concludes by discussing the current major limitations to the implementation of MRD assessment in this disease. The manuscript is bookended by a clinical vignette that highlights the need for further research and refinement of this clinical tool.
Collapse
Affiliation(s)
- A Coltoff
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Houldsworth
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Keyzner
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A S Renteria
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Adult Leukemia Program, Myeloproliferative Disorders Clinical Research Program, Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY, 10029, USA.
| |
Collapse
|
47
|
Brinda B, Khan I, Parkin B, Konig H. The rocky road to personalized medicine in acute myeloid leukaemia. J Cell Mol Med 2018; 22:1411-1427. [PMID: 29327808 PMCID: PMC5824388 DOI: 10.1111/jcmm.13478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a malignant disorder of the myeloid blood lineage characterized by impaired differentiation and increased proliferation of hematopoietic precursor cells. Recent technological advances have led to an improved understanding of AML biology but also uncovered the enormous cytogenetic and molecular heterogeneity of the disease. Despite this heterogeneity, AML is mostly managed by a 'one-size-fits-all' approach consisting of intensive, highly toxic induction and consolidation chemotherapy. These treatment protocols have remained largely unchanged for the past several decades and only lead to a cure in approximately 30-35% of cases. The advent of targeted therapies in chronic myeloid leukaemia and other malignancies has sparked hope to improve patient outcome in AML. However, the implementation of targeted agents in AML therapy has been unexpectedly cumbersome and remains a difficult task due to a variety of disease- and patient-specific factors. In this review, we describe current standard and investigational therapeutic strategies with a focus on targeted agents and highlight potential tools that might facilitate the development of targeted therapies for this fatal disease. The classes of agents described in this review include constitutively activated signalling pathway inhibitors, surface receptor targets, epigenetic modifiers, drugs targeting the interaction of the hematopoietic progenitor cell with the stroma and drugs that target the apoptotic machinery. The clinical context and outcome with these agents will be examined to gain insight about their optimal utilization.
Collapse
Affiliation(s)
- Bryan Brinda
- Indiana University Melvin and Bren Simon Cancer CenterIndianapolisINUSA
| | - Irum Khan
- Division of Hematology and OncologyCollege of Medicine at ChicagoUniversity of IllinoisChicagoILUSA
| | - Brian Parkin
- University of Michigan Comprehensive Cancer CenterAnn ArborMIUSA
| | - Heiko Konig
- Indiana University Melvin and Bren Simon Cancer CenterIndianapolisINUSA
| |
Collapse
|
48
|
Frairia C, Aydin S, Audisio E, Riera L, Aliberti S, Allione B, Busca A, D'Ardia S, Dellacasa CM, Demurtas A, Evangelista A, Ciccone G, Francia di Celle P, Nicolino B, Stacchini A, Marmont F, Vitolo U. Post-remissional and pre-transplant role of minimal residual disease detected by WT1 in acute myeloid leukemia: A retrospective cohort study. Leuk Res 2017; 61:10-17. [DOI: 10.1016/j.leukres.2017.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 02/02/2023]
|
49
|
Ragon BK, Daver N, Garcia-Manero G, Ravandi F, Cortes J, Kadia T, Oran B, Ohanian M, Ferrajoli A, Pemmaraju N, Kantarjian HM, Borthakur G. Minimal residual disease eradication with epigenetic therapy in core binding factor acute myeloid leukemia. Am J Hematol 2017; 92:845-850. [PMID: 28494506 DOI: 10.1002/ajh.24782] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/11/2017] [Accepted: 05/06/2017] [Indexed: 11/11/2022]
Abstract
Recurrent translocations, t(8;21) or inv(16), in core binding factor acute myeloid leukemia (CBF-AML) are amenable to monitoring for minimal residual disease (MRD) with reverse transcriptase polymerase chain reaction (RTPCR). Despite a favorable prognosis, disease relapse remains the single cause of treatment failure in CBF-AML. Fusion products of these translocations recruit epigenetic silencing complexes resulting in hematopoietic maturation arrest. We hypothesized that maintenance therapy with hypomethylating agents (HMA), including decitabine (DAC) and azacitidine (AZA) after induction/consolidation, can be used for MRD elimination to ultimately prolong relapse free survival. Real-time quantitative (RTPCR) trends were reviewed in 23 patients (median age 53 years) with CBF-AML that received HMA therapy following induction/consolidation with fludarabine, cytarabine, and G-CSF (FLAG) with low dose gemtuzumab or idarubicin (NCT00801489). Of the 23 patients evaluated, 17 had a detectable RTPCR at HMA initiation. Five patients had progressive disease and a notable increase in RTPCR values over 1-2 cycles of HMA therapy. Twelve patients did not fail HMA and had a median RTPCR at HMA initiation of 0.06 (range, 0.01-0.91). Unlike the HMA failure subset, 11 of these patients had a reduction in RTPCR after the first or second cycle of HMA. Our data suggests that CBF-AML patients with low levels of RTPCR (between 0.01 and 0.05) at the conclusion of induction/consolidation chemotherapy benefit most from maintenance HMA, particularly those that have a reduction in the RTPCR within the first two cycles of HMA therapy.
Collapse
Affiliation(s)
- Brittany Knick Ragon
- Hematology/Oncology Fellowship, Division of Cancer Medicine; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Naval Daver
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | | | - Farhad Ravandi
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Jorge Cortes
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Tapan Kadia
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Betul Oran
- Department of Stem Cell Transplantation; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Maro Ohanian
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Alessandra Ferrajoli
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Hagop M. Kantarjian
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Gautam Borthakur
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
50
|
Parkin B, Londoño-Joshi A, Kang Q, Tewari M, Rhim AD, Malek SN. Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. J Clin Invest 2017; 127:3484-3495. [PMID: 28825596 DOI: 10.1172/jci91964] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
Acute myelogenous leukemia (AML) frequently relapses after complete remission (CR), necessitating improved detection and phenotypic characterization of treatment-resistant residual disease. In this work, we have optimized droplet digital PCR to broadly measure mutated alleles of recurrently mutated genes in CR marrows of AML patients at levels as low as 0.002% variant allele frequency. Most gene mutations persisted in CR, albeit at highly variable and gene-dependent levels. The majority of AML cases demonstrated residual aberrant oligoclonal hematopoiesis. Importantly, we detected very rare cells (as few as 1 in 15,000) that were genomically similar to the dominant blast populations at diagnosis and were fully clonally represented at relapse, identifying these rare cells as one common source of AML relapse. Clinically, the mutant allele burden was associated with overall survival in AML, and our findings narrow the repertoire of gene mutations useful in minimal residual disease-based prognostication in AML. Overall, this work delineates rare cell populations that cause AML relapse, with direct implications for AML research directions and strategies to improve AML therapies and outcome.
Collapse
Affiliation(s)
- Brian Parkin
- Department of Internal Medicine, Division of Hematology and Oncology
| | | | - Qing Kang
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology and Oncology.,Department of Biomedical Engineering.,Biointerfaces Institute, and.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew D Rhim
- Department of Internal Medicine, Division of Gastroenterology
| | - Sami N Malek
- Department of Internal Medicine, Division of Hematology and Oncology
| |
Collapse
|