1
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
2
|
Ichikawa H, Aizawa M, Kano Y, Hanyu T, Muneoka Y, Hiroi S, Ueki H, Moro K, Hirose Y, Miura K, Shimada Y, Sakata J, Yabusaki H, Nakagawa S, Kawasaki T, Okuda S, Wakai T. Landscape of homologous recombination deficiency in gastric cancer and clinical implications for first-line chemotherapy. Gastric Cancer 2024; 27:1273-1286. [PMID: 39110344 DOI: 10.1007/s10120-024-01542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Homologous recombination deficiency (HRD) is one of the crucial hallmarks of cancer. It is associated with a favorable response to platinum-based chemotherapy. We explored the distinctive clinicopathological features of gastric cancer (GC) with HRD and the clinical significance of HRD in platinum-based first-line chemotherapy for unresectable metastatic GC. METHODS We enrolled 160 patients with GC in this study. Their tumor samples were subjected to genomic profiling utilizing targeted tumor sequencing. HRD was defined as the presence of alterations in any of 16 HR genes (BARD1, BLM, BRCA1, BRCA2, BRIP1, MRE11A, NBN, PALB2, PARP1, POLD1, RAD50, RAD51, RAD51C, RAD51D, WRN, and XRCC2). The clinicopathological features and treatment outcomes of first-line chemotherapy for unresectable metastatic GC were compared between HRD and non-HRD groups. RESULTS Forty-seven patients (29.4%) were classified into the HRD group. This group had a significantly lower proportion of macroscopic type 3 or 4 tumors and higher TMB than the non-HRD group. Among patients who underwent platinum-based first-line chemotherapy, the HRD group had a greater response rate and longer progression-free survival after treatment (median 8.0 months vs. 3.0 months, P = 0.010), with an adjusted hazard ratio of 0.337 (95% confidence interval 0.151-0.753). HRD status was not associated with treatment outcomes in patients who did not undergo platinum-based chemotherapy. CONCLUSIONS Low proportion of macroscopic type 3 or 4 tumors and a high TMB are distinctive features of GC with HRD. HRD status is a potential predictive marker in platinum-based first-line chemotherapy for unresectable metastatic GC.
Collapse
Affiliation(s)
- Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Masaki Aizawa
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Yosuke Kano
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Takaaki Hanyu
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yusuke Muneoka
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Sou Hiroi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hiroto Ueki
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hiroshi Yabusaki
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Satoru Nakagawa
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Takashi Kawasaki
- Department of Pathology, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, Niigata, 951-8514, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| |
Collapse
|
3
|
Miwa M, Kitagawa M, Asami Y, Kobayashi-Kato M, Watanabe T, Ogasawara A, Hiranuma K, Kato H, Saito M, Miyagi Y, Kato T, Yoshida H, Momozawa Y, Kohno T, Shiraishi K, Hasegawa K. Prevalence and outcomes of germline pathogenic variants of homologous recombination repair genes in ovarian cancer. Cancer Sci 2024. [PMID: 39385713 DOI: 10.1111/cas.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Germline pathogenic variants (PVs) are pivotal in gynecological oncology. We focused on the prevalence, clinicopathological features, and survival impact of homologous recombination repair (HRR) PVs in patients with epithelial ovarian cancer (EOC). This was a multicenter retrospective cohort study, and 1248 patients with EOC were registered. Eligible patients (n = 1112) underwent germline DNA analysis for 26 cancer predisposition genes, including nine HRR-related genes, such as BRCA1/2, BRIP1, PALB2, RAD51C/D, and ATM. The associations between clinicopathological factors and HRR-related PVs were examined. Kaplan-Meier and Cox regression analyses were conducted. Among 1091 analyzed patients, 153 (14.0%) carried PVs and 140 (12.8%) were HRR-related. HRR-PV-positive status significantly correlated with serous carcinoma (22.9% vs. 4.8%, P < 0.0001) and advanced disease (18.5% vs. 5.9%, P < 0.0001). The HRR-PV-positive group exhibited higher prevalence of personal breast (12.9%) and familial breast/ovarian (29.2%) cancer history. HRR status independently improved overall survival in stage III/IV disease (P = 0.04) but not progression-free survival. HRR-related germline PVs exhibit distinct clinicopathological features with survival implications. Variants were significantly associated with serous carcinoma and advanced disease, underscoring the importance of genetic testing to develop individualized EOC treatment strategies. Considering the study period (2000-2019), the limited use of bevacizumab and poly (ADP-ribose) polymerase inhibitors as maintenance therapy should be recognized.
Collapse
Affiliation(s)
- Maiko Miwa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Masakazu Kitagawa
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Asami
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kengo Hiranuma
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| |
Collapse
|
4
|
Chen F, Zhu M, Li W. Advances in research on malignant transformation of endometriosis-associated ovarian cancer. Front Oncol 2024; 14:1475231. [PMID: 39445058 PMCID: PMC11496038 DOI: 10.3389/fonc.2024.1475231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Endometriosis (EMs) is a prevalent chronic gynecological condition that depends on estrogen, marked by the presence of active endometrial tissue (glands and stroma) outside the uterus. Although pathologically benign, it exhibits biological behaviors such as invasion and metastasis akin to malignant tumors. Endometriosis-associated ovarian carcinoma (EAOC), arising from malignant transformation of EMs, poses significant clinical challenges. However, the mechanisms underlying EAOC pathogenesis remain incompletely understood, with a lack of reliable biomarkers for early diagnosis and personalized treatment strategies. Considering the significant number of EMs patients and the extended period during which malignant transformation can occur, EAOC deserves significant attention. Current research both domestically and internationally indicates that the pathogenesis of EAOC is complex, involving genetic mutations, immune microenvironment, oxidative stress, epigenetic changes, and related areas. This review summarizes the mechanisms underlying the development of EAOC.
Collapse
Affiliation(s)
- Fang Chen
- Department of Gynecology, People’s Hospital of Liaoning Province, Shenyang, China
| | - Mengying Zhu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenjuan Li
- Department of Gynecology, People’s Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
5
|
Colombo PE, Taoum C, Fabbro M, Quesada S, Rouanet P, Ray-Coquard I. Impact of molecular testing on the surgical management of advanced epithelial ovarian cancer. Crit Rev Oncol Hematol 2024; 202:104469. [PMID: 39111459 DOI: 10.1016/j.critrevonc.2024.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024] Open
Abstract
Ovarian carcinoma remains the most lethal gynaecologic malignancy. Half of all high-grade serous ovarian cancers (HGSOCs) have a homologous recombination deficiency (HRD) with regard to the repair of double-strand DNA breaks and are candidate to receive maintenance treatment with PARP inhibitors. While a wealth of literature exists regarding the therapeutic guidance of patients from a medical standpoint, the influence of the HRD status on the surgical outlook has been comparatively limited. In this review, the clinical and biological features of advanced ovarian cancers with BRCA1/2 mutation and/or HRD status are considered with particular reference to their impact on the surgical management and on the medico-surgical sequence. The modification of the surgical indications according to the results of molecular testing in first-line and recurrent settings are discussed.
Collapse
Affiliation(s)
- Pierre-Emmanuel Colombo
- Department of Surgical Oncology, Montpellier Cancer Institute (Institut du Cancer de Montpellier) (ICM), Montpellier, France.
| | - Christophe Taoum
- Department of Surgical Oncology, Montpellier Cancer Institute (Institut du Cancer de Montpellier) (ICM), Montpellier, France
| | - Michel Fabbro
- Department of Medical Oncology, Montpellier Cancer Institute (Institut du Cancer de Montpellier) (ICM), Montpellier, France
| | - Stanislas Quesada
- Department of Medical Oncology, Montpellier Cancer Institute (Institut du Cancer de Montpellier) (ICM), Montpellier, France
| | - Philippe Rouanet
- Department of Surgical Oncology, Montpellier Cancer Institute (Institut du Cancer de Montpellier) (ICM), Montpellier, France
| | | |
Collapse
|
6
|
Morgan RD, Burghel GJ, Flaum N, Schlecht H, Clamp AR, Hasan J, Mitchell C, Salih Z, Moon S, Hogg M, Lord R, Forde C, Lalloo F, Woodward ER, Crosbie EJ, Taylor SS, Jayson GC, Evans DGR. Extended panel testing in ovarian cancer reveals BRIP1 as the third most important predisposition gene. Genet Med 2024; 26:101230. [PMID: 39096152 DOI: 10.1016/j.gim.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE The prevalence of germline pathogenic variants (PVs) in homologous recombination repair (HRR) and Lynch syndrome (LS) genes in ovarian cancer (OC) is uncertain. METHODS An observational study reporting the detection rate of germline PVs in HRR and LS genes in all OC cases tested in the North West Genomic Laboratory Hub between September 1996 and May 2024. Effect sizes are reported using odds ratios (ORs) and 95% confidence intervals (95% CI) for unselected cases tested between April 2021 and May 2024 versus 50,703 controls from the Breast Cancer Risk after Diagnostic Gene Sequencing study. RESULTS 2934 women were tested for BRCA1/2 and 433 (14.8%) had a PV. In up to 1572 women tested for PVs in non-BRCA1/2 HRR genes, detection rates were PALB2 = 0.8%, BRIP1 = 1.1%, RAD51C = 0.4% and RAD51D = 0.4%. In 940 unselected cases, BRIP1 (OR = 8.7, 95% CI 4.6-15.8) was the third most common OC predisposition gene followed by RAD51C (OR = 8.3, 95% CI 3.1-23.1), RAD51D (OR = 6.5, 95% CI 2.1-19.7), and PALB2 (OR = 3.9, 95% CI 1.5-10.3). No PVs in LS genes were detected in unselected cases. CONCLUSION Panel testing in OC resulted in a detection rate of 2% to 3% for germline PVs in non-BRCA1/2 HRR genes, with the largest contributor being BRIP1. Screening for LS in unselected cases of OC is unnecessary.
Collapse
Affiliation(s)
- Robert D Morgan
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - George J Burghel
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicola Flaum
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom
| | - Andrew R Clamp
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Jurjees Hasan
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Claire Mitchell
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Zena Salih
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sarah Moon
- University Hospitals of Morecambe Bay NHS Trust, Lancaster, United Kingdom
| | - Martin Hogg
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Rosemary Lord
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Claire Forde
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gordon C Jayson
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - D Gareth R Evans
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
7
|
Wan S, Gao Y, Wu S, Wang H, Tong J, Wei W, Ren H, Yang D, He H, Ye H, Cai H. Somatic mutation of targeted sequencing identifies risk stratification in advanced ovarian clear cell carcinoma. Gynecol Oncol 2024; 191:56-66. [PMID: 39342920 DOI: 10.1016/j.ygyno.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) is a unique subtype of epithelial ovarian cancer. Advanced OCCC display a poor prognosis. Therefore, we aimed to make risk stratification for precise medicine. METHODS We performed a large next generation sequencing (NGS) gene panel on 44 patients with OCCC in FIGO stage II-IV. Then, by machine learning algorithms, including extreme gradient boosting (XGBoost), random survival forest (RSF), and Cox regression, we screened for feature genes associated with prognosis and constructed a 5-gene panel for risk stratification. The prediction efficacy of the 5-gene panel was compared with FIGO stage and residual disease by receiver operating characteristic curve and decision curve analysis. RESULTS The feature mutated genes related to prognosis, selected by machine learning algorithms, include MUC16, ATM, NOTCH3, KMT2A, and CTNNA1. The 5-gene panel can effectively distinguish the prognosis, as well as platinum response, of advanced OCCC in both internal and external cohorts, with the predictive capability superior to FIGO stage and residual disease. CONCLUSIONS Mutations in genes, including MUC16, ATM, NOTCH3, KMT2A, and CTNNA1, were associated with the poor prognosis of advanced OCCC. The risk stratification according to these genes demonstrated acceptable prediction power of prognosis and platinum response, suggesting the potential to be a novel target for precision medicine.
Collapse
Affiliation(s)
- Shimeng Wan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China
| | - Sisi Wu
- Gynecology Department, Yichang Central People 's Hospital, China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jiyu Tong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China
| | - Wei Wei
- Gynecology Department, Yichang Central People 's Hospital, China
| | - Hang Ren
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China
| | - Danni Yang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China
| | - Hao He
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China
| | - Hong Ye
- Gynecology Department, Yichang Central People 's Hospital, China.
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China.
| |
Collapse
|
8
|
Winn-Deen ES, Bortolin LT, Gusenleitner D, Biette KM, Copeland K, Gentry-Maharaj A, Apostolidou S, Couvillon AD, Salem DP, Banerjee S, Grosha J, Zabroski IO, Sedlak CR, Byrne DM, Hamzeh BF, King MS, Cuoco LT, Duff PA, Manning BJ, Hawkins TB, Mattoon D, Guettouche T, Skates SJ, Jamieson A, McAlpine JN, Huntsman D, Menon U. Improving Specificity for Ovarian Cancer Screening Using a Novel Extracellular Vesicle-Based Blood Test: Performance in a Training and Verification Cohort. J Mol Diagn 2024:S1525-1578(24)00208-3. [PMID: 39326669 DOI: 10.1016/j.jmoldx.2024.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The low incidence of ovarian cancer (OC) dictates that any screening strategy needs to be both highly sensitive and highly specific. This study explored the utility of detecting multiple colocalized proteins or glycosylation epitopes on single tumor-associated extracellular vesicles from blood. The novel Mercy Halo Ovarian Cancer Test (OC Test) uses immunoaffinity capture of tumor-associated extracellular vesicles, followed by proximity-ligation real-time quantitative PCR to detect combinations of up to three biomarkers to maximize specificity and measures multiple combinations to maximize sensitivity. A high-grade serous carcinoma (HGSC) case-control training set of EDTA plasma samples from 397 women was used to lock down the test design, the data interpretation algorithm, and the cutoff between cancer and noncancer. Performance was verified and compared with cancer antigen 125 in an independent blinded case-control set of serum samples from 390 women (132 controls, 66 HGSC, 83 non-HGSC OC, and 109 benign). In the verification study, the OC Test showed a specificity of 97.0% (128/132; 95% CI, 92.4%-99.6%), a HGSC sensitivity of 97.0% (64/66; 95% CI, 87.8%-99.2%), and an area under the curve of 0.97 (95% CI, 0.93-0.99) and detected 73.5% (61/83; 95% CI, 62.7%-82.6%) of the non-HGSC OC cases. This test exhibited fewer false positives in subjects with benign ovarian tumors, nonovarian cancers, and inflammatory conditions when compared with cancer antigen 125. The combined sensitivity and specificity of this new test suggests it may have potential in OC screening.
Collapse
Affiliation(s)
| | | | | | | | | | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom; Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Sophia Apostolidou
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Steven J Skates
- MGH Biostatistics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amy Jamieson
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - Jessica N McAlpine
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - David Huntsman
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - Usha Menon
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Zwimpfer TA, Ewald H, Bilir E, Jayawardana M, Appenzeller-Herzog C, Bizzarri N, Razumova Z, Kacperczyk-Bartnik J, Heinzelmann-Schwarz V, Friedlander M, Bowtell DD, Garsed DW. Predictive value of homologous recombination deficiency status for survival outcomes in primary tubo-ovarian high-grade serous carcinoma. Cochrane Database Syst Rev 2024; 9:CD015896. [PMID: 39312297 PMCID: PMC11418971 DOI: 10.1002/14651858.cd015896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (prognosis). The objectives are as follows: To evaluate the predictive value of the prognostic factor HRD status, as determined by various clinically validated HRD assays at the time of staging laparotomy, compared to BRCA1/2 mutation status for progression-free survival and overall survival in patients with tubo-ovarian high-grade serous carcinoma treated in the first-line setting with a combination of surgery and platinum-based chemotherapy and/or maintenance with PARP inhibitors.
Collapse
Affiliation(s)
- Tibor A Zwimpfer
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Gynaecological Cancer Centre, University Hospital Basel, Basel, Switzerland
| | - Hannah Ewald
- University Medical Library, University of Basel, Basel, Switzerland
| | - Esra Bilir
- Department of Global Health, Koç University Graduate School of Health Sciences, Istanbul, Turkey
- Department of Gynecologic Oncology, Koc University School of Medicine, Istanbul, Turkey
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Madawa Jayawardana
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | | | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Zoia Razumova
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - David Dl Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Taguchi A, Kato K, Furusawa A, Hara K, Sone K, Yamada K, Kajiyama H, Shimada M, Okamoto A. Heterogeneous treatment effect of dose-dense paclitaxel plus carboplatin therapy for advanced ovarian cancer. Int J Cancer 2024; 155:1068-1077. [PMID: 38712630 DOI: 10.1002/ijc.34996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
A Japanese clinical trial (JGOG3016) showed that dose-dense weekly paclitaxel in combination with carboplatin extensively prolonged overall survival (OS) in patients with advanced ovarian cancer. However, in other clinical trials, dose-dense paclitaxel regimens were not superior to triweekly paclitaxel regimens. In this study, causal tree analysis was applied to explore subpopulations with different treatment effects of dose-dense paclitaxel in a data-driven approach. The 587 participants with stage II-IV ovarian cancer in the JGOG3016 trial were used for model development. The primary endpoint was treatment effect in terms of 3-year OS in patients receiving dose-dense vs. conventional paclitaxel therapies. In patients <50 years, the 3-year OS was similar in both groups; however, it was higher in the dose-dense group in patients ≥50 years. Dose-dense paclitaxel showed strong positive treatment effects in patients ≥50 years with stage II/III disease, BMI <23 kg/m2, non-CC/MC, and residual tumor ≥1 cm. In contrast, although there was no significant difference in OS; the 3-year OS rate was 23% lower in dose-dense paclitaxel than conventional paclitaxel in patients ≥60 years with stage IV cancer. Patients in this group had a particularly lower performance status than other groups. Our causal tree analysis suggested that poor prognosis groups represented by residual tumor tissue ≥1 cm benefit from dose-dense paclitaxel, whereas elderly patients with advanced disease and low-performance status are negatively impacted by dose-dense paclitaxel. These subpopulations will be of interest to future validation studies. Personalized treatments based on clinical features are expected to improve advanced ovarian cancer prognosis.
Collapse
Affiliation(s)
- Ayumi Taguchi
- Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center Osaka University, Suita-shi, Osaka, Japan
| | - Kosuke Kato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akiko Furusawa
- Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Gynecology, Shizuoka Cancer Center Hospital, Sunto-gun, Shizuoka, Japan
| | - Konan Hara
- Department of Economics, University of Arizona, Tucson, Arizona, USA
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kyosuke Yamada
- Department of Obstetrics and Gynecology, Daisan Hospital, The Jikei University School of Medicine, Komae, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Muneaki Shimada
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Tang S, Zheng F, Chen K, Niu Y, Fu Z, Wu Y, Xia D, Lu W. Novel scoring system incorporating lipoproteins to predict outcomes of epithelial ovarian cancer patients. Int J Gynecol Cancer 2024:ijgc-2024-005768. [PMID: 39244206 DOI: 10.1136/ijgc-2024-005768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVE Epithelial ovarian cancer is the most lethal gynecological malignancy worldwide. While common prognostic factors are identified, the impact of serum lipoproteins remains controversial. This retrospective cohort study aims to investigate the association between specific lipoprotein levels and prognosis. METHODS Clinical data of 420 participants with epithelial ovarian cancer registered at Women's Hospital, School of Medicine, Zhejiang University, between January 2014 and April 2021 were included. Cox regression analyses and Kaplan-Meier methods were used to assess prognosis, estimated by hazard ratio (HR) with 95% confidence interval (CI). A novel prognostic model incorporating lipoproteins was developed for evaluating the prognosis. Meta-analysis was applied to assess the impact of low density lipoprotein cholesterol (LDL-C) on prognosis. RESULTS Among 420 patients, those in advanced stages exhibited higher low density lipoprotein cholesterol (LDL-C) (p=0.008) and lower high density lipoprotein cholesterol (HDL-C) levels (p<0.001), with no significant differences in total cholesterol or triglyceride levels. Elevated LDL-C level was significantly associated with worse overall survival (HR 1.72; 95% CI 1.15 to 2.58; p=0.010) and progression free survival (HR 1.94; 95% CI 1.46 to 2.58; p<0.001), whereas higher HDL-C level was linked to better overall survival (HR 0.56; 95% CI 0.37 to 0.85; p=0.004) and progression free survival (HR 0.61; 95% CI 0.46 to 0.81; p<0.001). A novel prognostic model, low density lipoprotein cholesterol-high density lipoprotein cholesterol-fibrinogen-lactate dehydrogenase-prealbumin-Fe-stage (LH-FLPFS), was established to enhance prognostic predictive efficacy. The meta-analysis further suggested that higher LDL-C level was associated with worse overall survival (HR 1.82; 95% CI 1.39 to 2.38; p<0.001). CONCLUSIONS In this study, preoperative LDL-C and HDL-C levels emerged as potential prognostic factors for ovarian cancer. Establishment of a novel prognostic model, LH-FLPFS, holds promise for significantly improving prognostic predictive efficacy.
Collapse
Affiliation(s)
- Song Tang
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fang Zheng
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yizhen Niu
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
- Department of Toxicology of School of Public Health, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
- Department of Toxicology of School of Public Health, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Leung EY, Nicum S, Morrison J, Brenton JD, Funingana IG, Morgan RD, Ghaem-Maghami S, Miles T, Manchanda R, Bowen R, Andreou A, Loughborough W, Freeman S, Gajjar K, Coleridge S, Jimenez-Linan M, Balega J, Frost J, Keightley A, Wallis Y, Sundar S, Ganesan R. British Gynaecological Cancer Society/British Association of Gynaecological Pathology consensus for genetic testing in epithelial ovarian cancer in the United Kingdom. Int J Gynecol Cancer 2024; 34:1334-1343. [PMID: 39222974 DOI: 10.1136/ijgc-2024-005756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Standard of care genetic testing has undergone significant changes in recent years. The British Gynecological Cancer Society and the British Association of Gynecological Pathologists (BGCS/BAGP) has re-assembled a multidisciplinary expert consensus group to update the previous guidance with the latest standard of care for germline and tumor testing in patients with ovarian cancer. For the first time, the BGCS/BAGP guideline group has incorporated a patient advisor at the initial consensus group meeting. We have used patient focused groups to inform discussions related to reflex tumor testing - a key change in this updated guidance. This report summarizes recommendations from our consensus group deliberations and audit standards to support continual quality improvement in routine clinical settings.
Collapse
Affiliation(s)
- Elaine Yl Leung
- Department of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Jo Morrison
- Musgrove Park Hospital Grace Centre, Taunton, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | | | - Robert D Morgan
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | | | - Tracie Miles
- The Department of Gynaeoncology, Royal United Hospital Bath NHS Trust, Bath, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Queen Mary, University of London, London, UK
- Gynaeoncology, Barts Health NHS Trust, London, UK
| | - Rebecca Bowen
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Adrian Andreou
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | | | - Susan Freeman
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Ketan Gajjar
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sarah Coleridge
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- Gynaeoncology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Mercedes Jimenez-Linan
- Gynaecological oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Janos Balega
- Pan-Bimringham Gynaecological Cancer Centre, Birmingham City Hospital, Birmingham, UK
| | - Jonathan Frost
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Amy Keightley
- Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | - Yvonne Wallis
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Sudha Sundar
- Department of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Pan-Bimringham Gynaecological Cancer Centre, Birmingham City Hospital, Birmingham, UK
| | - Raji Ganesan
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
13
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
14
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Marchetti C, Ataseven B, Perrone AM, Cassani C, Fruscio R, Sassu CM, Apostol AI, Harter P, De Iaco P, Camnasio CA, Moubarak M, Giannarelli D, Scambia G, Fagotti A. Clinical characteristics and survival outcome of early-stage, high-grade, serous tubo-ovarian carcinoma according to BRCA mutational status. Gynecol Oncol 2024; 187:170-177. [PMID: 38788514 DOI: 10.1016/j.ygyno.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE To investigate the role of BRCA1/2 mutations in early ovarian cancer (eOC) (International Federation of Gynecology and Obstetrics FIGO 2014 stage I-II), and its impact on prognosis after relapse. METHODS In this multicenter retrospective study, clinical and survival data from high-grade serous (HGS)-eOC patients at presentation and recurrence were compared according to BRCA status: BRCA-mutated (BRCAmut) vs. BRCA wild-type (BRCAwt). RESULTS Among 191 HGS-eOC patients, 89 were BRCAmut and 102 BRCAwt. There was no significant difference according to the BRCA status in terms of Progression-Free Survival (PFS). A longer Overall Survival (OS) was found in BRCAmut patients. Stage I patients had significantly improved PFS vs stage II, regardless of BRCA status. At multivariate analysis, stage at diagnosis was the only variable with a significant effect on PFS. No factors were significantly relevant on OS, albeit younger age and BRCA mutation showed a slight impact. Post-Recurrence Survival (PRS) in the BRCAmut population was significantly improved compared with BRCAwt. At multivariate analysis, Secondary Cytoreductive Surgery was the strongest predictor for longer PRS, followed by PARPi maintenance at recurrence. CONCLUSIONS BRCA-status is not a prognostic factor in early ovarian cancer regarding PFS. However, our data suggest a better prognosis after relapse in BRCAm population.
Collapse
Affiliation(s)
- Claudia Marchetti
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Beyhan Ataseven
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Nordrhein-Westfalen, Germany
| | - Anna M Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Unit of Obstetrics and Gynecology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Robert Fruscio
- Department of Medicine and Surgery, University of Milan - Bicocca, Italy
| | - Carolina M Sassu
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Adriana I Apostol
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Nordrhein-Westfalen, Germany
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cristina Angela Camnasio
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Unit of Obstetrics and Gynecology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Malak Moubarak
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Nordrhein-Westfalen, Germany
| | - Diana Giannarelli
- Facility of Epidemiology and Biostatistics - GSTeP, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Anna Fagotti
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Roczo D, Alford V, Trainer A, DeFazio A, Pearn A, Delaney C, Cotter M, Hegarty S. Self-reported awareness of genetic testing, the impact of family history, and access to clinical trials for people diagnosed with ovarian cancer in Australia. Gynecol Oncol Rep 2024; 54:101427. [PMID: 38989471 PMCID: PMC11233906 DOI: 10.1016/j.gore.2024.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Objectives To assess the understanding of people diagnosed with ovarian cancer regarding genetic testing; to understand knowledge gaps among people diagnosed with ovarian cancer that may impact best practice care; and to monitor overall changes in understanding from 2015 to 2022. Design Longitudinal 'opt-in' study using an online survey tool at three timepoints: 2015, 2018 and 2022. Participants People in Australia (or their families / caregivers) diagnosed with ovarian cancer between 2010 and 2022). Main outcome measures Self-reported awareness of heritable risk factors for ovarian cancer, genetic testing approaches and participation in clinical trials. Results The study indicated that there have been improvements in the understanding and awareness of people diagnosed with ovarian cancer regarding familial risk (an increase from 43.6% (45 of 149) in 2015 to 62.9% (166 of 264) in 2022); but people were less likely to be aware of the difference between somatic (tumour) and germline testing (120 of 266, 45.1%). However, there were self-reported improvements to clinical trial access in non-metropolitan areas (12 of 64, 18.8% in 2022 compared to 22 of 145, 15.2% in 2018), bringing it on par with metropolitan areas (32 of 169, 18.9% in 2022). Conclusions Despite improved awareness about genetic testing among people diagnosed with ovarian cancer, there remain knowledge gaps in understanding of genetic testing types (germline and somatic) and gene variant targeted therapies; and further work to improve clinical trial awareness and access is required.
Collapse
|
17
|
Pitiyarachchi O, Ansell PJ, Coleman RL, Dinh MH, Holman L, Leath CA, Werner T, DiSilvestro P, Morgan M, Tew W, Lee C, Cunningham M, Newton M, Edraki B, Lim P, Barlin J, Spirtos NM, Tewari KS, Edelson M, Reid T, Carlson J, Friedlander M. Homologous recombination deficiency should be tested for in patients with advanced stage high-grade serous ovarian cancer aged 70 years and over. Gynecol Oncol 2024; 187:221-226. [PMID: 38821039 DOI: 10.1016/j.ygyno.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Due to limited data on homologous recombination deficiency (HRD) in older patients (≥ 70 years) with advanced stage high grade serous ovarian cancer (HGSC), we aimed to determine the rates of HRD at diagnosis in this age group. METHODS From the Phase 3 trial VELIA the frequency of HRD and BRCA1/2 pathogenic variants (PVs) was compared between younger (< 70 years) and older participants. HRD and somatic(s) BRCA1/2 pathogenic variants (PVs) were determined at diagnosis using Myriad myChoice® CDx and germline(g) BRCA1/2 PVs using Myriad BRACAnalysis CDx®. HRD was defined if a BRCA PV was present, or the genomic instability score (GIS) met threshold (GIS ≥ 33 & ≥ 42 analyzed). RESULTS Of 1140 participants, 21% were ≥ 70 years. In total, 26% (n = 298) had a BRCA1/2 PV and HRD, 29% (n = 329) were HRD/BRCA wild-type, 33% (n = 372) non-HRD, and 12% HR-status unknown (n = 141). HRD rates were higher in younger participants, 59% (n = 476/802), compared to 40% (n = 78/197) of older participants (GIS ≥ 42) [p < 0.001]; similar rates demonstrated with GIS ≥ 33, 66% vs 48% [p < 0.001]. gBRCA PVs observed in 24% younger vs 8% of older participants (p < 0.001); sBRCA in 8% vs 10% (p = 0.2559), and HRD (GIS ≥ 42) not due to gBRCA was 35% vs 31% (p = 0.36). CONCLUSIONS HRD frequency was similar in participants aged < 70 and ≥ 70 years (35% vs 31%) when the contribution of gBRCA was excluded; rates of sBRCA PVs were also similar (8% v 10%), thus underscoring the importance of HRD and BRCA testing at diagnosis in older patients with advanced HGSC given the therapeutic implications.
Collapse
Affiliation(s)
- Omali Pitiyarachchi
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | | | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Laura Holman
- Stephenson Cancer Center, University of Oklahoma, OK, USA
| | - Charles A Leath
- The University of Alabama at Birmingham-Deep South Research Consortium, O'Neal Comprehensive Cancer Center, University of Alabama Hospital, Birmingham, AL, USA
| | - Theresa Werner
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Mark Morgan
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - William Tew
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mary Cunningham
- Gynecologic Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Meredith Newton
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | - Joyce Barlin
- Division of Gynecologic Oncology, Albany Medical College, Albany, NY, USA
| | | | - Krishnansu S Tewari
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of California, Irvine, CA, USA
| | - Mitchell Edelson
- Jefferson Abington Hospital, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas Reid
- Kettering Health University of Cincinnati, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology and Advanced Pelvic Surgery, Cincinnati, OH, USA
| | | | - Michael Friedlander
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Department of Medical Oncology, The Prince of Wales and Royal Hospital for Women, Randwick, NSW, Australia.
| |
Collapse
|
18
|
Carballo EV, Kim KH, Penn CA. Trends in estimated PARP inhibitor eligibility and benefit among US epithelial ovarian cancer patients. Gynecol Oncol 2024; 187:204-211. [PMID: 38795509 DOI: 10.1016/j.ygyno.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE To estimate the annual percentage of patients with epithelial ovarian cancer (EOC) who could be eligible for and benefit from PARP inhibitor therapy amidst changing US Food and Drug Administration (FDA)-approved indications. METHODS This is a simulated retrospective observational study using publicly available data on patients with advanced-stage EOC. PARPi eligibility is based on FDA approvals and withdrawals from 2014 through 2023, along with published demographic and genomic data. Clinical trial data is used to estimate treatment benefit. PARPi including olaparib, niraparib, and rucaparib are analyzed in aggregate with sub-analyses by molecular classification and treatment timing. Results are reported as the percentage of EOC patients appropriate for any cancer-directed therapy. RESULTS PARPi were approved for 9 different indications in EOC between 2014 and 2021; reduced to 6 indications by 2023. Eligibility increased from 2.0% (95% CI,1.3%-1.6%) in 2014 to a maximum of 93.4% (95% CI,90.1%-94.6%) in 2021. The maximum percentage of patients with 2-year PFS benefit was 22.0% (95% CI, 17.2%-26.8%) in 2021, projected to decrease to 13.0% (95% CI, 9.9%-15.9%) in 2024. Most of this decrease was seen in the homologous recombination deficient, BRCA wild-type population (8.4% to 4.0%). CONCLUSIONS PARPi eligibility increased at a greater rate than benefit resulting in a low population-level benefit-to-eligibility ratio until 2021. Recent FDA withdrawals improved this ratio with an accompanied decrease in the absolute number of patients benefiting. To further optimize population-level benefit-to-eligibility ratio of targeted therapies in ovarian cancer, we need to identify better biomarkers, treatment combinations, and novel therapeutic targets.
Collapse
Affiliation(s)
- Erica V Carballo
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America.
| | - Kenneth H Kim
- Division of Gynecologic Oncology, Cedars-Sinai Medical Center, United States of America
| | - Courtney A Penn
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America
| |
Collapse
|
19
|
Lebedeva A, Veselovsky E, Kavun A, Belova E, Grigoreva T, Orlov P, Subbotovskaya A, Shipunov M, Mashkov O, Bilalov F, Shatalov P, Kaprin A, Shegai P, Diuzhev Z, Migiaev O, Vytnova N, Mileyko V, Ivanov M. Untapped Potential of Poly(ADP-Ribose) Polymerase Inhibitors: Lessons Learned From the Real-World Clinical Homologous Recombination Repair Mutation Testing. World J Oncol 2024; 15:562-578. [PMID: 38993246 PMCID: PMC11236374 DOI: 10.14740/wjon1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024] Open
Abstract
Background Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Orlov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Anna Subbotovskaya
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Maksim Shipunov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Oleg Mashkov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Fanil Bilalov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Peter Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | | | | | - Vladislav Mileyko
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
20
|
Xu S, Zhu C, Xu Q, An Z, Xu S, Xuan G, Lin C, Tang C. ARID1A restrains EMT and stemness of ovarian cancer cells through the Hippo pathway. Int J Oncol 2024; 65:76. [PMID: 38873993 PMCID: PMC11251745 DOI: 10.3892/ijo.2024.5664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Genes encoding subunits of SWI/SNF (BAF) chromatin‑remodeling complexes are recurrently mutated in a broad array of tumor types, and among the subunits, ARID1A is the most frequent target with mutations. In the present study, it was reported that ARID1A inhibits the epithelial‑mesenchymal transition (EMT) and stemness of ovarian cancer cells, accompanied by reduced cell viability, migration and colony formation, suggesting that ARID1A acts as a tumor suppressor in ovarian cancer. Mechanistically, ARID1A exerts its inhibitory effects on ovarian cancer cells by activating the Hippo signaling pathway. Conversely, the overexpression of a gain‑of‑function transcriptional co‑activator with PDZ‑binding motif (TAZ) mutant (TAZ‑Ser89) effectively reverses the effects induced by ARID1A. In addition, activation of Hippo signaling apparently upregulates ARID1A protein expression, whereas ectopic expression of TAZ‑Ser89 results in the markedly decreased ARID1A levels, indicating a feedback of ARID1A‑TAZ in regulating ovarian cancer cell EMT and stemness. Thus, the present study uncovered the role of ARID1A through the Hippo/TAZ pathway in modulating EMT and stemness of ovarian cancer cells, and providing with evidence that TAZ inhibitors could effectively prevent initiation and metastasis of ovarian cancer cases where ARID1A is lost or mutated.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Ge Xuan
- Department of Gynecology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang 315012, P.R. China
| | - Chao Lin
- Department of Neurosurgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| |
Collapse
|
21
|
Syed N, Chintakuntlawar AV, Vilasini D, Al Salami AM, Al Hasan R, Afrooz I, Uttam Chandani K, Chandani AU, Chehal A. Low testing rates and high BRCA prevalence: Poly (ADP-ribose) polymerase inhibitor use in Middle East BRCA/homologous recombination deficiency-positive cancer patients. World J Clin Oncol 2024; 15:848-858. [PMID: 39071455 PMCID: PMC11271736 DOI: 10.5306/wjco.v15.i7.848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPis) are approved as first-line therapies for breast cancer gene (BRCA)-positive, human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer. They are also effective for new and recurrent ovarian cancers that are BRCA- or homologous recombination deficiency (HRD)-positive. However, data on these mutations and PARPi use in the Middle East are limited. AIM To assess BRCA/HRD prevalence and PARPi use in patients in the Middle East with breast/ovarian cancer. METHODS This was a single-center retrospective study of 57 of 472 breast cancer patients tested for BRCA mutations, and 25 of 65 ovarian cancer patients tested for HRD. These adult patients participated in at least four visits to the oncology service at our center between August 2021 and May 2023. Data were summarized using descriptive statistics and compared using counts and percentages. Response to treatment was assessed using Response Evaluation Criteria in Solid Tumors criteria. RESULTS Among the 472 breast cancer patients, 12.1% underwent BRCA testing, and 38.5% of 65 ovarian cancer patients received HRD testing. Pathogenic mutations were found in 25.6% of the tested patients: 26.3% breast cancers had germline BRCA (gBRCA) mutations and 24.0% ovarian cancers showed HRD. Notably, 40.0% of gBRCA-positive breast cancers and 66.0% of HRD-positive ovarian cancers were Middle Eastern and Asian patients, respectively. PARPi treatment was used in 5 (33.3%) gBRCA-positive breast cancer patients as first-line therapy (n = 1; 7-months progression-free), for maintenance (n = 2; > 15-months progression-free), or at later stages due to compliance issues (n = 2). Four patients (66.6%) with HRD-positive ovarian cancer received PARPi and all remained progression-free. CONCLUSION Lower testing rates but higher BRCA mutations in breast cancer were found. Ethnicity reflected United Arab Emirates demographics, with breast cancer in Middle Eastern and ovarian cancer in Asian patients.
Collapse
Affiliation(s)
- Naveed Syed
- Department of Hematology and Oncology, Sheikh Shakbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | | | - Deepti Vilasini
- Department of Oncology, Sheikh Shakbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | | | - Riad Al Hasan
- Department of Oncology, Sheikh Shakbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Imrana Afrooz
- Clinical Research, Sheikh Shakbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Kanishka Uttam Chandani
- Department of Internal Medicine, Landmark Medical Center, Rhode Island, RI 02895, United States
| | - Ashok Uttam Chandani
- Department of Oncology, Sheikh Shakbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Aref Chehal
- Department of Oncology, Sheikh Shakbout Medical City, Abu Dhabi 11001, United Arab Emirates
| |
Collapse
|
22
|
White LL, Sawyer JK, Zepp JM, Prado YK, Reyes AA, Maiyani M, Shuster E, Zucker R, Henrikson NB, Rope AF, Weinmann S, Feigelson HS, Ezzell Hunter J. Genetic Testing Uptake among Ovarian Cancer Survivors in the Genetic Risk Analysis in Ovarian Cancer (GRACE) Study. Cancers (Basel) 2024; 16:2563. [PMID: 39061202 PMCID: PMC11274893 DOI: 10.3390/cancers16142563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Recommendations state all people with ovarian cancers (OCs) receive genetic counseling, but testing uptake is only between 15 and 31%. Those with a prior diagnosis of OC who have not received genetic testing represent a missed opportunity for life-saving genetic risk information. The Genetic Risk Analysis in ovarian CancEr (GRACE) study aimed to evaluate the feasibility of the retrospective identification ("Traceback") of individuals diagnosed with OC. METHODS This nonrandomized intervention study within two integrated health care systems identified participants with a history of OC between 1998 and 2020 who did not have genetic testing or testing limited to BRCA1/2. Participants received clinical genomic sequencing via a custom 60 gene panel. This study measured the feasibility of the Traceback methodology in OC survivors. RESULTS The initial cohort included 929 individuals, of which 57% had no prior genetic testing. Of the 302 eligible for recruitment, 88 consented to participate. We were able to outreach 97% of the eligible population using contact information from medical records. The stage at diagnosis was the only factor associated with consent. Of the 78 who returned their saliva sample, 21% had pathogenic/likely pathogenic variants, and 79% had negative results. CONCLUSION The GRACE study resulted in a 29% uptake of genetic testing in OC survivors. The time since diagnosis did not have an impact on consent or ability to contact. GRACE can inform the implementation of future Traceback programs, providing guidance on how to prevent and mitigate the burden of OC and other hereditary cancers.
Collapse
Affiliation(s)
- Larissa L. White
- Institute for Health Research, Kaiser Permanente Colorado, 16601 East Centretech Parkway, Aurora, CO 80011, USA; (J.K.S.); (M.M.); (R.Z.); (H.S.F.)
| | - Jennifer K. Sawyer
- Institute for Health Research, Kaiser Permanente Colorado, 16601 East Centretech Parkway, Aurora, CO 80011, USA; (J.K.S.); (M.M.); (R.Z.); (H.S.F.)
| | - Jamilyn M. Zepp
- Center for Health Research, Department of Translational and Applied Genomics, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227, USA; (J.M.Z.); (Y.K.P.); (A.A.R.); (E.S.); (A.F.R.); (S.W.); (J.E.H.)
| | - Yolanda K. Prado
- Center for Health Research, Department of Translational and Applied Genomics, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227, USA; (J.M.Z.); (Y.K.P.); (A.A.R.); (E.S.); (A.F.R.); (S.W.); (J.E.H.)
| | - Ana A. Reyes
- Center for Health Research, Department of Translational and Applied Genomics, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227, USA; (J.M.Z.); (Y.K.P.); (A.A.R.); (E.S.); (A.F.R.); (S.W.); (J.E.H.)
| | - Mahesh Maiyani
- Institute for Health Research, Kaiser Permanente Colorado, 16601 East Centretech Parkway, Aurora, CO 80011, USA; (J.K.S.); (M.M.); (R.Z.); (H.S.F.)
| | - Elizabeth Shuster
- Center for Health Research, Department of Translational and Applied Genomics, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227, USA; (J.M.Z.); (Y.K.P.); (A.A.R.); (E.S.); (A.F.R.); (S.W.); (J.E.H.)
| | - Rachel Zucker
- Institute for Health Research, Kaiser Permanente Colorado, 16601 East Centretech Parkway, Aurora, CO 80011, USA; (J.K.S.); (M.M.); (R.Z.); (H.S.F.)
| | - Nora B. Henrikson
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Seattle, WA 98101, USA;
| | - Alan F. Rope
- Center for Health Research, Department of Translational and Applied Genomics, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227, USA; (J.M.Z.); (Y.K.P.); (A.A.R.); (E.S.); (A.F.R.); (S.W.); (J.E.H.)
- Genome Medical, 701 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Sheila Weinmann
- Center for Health Research, Department of Translational and Applied Genomics, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227, USA; (J.M.Z.); (Y.K.P.); (A.A.R.); (E.S.); (A.F.R.); (S.W.); (J.E.H.)
| | - Heather S. Feigelson
- Institute for Health Research, Kaiser Permanente Colorado, 16601 East Centretech Parkway, Aurora, CO 80011, USA; (J.K.S.); (M.M.); (R.Z.); (H.S.F.)
| | - Jessica Ezzell Hunter
- Center for Health Research, Department of Translational and Applied Genomics, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227, USA; (J.M.Z.); (Y.K.P.); (A.A.R.); (E.S.); (A.F.R.); (S.W.); (J.E.H.)
- Genomics, Ethics, and Translational Research Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC 27709, USA
| |
Collapse
|
23
|
Ren X, Sun P, Wang Y. PARP inhibitor-related acute renal failure: a real-world study based on the FDA adverse event reporting system database. Expert Opin Drug Saf 2024:1-9. [PMID: 38967020 DOI: 10.1080/14740338.2024.2376690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Current clinical trial data on PARP inhibitors (PARPis)-related acute renal failure (ARF) are not entirely representative of real-world situations. Therefore, in this study, the US Food and Drug Administration Adverse Event Reporting System (FAERS) was used to evaluate PARPis-related ARF. RESEARCH DESIGN AND METHODS Data were obtained from 1 January 2015, to 30 September 2023. ARF event reports were analyzed based on four algorithms. The time-to-onset (TTO) and clinical outcomes of PARPis-associated ARF were assessed. RESULTS The total included cases were 2726. Significant signals were observed for olaparib, niraparib, and rucaparib (reporting odds ratio (ROR): 1.62, 95% confidence interval (CI): 1.49-1.78, 1.25, 95% CI: 1.19-1.32 and 1.59, 95% CI: 1.47-1.72 respectively). The median TTO of ARF onset was 57, 36, and 85 days for olaparib, niraparib, and rucaparib, respectively. The proportion of deaths with olaparib (9.88%) was significantly higher than for niraparib (2.52%) and rucaparib (2.94%) (p < 0.005). The proportion of life-threatening adverse events associated with niraparib (4.89%) was significantly higher than for rucaparib (0.98%) (p < 0.005). CONCLUSIONS ARF and PARPi were related, with the exception of talazoparib. More emphasis should be given to PARPis-related ARF due to the high proportion of serious AEs and delayed adverse reactions.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sun
- Department of Cancer Prevention, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Xu J, Lu W, Wei X, Zhang B, Yang H, Tu M, Chen X, Wu S, Guo T. Single-cell transcriptomics reveals the aggressive landscape of high-grade serous carcinoma and therapeutic targets in tumor microenvironment. Cancer Lett 2024; 593:216928. [PMID: 38714290 DOI: 10.1016/j.canlet.2024.216928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
High-grade serous carcinoma (HGSC) is characterized by early abdominal metastasis, leading to a dismal prognosis. In this study, we conducted single-cell RNA sequencing on 109,573 cells from 34 tumor samples of 18 HGSC patients, including both primary tumors and their metastatic sites. Our analysis revealed a distinct S100A9+ tumor cell subtype present in both primary and metastatic sites, strongly associated with poor overall survival. This subtype exhibited high expression of S100A8, S100A9, ADGRF1, CEACAM6, CST6, NDRG2, MUC4, PI3, SDC1, and C15orf48. Individual knockdown of these ten marker genes, validated through in vitro and in vivo models, significantly inhibited ovarian cancer growth and invasion. Around S100A9+ tumor cells, a population of HK2+_CAF was identified, characterized by activated glycolysis metabolism, correlating with shorter overall survival in patients. Notably, similar to CAFs, immunosuppressive tumor-associated macrophage (TAM) subtypes underwent glycolipid metabolism reprogramming via PPARgamma regulation, promoting tumor metastasis. These findings shed light on the mechanisms driving the aggressiveness of HGSC, offering crucial insights for the development of novel therapeutic targets against this formidable cancer.
Collapse
Affiliation(s)
- Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Bo Zhang
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Haihua Yang
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Mengyan Tu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Shenglong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Tianchen Guo
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
25
|
Smith AJB, O'Brien C, Haggerty A, Ko EM, Rendle KA. "Having cancer is very expensive": A qualitative study of patients with ovarian cancer and PARP inhibitor treatment. Gynecol Oncol 2024; 186:170-175. [PMID: 38691987 DOI: 10.1016/j.ygyno.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE To examine patient barriers and facilitators to PARP inhibitor (PARP-I) maintenance therapy in ovarian cancer. PARP-I improves survival in ovarian cancer, but these multi-year therapies cost around $100,000 annually and are under-prescribed. METHODS We recruited patients with ovarian cancer treated with PARP-I maintenance therapy at an academic health system for a semi-structured interview. Patient demographics, including genetics and PARP-I cost, were self-reported. We assessed patient experiences with barriers and facilitators of PARP-I usage. Two team members used a thematic approach to analyze and identify key themes. RESULTS In May 2022, we interviewed 10 patients (mean age = 65 years; 80% White; 60% with a germline genetic mutation). Patients paid on average $227.50 monthly for PARP-I, straining resources for some participants. While sampled patients were insured, all patients identified having no or inadequate insurance as a major barrier to PARP-I. At the same time, all participants prioritized clinical effectiveness over costs of care. Patients identified PARP-I delivery from specialty pharmacies, separate and different from other medications, as a potential barrier, but each had been able to navigate delivery. Patients expressed significant initial side effects of PARP-I as a potential barrier yet reported clinician communication and prompt dose reduction as facilitating continuation. CONCLUSIONS Patients identified cost, restrictive pharmacy benefits, and initial side effects as barriers to PARP-I usage. Having insurance and a supportive care team were identified as facilitators. Enhancing communication about PARP-I cost and side effects could improve patient experience and receipt of evidence-based maintenance therapy in ovarian cancer.
Collapse
Affiliation(s)
- Anna Jo Bodurtha Smith
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania Health Systems, Philadelphia, PA, United States of America; Department of Obstetrics and Gynecology, University of Pennsylvania Health Systems, Philadelphia, PA, United States of America; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Center for Cancer Care Innovation, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States of America; Center for Health Incentives and Behavioral Economics, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Caroline O'Brien
- Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ashley Haggerty
- Division of Gynecologic Oncology, Hackensack Meridian Health, Red Bank, NJ, United States of America
| | - Emily M Ko
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania Health Systems, Philadelphia, PA, United States of America; Department of Obstetrics and Gynecology, University of Pennsylvania Health Systems, Philadelphia, PA, United States of America; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Center for Cancer Care Innovation, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Katharine A Rendle
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Center for Cancer Care Innovation, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
26
|
Zhao Y, Yuan H, Chen Y, Yao H, Li N, Wu L, Yuan G. Outcomes of secondary cytoreductive surgery in patients with platinum-sensitive recurrent ovarian cancer progressed after prior poly (adenosine diphosphate-ribose) polymerase inhibitors: A retrospective cohort study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108383. [PMID: 38704898 DOI: 10.1016/j.ejso.2024.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To evaluate the impact of previous poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor therapy on the effectiveness of secondary cytoreductive surgery (SCS) in patients with platinum-sensitive recurrent ovarian cancer (PSROC). METHODS We identified patients with PSROC who underwent SCS at the Cancer Hospital, Chinese Academy of Medical Science, between January 2010 and December 2022. Postoperative complications within 30 days were categorized using the Accordion Severity Grading System. The Kaplan‒Meier method was used to estimate both overall survival (OS) and progression-free survival (PFS), and multivariate analysis was used to identify independent prognostic factors. RESULTS Of the 265 patients included, 39 received prior PARP inhibitor therapy (Group A), and 226 did not (Group B). The rates of complete resection after SCS did not significantly differ between the two groups (79.5 % for Group A vs. 81.0 % for Group B; p = 0.766). As of December 2023, Group A exhibited a significantly shorter median PFS (14.2 months) than Group B (22.5 months; p = 0.002). Furthermore, the 3-year OS rate was lower in Group A (72.5 %) than in Group B (82.7 %; p = 0.015). The incidence of severe postoperative complications was comparable between Groups A and B (7.7 % vs. 1.8 %; p = 0.061). Multivariate analysis revealed that prior PARP inhibitor therapy significantly reduced the median PFS (hazard ratio (HR) = 4.434; p = 0.021) and OS (HR = 2.076; p = 0.010). CONCLUSIONS SCS for PSROC demonstrated reduced efficacy in patients previously treated with PARP inhibitors compared to those without prior PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yuxi Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Yuan
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiran Chen
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongwen Yao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guangwen Yuan
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
27
|
Bednar EM, Paiz KA, Lu KH, Soares Dias De Souza AP, Oliveira G, Andrade CEEMDC, Gallardo L, Rubio-Cordero J, Cantu-de-León D, Rauh-Hain JA. Delivery of hereditary cancer genetics services to patients newly diagnosed with ovarian and endometrial cancers at three gynecologic oncology clinics in the USA, Brazil, and Mexico. Int J Gynecol Cancer 2024; 34:1020-1026. [PMID: 38453180 DOI: 10.1136/ijgc-2023-005190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Three gynecologic oncology clinics located in the USA, Brazil, and Mexico collaborated to evaluate their delivery of hereditary cancer genetics services. This descriptive retrospective review study aimed to establish baseline rates and timeliness of guideline-recommended genetics service delivery to patients with ovarian, fallopian tube, primary peritoneal (ovarian), and endometrial cancers at each clinic. METHODS Patients who were newly diagnosed with ovarian and endometrial cancers between September 1, 2018 and December 31, 2020 were identified from the medical records of the clinics. Genetics service delivery metrics included the rates of mismatch repair deficiency tumor testing for patients with endometrial cancer (microsatellite instability/immunohistochemistry, MSI/IHC), referral to genetics services for patients with ovarian cancer, completed genetics consultations, and germline genetic testing for patients with ovarian and endometrial cancers. Timeliness was calculated as the average number of days between diagnosis and the relevant delivery metric. Descriptive statistics were used to analyze data. RESULTS In total, 1195 patients (596 with ovarian cancer, 599 with endometrial cancer) were included in the analysis, and rates of genetics service delivery varied by clinic. For patients with ovarian cancer, referral rates ranged by clinic from 32.6% to 89.5%; 30.4-65.1% of patients completed genetics consultation and 32.6-68.7% completed genetic testing. The timeliness to genetic testing for patients with ovarian cancer ranged by clinic from 107 to 595 days. A smaller proportion of patients with endometrial cancer completed MSI/IHC testing (10.0-69.2%), with the average time to MSI/IHC ranging from 15 to 282 days. Rates of genetics consultation among patients with endometrial cancer ranged by clinic from 10.8% to 26.0% and 12.5-16.6% completed genetic testing. CONCLUSIONS All clinics successfully established baseline rates and timeliness of delivering hereditary cancer genetics services to patients with ovarian and endometrial cancers. Lower rates of delivering genetics services to patients with endometrial cancer warrant additional research and quality improvement efforts.
Collapse
Affiliation(s)
- Erica M Bednar
- Cancer Prevention and Control Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keiry A Paiz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gabriela Oliveira
- Department of Gynecologic Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Lenny Gallardo
- Clinical Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | | | - Jose Alejandro Rauh-Hain
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
28
|
Wang L, Zhou J, Wang H, Han W, Fang C. Real-world TRAE association between niraparib and platinum-based chemotherapy. Front Oncol 2024; 14:1390820. [PMID: 38952544 PMCID: PMC11215009 DOI: 10.3389/fonc.2024.1390820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
Background Pre-clinical studies showed the anti-tumor mechanisms of PARP inhibitors (PARPi) and platinum have some crossover and overlap in the DNA damage repair pathway, patients who respond to platinum-based chemotherapy are also more likely to be sensitive to PARPi. This real-world study mainly aimed to evaluate whether TRAE (treatment-related adverse event) between platinum based chemotherapy (PBC) and niraparib are also associated. Methods Patients received niraparib as maintenance treatment or salvage therapy for advanced ovarian cancer at the First Affiliated Hospital of Gannan Medical University from January 2020 to August 2023 were included. Survival data of niraparib treatment and adverse events occurred during the last platinum-based chemotherapy cycle before starting niraparib treatment and during niraparib treatment are documented. Fisher's exact test were used for correlation analysis. Results 1. 40 patients treated with niraparib were included in the analysis, including 31 patients treated with niraparib for 1st-line maintenance therapy, 6 patients for PSR (platinum-sensitive recurrence) maintenance therapy, and 3 patients for salvage therapy. The overall median follow-up time was 15.0 months (ranged from 2.2 months to 32.1 months). 2. Overall grade≥3 TRAE (40% vs 70%, p=0.012) including anemia (20% vs 45%, p=0.041) and neutrophil count decreased (17.5% vs 57.5%, p<0.001) was significantly lower during niraparib treatment compared to during chemotherapy. 3. Any grade TRAE (75% vs 100%, p=0.002) including white blood cell count decreased (47.5% vs 87.5%, p<0.001), red blood cell count decreased (57.5% vs 92.5%, p<0.001), anemia (55% vs 87.5%, p<0.001) and neutrophil count decreased (35% vs 85%, p<0.001) were also significantly lower in niraparib treatment group compared with chemotherapy group. No new safety signals were identified. Conclusion 1. In this real-world practice, we observed that patients with advanced ovarian cancer who experienced any grade and grade ≥3 TRAE during chemotherapy were well tolerated when treated with niraparib, particularly the incidence of any grade and grade ≥3 anemia, and neutrophil count decreased during niraparib treatment were significantly lower compared with that during chemotherapy. 2. For patients with ovarian cancer who have experienced grade ≥3 hematological adverse reactions during prior platinum-based chemotherapy, greater attention should be paid to the monitoring and management of hematological adverse reactions during subsequent treatment with niraparib.
Collapse
Affiliation(s)
- Linli Wang
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Jieli Zhou
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenling Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chunyun Fang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
29
|
Xu Y, Chen YJA, Wu Y, Saverimuthu A, Jadhav A, Bhuiyan R, Sandler J, Yio J, Kumar V. The prognostic and predictive value of homologous recombination deficiency status in patients with advanced stage epithelial ovarian carcinoma after first-line platinum-based chemotherapy. Front Oncol 2024; 14:1372482. [PMID: 38915363 PMCID: PMC11194312 DOI: 10.3389/fonc.2024.1372482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 06/26/2024] Open
Abstract
Objective Homologous recombination (HR) comprises series of interrelated pathways that repair double-stranded DNA breaks and inter-strand crosslinks. It provides support for DNA replication to recover stalled or broken replication forks. Compared with homologous recombination proficiency (HRP), cancers with homologous recombination deficiency (HRD) are more likely to undergo cell death when treated with DNA-damaging agents, such as platinum agents, and have better disease control. Methods Patients diagnosed with stage III/IV ovarian cancer, early stages with recurrence, who received adjuvant chemotherapy after debulking surgery, and who also had known HR status were eligible. Results Forty-four patients were included, with 21 in the HRD group (including 8 with germline mutations) and 23 in the HRP group. The HRD group was composed predominantly of serous carcinoma (95.2%), while mucinous (n=3) and clear cell (n=1) cases were all found in the HRP group. Stage III/IV disease was 66.7% and 91.3% in HRD and HRP groups, respectively (p=0.064). Patients who were optimally debulked to no residual disease was 90.0% and 72.7% (p=0.243), respectively. Late line use of PARP inhibitors was 33.3% and 17.4% (p=0.303). Median PFS was 22.5 months (95% CI, 18.5 - 66.6) and 21.5 months (95% CI, 18.3-39.5) (p=0.49) in HRD and HRP respectively. Median platinum free interval (PFI) was 15.8 months (95% CI 12.4-60.4) and 15.9 months (95% CI 8.3-34.1) (p=0.24), respectively. Median OS was 88.2 months (95% CI 71.2-NA) and 49.7 months (95% CI 35.1-NA) (p=0.21). The PFS of the patients with germline BRCA mutations (n=5) was 54.3 months (95% CI 23.1-NA) and 21.5 months (95% CI 18.3-39.5) in the HRP group (p=0.095); the PFI difference was 47.7 months (95% CI 17.6-NA) in the BRCA mutation group, and 15.9 months (95% CI 12.4-60.4) in HRP, showing statistical significance (p=0.039); while the median OS was NA and 49.7 months (95% CI 35.1-NA) respectively (p=0.051). When adding two additional patients with somatic BRCA mutations to the germline BRCA mutation carriers, the median OS is NA (95% CI 73, NA) versus 49.7 months (95% CI 35.1, NA) for HRP (p=0.045). Conclusions HRD status was not associated with longer PFS or PFI in advanced ovarian cancer who received first line adjuvant platinum-based chemotherapy. Its role as a prognostic marker for overall survival is suggested, particularly in the subgroup with germline and somatic BRCA mutations.
Collapse
Affiliation(s)
- Yiqing Xu
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Yi-Ju Amy Chen
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Weill Cornell Medical College and New York Presbyterian/Queens Hospital, Flushing, NY, United States
| | - Yunhong Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Angela Saverimuthu
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Archana Jadhav
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Rehana Bhuiyan
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Jason Sandler
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Jiang Yio
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Vivek Kumar
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
30
|
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H. Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 2024; 64:62. [PMID: 38757340 PMCID: PMC11095605 DOI: 10.3892/ijo.2024.5650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) represents the most prevalent malignancy of the female reproductive system. Its distinguishing features include a high aggressiveness, substantial morbidity and mortality, and a lack of apparent symptoms, which collectively pose significant challenges for early detection. Given that aberrant DNA methylation events leading to altered gene expression are characteristic of numerous tumor types, there has been extensive research into epigenetic mechanisms, particularly DNA methylation, in human cancers. In the context of OC, DNA methylation is often associated with the regulation of critical genes, such as BRCA1/2 and Ras‑association domain family 1A. Methylation modifications within the promoter regions of these genes not only contribute to the pathogenesis of OC, but also induce medication resistance and influence the prognosis of patients with OC. As such, a more in‑depth understanding of DNA methylation underpinning carcinogenesis could potentially facilitate the development of more effective therapeutic approaches for this intricate disease. The present review focuses on classical tumor suppressor genes, oncogenes, signaling pathways and associated microRNAs in an aim to elucidate the influence of DNA methylation on the development and progression of OC. The advantages and limitations of employing DNA methylation in the diagnosis, treatment and prevention of OC are also discussed. On the whole, the present literature review indicates that the DNA methylation of specific genes could potentially serve as a prognostic biomarker for OC and a therapeutic target for personalized treatment strategies. Further investigations in this field may yield more efficacious diagnostic and therapeutic alternatives for patients with OC.
Collapse
Affiliation(s)
- Mengyu Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Deng
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Youguo Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinhua Zhou
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinqin Gao
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
31
|
Freire MV, Martin M, Segers K, Sepulchre E, Leroi N, Coupier J, Kalantari HR, Wolter P, Collignon J, Polus M, Plomteux O, Josse C, Bours V. Digenic Inheritance of Mutations in Homologous Recombination Genes in Cancer Patients. J Pers Med 2024; 14:584. [PMID: 38929805 PMCID: PMC11204488 DOI: 10.3390/jpm14060584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES BRCA1, BRCA2, ATM, and CHEK2 are known cancer predisposition genes (CPGs), but tumor risk in patients with simultaneous pathogenic variants (PVs) in CPGs remains largely unknown. In this study, we describe six patients from five families with multiple cancers who coinherited a combination of PVs in these genes. METHODS PVs were identified using NGS DNA sequencing and were confirmed by Sanger. RESULTS Families 1, 2, and 3 presented PVs in BRCA2 and ATM, family 4 in BRCA2 and BRCA1, and family 5 in BRCA2 and CHEK2. PVs were identified using NGS DNA sequencing and were confirmed by Sanger. The first family included patients with kidney, prostate, and breast cancer, in addition to pancreatic adenocarcinomas. In the second family, a female had breast cancer, while a male from the third family had prostate, gastric, and pancreatic cancer. The fourth family included a male with pancreatic cancer, and the fifth family a female with breast cancer. CONCLUSIONS The early age of diagnosis and the development of multiple cancers in the reported patients indicate a very high risk of cancer in double-heterozygous patients associated with PVs in HR-related CPGs. Therefore, in families with patients who differ from other family members in terms of phenotype, age of diagnosis, or type of cancer, the cascade testing needs to include the study of other CPGs.
Collapse
Affiliation(s)
- Maria Valeria Freire
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Marie Martin
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Karin Segers
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Edith Sepulchre
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Natacha Leroi
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Jérôme Coupier
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | | | - Pascal Wolter
- Onco-Hematology Department, St Nikolaus Hospital, Hufengasse 4/8, 4700 Eupen, Belgium;
| | - Joëlle Collignon
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Marc Polus
- Department of Gastroenterology, CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Olivier Plomteux
- Gastro-Enterology Department, CHC, Boulevard Patience et Beaujonc 2, 4000 Liège, Belgium;
| | - Claire Josse
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| |
Collapse
|
32
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
33
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
34
|
Jitmana K, Griffiths JI, Fereday S, DeFazio A, Bowtell D, Adler FR. Mathematical modeling of the evolution of resistance and aggressiveness of high-grade serous ovarian cancer from patient CA-125 time series. PLoS Comput Biol 2024; 20:e1012073. [PMID: 38809938 PMCID: PMC11164342 DOI: 10.1371/journal.pcbi.1012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/10/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
A time-series analysis of serum Cancer Antigen 125 (CA-125) levels was performed in 791 patients with high-grade serous ovarian cancer (HGSOC) from the Australian Ovarian Cancer Study to evaluate the development of chemoresistance and response to therapy. To investigate chemoresistance and better predict the treatment effectiveness, we examined two traits: resistance (defined as the rate of CA-125 change when patients were treated with therapy) and aggressiveness (defined as the rate of CA-125 change when patients were not treated). We found that as the number of treatment lines increases, the data-based resistance increases (a decreased rate of CA-125 decay). We use mathematical models of two distinct cancer cell types, treatment-sensitive cells and treatment-resistant cells, to estimate the values and evolution of the two traits in individual patients. By fitting to individual patient HGSOC data, our models successfully capture the dynamics of the CA-125 level. The parameters estimated from the mathematical models show that patients with inferred low growth rates of treatment-sensitive cells and treatment-resistant cells (low model-estimated aggressiveness) and a high death rate of treatment-resistant cells (low model-estimated resistance) have longer survival time after completing their second-line of therapy. These findings show that mathematical models can characterize the degree of resistance and aggressiveness in individual patients, which improves our understanding of chemoresistance development and could predict treatment effectiveness in HGSOC patients.
Collapse
Affiliation(s)
- Kanyarat Jitmana
- Department of Mathematics, The University of Utah, Salt Lake City, Utah, The United States of America
| | - Jason I. Griffiths
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, The United States of America
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - David Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Frederick R. Adler
- Department of Mathematics, The University of Utah, Salt Lake City, Utah, The United States of America
- School of Biological Sciences, The University of Utah, Salt Lake City, Utah, The United States of America
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, The United States of America
| |
Collapse
|
35
|
McDevitt T, Durkie M, Arnold N, Burghel GJ, Butler S, Claes KBM, Logan P, Robinson R, Sheils K, Wolstenholme N, Hanson H, Turnbull C, Hume S. EMQN best practice guidelines for genetic testing in hereditary breast and ovarian cancer. Eur J Hum Genet 2024; 32:479-488. [PMID: 38443545 PMCID: PMC11061103 DOI: 10.1038/s41431-023-01507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) is a genetic condition associated with increased risk of cancers. The past decade has brought about significant changes to hereditary breast and ovarian cancer (HBOC) diagnostic testing with new treatments, testing methods and strategies, and evolving information on genetic associations. These best practice guidelines have been produced to assist clinical laboratories in effectively addressing the complexities of HBOC testing, while taking into account advancements since the last guidelines were published in 2007. These guidelines summarise cancer risk data from recent studies for the most commonly tested high and moderate risk HBOC genes for laboratories to refer to as a guide. Furthermore, recommendations are provided for somatic and germline testing services with regards to clinical referral, laboratory analyses, variant interpretation, and reporting. The guidelines present recommendations where 'must' is assigned to advocate that the recommendation is essential; and 'should' is assigned to advocate that the recommendation is highly advised but may not be universally applicable. Recommendations are presented in the form of shaded italicised statements throughout the document, and in the form of a table in supplementary materials (Table S4). Finally, for the purposes of encouraging standardisation and aiding implementation of recommendations, example report wording covering the essential points to be included is provided for the most common HBOC referral and reporting scenarios. These guidelines are aimed primarily at genomic scientists working in diagnostic testing laboratories.
Collapse
Affiliation(s)
- Trudi McDevitt
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland.
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust Western Bank, Sheffield, UK
| | - Norbert Arnold
- UKSH Campus Kiel, Gynecology and Obstetrics, Institut of Clinical Chemistry, Institut of Clinical Molecular Biology, Kiel, Germany
| | - George J Burghel
- Manchester University NHS Foundation Trust, North West Genomic Laboratory Hub, Manchester, UK
| | - Samantha Butler
- Central and South Genomic Laboratory Hub, West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Peter Logan
- HSCNI / Belfast Trust Laboratories, Regional Molecular Diagnostics Service, Belfast, Northern Ireland
| | - Rachel Robinson
- Leeds Teaching Hospitals NHS Trust, Genetics Department, Leeds, UK
| | | | | | - Helen Hanson
- St George's University Hospitals NHS Foundation Trust, Clinical Genetics, London, UK
| | | | - Stacey Hume
- University of British Columbia, Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol 2024; 21:389-400. [PMID: 38548868 DOI: 10.1038/s41571-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Globally, ovarian cancer is the eighth most common cancer in women, accounting for an estimated 3.7% of cases and 4.7% of cancer deaths in 2020. Until the early 2000s, age-standardized incidence was highest in northern Europe and North America, but this trend has changed; incidence is now declining in these regions and increasing in parts of eastern Europe and Asia. Ovarian cancer is a very heterogeneous disease and, even among the most common type, namely epithelial ovarian cancer, five major clinically and genetically distinct histotypes exist. Most high-grade serous ovarian carcinomas are now recognized to originate in the fimbrial ends of the fallopian tube. This knowledge has led to more cancers being coded as fallopian tube in origin, which probably explains some of the apparent declines in ovarian cancer incidence, particularly in high-income countries; however, it also suggests that opportunistic salpingectomy offers an important opportunity for prevention. The five histotypes share several reproductive and hormonal risk factors, although differences also exist. In this Review, we summarize the epidemiology of this complex disease, comparing the different histotypes, and consider the potential for prevention. We also discuss how changes in the prevalence of risk and protective factors might have contributed to the observed changes in incidence and what this might mean for incidence in the future.
Collapse
Affiliation(s)
- Penelope M Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Public Health, The University of Queensland, Herston, Queensland, Australia.
| | - Susan J Jordan
- School of Public Health, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
37
|
Ben Ali F, Qmichou Z, Oukabli M, Dakka N, Bakri Y, Eddouks M, Ameziane El Hassani R. Alteration of glucose metabolism and expression of glucose transporters in ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:384-399. [PMID: 38745772 PMCID: PMC11090687 DOI: 10.37349/etat.2024.00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 05/16/2024] Open
Abstract
Aerobic glycolysis also known as the Warburg effect, remains a hallmark of various cancers, including ovarian cancer. Cancer cells undergo metabolic changes to sustain their tumorigenic properties and adapt to environmental conditions, such as hypoxia and nutrient starvation. Altered metabolic pathways not only facilitate ovarian cancer cells' survival and proliferation but also endow them to metastasize, develop resistance to chemotherapy, maintain cancer stem cell phenotype, and escape anti-tumor immune responses. Glucose transporters (GLUTs), which play a pivotal role as the rate-limiting step in glycolysis, are frequently overexpressed in a variety of tumors, including ovarian cancer. Multiple oncoproteins can regulate GLUT proteins, promoting tumor proliferation, migration, and metastasis, either dependent or independent of glycolysis. This review examines the alteration of GLUT proteins, particularly GLUT1, in ovarian cancer and its impact on cancer initiation, progression, and resistance to treatment. Additionally, it highlights the role of these proteins as biomarkers for diagnosis and prognosis in ovarian cancer, and delves into novel therapeutic strategies currently under development that target GLUT isoforms.
Collapse
Affiliation(s)
- Fatima Ben Ali
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat 10001, Morocco
| | - Mohamed Oukabli
- Department of Anatomical Pathology, Military Hospital of Instruction Mohammed V (HMIMV-R), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Nadia Dakka
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Mohammed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia BP 509, Morocco
| | - Rabii Ameziane El Hassani
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| |
Collapse
|
38
|
Choochuen P, Nokchan N, Khongcharoen N, Laochareonsuk W, Surachat K, Chotsampancharoen T, Sila T, Consortium SS. Discovery of Novel Potential Prognostic Markers and Targeted Therapy to Overcome Chemotherapy Resistance in an Advanced-Stage Wilms Tumor. Cancers (Basel) 2024; 16:1567. [PMID: 38672648 PMCID: PMC11049388 DOI: 10.3390/cancers16081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Wilms tumor (WT), the most prevalent type of renal cancer in children, exhibits overall survival rates exceeding 90%. However, chemotherapy resistance, which occurs in approximately 10% of WT cases, is a major challenge for the treatment of WT, particularly for advanced-stage patients. In this study, we aimed to discover potential mutation markers and drug targets associated with chemotherapy resistance in advanced-stage WT. We performed exome sequencing to detect somatic mutations and molecular targets in 43 WT samples, comprising 26 advanced-stage WTs, of which 7 cases were chemotherapy-resistant. Our analysis revealed four genes (ALPK2, C16orf96, PRKDC, and SVIL) that correlated with chemotherapy resistance and reduced disease-free survival in advanced-stage WT. Additionally, we identified driver mutations in 55 genes within the chemotherapy-resistant group, including 14 druggable cancer driver genes. Based on the mutation profiles of the resistant WT samples, we propose potential therapeutic strategies involving platinum-based agents, PARP inhibitors, and antibiotic/antineoplastic agents. Our findings provide insights into the genetic landscape of WT and offer potential avenues for targeted treatment, particularly for patients with chemotherapy resistance.
Collapse
Affiliation(s)
- Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (N.N.); (N.K.); (W.L.); (K.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (N.N.); (N.K.); (W.L.); (K.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natthapon Khongcharoen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (N.N.); (N.K.); (W.L.); (K.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wison Laochareonsuk
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (N.N.); (N.K.); (W.L.); (K.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (N.N.); (N.K.); (W.L.); (K.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Thanit Sila
- Department of Pathology, Facualty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Surasak Sangkhathat Consortium
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (N.N.); (N.K.); (W.L.); (K.S.)
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
39
|
Qian J, Peng M, Li Y, Liu W, Zou X, Chen H, Zhou S, Xiao S, Zhou J. Case report: A germline CHEK1 c.613 + 2T>C leads to a splicing error in a family with multiple cancer patients. Front Oncol 2024; 14:1380093. [PMID: 38686193 PMCID: PMC11056527 DOI: 10.3389/fonc.2024.1380093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Background Genome instability plays a crucial role in promoting tumor development. Germline mutations in genes responsible for DNA repair are often associated with familial cancer syndromes. A noticeable exception is the CHEK1 gene. Despite its well-established role in homologous recombination, germline mutations in CHEK1 are rarely reported. Case presentation In this report, we present a patient diagnosed with ovarian clear cell carcinoma who has a family history of cancer. Her relatives include a grandfather with esophageal cancer, a father with gastric cancer, and an uncle with a brain tumor. The patient carried a typical genomic profile of clear cell carcinoma including mutations in KRAS, PPP2R1A, and PIK3R1. Importantly, her paired peripheral blood cells harbored a germline CHEK1 mutation, CHEK1 exon 6 c.613 + 2T>C, which was also found in her father. Unfortunately, the CHEK1 status of her grandfather and uncle remains unknown due to the unavailability of their specimens. Further evaluation via RT-PCR confirmed a splicing error in the CHEK1 gene, resulting in truncation at the kinase domain region, indicative of a loss-of-function mutation. Conclusion This case highlights a rare germline CHEK1 mutation within a family with a history of cancer. The confirmed splicing error at the mRNA level underscores the functional consequences of this mutation. Documenting such cases is vital for future evaluation of inheritance patterns, clinical penetrance of the mutation, and its association with specific cancer types.
Collapse
Affiliation(s)
- Jun Qian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Peng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanan Li
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Wei Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinwei Zou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huafei Chen
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Sujuan Zhou
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jinhua Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Padilla-Iserte P, Iváñez M, Muruzabal JC, Navarro R, Díaz-Feijoo B, Iacoponi S, García-Pineda V, Díaz C, Utrilla-Layna J, Gil-Moreno A, Serra A, Gilabert-Estellés J, Martínez Canto C, Tejerizo Á, Lago V, Cárdenas-Rebollo JM, Domingo S. Oncological outcomes of intraperitoneal chemotherapy in advanced ovarian cancer: BRCA mutation role. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108263. [PMID: 38492526 DOI: 10.1016/j.ejso.2024.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION The knowledge of BRCA status offers a chance to evaluate the role of the intraperitoneal route in patients selected by biomolecular profiles after primary cytoreduction surgery in advanced ovarian cancer. MATERIALS AND METHODS We performed a retrospective, multicenter study to assess oncological outcomes depending on adjuvant treatment (intraperitoneal [IP] vs intravenous [IV]) and BRCA status (BRCA1/2 mutated vs. BRCA wild type [WT]). The primary endpoint was to determine progression-free survival. The secondary objectives were overall survival and toxicity. RESULTS A total of 288 women from eight centers were included: 177 in the IP arm and 111 in the IV arm, grouped into four arms according to BRCA1/2 status. Significantly better PFS was observed in BRCA1/2-mutated patients with IP chemotherapy (HR: 0.35; 95% CI, 0.16-0.75, p = 0.007), which was not present in BRCA1/2-mutated patients with IV chemotherapy (HR: 0.65; 95% CI, 0.37-1.12, p = 0.14). Significantly better OS was also observed in IP chemotherapy (HR: 0.17; 95% CI, 0.06-043, p < 0.0001), but was not present in IV chemotherapy in relation with BRCA mutation (HR: 0.52; 95% CI, 0.22-1.27, p = 0.15). For BRCA WT patients, worse survival was observed regardless of the adjuvant route used. The IP route was more toxic compared to the IV route, but toxicity was equivalent at the long-term follow-up. CONCLUSION This retrospective study suggests that BRCA status can help to offer an individualized, systematic treatment after optimal primary surgery for advanced ovarian cancer, but is limited by the small sample size. Prospective trials are essential to confirm these results.
Collapse
Affiliation(s)
- Pablo Padilla-Iserte
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, Valencia, Spain.
| | - Maria Iváñez
- Department of Gynaecologic Oncology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - Rafael Navarro
- Department of Gynecologic Oncology, MD Anderson Cancer Center Madrid, Spain
| | - Berta Díaz-Feijoo
- Institute Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain
| | - Sara Iacoponi
- Department of Obstetrics and Gynaecology, University Quirónsalud Madrid Hospital, Spain
| | | | - Cristina Díaz
- Department of Gynecology, Valencian Institute of Oncology (IVO), Spain
| | | | - Antonio Gil-Moreno
- Gynecologic Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Institut de Recerca Biomèdica en Ginecologia-VHIR, CIBERONC, Barcelona, Spain
| | - Anna Serra
- Department of Obstetrics and Gynecology, Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery (MUAPOS), University General Hospital of Castellón, Spain
| | - Juan Gilabert-Estellés
- Department of Obstetrics and Gynecology, University General Hospital of Valencia Spain, Spain
| | | | - Álvaro Tejerizo
- Department of Obstetrics and Gynecology, Gynecologic Oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación i+12, Universidad Complutense de Madrid, Spain
| | - Víctor Lago
- Department of Gynaecologic Oncology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - Santiago Domingo
- Department of Gynaecologic Oncology, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
41
|
Abe A, Nomura H, Fusegi A, Yunokawa M, Ueki A, Habano E, Arakawa H, Kaneko K, Minoura Y, Inari H, Ueno T, Kanao H. Risk-reducing decisions regarding germline BRCA pathogenic variant: focusing on the timing of genetic testing and RRSO. J Med Genet 2024; 61:392-398. [PMID: 38124001 PMCID: PMC10982634 DOI: 10.1136/jmg-2023-109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND In Japan, the public insurance policy was revised in 2020 to cover hereditary breast and ovarian cancer (HBOC), including genetic testing and surveillance, for patients with breast cancer (BC). Consequently, the demand for risk-reducing salpingo-oophorectomy (RRSO) has increased. This study aimed to clarify the changes in the demand and timing of genetic testing and RRSO associated with public insurance coverage for HBOC in Japan. METHODS This retrospective analysis included 350 women with germline BRCA (gBRCA) pathogenic variants (PVs) who had visited gynaecologists; they received gBRCA genetic testing at 45.1±10.6 (20-74) years. The use of medical testing and preventive treatment was compared between the preinsurance and postinsurance groups using Mann-Whitney U and Fisher's exact tests. RESULTS The findings indicate that RRSO rates doubled from 31.4% to 62.6% among patients with gBRCA-PV. The implementation rate was 32.4% among unaffected carriers and 70.3% among BC-affected patients. Younger patients received genetic testing with significantly shorter intervals between BC diagnosis and genetic testing and between genetic testing and RRSO. CONCLUSION Overall, the insurance coverage for HBOC patients with BC has increased the frequency of RRSO in Japan. However, a comparison between the number of probands and family members indicated that the diagnosis among family members is inadequate. The inequality in the use of genetic services by socioeconomic groups is an issue of further concern.
Collapse
Affiliation(s)
- Akiko Abe
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hidetaka Nomura
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Fusegi
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mayu Yunokawa
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Arisa Ueki
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eri Habano
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromi Arakawa
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keika Kaneko
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuko Minoura
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hitoshi Inari
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Ueno
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Kanao
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
42
|
Tortorella L, Cappuccio S, Giannarelli D, Nero C, Marchetti C, Gallotta V, Costantini B, Pasciuto T, Minucci A, Fagotti A, Scambia G. Distribution and prognostic role of BRCA status in elderly ovarian cancer patients. Gynecol Oncol 2024; 182:57-62. [PMID: 38262239 DOI: 10.1016/j.ygyno.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE In the era of target therapy and personalized medicine, BRCA mutational status has a major influence on survival in ovarian cancer patients. Our aim is to verify if the poorer prognosis of elderly ovarian cancer patients can be related to the biology of the tumor beyond their own morbidities and/or suboptimal treatments. METHODS This is a retrospective single-institution study evaluating prognosis of patients with a diagnosis of ovarian cancer and known BRCA status. We collected clinical and surgical characteristics and the distribution of BRCA mutational status according to age groups. RESULTS 1840 patients were included in the analysis. The rate of BRCA mutated decreased over age-range from 49.7% in patients aged <50 years to 18.8% in ≥80 years old women. The prognostic role of BRCA status on survival is maintained when focusing on the elderly population, with improved Disease Free Survival (27.2 months vs 16.5 months for BRCA mutated and wild type respectively, p = 0.001) and Cancer Specific Survival (117.6 months vs 43.1 months for BRCA mutated and wild type respectively, p = 0.001) for BRCAmut compared to BRCAwt patients. In the multivariable analysis, among elderly women, upfront surgery and BRCA mutation are independent factors affecting survival. CONCLUSIONS Elderly patients experiment a poorer prognosis due to multiple factors that include both their medical condition and comorbidities, under-treatment and most importantly disease characteristics. We found that beyond disparities, BRCA mutation is still the strongest independent prognostic factor affecting both the risk of recurrence and death due to disease.
Collapse
Affiliation(s)
- Lucia Tortorella
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy
| | - Serena Cappuccio
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy
| | - Diana Giannarelli
- Epidemiology and Biostatistics Facility G-STeP Generator Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy
| | - Camilla Nero
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy; Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, 00167 Rome, Italy
| | - Claudia Marchetti
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy
| | - Valerio Gallotta
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy
| | - Barbara Costantini
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy; Unicamillus, International Medical University, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Tina Pasciuto
- Epidemiology and Biostatistics Facility G-STeP Generator Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy
| | - Angelo Minucci
- Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli, 00167 Roma, Italy
| | - Anna Fagotti
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy; Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, 00167 Rome, Italy.
| | - Giovanni Scambia
- Department of Woman and Child Health and Public Health Sciences, Gynercologic Oncology Unit Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.go A. Gemelli 8, 00167 Rome, Italy; Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, 00167 Rome, Italy
| |
Collapse
|
43
|
Wang Y, Lin W, Zhuang X, Wang X, He Y, Li L, Lyu G. Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review). Oncol Rep 2024; 51:46. [PMID: 38240090 PMCID: PMC10828921 DOI: 10.3892/or.2024.8705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a crucial technique for extracting high‑throughput information from various sources, including medical images, pathological images, and genomics, transcriptomics, proteomics and metabolomics data. AI has been widely used in the field of diagnosis, for the differentiation of benign and malignant ovarian cancer (OC), and for prognostic assessment, with favorable results. Notably, AI‑based radiomics has proven to be a non‑invasive, convenient and economical approach, making it an essential asset in a gynecological setting. The present study reviews the application of AI in the diagnosis, differentiation and prognostic assessment of OC. It is suggested that AI‑based multi‑omics studies have the potential to improve the diagnostic and prognostic predictive ability in patients with OC, thereby facilitating the realization of precision medicine.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Weihong Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoling Zhuang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiali Wang
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, Fujian 362000, P.R. China
| | - Yifang He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Luhong Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
44
|
Chen B, Zhao L, Yang R, Xu T. New insights about endometriosis-associated ovarian cancer: pathogenesis, risk factors, prediction and diagnosis and treatment. Front Oncol 2024; 14:1329133. [PMID: 38384812 PMCID: PMC10879431 DOI: 10.3389/fonc.2024.1329133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Previous studies have shown that the risk of malignant transformation of endometriosis in premenopausal women is approximately 1%, significantly impacting the overall well-being and quality of life of affected women. Presently, the diagnostic gold standard for endometriosis-associated ovarian cancer (EAOC) continues to be invasive laparoscopy followed by histological examination. However, the application of this technique is limited due to its high cost, highlighting the importance of identifying a non-invasive diagnostic approach. Therefore, there is a critical need to explore non-invasive diagnostic methods to improve diagnostic precision and optimize clinical outcomes for patients. This review presents a comprehensive survey of the current progress in comprehending the pathogenesis of malignant transformation in endometriosis. Furthermore, it examines the most recent research discoveries concerning the diagnosis of EAOC and emphasizes potential targets for therapeutic intervention. The ultimate objective is to improve prevention, early detection, precise diagnosis, and treatment approaches, thereby optimizing the clinical outcomes for patients.
Collapse
Affiliation(s)
| | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Guo F, Adekanmbi V, Hsu CD, Berenson AB, Kuo YF, Shih YCT. Cost-Effectiveness of Population-Based Multigene Testing for Breast and Ovarian Cancer Prevention. JAMA Netw Open 2024; 7:e2356078. [PMID: 38353949 PMCID: PMC10867683 DOI: 10.1001/jamanetworkopen.2023.56078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Importance The current method of BRCA testing for breast and ovarian cancer prevention, which is based on family history, often fails to identify many carriers of pathogenic variants. Population-based genetic testing offers a transformative approach in cancer prevention by allowing for proactive identification of any high-risk individuals and enabling early interventions. Objective To assess the lifetime incremental effectiveness, costs, and cost-effectiveness of population-based multigene testing vs family history-based testing. Design, Setting, and Participants This economic evaluation used a microsimulation model to assess the cost-effectiveness of multigene testing (BRCA1, BRCA2, and PALB2) for all women aged 30 to 35 years compared with the current standard of care that is family history based. Carriers of pathogenic variants were offered interventions, such as magnetic resonance imaging with or without mammography, chemoprevention, or risk-reducing mastectomy and salpingo-oophorectomy, to reduce cancer risk. A total of 2000 simulations were run on 1 000 000 women, using a lifetime time horizon and payer perspective, and costs were adjusted to 2022 US dollars. This study was conducted from September 1, 2020, to December 15, 2023. Main Outcomes and Measures The main outcome measure was the incremental cost-effectiveness ratio (ICER), quantified as cost per quality-adjusted life-year (QALY) gained. Secondary outcomes included incremental cost, additional breast and ovarian cancer cases prevented, and excess deaths due to coronary heart disease (CHD). Results The study assessed 1 000 000 simulated women aged 30 to 35 years in the US. In the base case, population-based multigene testing was more cost-effective compared with family history-based testing, with an ICER of $55 548 per QALY (95% CI, $47 288-$65 850 per QALY). Population-based multigene testing would be able to prevent an additional 1338 cases of breast cancer and 663 cases of ovarian cancer, but it would also result in 69 cases of excess CHD and 10 excess CHD deaths per million women. The probabilistic sensitivity analyses show that the probability that population-based multigene testing is cost-effective was 100%. When the cost of the multigene test exceeded $825, population-based testing was no longer cost-effective (ICER, $100 005 per QALY; 95% CI, $87 601-$11 6323). Conclusions and Relevance In this economic analysis of population-based multigene testing, population-based testing was a more cost-effective strategy for the prevention of breast cancer and ovarian cancer when compared with the current family history-based testing strategy at the $100 000 per QALY willingness-to-pay threshold. These findings support the need for more comprehensive genetic testing strategies to identify pathogenic variant carriers and enable informed decision-making for personalized risk management.
Collapse
Affiliation(s)
- Fangjian Guo
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Victor Adekanmbi
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Christine D. Hsu
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Abbey B. Berenson
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Yong-Fang Kuo
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
- Department of Biostatistics and Data Science, The University of Texas Medical Branch at Galveston, Galveston
- Office of Biostatistics, University of Texas Medical Branch at Galveston, Galveston
| | - Ya-Chen Tina Shih
- Program in Cancer Health Economics Research, Jonsson Comprehensive Cancer Center, and Department of Radiation Oncology, School of Medicine, University of California, Los Angeles
| |
Collapse
|
46
|
Li H, Bartke R, Zhao L, Verma Y, Horacek A, Rechav Ben-Natan A, Pangilinan GR, Krishnappa N, Nielsen R, Hockemeyer D. Functional annotation of variants of the BRCA2 gene via locally haploid human pluripotent stem cells. Nat Biomed Eng 2024; 8:165-176. [PMID: 37488236 PMCID: PMC10878975 DOI: 10.1038/s41551-023-01065-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
Mutations in the BRCA2 gene are associated with sporadic and familial cancer, cause genomic instability and sensitize cancer cells to inhibition by the poly(ADP-ribose) polymerase (PARP). Here we show that human pluripotent stem cells (hPSCs) with one copy of BRCA2 deleted can be used to annotate variants of this gene and to test their sensitivities to PARP inhibition. By using Cas9 to edit the functional BRCA2 allele in the locally haploid hPSCs and in fibroblasts differentiated from them, we characterized essential regions in the gene to identify permissive and loss-of-function mutations. We also used Cas9 to directly test the function of individual amino acids, including amino acids encoded by clinical BRCA2 variants of uncertain significance, and identified alleles that are sensitive to PARP inhibitors used as a standard of care in BRCA2-deficient cancers. Locally haploid human pluripotent stem cells can facilitate detailed structure-function analyses of genes and the rapid functional evaluation of clinically observed mutations.
Collapse
Affiliation(s)
- Hanqin Li
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Rebecca Bartke
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lei Zhao
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yogendra Verma
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Anna Horacek
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alma Rechav Ben-Natan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriella R Pangilinan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Rasmus Nielsen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
47
|
Greenwood HI, Dodelzon K. Screening in Women With BRCA Mutations Revisited. JOURNAL OF BREAST IMAGING 2024; 6:4-13. [PMID: 38166173 DOI: 10.1093/jbi/wbad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 01/04/2024]
Abstract
Patients with BRCA1 or BRCA2 gene mutations are at high risk for the development of breast cancer. This article reviews the current evidence for breast cancer screening of patients with BRCA1 or BRCA2 pathogenic gene mutations if they have not undergone prophylactic mastectomy. It will review the current evidence-based imaging recommendations for different modalities and ages of screening initiation in screening this patient population at high risk. Special considerations in transgender BRCA1 and BRCA2 mutation carriers are also discussed.
Collapse
Affiliation(s)
- Heather I Greenwood
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Katerina Dodelzon
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
48
|
Tuncer SB, Celik B, Kılıc Erciyas S, Sukruoglu Erdogan O, Pasin O, Avsar M, Kurt Gultaslar B, Adamnejad Ghafour A, Uyaroglu G, Akdeniz Odemis D, Yazıcı H. Aberrant miR-3135b and miR-1273g-3p expression in the peripheral blood samples of BRCA1/2 (±) ovarian cancer patients. Heliyon 2024; 10:e23876. [PMID: 38234891 PMCID: PMC10792459 DOI: 10.1016/j.heliyon.2023.e23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Ovarian cancer (OC) ranks as the eighth most prevalent malignancy among women globally. The short non-coding RNA molecules, microRNAs (miRNAs) target multiple mRNAs and regulate the gene expression. Here in this study, we aimed to validate miR-3135b and miR-1273g-3p as novel biomarkers for prognostic and diagnostic factor OC. After RNA isolation, we analyzed the miR-3135b and miR-1273g-3p expression in peripheral blood samples derived from 150 OC patients. Subsequently, we compared their expression levels with 100 healthy controls. The differences of miR-3135b and miR-1273g-3p expression were detected using the Quantitative Real Time-PCR (qRT-PCR) technique following miRNA-specific cDNA synthesis pursing miRNA separation. The miR-3135b and miR-1273g-3p were higher in OC patients who tested positive for BRCA1/2 compared to BRCA-negative patients, and healthy cases. The level of miR-3135b demonstrated a roughly 4.82-fold increase in OC patients in comparison to the healthy cases, while miR-1273g-3p expression exhibited a roughly 6.77-fold increase. The receiver operating characteristic (ROC) analysis has demonstrated the potential of miR-3135b and miR-1273g-3p as markers for distinguishing between OC patients and healthy controls. The higher expressions of miR-3135b and miR-1273g-3p could be associated with OC development. Moreover, miR-3135b may have a diagnostic potential and miR-1273g-3p may have both diagnostic and prognostic potential in OC cell differentiation. The string analysis has revealed an association between miR-1273g-3p and the MDM2 gene, suggesting a potential link to tumor formation through the proteasomal degradation of the TP53 tumor suppressor gene. Additionally, the analysis indicates an association of miR-1273g-3p with CHEK1, a gene involved in checkpoint-mediated cell cycle arrest. String analysis also indicates that miR-3135b is associated with the MAPK1 gene, causing activation of the oncogenesis cascade. In conclusion, miR-1273g-3p, and miR-3135b exhibit significant potential as diagnostic markers. However, further research is needed to comprehensively investigate these miRNAs diagnostic and predictive characteristics in a larger cohort.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Betul Celik
- Molecular Biology Department, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Seda Kılıc Erciyas
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Pasin
- Faculty of Medicine, Department of Biostatistics, Bezmialem Vakıf University, Istanbul, Türkiye
| | - Mukaddes Avsar
- Department of Medical Services and Techniques, Istanbul Aydın University, Istanbul, Türkiye
| | - Busra Kurt Gultaslar
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | | | - Gamze Uyaroglu
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Hulya Yazıcı
- Department of Medical Biology, Istanbul Arel University, Istanbul, Türkiye
| |
Collapse
|
49
|
Akashi H, Yachida N, Ueda H, Yamaguchi M, Yamawaki K, Tamura R, Suda K, Ishiguro T, Adachi S, Nagase Y, Ueda Y, Ueda M, Abiko K, Kagabu M, Baba T, Nakaoka H, Enomoto T, Murai J, Yoshihara K. SLFN11 is a BRCA Independent Biomarker for the Response to Platinum-Based Chemotherapy in High-Grade Serous Ovarian Cancer and Clear Cell Ovarian Carcinoma. Mol Cancer Ther 2024; 23:106-116. [PMID: 37717249 DOI: 10.1158/1535-7163.mct-23-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
BRCA1/2 mutations are robust biomarkers for platinum-based chemotherapy in epithelial ovarian cancers. However, BRCA1/2 mutations in clear cell ovarian carcinoma (CCC) are less frequent compared with high-grade serous ovarian cancer (HGSC). The discovery of biomarkers that can be applied to CCC is an unmet need in chemotherapy. Schlafen 11 (SLFN11) has attracted attention as a novel sensitizer for DNA-damaging agents including platinum. In this study, we investigated the utility of SLFN11 in HGSC and CCC for platinum-based chemotherapy. SLFN11 expression was analyzed retrospectively by IHC across 326 ovarian cancer samples. The clinicopathologic significance of SLFN11 expression was analyzed across 57 advanced HGSC as a discovery set, 96 advanced HGSC as a validation set, and 57 advanced CCC cases, all of whom received platinum-based chemotherapy. BRCA1/2 mutation was analyzed using targeted-gene sequencing. In the HGSC cohort, the SLFN11-positive and BRCA mutation group showed significantly longer whereas the SLFN11-negative and BRCA wild-type group showed significantly shorter progression-free survival and overall survival. Moreover, SLFN11-positive HGSC shrunk significantly better than SLFN11-negative HGSC after neoadjuvant chemotherapy. Comparable results were obtained with CCC but without consideration of BRCA1/2 mutation due to a small population. Multivariate analysis identified SLFN11 as an independent factor for better survival in HGSC and CCC. The SLFN11-dependent sensitivity to platinum and PARP inhibitors were validated with genetically modified non-HGSC ovarian cancer cell lines. Our study reveals that SLFN11 predicts platinum sensitivity in HGSC and CCC independently of BRCA1/2 mutation status, indicating that SLFN11 assessment can guide treatment selection in HGSC and CCC.
Collapse
Affiliation(s)
- Hidehiko Akashi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masashi Ueda
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation Chiyoda-ku, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
50
|
Fantone S, Piani F, Olivieri F, Rippo MR, Sirico A, Di Simone N, Marzioni D, Tossetta G. Role of SLC7A11/xCT in Ovarian Cancer. Int J Mol Sci 2024; 25:587. [PMID: 38203758 PMCID: PMC10779187 DOI: 10.3390/ijms25010587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic cancers worldwide and has a high fatality rate due to diagnosis at an advanced stage of the disease as well as a high recurrence rate due to the occurrence of chemotherapy resistance. In fact, chemoresistance weakens the therapeutic effects, worsening the outcome of this pathology. Solute Carrier Family 7 Member 11 (SLC7A11, also known as xCT) is the functional subunit of the Xc- system, an anionic L-cystine/L-glutamate antiporter expressed on the cell surface. SLC7A11 expression is significantly upregulated in several types of cancers in which it can inhibit ferroptosis and favor cancer cell proliferation, invasion and chemoresistance. SLC7A11 expression is also increased in ovarian cancer tissues, suggesting a possible role of this protein as a therapeutic target. In this review, we provide an overview of the current literature regarding the role of SLC7A11 in ovarian cancer to provide new insights on SLC7A11 modulation and evaluate the potential role of SLC7A11 as a therapeutic target.
Collapse
Affiliation(s)
- Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Federica Piani
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Angelo Sirico
- Obstetrics and Gynecology Unit, Sant’Anna e San Sebastiano Hospital, 81100 Caserta, Italy;
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|