1
|
Medina Á, Muntañola A, Crespo M, Ramírez Á, Hernández-Rivas JÁ, Abrisqueta P, Alcoceba M, Delgado J, de la Serna J, Espinet B, González M, Loscertales J, Serrano A, Terol MJ, Yáñez L, Bosch F. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia and small lymphocytic lymphoma from Chronic Lymphocytic Leukemia Spanish Group (GELLC). Med Clin (Barc) 2025; 164:305-305.e17. [PMID: 39799061 DOI: 10.1016/j.medcli.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults in Western countries, with a median age at diagnosis of 72 years. This guide, developed by the Spanish Group for Chronic Lymphocytic Leukemia (GELLC), addresses the most relevant aspects of CLL, with the objectives of facilitating and aiding the diagnostic process, establishing therapeutic recommendations for choosing the best treatment for each type of patient, as well as standardizing the management of CLL and ensuring equity across different hospitals in terms of the use of the various available treatment regimens. METHODOLOGY The references obtained were classified according to the level of evidence and following the criteria established by the Agency for Health Research and Quality, and the recommendations were classified according to the criteria of the National Comprehensive Cancer Network (NCCN). DIAGNOSIS The diagnosis of CLL requires the presence of 5 × 109/l clonal B lymphocytes with the characteristic phenotype (CD19, CD5, CD20, CD23, and kappa or lambda chain restriction) demonstrated by flow cytometry in peripheral blood and maintained for at least 3 months. The presence of cytopenia caused by a typical bone marrow infiltrate establishes the diagnosis of CLL, regardless of the number of circulating lymphocytes or existing lymph node involvement. CLL and small lymphocytic lymphoma (SLL) are the same disease with different presentations, so they should be treated the same way. Current international guidelines recommend FISH with the 4 probes as a mandatory test in clinical practice to guide the prognosis of patients. They also recommend determining the mutational status of the immunoglobulin heavy chain variable region (IGHV) before the first treatment and detecting TP53 mutations before the first and subsequent relapses. TREATMENT Treatment should be initiated in symptomatic patients with criteria for active disease according to iwCLL. The first aspect to highlight is the prioritization of targeted therapies over immunochemotherapy. In first-line treatment, for patients with del(17p) and/or TP53 mutation, the best therapeutic option is a second-generation covalent Bruton's tyrosine kinase inhibitor (BTKi) administered indefinitely, while in cases without del(17p) or TP53 mutation with mutated IGHV, time-limited therapy with a combination including a BCL2 inhibitor (BCL2i) should be considered as the first therapeutic option. For patients with unmutated IGHV, both continuous BTKi and finite therapy with BCL2i are valid options that should be individually evaluated considering potential toxicities, drug interactions, patient preference, and logistical aspects. In very frail patients, supportive treatment should be considered. In relapse/refractory patients, prior treatment, the biological risk of CLL, the duration of response (if prior finite treatment), or the reason for stopping BTKi (if prior continuous treatment) should be considered.
Collapse
Affiliation(s)
- Ángeles Medina
- Servicio de Hematología, Hospital Costa del Sol, Marbella, Málaga, España
| | - Ana Muntañola
- Servicio de Hematología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - Marta Crespo
- Servicio de Hematología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Ángel Ramírez
- Servicio de Hematología, Hospital Universitario Central de Asturias, Oviedo, Asturias, España.
| | | | - Pau Abrisqueta
- Servicio de Hematología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Miguel Alcoceba
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, España
| | - Julio Delgado
- Servicio de Hematología, Hospital Clínic, Barcelona, España
| | - Javier de la Serna
- Servicio de Hematología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Blanca Espinet
- Servicio de Anatomía Patológica, Hospital del Mar, Barcelona, España
| | - Marcos González
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, España
| | - Javier Loscertales
- Servicio de Hematología, Hospital Universitario La Princesa, Madrid, España
| | - Alicia Serrano
- Servicio de Hematología, Hospital Clínico Universitario de Valencia, Valencia, España
| | - María José Terol
- Servicio de Hematología, Hospital Clínico Universitario de Valencia, Valencia, España
| | - Lucrecia Yáñez
- Servicio de Hematología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, España
| | - Francesc Bosch
- Servicio de Hematología, Hospital Universitario Vall d'Hebron, Barcelona, España
| |
Collapse
|
2
|
Qi S, Li J, Gu X, Zhang Y, Zhou W, Wang F, Wang W. Impacts of ageing on the efficacy of CAR-T cell therapy. Ageing Res Rev 2025; 107:102715. [PMID: 40058461 DOI: 10.1016/j.arr.2025.102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Chimeric antigen receptor T cells recognizing CD19 (19CAR-T) cell therapy has achieved robust clinical efficacy when treating some hematological malignancies, but which patient subgroups benefit mostly remains elusive. Here we summarized the data of 541 patients from 30 clinical trials who underwent 19 CAR-T therapy and analyzed the different clinical responses between young (<44 years), middle-aged (45-59 years) and elderly (>60 years) patients and found that the young patients showed a higher level of complete response (CR) rate. Therefore, we then summarize the advances of studies focusing on the effects of age on anti-tumor efficacy of CAR-T therapy and analyze the reasons for the low CR rate after CAR-T cell therapy in elderly patients with tumors, aiming to provide hints for oncologists to select the most suitable candidate for this cancer immunotherapy.
Collapse
Affiliation(s)
- Shimao Qi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Jiaqian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Xinyu Gu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Hallek M. Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy. Am J Hematol 2025; 100:450-480. [PMID: 39871707 PMCID: PMC11803567 DOI: 10.1002/ajh.27546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is the most frequent type of leukemia. It typically occurs in older patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that interfere with the regulation of proliferation and apoptosis in clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen as well as typical B-cell markers. PROGNOSIS AND STAGING Two clinical staging systems, Rai and Binet, provide prognostic information by using the results of physical examination and blood counts. Various biological and genetic markers provide additional prognostic information. Deletions of the short arm of chromosome 17 (del(17p)) and/or mutations of the TP53 gene predict a shorter time to progression with most targeted therapies. The CLL international prognostic index (CLL-IPI) integrates genetic, biological, and clinical variables to identify distinct risk groups of patients with CLL. The CLL-IPI retains its significance in the era of targeted agents, but the overall prognosis of CLL patients with high-risk stages has improved. THERAPY Only patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. When treatment is indicated, several therapeutic options exist: combinations of the BCL2 inhibitor venetoclax with obinutuzumab, or venetoclax with ibrutinib, or monotherapy with one of the inhibitors of Bruton tyrosine kinase (BTK). At relapse, the initial treatment may be repeated if the treatment-free interval exceeds 3 years. If the leukemia relapses earlier, therapy should be changed using an alternative regimen. FUTURE CHALLENGES Combinations of targeted agents now provide efficient therapies with a fixed duration that generate deep and durable remissions. These fixed-duration therapies have gained territory in the management of CLL, as they are cost-effective, avoid the emergence of resistance, and offer treatment free time to the patient. The cure rate of these novel combination regimens is unknown. Moreover, the optimal sequencing of targeted therapies remains to be determined. A medical challenge is to treat patients who are double-refractory to both BTK and BCL2 inhibitors. These patients need to be treated within experimental protocols using novel drugs.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Humans
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Prognosis
- Neoplasm Staging
- Sulfonamides/therapeutic use
- Piperidines/therapeutic use
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Chromosomes, Human, Pair 17/genetics
- Chromosome Deletion
- Antibodies, Monoclonal, Humanized
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine and Medical FacultyUniversity of CologneKölnGermany
- Center for Integrated Oncology Aachen Bonn Köln DüsseldorfKölnGermany
- Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases,” University of CologneKölnGermany
- Center of Cancer Research Cologne EssenKölnGermany
- National Center for Tumor Diseases (NCT) WestKölnGermany
| |
Collapse
|
4
|
Miklos DB, Riedell PA, Bokun A, Chavez JC, Schuster SJ. Leveraging the Immunomodulatory Potential of Ibrutinib for Improved Outcomes of T Cell-Mediated Therapies of B Cell Malignancies: A Narrative Review. Target Oncol 2025; 20:217-234. [PMID: 40035913 PMCID: PMC11933223 DOI: 10.1007/s11523-025-01133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
Standard treatment options for B cell malignancies include immunochemotherapies and/or targeted therapies, which often provide temporary disease remission. However, many patients do not achieve complete remission with these treatments, develop resistance, and eventually experience disease relapse. New immunomodulatory treatments, such as T cell-based therapies, show promise in treating various types of blood cancers, including B cell malignancies. However, their effectiveness is often limited by the immunosuppressive tumor microenvironment and altered function of patient-derived T cells. Ibrutinib, a Bruton tyrosine kinase inhibitor, has been shown to restore immune balance and function in patients with chronic lymphocytic leukemia. Ibrutinib is being studied as adjuvant or combinatorial therapy with chimeric antigen receptor (CAR) T cells or T cell-engaging bispecific antibodies for the treatment of B cell malignancies. Current evidence suggests that ibrutinib could be beneficial when used before, during, or after CAR T cell administration, potentially providing higher complete response rates and reduced toxicity. In conclusion, existing evidence strongly supports the combined use of ibrutinib and T cell therapies. However, additional clinical trials are needed to further validate the effectiveness of this treatment strategy in patients with various B cell malignancies.
Collapse
Affiliation(s)
- David B Miklos
- Stanford University School of Medicine, Stanford, CA, USA
| | - Peter A Riedell
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL, USA
| | - Alex Bokun
- Janssen Biotech, Inc., a Johnson & Johnson company, Horsham, PA, USA.
| | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Gajzer DC, Fromm JR. Flow Cytometry for B-Cell Non-Hodgkin and Hodgkin Lymphomas. Cancers (Basel) 2025; 17:814. [PMID: 40075660 PMCID: PMC11898643 DOI: 10.3390/cancers17050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Multi-parametric flow cytometry is a powerful diagnostic tool that permits rapid assessment of cellular antigen expression to quickly provide immunophenotypic information suitable for disease classification. This chapter describes the classification of B-cell non-Hodgkin lymphoma (B-NHL) by flow cytometry suitable for the clinical and research environment. In addition to describing the immunophenotypic patterns of the most common B-NHL (including examples of common B-NHL), the effect of anti-CD19, -CD20, and -CD38 therapies on the evaluation of flow cytometric data is also discussed. Over the last 15 years, our laboratory has developed flow cytometry combinations that can immunophenotype classic Hodgkin lymphoma (CHL), nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), and T-cell/histocyte-rich large B-cell lymphoma (THRLBCL) and the use of these assays will be presented. The CHL assay combination is also particularly well suited to immunophenotype primary mediastinal large B-cell lymphoma (PMLBCL) and our experience immunophenotyping PMLBCL by flow cytometry will be discussed. Finally, an approach to the evaluation of the reactive infiltrate of CHL, NLPHL, and THRLBCL that can provide diagnostic information will also be provided.
Collapse
Affiliation(s)
| | - Jonathan R. Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, 825 Eastlake Ave E, Seattle, WA 98109, USA;
| |
Collapse
|
6
|
Park L, Tsai YT, Lim HK, Faulhaber LD, Burleigh K, Faulhaber EM, Bose M, Shih AY, Hirayama AY, Turtle CJ, Annesley CE, Gardner RA, Gustafson HH, Gust J. Cytokine-mediated increase in endothelial-leukocyte interaction mediates brain capillary plugging during CAR T cell neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638920. [PMID: 40060404 PMCID: PMC11888194 DOI: 10.1101/2025.02.19.638920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
CD19-directed CAR T cells treat cancer, but also cause immune effector cell associated neurotoxicity syndrome (ICANS). Despite strong epidemiologic links between cytokine release syndrome and ICANS, it is uncertain how elevated systemic cytokines and activated immune cells cause brain dysfunction. We previously showed that leukocytes plug brain capillaries in an immunocompetent mouse model of CD19-CAR neurotoxicity. Here, we used the same model to explore how integrin activation and endothelial adhesion molecule expression contribute to capillary plugging. In vivo two-photon imaging revealed increased expression of ICAM-1 on brain capillaries, with spatially restricted VCAM-1 increases. TNF, IFN-γ, and IL-1β at concentrations equivalent to CAR T cell patient blood levels upregulated ICAM-1 and VCAM-1 in brain microendothelial cells. In mice, CAR T cells strongly upregulated VLA-4 (integrin α4β1) affinity to VCAM-1, but not affinity of LFA-1 (integrin αLβ2) to ICAM-1. Blocking integrin α4 but not integrin αL improved ICANS behavior in mice. In human CAR T cell patients, increased soluble ICAM-1 and VCAM-1 are associated with ICANS, and integrin α4 but not integrin αL is upregulated in CAR T cells after infusion. Our study highlights that cytokine-driven upregulation of endothelial-leukocyte adhesion may be sufficient to induce neurovascular dysfunction in CAR T cell patients.
Collapse
Affiliation(s)
- Lina Park
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Yu-Tung Tsai
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Hyun-Kyoung Lim
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lila D. Faulhaber
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Katelyn Burleigh
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Eli M. Faulhaber
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Mahashweta Bose
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Alexandre Y. Hirayama
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cameron J. Turtle
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Royal North Shore Hospital, St. Leonards, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
| | - Colleen E. Annesley
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rebecca A. Gardner
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Heather H. Gustafson
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Juliane Gust
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Gruessner C, Wiestner A, Sun C. Resistance mechanisms and approach to chronic lymphocytic leukemia after BTK inhibitor therapy. Leuk Lymphoma 2025:1-13. [PMID: 39972943 DOI: 10.1080/10428194.2025.2466101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Bruton tyrosine kinase (BTK), an essential component of the B-cell receptor (BCR) signaling pathway, is a validated target in chronic lymphocytic leukemia. Ibrutinib, acalabrutinib, and zanubrutinib are covalent BTK inhibitors (cBTKi) that bind to residue C481, leading to sustained target inhibition. A significant proportion of patients develop resistance to continuous cBTKi therapy, predominantly via mutations in BTK and its immediate downstream effector, PLCG2. The noncovalent BTKi pirtobrutinib does not require binding to C481 and can restore BTK inhibition after progression on a cBTKi. However, non-C481 BTK mutations conferring resistance to pirtobrutinib have been identified. Furthermore, the scaffolding function of BTK, activation of bypass signaling pathways, and the tumor microenvironment may contribute to BTKi resistance. Targeting BTK for degradation is an emerging strategy that appears effective against multiple BTK mutations, and inhibitors of downstream BCR signaling proteins are under development. This review addresses BTKi resistance mechanisms and therapeutic approaches after cBTKi failure.
Collapse
Affiliation(s)
- Christine Gruessner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Hatashima A, Shadman M, Raghunathan V. Chimeric Antigen Receptor-T Cells in the Modern Era of Chronic Lymphocytic Leukemia Treatment. Cancers (Basel) 2025; 17:268. [PMID: 39858050 PMCID: PMC11763375 DOI: 10.3390/cancers17020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Pathway inhibitors targeting Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) have dramatically changed the treatment landscape for both treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL). However, with increased utilization, a growing number of patients will experience progressive disease on both agents. This subgroup of "double refractory" patients has limited treatment options and poor prognosis. Chimeric antigen receptor (CAR)-T cells have transformed the treatment of relapsed/refractory B-cell malignancies. Although the earliest success of CAR-T cell therapy was in CLL, the clinical application of this modality has lagged until the recent approval of the first CAR-T cell product for CLL. In this review, we describe the current treatment options for upfront and subsequent therapies and the unmet need for novel agents highlighted by the burgeoning role and challenges of CAR-T cell therapy.
Collapse
Affiliation(s)
- Alycia Hatashima
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Mazyar Shadman
- Division of Hematology and Medical Oncology, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vikram Raghunathan
- Division of Hematology and Medical Oncology, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
9
|
McKeague S, Tam C. Prognostic factors in chronic lymphocytic leukaemia - the old, the new and the future. Leuk Lymphoma 2025:1-11. [PMID: 39773307 DOI: 10.1080/10428194.2024.2449214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Prognostic assessment in chronic lymphocytic leukemia (CLL) is essential for delivery of timely, personalized therapy. TP53 status, karyotype, IGHV mutational status, minimal residual disease (MRD), gene mutations and markers of cell proliferation were important prognostic tools in the era of chemo-immunotherapy (CIT). With BCL2 inhibitors (BCL2i), outcome is still impacted by IGHV status, TP53 status, complex karyotype, and achievement of undetectable MRD. On the other hand, BTK inhibitors (BTKi) are agnostic to IGHV status, rarely cause MRD negative remissions and are less clearly impacted by TP53 status. Although based on less mature data, outcomes with BCL2i/BTKi combinations are likely influenced by TP53 and IGHV status. Responses to non-covalent BTKI (ncBTKI) are impacted by the mechanism of resistance to previous covalent BTKi. Finally, responses to chimeric antigen receptor T cell therapy (CAR-T) appear independent of TP53 status, but dependent on overall T- cell fitness.
Collapse
Affiliation(s)
- Sean McKeague
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantine Tam
- Lymphoma Service - The Alfred Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Kater AP, Siddiqi T. Relapsed/refractory CLL: the role of allo-SCT, CAR-T, and T-cell engagers. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:474-481. [PMID: 39644060 DOI: 10.1182/hematology.2024000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Chronic lymphocytic leukemia (CLL) patients who are refractory to both Bruton's tyrosine kinase and B-cell/CLL lymphoma 2 (BCL2) inhibitors face a significant treatment challenge, with limited and short-lasting disease control options. This underscores the urgent need for novel therapeutic strategies. Immunotherapy has emerged as a promising approach to address this unmet need, offering the potential for durable remissions and improved patient outcomes. Historically, allogeneic stem cell transplantation has been used for high-risk CLL patients, demonstrating promising survival rates. However, its applicability is limited by high treatment-related mortality and chronic graft-versus-host disease, especially in older and frail patients. Chimeric antigen receptor (CAR) T-cell therapy is gaining attention for its potential in relapsed/refractory CLL. Early clinical trials have shown that CAR T cells can induce durable remissions, with encouraging overall response rates in heavily pretreated patients. Additionally, bispecific antibodies are being explored as immunotherapeutic strategies, showing promising preclinical and early clinical results in targeting CLL cells effectively. One of the major challenges in CLL treatment with T-cell-based therapies is the acquired T-cell dysfunction observed in patients. To overcome these limitations, strategies such as combining targeted agents with cellular immunotherapies, modifying CAR designs, and incorporating immunomodulatory compounds into the manufacturing process are being investigated. These innovative approaches aim to enhance T-cell engagement and improve outcomes for CLL patients, offering hope for more effective and sustainable treatments in the future.
Collapse
Affiliation(s)
- Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanya Siddiqi
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Orange County, Irvine, CA
| |
Collapse
|
11
|
Deodato M, Frustaci AM, Zappaterra A, Rapella A, Gambacorti-Passerini C, Cairoli R, Montillo M, Tedeschi A. Advances in the understanding of molecular genetics and therapy of Richter transformation in chronic lymphocytic leukemia. Leuk Lymphoma 2024; 65:2096-2107. [PMID: 39219481 DOI: 10.1080/10428194.2024.2398660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Richter's transformation (RT) is defined as the evolution of chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) into an aggressive lymphoma, most commonly diffuse large B-cell lymphoma. This complication is rare and aggressive, with poor prognosis and dismal survival. Clonal relationship with the underlying CLL/SLL, observed in ∼80% of cases, represents one of the main factors affecting prognosis. Treatment has been historically based on chemoimmunotherapy, but frequent mutations in genes involved in cell survival and proliferation-such as TP53, NOTCH1, MYC, CDKN2A-confer resistance to standard treatments. During the last years, advances in the knowledge of the biological mechanisms underlying RT allowed to identify genetic and molecular lesions that can potentially be targeted by novel selective agents. Pathway and checkpoint inhibitors, bispecific antibodies and CAR T-cell therapy are currently under investigation and represent promising treatment options. This review summarizes current biological evidence and available data on novel therapeutic agents.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Disease Management
- Disease Progression
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Molecular Targeted Therapy/methods
- Mutation
- Prognosis
Collapse
Affiliation(s)
- Marina Deodato
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Anna Maria Frustaci
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Arianna Zappaterra
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- Department of Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alberto Rapella
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- Department of Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Roberto Cairoli
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
12
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024; 68:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Disease Models, Animal
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
13
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
14
|
Derigs P, Schubert ML, Dreger P, Schmitt A, Yousefian S, Haas S, Röthemeier C, Neuber B, Hückelhoven-Krauss A, Brüggemann M, Bernhard H, Kobbe G, Lindemann A, Rummel M, Michels B, Korell F, Ho AD, Müller-Tidow C, Schmitt M. Third-generation anti-CD19 CAR T cells for relapsed/refractory chronic lymphocytic leukemia: a phase 1/2 study. Leukemia 2024; 38:2419-2428. [PMID: 39192036 PMCID: PMC11519001 DOI: 10.1038/s41375-024-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Third-generation chimeric antigen receptor T cells (CARTs) for relapsed or refractory (r/r) chronic lymphocytic leukemia (CLL) may improve efficacy compared to second-generation CARTs due to their enhanced CAR design. We performed the first phase 1/2 investigator-initiated trial evaluating escalating doses of third-generation CARTs (HD-CAR-1) targeting CD19 in patients with r/r CLL and B-cell lymphoma. CLL eligibility criteria were failure to two therapy lines including at least one pathway inhibitor and/or allogeneic hematopoietic cell transplantation. Nine heavily pretreated patients received HD-CAR-1 at dose levels ranging from 1 × 106 to 200 × 106 CART/m2. In-house HD-CAR-1 manufacturing was successful for all patients. While neurotoxicity was absent, one case of grade 3 cytokine release syndrome was observed. By day 90, six patients (67%) attained a CR, five of these (83%) with undetectable MRD. With a median follow-up of 27 months, 2-year PFS and OS were 30% and 69%, respectively. HD-CAR-1 products of responders contained significantly more CD4 + T cells compared to non-responders. In non-responders, a strong enrichment of effector memory-like CD8 + T cells with high expression of CD39 and/or CD197 was observed. HD-CAR-1 demonstrated encouraging efficacy and exceptionally low treatment-specific toxicity, presenting new treatment options for patients with r/r CLL. Trial registration: #NCT03676504.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Antigens, CD19/immunology
- Middle Aged
- Female
- Aged
- Receptors, Chimeric Antigen/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/therapy
- Adult
- Follow-Up Studies
Collapse
Affiliation(s)
- Patrick Derigs
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Maria-Luisa Schubert
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Dreger
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Schayan Yousefian
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Simon Haas
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Caroline Röthemeier
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Brigitte Neuber
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Monika Brüggemann
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Helga Bernhard
- Department of Internal Medicine V, Klinikum Darmstadt, Darmstadt, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Mathias Rummel
- Department of Internal Medicine IV, University Hospital Giessen, Giessen, Germany
| | - Birgit Michels
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Korell
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony D Ho
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
15
|
Benjamini O, Fried S, Shouval R, Flynn JR, Beyar-Katz O, Leslie LA, Zucherman T, Yerushalmi R, Shem-Tov N, Palomba ML, Danylesko I, Sdayoor I, Malka H, Itzhaki O, Suh H, Devlin SM, Marcus R, Dahi PB, Jacoby E, Shah GL, Sauter CS, Ip A, Perales MA, Nagler A, Shimoni A, Scordo M, Avigdor A. Anti-CD19 chimeric antigen receptor T-cell therapy has less efficacy in Richter transformation than in <I>de novo</I> large B-cell lymphoma and transformed low-grade B-cell lymphoma. Haematologica 2024; 109:3566-3577. [PMID: 38899351 PMCID: PMC11532690 DOI: 10.3324/haematol.2023.284664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The activity of anti-CD19 chimerci antigen receptor (CAR) T-cell therapy in chronic lymphocytic leukemia (CLL) with Richter's transformation (RT) to aggressive large B-cell lymphoma (LBCL) is largely unknown. In a multicenter retrospective study, we report the safety and efficacy of CAR T-cell therapy in patients with RT (N=30) compared to patients with aggressive B-cell lymphoma (N=283) and patients with transformed indolent non-Hodgkin lymphoma (iNHL) (N=141) between April 2016 and January 2023. Two-thirds of patients received prior therapy for CLL before RT and 89% of them received B-cell receptor and B-cell lymphoma 2 inhibitors. Toxicities of CAR T-cell therapy in RT were similar to other lymphomas, with no fatalities related to cytokine release syndrome or immune effector-cell associated neurotoxicity synderome. The 100-day overall response rate and complete response rates in patients with RT were 57% and 47%, respectively. With a median follow-up of 19 months, the median overall survival (OS) was 9.9 months in patients with RT compared to 18 months in de novo LBCL and not reached in patients with transformed iNHL. The OS at 12 months was 45% in patients with RT compared with 62% and 75% in patients with de novo LBCL and transformed iNHL, respectively. In a multivariate analysis, worse OS was associated with RT histology, elevated lactate dehydrogenase, and more prior lines of therapy. CAR T-cell therapy can salvage a proportion of patients with CLL and RT exposed to prior targeted agents; however, efficacy in RT is inferior compared to de novo LBCL and transformed iNHL.
Collapse
MESH Headings
- Humans
- Male
- Middle Aged
- Female
- Aged
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Antigens, CD19/immunology
- Retrospective Studies
- Adult
- Receptors, Chimeric Antigen/immunology
- Treatment Outcome
- Aged, 80 and over
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Neoplasm Grading
Collapse
Affiliation(s)
- Ohad Benjamini
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv.
| | - Shalev Fried
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Roni Shouval
- Department of Medicine, Adult Bone Marrow Transplant Service, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine Weill Cornell Medical College, New York
| | - Jessica R Flynn
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York
| | - Ofrat Beyar-Katz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa
| | - Lori A Leslie
- John Theurer Cancer Center, Hackensack, University Medical Center, Hackensack New Jersey
| | - Tsilla Zucherman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa
| | - Ronit Yerushalmi
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Noga Shem-Tov
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Maria Lia Palomba
- Department of Medicine, Adult Bone Marrow Transplant Service, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine Weill Cornell Medical College, New York
| | - Ivetta Danylesko
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Inbal Sdayoor
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Hila Malka
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa
| | - Orit Itzhaki
- Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, Hashomer
| | - Hyung Suh
- John Theurer Cancer Center, Hackensack, University Medical Center, Hackensack New Jersey
| | - Sean M Devlin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York
| | - Ronit Marcus
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Parastoo B Dahi
- Department of Medicine, Adult Bone Marrow Transplant Service, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine Weill Cornell Medical College, New York
| | - Elad Jacoby
- School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv, Israel; Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Chaim Sheba Medical Center, Hashomer
| | - Gunjan L Shah
- Department of Medicine, Adult Bone Marrow Transplant Service, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York
| | - Craig S Sauter
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Andrew Ip
- John Theurer Cancer Center, Hackensack, University Medical Center, Hackensack New Jersey, United States; Hackensack Meridian School of Medicine, Nutley, NJ
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine Weill Cornell Medical College, New York
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Avichai Shimoni
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| | - Michael Scordo
- Department of Medicine, Adult Bone Marrow Transplant Service, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine Weill Cornell Medical College, New York
| | - Abraham Avigdor
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Hashomer, Israel; School of Medicine, Faculty of Medical and health Sciences, Aviv University, Tel-Aviv
| |
Collapse
|
16
|
Rambaldi B, Rizzuto G, Rambaldi A, Introna M. Genetically modified and unmodified cellular approaches to enhance graft versus leukemia effect, without increasing graft versus host disease: the use of allogeneic cytokine-induced killer cells. Front Immunol 2024; 15:1459175. [PMID: 39512351 PMCID: PMC11540647 DOI: 10.3389/fimmu.2024.1459175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) represents a curative approach for many patients with hematological diseases, post-transplantation relapse occurs in 20-50% of cases, representing the primary cause of treatment failure and mortality. Alloreactive donor T cells are responsible for the graft versus leukemia (GvL) effect, which represents the key mechanism for the long-term curative effect of HCT. However, the downside is represented by graft versus host disease (GvHD), largely contributing to transplant-related mortality (TRM). Multiple factors play a role in regulating the delicate balance between GvL and GvHD, such as the optimization of the donor HLA and KIR match, the type of graft source, and the adaptive use of post-transplant cellular therapy. In addition to the standard donor lymphocyte infusion (DLI), several attempts were made to favor the GvL effect without increasing the GvHD risk. Selected DLI, NK DLI, activated DLI and more sophisticated genetically engineered cells can be employed. In this scenario, cytokine-induced killer (CIK) cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are T lymphocytes activated in culture in the presence of monoclonal antibodies against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2), characterized by the expression of markers typical of NK cells and T cells (CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate cytotoxicity through both MHC and non-MHC restricted recognition, which is the so-called "dual-functional capability" and display minimum alloreactivity. Allogeneic CIK cells showed a favorable rate of response, especially in the setting of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell strategy, showing promising results in both preclinical and clinical settings. In this review, we describe the main immunological basis for the development of the GvL and the possible cellular therapy approaches used to boost it, with a particular focus on the use of CIK cells.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Molecular and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Martino Introna
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
17
|
Shi Y, Hao D, Qian H, Tao Z. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 2024; 13:101. [PMID: 39415291 PMCID: PMC11484118 DOI: 10.1186/s40164-024-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular immunotherapy exploits the capacity of the human immune system in self-protection and surveillance to achieve the anti-tumor effects. Natural killer (NK) cells are lymphocytes of innate immune system and they display a unique inherent ability to identify and eliminate tumor cells. In this review, we first introduce the basic characteristics of NK cells in the physiological and pathological milieus, followed by a discussion of their effector function and immunosuppression in the tumor microenvironment. Clinical strategies and reports regarding NK cellular therapy are analyzed in the context of tumor treatment, especially against solid tumors. Given the widely studied T-cell therapy in the recent years, particularly the chimeric antigen receptor (CAR) T-cell therapy, we compare the technical features of NK- and T-cell based tumor therapies at the clinical front. Finally, the technical challenges and potential solutions for both T and NK cell-based immunotherapies in treating tumor malignancies are delineated. By overviewing its clinical applications, we envision the NK-cell based immunotherapy as an up-and-comer in cancer therapeutics.
Collapse
Affiliation(s)
- Yinghong Shi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Donglin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhimin Tao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
18
|
Maneechai K, Khopanlert W, Noiperm P, Udomsak P, Viboonjuntra P, Julamanee J. Generation of ex vivo autologous hematopoietic stem cell-derived T lymphocytes for cancer immunotherapy. Heliyon 2024; 10:e38447. [PMID: 39398019 PMCID: PMC11467635 DOI: 10.1016/j.heliyon.2024.e38447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
CD19CAR-T cell therapy demonstrated promising outcomes in relapsed/refractory B-cell malignancies. Nonetheless, the limited T-cell function and ineffective T-cell apheresis for therapeutic purposes are still concern in heavily pretreated patients. We investigated the feasibility of generating hematopoietic stem cell-derived T lymphocytes (HSC-T) for cancer immunotherapy. The patients' autologous peripheral blood HSCs were enriched for CD34+ and CD3+ cells. The CD34+ cells were then cultured following three steps of lymphoid progenitor differentiation, T-cell differentiation, and T-cell maturation processes. HSC-T cells were successfully generated with robust fold expansion of 3735 times. After lymphoid progenitor differentiation, CD5+ and CD7+ cells remarkably increased (65-84 %) while CD34+ cells consequentially declined. The mature CD3+ cells were detected up to 40 % and 90 % on days 42 and 52, respectively. The majority of HSC-T population was naïve phenotype compared to CD3-T cells (73 % vs 34 %) and CD8:CD4 ratio was 2:1. The higher level of cytokine and cytotoxic granule secretion in HSC-T was observed after activation. HSC-T cells were assessed for clinical application and found that CD19CAR-transduced HSC-T cells demonstrated higher cytokine secretion and a trend of superior cytotoxicity against CD19+ target cells compared to control CAR-T cells. A chronic antigen stimulation assay revealed similar T-cell proliferation, stemness, and exhaustion phenotypes among CAR-T cell types. In conclusions, autologous HSC-T was feasible to generate with preserved T-cell efficacy. The HSC-T cells are potentially utilized as an alternative option for cellular immunotherapy.
Collapse
Affiliation(s)
- Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Anatomical Pathology Unit, Division of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Panarat Noiperm
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Phakaporn Udomsak
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Pongtep Viboonjuntra
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| |
Collapse
|
19
|
Lopedote P, Kittai AS, Danilov A. Utilizing risk factors to guide treatment decisions in chronic lymphocytic leukemia. Expert Rev Anticancer Ther 2024; 24:977-987. [PMID: 39223949 DOI: 10.1080/14737140.2024.2398483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION In the era of chemo-immunotherapy, high-risk factors unequivocally predicted inferior outcomes for patients with CLL. The widespread adoption of BTK inhibitors has challenged the practical implications of such testing, as many patients have improved outcomes despite the presence of high-risk features. The impact of adverse prognostic factors, such as unmutated IGHV, on survival has been ameliorated by continuous treatment with BTK inhibitors, but not by finite-duration therapy with venetoclax-based combinations. Furthermore, TP53 abnormalities continue to be associated with worse outcomes in the era of novel agents. New treatment modalities, such as pirtobrutinib, lisocabtagene maraleucel, and ongoing studies combining BTK inhibitors with venetoclax, raise new questions on the significance of prognostic factors of survival for patients with CLL. AREAS COVERED Herein, we summarized the available literature on patients with CLL harboring high-risk biomarkers, with a focus on data from key clinical trials. EXPERT OPINION Testing for prognostic biomarkers will remain relevant to identify patients who may have increased benefit from novel therapeutic strategies, such as combination therapies and novel agents. Patients with high-risk disease should be encouraged to participate in clinical trials.
Collapse
Affiliation(s)
- Paolo Lopedote
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Adam S Kittai
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexey Danilov
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
20
|
Kang X, Mita N, Zhou L, Wu S, Yue Z, Babu RJ, Chen P. Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment. Pharmaceutics 2024; 16:1228. [PMID: 39339264 PMCID: PMC11435308 DOI: 10.3390/pharmaceutics16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejia Kang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
- Faculty of Pharmacy, Mulawarman University, Samarinda 75119, Kalimantan Timur, Indonesia
| | - Lang Zhou
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Zongliang Yue
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| |
Collapse
|
21
|
Khopanlert W, Choochuen P, Maneechai K, Jangphattananont N, Ung S, Okuno S, Steinberger P, Leitner J, Sangkhathat S, Viboonjuntra P, Terakura S, Julamanee J. Co-stimulation of CD28/CD40 signaling molecule potentiates CAR-T cell efficacy and stemness. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200837. [PMID: 39050989 PMCID: PMC11268112 DOI: 10.1016/j.omton.2024.200837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/03/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
CD19 chimeric antigen receptor T (CD19CAR-T) cells have achieved promising outcomes in relapsed/refractory B cell malignancies. However, recurrences occur due to the loss of CAR-T cell persistence. We developed dual T/B cell co-stimulatory molecules (CD28 and CD40) in CAR-T cells to enhance intense tumoricidal activity and persistence. CD19.28.40z CAR-T cells promoted pNF-κB and pRelB downstream signaling while diminishing NFAT signaling upon antigen exposure. CD19.28.40z CAR-T cells demonstrated greater proliferation, which translated into effective anti-tumor cytotoxicity in long-term co-culture assay. Repetitive weekly antigen stimulation unveiled continuous CAR-T cell expansion while preserving central memory T cell subset and lower expression of exhaustion phenotypes. The intrinsic genes underlying CD19.28.40z CAR-T cell responses were compared with conventional CARs and demonstrated the up-regulated genes associated with T cell proliferation and memory as well as down-regulated genes related to apoptosis, exhaustion, and glycolysis pathway. Enrichment of genes toward T cell stemness, particularly SELL, IL-7r, TCF7, and KLF2, was observed. Effective and continuing anti-tumor cytotoxicity in vivo was exhibited in both B cell lymphoblastic leukemia and B cell non-Hodgkin lymphoma xenograft models while demonstrating persistent T cell memory signatures. The functional enhancement of CD37.28.40z CAR-T cell activities against CD37+ tumor cells was further validated. The modification of dual T/B cell signaling molecules remarkably maximized the efficacy of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Nawaphat Jangphattananont
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Socheatraksmey Ung
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pongtep Viboonjuntra
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| |
Collapse
|
22
|
Shalaby N, Xia Y, Kelly JJ, Sanchez-Pupo R, Martinez F, Fox MS, Thiessen JD, Hicks JW, Scholl TJ, Ronald JA. Imaging CAR-NK cells targeted to HER2 ovarian cancer with human sodium-iodide symporter-based positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51:3176-3190. [PMID: 38722382 PMCID: PMC11368970 DOI: 10.1007/s00259-024-06722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/14/2024] [Indexed: 09/03/2024]
Abstract
Chimeric antigen receptor (CAR) cell therapies utilize CARs to redirect immune cells towards cancer cells expressing specific antigens like human epidermal growth factor receptor 2 (HER2). Despite their potential, CAR T cell therapies exhibit variable response rates and adverse effects in some patients. Non-invasive molecular imaging can aid in predicting patient outcomes by tracking infused cells post-administration. CAR-T cells are typically autologous, increasing manufacturing complexity and costs. An alternative approach involves developing CAR natural killer (CAR-NK) cells as an off-the-shelf allogeneic product. In this study, we engineered HER2-targeted CAR-NK cells co-expressing the positron emission tomography (PET) reporter gene human sodium-iodide symporter (NIS) and assessed their therapeutic efficacy and PET imaging capability in a HER2 ovarian cancer mouse model.NK-92 cells were genetically modified to express a HER2-targeted CAR, the bioluminescence imaging reporter Antares, and NIS. HER2-expressing ovarian cancer cells were engineered to express the bioluminescence reporter Firefly luciferase (Fluc). Co-culture experiments demonstrated significantly enhanced cytotoxicity of CAR-NK cells compared to naive NK cells. In vivo studies involving mice with Fluc-expressing tumors revealed that those treated with CAR-NK cells exhibited reduced tumor burden and prolonged survival compared to controls. Longitudinal bioluminescence imaging demonstrated stable signals from CAR-NK cells over time. PET imaging using the NIS-targeted tracer 18F-tetrafluoroborate ([18F]TFB) showed significantly higher PET signals in mice treated with NIS-expressing CAR-NK cells.Overall, our study showcases the therapeutic potential of HER2-targeted CAR-NK cells in an aggressive ovarian cancer model and underscores the feasibility of using human-derived PET reporter gene imaging to monitor these cells non-invasively in patients.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Ying Xia
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rafael Sanchez-Pupo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Francisco Martinez
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew S Fox
- Lawson Health Research Institute, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Jonathan D Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Justin W Hicks
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Ontario Institute for Cancer Research, London, ON, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
23
|
Montagna E, de Campos NSP, Porto VA, da Silva GCP, Suarez ER. CD19 CAR T cells for B cell malignancies: a systematic review and meta-analysis focused on clinical impacts of CAR structural domains, manufacturing conditions, cellular product, doses, patient's age, and tumor types. BMC Cancer 2024; 24:1037. [PMID: 39174908 PMCID: PMC11340198 DOI: 10.1186/s12885-024-12651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
CD19-targeted chimeric antigen receptors (CAR) T cells are one of the most remarkable cellular therapies for managing B cell malignancies. However, long-term disease-free survival is still a challenge to overcome. Here, we evaluated the influence of different hinge, transmembrane (TM), and costimulatory CAR domains, as well as manufacturing conditions, cellular product type, doses, patient's age, and tumor types on the clinical outcomes of patients with B cell cancers treated with CD19 CAR T cells. The primary outcome was defined as the best complete response (BCR), and the secondary outcomes were the best objective response (BOR) and 12-month overall survival (OS). The covariates considered were the type of hinge, TM, and costimulatory domains in the CAR, CAR T cell manufacturing conditions, cell population transduced with the CAR, the number of CAR T cell infusions, amount of CAR T cells injected/Kg, CD19 CAR type (name), tumor type, and age. Fifty-six studies (3493 patients) were included in the systematic review and 46 (3421 patients) in the meta-analysis. The overall BCR rate was 56%, with 60% OS and 75% BOR. Younger patients displayed remarkably higher BCR prevalence without differences in OS. The presence of CD28 in the CAR's hinge, TM, and costimulatory domains improved all outcomes evaluated. Doses from one to 4.9 million cells/kg resulted in better clinical outcomes. Our data also suggest that regardless of whether patients have had high objective responses, they might have survival benefits from CD19 CAR T therapy. This meta-analysis is a critical hypothesis-generating instrument, capturing effects in the CD19 CAR T cells literature lacking randomized clinical trials and large observational studies.
Collapse
MESH Headings
- Humans
- Age Factors
- Antigens, CD19/immunology
- Immunotherapy, Adoptive/methods
- Leukemia, B-Cell/therapy
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/mortality
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/mortality
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Erik Montagna
- Centro Universitário FMABC, Santo André, 09060-870, SP, Brazil
| | - Najla Santos Pacheco de Campos
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, SP, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | - Victoria Alves Porto
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, SP, Brazil
| | | | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, SP, Brazil.
- Graduate Program in Medicine - Hematology and Oncology, Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil.
| |
Collapse
|
24
|
Shi H, Zhang M, Su Y, Liu J, Guo J, Liu M, Ma Q. Anti-BCMA CAR-T therapy for multiple myeloma with extramedullary disease: A case report and review of the literature. Medicine (Baltimore) 2024; 103:e38541. [PMID: 38941416 PMCID: PMC11466130 DOI: 10.1097/md.0000000000038541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 06/30/2024] Open
Abstract
INTRODUCTION Multiple myeloma (MM) with extramedullary disease (EMD) is rare in clinical practice, and B cell maturation antigen (BCMA) CAR-T cell therapy is a novel therapy for hematologic malignancies. Very few reports have been published on the effect of CAR-T-cell therapy in MM with EMD. Here, we report a case of MM with extramedullary lesions treated with BCMA CAR-T therapy. CASE PRESENTATION A 66-year-old female patient presented to our hospital with an enlarged left maxillary gingiva. DIAGNOSIS Diagnosis of indolent MM stage III (DS staging) and stage III (ISS and R ISS) with extramedullary lesions. INTERVENTION The patient underwent a clinical trial of humanized anti-BCMA CAR T cell therapy. RESULTS Symptoms improved; left gingival hyperplasia and swelling resolved; left buccal mass resolved; and neck and submandibular masses resolved. Pathological examination of the exfoliated masses showed necrotic tissue. CONCLUSION MM with extramedullary lesions often has limited treatment options, and traditional chemotherapy methods are ineffective; however, BCMA CAR-T cell therapy can significantly improve the symptoms of extramedullary lesions in MM.
Collapse
Affiliation(s)
- Huihui Shi
- Second Clinical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Man Zhang
- Second Clinical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yajing Su
- Second Clinical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jingwen Liu
- Second Clinical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayuan Guo
- Second Clinical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Mingxin Liu
- Hrain Biotechnology Co. Ltd., Shanghai, P.R. China
| | - Qiuling Ma
- Second Clinical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Li L, Zhao L, Yang J, Zhou L. Multifaceted effects of LRP6 in cancer: exploring tumor development, immune modulation and targeted therapies. Med Oncol 2024; 41:180. [PMID: 38898247 DOI: 10.1007/s12032-024-02399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Low-density lipoprotein receptor (LDLR)-related protein 6 (LRP6), a member of the LDLR superfamily of cell surface receptors, is most widely known as a crucial co-receptor in the activation of canonical Wnt/β-catenin signaling. This signaling pathway is implicated in multiple biological processes, such as lipoprotein metabolism, protease regulation, cell differentiation, and migration. LRP6 is frequently overexpressed in a variety of tumors, including liver cancer, colorectal cancer, and prostate cancer, and is generally considered an oncogene that promotes tumor proliferation, migration, and invasion. However, there are exceptions; some studies have reported that LRP6 inhibits lung metastasis of breast cancer through its ectodomain (LRP6N), and patients with low LRP6 expression tend to have a poor prognosis. Thus, the role of LRP6 in tumors remains controversial. Although limited studies have shown that LRP6 is associated with the expression and roles of a variety of immune cells in tumors, the interaction of LRP6 with the tumor microenvironment (TME) is not fully understood. Furthermore, it is crucial to acknowledge that LRP6 can engage with alternative pathways, including the mTORC1, CXCL12/CXCR4, and KRAS signaling pathways mentioned earlier, resulting in the regulation of biological functions independent of canonical Wnt/β-catenin signaling. Due to the potential of LRP6 as a molecular target for cancer therapy, various treatment modalities have been developed to directly or indirectly inhibit LRP6 function, demonstrating promising anti-cancer effects across multiple cancer types. This review will concentrate on exploring the expression, function, and potential therapeutic applications of LRP6 in different cancer types, along with its influence on the TME.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Hematology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Zhao
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China
| | - Jincai Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Lanxia Zhou
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
26
|
Dias J, Garcia J, Agliardi G, Roddie C. CAR-T cell manufacturing landscape-Lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev 2024; 32:101250. [PMID: 38737799 PMCID: PMC11088187 DOI: 10.1016/j.omtm.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
CAR-T cell therapies have consolidated their position over the last decade as an effective alternative to conventional chemotherapies for the treatment of a number of hematological malignancies. With an exponential increase in the number of commercial therapies and hundreds of phase 1 trials exploring CAR-T cell efficacy in different settings (including autoimmunity and solid tumors), demand for manufacturing capabilities in recent years has considerably increased. In this review, we explore the current landscape of CAR-T cell manufacturing and discuss some of the challenges limiting production capacity worldwide. We describe the latest technical developments in GMP production platform design to facilitate the delivery of a range of increasingly complex CAR-T cell products, and the challenges associated with translation of new scientific developments into clinical products for patients. We explore all aspects of the manufacturing process, namely early development, manufacturing technology, quality control, and the requirements for industrial scaling. Finally, we discuss the challenges faced as a small academic team, responsible for the delivery of a high number of innovative products to patients. We describe our experience in the setup of an effective bench-to-clinic pipeline, with a streamlined workflow, for implementation of a diverse portfolio of phase 1 trials.
Collapse
Affiliation(s)
- Juliana Dias
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - John Garcia
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Giulia Agliardi
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
27
|
Bertilaccio MTS, Chen SS. Mouse models of chronic lymphocytic leukemia and Richter transformation: what we have learnt and what we are missing. Front Immunol 2024; 15:1376660. [PMID: 38903501 PMCID: PMC11186982 DOI: 10.3389/fimmu.2024.1376660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Although the chronic lymphocytic leukemia (CLL) treatment landscape has changed dramatically, unmet clinical needs are emerging, as CLL in many patients does not respond, becomes resistant to treatment, relapses during treatment, or transforms into Richter. In the majority of cases, transformation evolves the original leukemia clone into a diffuse large B-cell lymphoma (DLBCL). Richter transformation (RT) represents a dreadful clinical challenge with limited therapeutic opportunities and scarce preclinical tools. CLL cells are well known to highly depend on survival signals provided by the tumor microenvironment (TME). These signals enhance the frequency of immunosuppressive cells with protumor function, including regulatory CD4+ T cells and tumor-associated macrophages. T cells, on the other hand, exhibit features of exhaustion and profound functional defects. Overall immune dysfunction and immunosuppression are common features of patients with CLL. The interaction between malignant cells and TME cells can occur during different phases of CLL development and transformation. A better understanding of in vivo CLL and RT biology and the availability of adequate mouse models that faithfully recapitulate the progression of CLL and RT within their microenvironments are "conditio sine qua non" to develop successful therapeutic strategies. In this review, we describe the xenograft and genetic-engineered mouse models of CLL and RT, how they helped to elucidate the pathophysiology of the disease progression and transformation, and how they have been and might be instrumental in developing innovative therapeutic approaches to finally eradicate these malignancies.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Animals
- Tumor Microenvironment/immunology
- Humans
- Mice
- Disease Models, Animal
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
Collapse
Affiliation(s)
| | - Shih-Shih Chen
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
28
|
Hadjis AD, McCurdy SR. The role and novel use of natural killer cells in graft-versus-leukemia reactions after allogeneic transplantation. Front Immunol 2024; 15:1358668. [PMID: 38817602 PMCID: PMC11137201 DOI: 10.3389/fimmu.2024.1358668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) has transformed over the past several decades through enhanced supportive care, reduced intensity conditioning (RIC), improved human leukocyte antigen (HLA) typing, and novel graft-versus-host disease (GVHD)-prevention and treatment strategies. Most notably, the implementation of post-transplantation cyclophosphamide (PTCy) has dramatically increased the safety and availability of this life-saving therapy. Given reductions in nonrelapse mortality (NRM) with these advances, the HCT community has placed even greater emphasis on developing ways to reduce relapse - the leading cause of death after HCT. When using RIC HCT, protection from relapse relies predominantly on graft-versus-leukemia (GVL) reactions. Donor lymphocyte infusion (DLI), adoptive cellular therapy, checkpoint inhibition, and post-HCT maintenance strategies represent approaches under study that aim to augment or synergize with the GVL effects of HCT. Optimizing donor selection algorithms to leverage GVL represents another active area of research. Many of these strategies seek to harness the effects of T cells, which for decades were felt to be the primary mediators of GVL and the focus of investigation in relapse reduction. However, there is growing interest in capitalizing on the ability of natural killer (NK) cells to yield potent anti-tumor effects. A potential advantage of NK cell-based approaches over T cell-mediated is the potential to reduce NRM in addition to relapse. By decreasing infection, without increasing the risk of GVHD, NK cells may mitigate NRM, while still yielding relapse reduction through identification and clearance of cancer cells. Most T cell-focused relapse-prevention strategies must weigh the benefits of relapse reduction against the increased risk of NRM from GVHD. In contrast, NK cells have the potential to reduce both, potentially tipping the scales significantly in favor of survival. Here, we will review the role of NK cells in GVL, optimization of NK cell match or mismatch, and burgeoning areas of research in NK cell therapy such as adoptive transfer and chimeric antigen receptor (CAR) NK cells.
Collapse
Affiliation(s)
- Ashley D. Hadjis
- Department of Internal Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Shannon R. McCurdy
- Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Zhao J, Zheng M, Ma L, Guan T, Su L. From spear to trident: Upgrading arsenal of CAR-T cells in the treatment of multiple myeloma. Heliyon 2024; 10:e29997. [PMID: 38699030 PMCID: PMC11064441 DOI: 10.1016/j.heliyon.2024.e29997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Multiple myeloma (MM), marked by abnormal proliferation of plasma cells and production of monoclonal immunoglobulin heavy or light chains in the majority of patients, has traditionally been associated with poor survival, despite improvements achieved in median survival in all age groups since the introduction of novel agents. Survival has significantly improved with the development of new drugs and new treatment options, such as chimeric antigen receptor T-cell therapy (CAR-T), which have shown promise and given new hope in MM therapy. CARs are now classified as first-, second-, and third-generation CARs based on the number of monovalent to trivalent co-stimulatory molecules incorporated into their design. The scope of this review was relatively narrow because it was mainly about a comparison of the literature on the clinical application of CAR-T therapy in MM. Thus, our goal is to provide an overview of the new advances of CAR-T cells in the cure of MM, so in this review we looked at the progress of the clinical use of CAR-T cells in MM to try to provide a reference for their clinical use when managing MM.
Collapse
Affiliation(s)
| | | | - Li Ma
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Tao Guan
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Liping Su
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| |
Collapse
|
30
|
Borogovac A, Siddiqi T. Advancing CAR T-cell therapy for chronic lymphocytic leukemia: exploring resistance mechanisms and the innovative strategies to overcome them. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:18. [PMID: 38835348 PMCID: PMC11149098 DOI: 10.20517/cdr.2023.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has ushered in substantial advancements in the management of various B-cell malignancies. However, its integration into chronic lymphocytic leukemia (CLL) treatment has been challenging, attributed largely to the development of very effective chemo-free alternatives. Additionally, CAR T-cell responses in CLL have not been as high as in other B-cell lymphomas or leukemias. However, a critical void exists in therapeutic options for patients with high-risk diseases who are resistant to the current CLL therapies, underscoring the urgency for adoptive immunotherapies in these patients. The diminished CAR T-cell efficacy within CLL can be traced to factors such as compromised T-cell fitness due to persistent antigenic stimulation inherent to CLL. Resistance mechanisms encompass tumor-related factors like antigen escape, CAR T-cell-intrinsic factors like T-cell exhaustion, and a suppressive tumor microenvironment (TME). New strategies to combat CAR T-cell resistance include the concurrent administration of therapies that augment CAR T-cell endurance and function, as well as the engineering of novel CAR T-cells targeting different antigens. Moreover, the concept of "armored" CAR T-cells, armed with transgenic modulators to modify both CAR T-cell function and the tumor milieu, is gaining traction. Beyond this, the development of readily available, allogeneic CAR T-cells and natural killer (NK) cells presents a promising countermeasure to innate T-cell defects in CLL patients. In this review, we explore the role of CAR T-cell therapy in CLL, the intricate tapestry of resistance mechanisms, and the pioneering methods studied to overcome resistance.
Collapse
Affiliation(s)
- Azra Borogovac
- City of Hope, Department of Hematology and Hematopoietic Cell Transplantation, Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| | - Tanya Siddiqi
- City of Hope, Department of Hematology and Hematopoietic Cell Transplantation, Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| |
Collapse
|
31
|
Wiśniewski K, Puła B. A Review of Resistance Mechanisms to Bruton's Kinase Inhibitors in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:5246. [PMID: 38791284 PMCID: PMC11120758 DOI: 10.3390/ijms25105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Bruton's Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi.
Collapse
Affiliation(s)
- Kamil Wiśniewski
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | | |
Collapse
|
32
|
Testa U, Pelosi E, Castelli G, Fresa A, Laurenti L. CAR-T Cells in Chronic Lymphocytic Leukemia. Mediterr J Hematol Infect Dis 2024; 16:e2024045. [PMID: 38882451 PMCID: PMC11178044 DOI: 10.4084/mjhid.2024.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 06/18/2024] Open
Abstract
The treatment outcomes of patients with chronic lymphocytic leukemia (CLL) have considerably improved with the introduction of targeted therapies based on Bruton kinase inhibitors (BTKIs), venetoclax, and anti-CD20 monoclonal antibodies. However, despite these consistent improvements, patients who become resistant to these agents have poor outcomes and need new and more efficacious therapeutic strategies. Among these new treatments, a potentially curative approach consists of the use of chimeric antigen receptor T (CAR-T) cell therapy, which achieved remarkable success in various B-cell malignancies, including B-cell Non-Hodgkin Lymphomas (NHLs) and B-acute lymphoblastic Leukemia (ALL). However, although CAR-T cells were initially used for the treatment of CLL, their efficacy in CLL patients was lower than in other B-cell malignancies. This review analyses possible mechanisms of these failures, highlighting some recent developments that could offer the perspective of the incorporation of CAR-T cells in treatment protocols for relapsed/refractory CLL patients.
Collapse
Affiliation(s)
- Ugo Testa
- Istituto Superiore di Sanità, Roma, Italy
| | | | | | - Alberto Fresa
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia. Roma, Italy
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Luca Laurenti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia. Roma, Italy
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
33
|
Han Z, Ma X, Ma G. Improving cell reinfusion to enhance the efficacy of chimeric antigen receptor T-cell therapy and alleviate complications. Heliyon 2024; 10:e28098. [PMID: 38560185 PMCID: PMC10981037 DOI: 10.1016/j.heliyon.2024.e28098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Adoptive cell therapy (ACT) is a rapidly expanding area within the realm of transfusion medicine, focusing on the delivery of lymphocytes to trigger responses against tumors, viruses, or inflammation. This area has quickly evolved from its initial promise in immuno-oncology during preclinical trials to commercial approval of chimeric antigen receptor (CAR) T-cell therapies for leukemia and lymphoma (Jun and et al., 2018) [1]. CAR T-cell therapy has demonstrated success in treating hematological malignancies, particularly relapsed/refractory B-cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma (Qi and et al., 2022) [2]. However, its success in treating solid tumors faces challenges due to the short-lived presence of CAR-T cells in the body and diminished T cell functionality (Majzner and Mackall, 2019) [3]. CAR T-cell therapy functions by activating immune effector cells, yet significant side effects and short response durations remain considerable obstacles to its advancement. A prior study demonstrated that the therapeutic regimen can induce systemic inflammatory reactions, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), tumor lysis syndrome (TLS), off-target effects, and other severe complications. This study aims to explore current research frontiers in this area.
Collapse
Affiliation(s)
- Zhihao Han
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Xiaoqin Ma
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Guiyue Ma
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
34
|
Bajwa A, Habib A, Kittai AS. Treatment of Richter's Transformation with Novel Therapies. Curr Hematol Malig Rep 2024; 19:45-55. [PMID: 38194201 PMCID: PMC10894755 DOI: 10.1007/s11899-023-00721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW This review presents recently published clinical trial data and ongoing investigations regarding the treatment of Richter's transformation (RT). RECENT FINDINGS Recently, numerous approaches have been investigated for the treatment of RT including: traditional chemoimmunotherapy regimens combined with targeted agents such as BTKi and BCL2i; immunotherapy combined with targeted agents; non-covalent BTKis; bispecific T cell engagers; and CART therapy. In addition, various novel targeted agents are currently being studied for the treatment of RT in phase 1 and 2 clinical trials. Standard of care treatment with chemoimmunotherapy for RT has limited efficacy in achieving durable remissions. Here, we review recent data on the use of combination treatments and targeted agents in RT. Although some progress has been made in the investigation to optimize treatment of RT, further study is needed to evaluate long term outcomes of recently published trials and test efficacy of upcoming novel agents.
Collapse
Affiliation(s)
- Amneet Bajwa
- The Ohio State University, 2121 Kenney Road, Columbus, OH, 43210, USA
| | - Alma Habib
- The Ohio State University, 2121 Kenney Road, Columbus, OH, 43210, USA
| | - Adam S Kittai
- The Ohio State University, 2121 Kenney Road, Columbus, OH, 43210, USA.
| |
Collapse
|
35
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 PMCID: PMC11653080 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
36
|
Pourhassan H, Kareem W, Agrawal V, Aldoss I. Important Considerations in the Intensive Care Management of Acute Leukemias. J Intensive Care Med 2024; 39:291-305. [PMID: 37990559 DOI: 10.1177/08850666231193955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In the realm of hematologic disorders, acute leukemia is approached as an emergent disease given the multitude of complications and challenges that present both as a result of inherent disease pathology and adverse events associated with antineoplastic therapies and interventions. The heavy burden of leukemic cells may lead to complications including tumor lysis syndrome, hyperleukocytosis, leukostasis, and differentiation syndrome, and the initiation of treatment can further exacerbate these effects. Capillary leak syndrome is observed as a result of antineoplastic agents used in acute leukemia, and L-asparaginase, a bacterial-derived enzyme, has a unique side effect profile including association with thrombosis. Thrombohemorrhagic syndrome and malignancy-associated thrombosis are also commonly observed complications due to direct disequilibrium in coagulant and anticoagulant factors. Due to inherent effects on the white blood cell milieu, leukemia patients are inherently immunocompromised and vulnerable to life-threatening sepsis. Lastly, the advents of newer therapies such as chimeric antigen receptor (CAR) T-cells have clinicians facing the management of related toxicities on unfamiliar territory. This review aims to discuss these acute leukemia-associated complications, their pathology, and management recommendations.
Collapse
Affiliation(s)
- Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Waasil Kareem
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
37
|
Atanackovic D, Iraguha T, Omili D, Avila SV, Fan X, Kocoglu M, Gebru E, Baker JM, Dishanthan N, Dietze KA, Oluwafemi A, Hardy NM, Yared JA, Hankey K, Dahiya S, Rapoport AP, Luetkens T. A novel multicolor fluorescent spot assay for the functional assessment of chimeric antigen receptor (CAR) T-cell products. Cytotherapy 2024; 26:318-324. [PMID: 38340107 DOI: 10.1016/j.jcyt.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T-cell (CAR-T) therapies have revolutionized the treatment of B-cell lymphomas. Unfortunately, relapses after CD19-targeted CAR-T are relatively common and, therefore, there is a critical need for assays able to assess the function and potency of CAR-T products pre-infusion, which will hopefully help to optimize CAR-T therapies. We developed a novel multicolor fluorescent spot assay (MFSA) for the functional assessment of CAR-T products on a single-cell level, combining the numerical assessment of CAR-T products with their functional characterization. METHODS We first used a standard single-cell interferon (IFN)-γ enzyme-linked immune absorbent spot assay to measure CD19-targeted CAR-T responses to CD19-coated beads. We then developed, optimized and validated an MFSA that simultaneously measures the secretion of combinations of different cytokines on a single CAR-T level. RESULTS We identified IFN-γ/tumor necrosis factor-α/granzyme B as the most relevant cytokine combination, and we used our novel MFSA to functionally and numerically characterize two clinical-grade CAR-T products. CONCLUSIONS In conclusion, we have developed a novel assay for the quantitative and functional potency assessment of CAR-T products. Our optimized MFSA is cost-effective, easy to perform, reliable, can be performed overnight, allowing for a fast delivery of the product to the patient, and requires relatively minimal maintenance and training. The clinical value of our novel assay will be assessed in studies correlating the pre-infusion assessment of CAR-T products with the patients' outcome in a prospective fashion.
Collapse
Affiliation(s)
- Djordje Atanackovic
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA.
| | - Thierry Iraguha
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Destiny Omili
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Stephanie V Avila
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Xiaoxuan Fan
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA; University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Mehmet Kocoglu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Etse Gebru
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Jillian M Baker
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA
| | - Nishanthini Dishanthan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Kenneth A Dietze
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA
| | - Ayooluwakiitan Oluwafemi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA
| | - Nancy M Hardy
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Jean A Yared
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Kim Hankey
- Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Saurabh Dahiya
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA; Stanford University, Stanford, California, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Tim Luetkens
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Borogovac A, Siddiqi T. Transforming CLL management with immunotherapy: Investigating the potential of CAR T-cells and bispecific antibodies. Semin Hematol 2024; 61:119-130. [PMID: 38290860 DOI: 10.1053/j.seminhematol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapies, such as chimeric antigen receptor (CAR) T-cell therapy and bispecific antibodies or T-cell engagers, have revolutionized the treatment landscape for various B-cell malignancies, including B-acute lymphoblastic leukemia and many non-Hodgkin lymphomas. Despite their significant impact on these malignancies, their application in chronic lymphocytic leukemia (CLL) management is still largely under investigation. Although the initial success of CD19-directed CAR T-cell therapy was observed in 3 multiply relapsed CLL patients, with 2 of them surviving over 10 years without relapse, recent CAR T-cell therapy trials in CLL have shown reduced response rates compared to their efficacy in other B-cell malignancies. One of the challenges with using immunotherapy in CLL is the compromised T-cell fitness from persistent CLL-related antigenic stimulation, and an immunosuppressive tumor microenvironment (TME). These challenges underscore a critical gap in therapeutic options for CLL patients intolerant or resistant to current therapies, emphasizing the imperative role of effective immunotherapy. Encouragingly, innovative strategies are emerging to overcome these challenges. These include integrating synergistic agents like ibrutinib to enhance CAR T-cell function and persistence and engineering newer CAR T-cell constructs targeting diverse antigens or employing dual-targeting approaches. Bispecific antibodies are an exciting "off-the-shelf" prospect for these patients, with their investigation in CLL currently entering the realm of clinical trials. Additionally, the development of allogeneic CAR T-cells and natural killer (NK) cells from healthy donors presents a promising solution to address the diminished T-cell fitness observed in CLL patients. This comprehensive review delves into the latest insights regarding the role of immunotherapy in CLL, the complex landscape of resistance mechanisms, and a spectrum of innovative approaches to surmount therapeutic challenges.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Immunotherapy/methods
- T-Lymphocytes/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Azra Borogovac
- City of Hope, Lennar Foundation Cancer Center, Irvine, CA.
| | - Tanya Siddiqi
- City of Hope, Lennar Foundation Cancer Center, Irvine, CA
| |
Collapse
|
39
|
Visentin A, Frazzetto S, Trentin L, Chiarenza A. Innovative Combinations, Cellular Therapies and Bispecific Antibodies for Chronic Lymphocytic Leukemia: A Narrative Review. Cancers (Basel) 2024; 16:1290. [PMID: 38610967 PMCID: PMC11011076 DOI: 10.3390/cancers16071290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
In the last few years, several agents targeting molecules that sustain the survival and the proliferation of chronic lymphocytic leukemia (CLL) cells have become clinically available. Most of these drugs target surface proteins, such as CD19 or CD20, via monoclonal or bispecific monoclonal antibodies (BsAbs), CAR T cells, intracellular proteins like BTK by using covalent or non-covalent inhibitors or BCL2 with first or second generation BH3-mimetics. Since the management of CLL is evolving quickly, in this review we highlighted the most important innovative treatments including novel double and triple combination therapies, CAR T cells and BsAbs for CLL. Recently, a large number of studies on novel combinations and newer strategic options for CLL therapy have been published or presented at international conferences, which were summarized and linked together. Although the management of treatment with a single continuous agent is easier, the emergence of protein mutations, long-term toxicities and costs are important concerns that favor the use of a fixed duration therapy. In the future, a measurable residual disease (MRD)-guided treatment cessation and MRD-based re-initiation of targeted therapy seems to be a more feasible approach, allowing identification of the patients who might benefit from continuous therapy or who might need a consolidation with BsAbs or CAR T cells to clear the neoplastic clone.
Collapse
Affiliation(s)
- Andrea Visentin
- Hematology Unit, Department of Medicine, University of Padova, 35128 Padova, Italy;
| | - Sara Frazzetto
- Hematology and Stem Cell Transplantation Unit, A.O.U. Policlinico, 95123 Catania, Italy; (S.F.); (A.C.)
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padova, 35128 Padova, Italy;
| | - Annalisa Chiarenza
- Hematology and Stem Cell Transplantation Unit, A.O.U. Policlinico, 95123 Catania, Italy; (S.F.); (A.C.)
| |
Collapse
|
40
|
Levstek L, Janžič L, Ihan A, Kopitar AN. Biomarkers for prediction of CAR T therapy outcomes: current and future perspectives. Front Immunol 2024; 15:1378944. [PMID: 38558801 PMCID: PMC10979304 DOI: 10.3389/fimmu.2024.1378944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy holds enormous potential for the treatment of hematologic malignancies. Despite its benefits, it is still used as a second line of therapy, mainly because of its severe side effects and patient unresponsiveness. Numerous researchers worldwide have attempted to identify effective predictive biomarkers for early prediction of treatment outcomes and adverse effects in CAR T cell therapy, albeit so far only with limited success. This review provides a comprehensive overview of the current state of predictive biomarkers. Although existing predictive metrics correlate to some extent with treatment outcomes, they fail to encapsulate the complexity of the immune system dynamics. The aim of this review is to identify six major groups of predictive biomarkers and propose their use in developing improved and efficient prediction models. These groups include changes in mitochondrial dynamics, endothelial activation, central nervous system impairment, immune system markers, extracellular vesicles, and the inhibitory tumor microenvironment. A comprehensive understanding of the multiple factors that influence therapeutic efficacy has the potential to significantly improve the course of CAR T cell therapy and patient care, thereby making this advanced immunotherapy more appealing and the course of therapy more convenient and favorable for patients.
Collapse
Affiliation(s)
| | | | | | - Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Amatya C, Weissler KA, Fellowes V, Lam N, Cutmore LC, Natrakul DA, Highfill SL, Kochenderfer JN. Optimization of anti-CD19 CAR T cell production for treatment of patients with chronic lymphocytic leukemia. Mol Ther Methods Clin Dev 2024; 32:101212. [PMID: 38455264 PMCID: PMC10918271 DOI: 10.1016/j.omtm.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
T cells expressing anti-CD19 chimeric antigen receptors (CARs) have activity against chronic lymphocytic leukemia (CLL), but complete response rates range from 18% to 29%, so improvement is needed. Peripheral blood mononuclear cells (PBMCs) of CLL patients often contain high levels of CLL cells that can interfere with CAR T cell production, and T cells from CLL patients are prone to exhaustion and other functional defects. We previously developed an anti-CD19 CAR designated Hu19-CD828Z. Hu19-CD828Z has a binding domain derived from a fully human antibody and a CD28 costimulatory domain. We aimed to develop an optimized process for producing Hu19-CD828Z-expressing T cells (Hu19-CAR T) from PBMC of CLL patients. We determined that supplementing Hu19-CAR-T cultures with interleukin (IL)-7 + IL-15 had advantages over using IL-2, including greater accumulation of Hu19-CAR T cells during in vitro proliferation assays. We determined that positive selection with anti-CD4 and anti-CD8 magnetic beads was the optimal method of T cell purification because this method resulted in high T cell purity. We determined that anti-CD3/CD28 paramagnetic beads were the optimal T cell activation reagent. Finally, we developed a current good manufacturing practices-compliant clinical-scale protocol for producing Hu19-CAR T from PBMC of CLL patients. These Hu19-CAR T exhibited a full range of in vitro functions and eliminated leukemia from mice.
Collapse
Affiliation(s)
- Christina Amatya
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch Bethesda, Bethesda, MD, USA
| | - Katherine A. Weissler
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch Bethesda, Bethesda, MD, USA
| | - Vicki Fellowes
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Norris Lam
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch Bethesda, Bethesda, MD, USA
| | - Lauren C. Cutmore
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch Bethesda, Bethesda, MD, USA
| | - Danielle A. Natrakul
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch Bethesda, Bethesda, MD, USA
| | - Steven L. Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD, USA
| | - James N. Kochenderfer
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch Bethesda, Bethesda, MD, USA
| |
Collapse
|
42
|
Barrett A, Appleby N, Dreau H, Fox CP, Munir T, Eyre TA. Richter's transformation: Transforming the clinical landscape. Blood Rev 2024; 64:101163. [PMID: 38097488 DOI: 10.1016/j.blre.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 03/12/2024]
Abstract
Richter transformation (RT) represents an aggressive histological transformation from chronic lymphocytic leukaemia, most often to a large B cell lymphoma. It is characterised by chemo-resistance and subsequent short survival. Drug development has struggled over recent years in light of the aggressive kinetics of the disease, lack of pivotal registrational trials and relative rarity of the phenomenon. In this review we will highlight the diagnostic and therapeutic challenges of managing patients with RT as well as taking a look to the future therapeutic landscape. Highly active therapies developed across B cell malignancies are starting to impact this field, with T-cell activation therapies (CAR-T, bispecific antibodies), antibody-drug conjugates, and novel small molecule inhibitor combinations (e.g. BTKi-BCL2i) being actively studied. We will highlight the data supporting these developments and look to the studies to come to provide hope for patients suffering from this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Cell Transformation, Neoplastic
Collapse
Affiliation(s)
- A Barrett
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - N Appleby
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - H Dreau
- Oxford Molecular Diagnostic Centre, Oxford, United Kingdom
| | - C P Fox
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - T Munir
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - T A Eyre
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
43
|
León-Román J, Iacoboni G, Bermejo S, Carpio C, Bolufer M, García-Carro C, Sánchez-Salinas M, Alonso-Martínez C, Bestard O, Barba P, Soler MJ. Transient acute kidney injury after chimeric antigen receptor T-cell therapy in patients with hematological malignancies. Clin Kidney J 2024; 17:sfae027. [PMID: 38500492 PMCID: PMC10946657 DOI: 10.1093/ckj/sfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 03/20/2024] Open
Abstract
Background Acute kidney injury (AKI) occurs in 30% of patients infused with chimeric antigen receptor (CAR) T-cells. The purpose of this study was to identify risk factors and long-term outcomes after AKI in patients who received CAR T-cell therapy. Methods Medical records of 115 adult patients with R/R hematological malignancies treated with CD19-targeted CAR T-cells at Vall d'Hebron University Hospital between July 2018 and May 2021. Baseline demographic data including age, gender, ethnicity, body mass index (BMI), and co-morbidities, as well as the type of hematological neoplasia and prior lines of therapy were collected. Laboratory parameters including serum creatinine and whole blood hemoglobin were retrospectively reviewed and values were gathered for days +1, +7, +14, +21, and +28 post-infusion. Results A total of 24/115 (21%) patients developed AKI related to CAR T-cell therapy; 6/24 with AKI over chronic kidney disease (CKD). Two patients had AKI in the context of lymphodepleting (LD) chemotherapy and the other 22 after CAR T-cell infusion, starting at day+1 in 3 patients, day+7 in 13 patients, day +14 in 1 patient, day+21 in 2 patients, and day+28 in 3 patients. Renal function was recovered in 19/24 (79%) patients within the first month after infusion. Male gender, CKD, cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS) were associated with AKI. Male gender, CKD, ICANS grade ≥3 and CRS grade ≥2 were identified as independent risk factors for AKI on multivariable analysis. In terms of the most frequent CAR T-cell related complications, CRS was observed in 95 (82%) patients and ICANS in 33 (29%) patients. Steroids were required in 34 (30%) patients and tocilizumab in 37 (32%) patients. Six (5%) patients were admitted to the intensive care unit (1 for septic shock, 4 for CRS grade ≥2 associated to ICANS grade ≥2, and 1 for CRS grade ≥3). A total of 5 (4.4%) patients died in the first 30 days after CAR T-cell infusion for reasons other than disease progression, including 4 cases of infectious complications and 1 of heart failure. Conclusion Our results suggest that AKI is a frequent but mild adverse event, with fast recovery in most patients.
Collapse
Affiliation(s)
- Juan León-Román
- Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sheila Bermejo
- Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain
| | - Cecilia Carpio
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Mónica Bolufer
- Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain
| | - Clara García-Carro
- Nephrology Department, San Carlos Clinical University Hospital, Madrid, Spain
| | - Mario Sánchez-Salinas
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Carla Alonso-Martínez
- Pharmacy Department, Vall d´Hebron Hospital Universitari, Vall d´Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Oriol Bestard
- Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain
| | - Pere Barba
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - María José Soler
- Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain
| |
Collapse
|
44
|
Ghaffari S, Saleh M, Akbari B, Ramezani F, Mirzaei HR. Applications of single-cell omics for chimeric antigen receptor T cell therapy. Immunology 2024; 171:339-364. [PMID: 38009707 DOI: 10.1111/imm.13720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment modality. The breakthroughs in CAR T cell therapy were, in part, possible with the help of cell analysis methods, such as single-cell analysis. Bulk analyses have provided invaluable information regarding the complex molecular dynamics of CAR T cells, but their results are an average of thousands of signals in CAR T or tumour cells. Since cancer is a heterogeneous disease where each minute detail of a subclone could change the outcome of the treatment, single-cell analysis could prove to be a powerful instrument in deciphering the secrets of tumour microenvironment for cancer immunotherapy. With the recent studies in all aspects of adoptive cell therapy making use of single-cell analysis, a comprehensive review of the recent preclinical and clinical findings in CAR T cell therapy was needed. Here, we categorized and summarized the key points of the studies in which single-cell analysis provided insights into the genomics, epigenomics, transcriptomics and proteomics as well as their respective multi-omics of CAR T cell therapy.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, Wisconsin, USA
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ramezani
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
45
|
Zygmunciak P, Robak T, Puła B. Treatment of Double-Refractory Chronic Lymphocytic Leukemia-An Unmet Clinical Need. Int J Mol Sci 2024; 25:1589. [PMID: 38338868 PMCID: PMC10855898 DOI: 10.3390/ijms25031589] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Recent years have seen significant improvement in chronic lymphocytic leukemia (CLL) management. Targeting B-cell lymphoma (BCL-2) and Bruton's kinase (BTK) have become the main strategies to restrain CLL activity. These agents are generally well tolerated, but the discontinuation of these therapies happens due to resistance, adverse effects, and Richter's transformation. A growing population of patients who have previously used both BTK inhibitors and BCL2 suffer from the constriction of the following regimens. This review explores the resistance mechanisms for both ibrutinib and venetoclax. Moreover, we present innovative approaches evaluated for treating double-refractory CLL.
Collapse
Affiliation(s)
- Przemysław Zygmunciak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (P.Z.); (B.P.)
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (P.Z.); (B.P.)
| |
Collapse
|
46
|
Sakemura RL, Manriquez Roman C, Horvei P, Siegler EL, Girsch JH, Sirpilla OL, Stewart CM, Yun K, Can I, Ogbodo EJ, Adada MM, Bezerra ED, Kankeu Fonkoua LA, Hefazi M, Ruff MW, Kimball BL, Mai LK, Huynh TN, Nevala WK, Ilieva K, Augsberger C, Patra-Kneuer M, Schanzer J, Endell J, Heitmüller C, Steidl S, Parikh SA, Ding W, Kay NE, Nowakowski GS, Kenderian SS. CD19 occupancy with tafasitamab increases therapeutic index of CART19 cell therapy and diminishes severity of CRS. Blood 2024; 143:258-271. [PMID: 37879074 PMCID: PMC10808250 DOI: 10.1182/blood.2022018905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
ABSTRACT In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.
Collapse
Affiliation(s)
- R. Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Claudia Manriquez Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Paulina Horvei
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Pediatric Bone Marrow Transplant and Cellular Therapy, UPMC Children’s Hospital of Pittsburgh, PA
| | - Elizabeth L. Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - James H. Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Olivia L. Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Carli M. Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Ekene J. Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mohamad M. Adada
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Michael W. Ruff
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Department of Neurology, Mayo Clinic, Rochester, MN
| | - Brooke L. Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Long K. Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Truc N. Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Saad S. Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| |
Collapse
|
47
|
Dandia HY, Pillai MM, Sharma D, Suvarna M, Dalal N, Madhok A, Ingle A, Chiplunkar SV, Galande S, Tayalia P. Acellular scaffold-based approach for in situ genetic engineering of host T-cells in solid tumor immunotherapy. Mil Med Res 2024; 11:3. [PMID: 38173045 PMCID: PMC10765574 DOI: 10.1186/s40779-023-00503-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Targeted T-cell therapy has emerged as a promising strategy for the treatment of hematological malignancies. However, its application to solid tumors presents significant challenges due to the limited accessibility and heterogeneity. Localized delivery of tumor-specific T-cells using biomaterials has shown promise, however, procedures required for genetic modification and generation of a sufficient number of tumor-specific T-cells ex vivo remain major obstacles due to cost and time constraints. METHODS Polyethylene glycol (PEG)-based three-dimensional (3D) scaffolds were developed and conjugated with positively charged poly-L-lysine (PLL) using carbamide chemistry for efficient loading of lentiviruses (LVs) carrying tumor antigen-specific T-cell receptors (TCRs). The physical and biological properties of the scaffold were extensively characterized. Further, the scaffold loaded with OVA-TCR LVs was implanted in B16F10 cells expressing ovalbumin (B16-OVA) tumor model to evaluate the anti-tumor response and the presence of transduced T-cells. RESULTS Our findings demonstrate that the scaffolds do not induce any systemic inflammation upon subcutaneous implantation and effectively recruit T-cells to the site. In B16-OVA melanoma tumor-bearing mice, the scaffolds efficiently transduce host T-cells with OVA-specific TCRs. These genetically modified T-cells exhibit homing capability towards the tumor and secondary lymphoid organs, resulting in a significant reduction of tumor size and systemic increase in anti-tumor cytokines. Immune cell profiling revealed a significantly high percentage of transduced T-cells and a notable reduction in suppressor immune cells within the tumors of mice implanted with these scaffolds. CONCLUSION Our scaffold-based T-cell therapy presents an innovative in situ localized approach for programming T-cells to target solid tumors. This approach offers a viable alternative to in vitro manipulation of T-cells, circumventing the need for large-scale in vitro generation and culture of tumor-specific T-cells. It offers an off-the-shelf alternative that facilitates the use of host cells instead of allogeneic cells, thereby, overcoming a major hurdle.
Collapse
Affiliation(s)
- Hiren Y Dandia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mamatha M Pillai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Meghna Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Arvind Ingle
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Shubhada V Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
48
|
Yeung CCS, Woolston DW, Wu V, Voutsinas JM, Basom R, Davis C, Hirayama AV, Naresh KN. Abnormal bone marrow findings in patients following treatment with chimeric antigen receptor-T cell therapy. Eur J Haematol 2024; 112:111-121. [PMID: 37526606 DOI: 10.1111/ejh.14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Bone marrow (BM) assessment after CAR-T cell immunotherapy infusion is not routinely performed to monitor adverse events such as cytopenias, hemophagocytic lymphohistiocytosis, or infections. Our institution has performed BM biopsies as part of CAR-T cell treatment protocols, encompassing pre- and post-treatment time points and during long-term follow-up. METHODS We conducted a systematic retrospective review of BM abnormalities observed in samples from 259 patients following CAR-T cell immunotherapy. We correlated BM pathology findings with mortality, relapse/residual disease, and laboratory values. RESULTS At a median of 35.5 days post-CAR-T infusion, 25.5% showed severe marrow hypocellularity, and 6.2% showed serous atrophy, and peripheral blood cytopenias corroborated these observations. Marrow features associated with reduced disease burden post-CAR-T infusion include increased lymphocytes seen in 16 patients and an increase of macrophages or granulomatous response seen in 25 patients. However, a 100-day landmark analysis also showed increased marrow histiocytes were associated with lower survival (median OS 6.0 vs. 21.4 months, p = .026), as was grade 2-3 marrow reticulin (18 patients) (median OS 12.5 vs. 24.2 months, p = .034). CONCLUSIONS These data represent the first systematic observations of BM changes in patients receiving CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Cecilia C S Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - David W Woolston
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vicky Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jenna M Voutsinas
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ryan Basom
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Chris Davis
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Alexandre V Hirayama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kikkeri N Naresh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
49
|
Molica S, Tam C, Allsup D, Polliack A. Targeting TP53 disruption in chronic lymphocytic leukemia: Current strategies and future directions. Hematol Oncol 2024; 42:e3238. [PMID: 37937506 DOI: 10.1002/hon.3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
In the modern era of Chronic Lymphocytic Leukemia (CLL) targeted therapy, the loss of p53 function due to genetic abnormalities remains a significant challenge. This is because even targeted agents, which are currently the mainstay of treatment for CLL, do not directly target p53 or restore its disrupted pathway. Consequently, resistance to therapy and unfavorable clinical outcomes often accompany these p53-related abnormalities. An essential goal of future clinical research should be to address the ostensibly "undruggable" p53 pathway. Currently, multiple therapeutic approaches are being explored to tackle TP53 dysfunction and improve outcomes in high-risk CLL. These approaches include the use of oncoprotein murine double minute 2 inhibitors, small-molecule p53 reactivators, exportin 1 (XPO1) inhibitors, and ataxia-telangiectasia mutated and Rad3-related (ATR) inhibitors. Combinations of these p53-targeting strategies, along with established novel therapies such as B-cell receptor or B-cell lymphoma-2 (BCL-2) inhibitors, may shape the future of therapeutic trials in this challenging-to-treat disease.
Collapse
Affiliation(s)
- Stefano Molica
- Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull University NHS Trust, Hull, UK
| | | | - David Allsup
- Centre of Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Aaron Polliack
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
50
|
Wang Y, Li YR. Harnessing Chimeric Antigen Receptor-engineered Invariant Natural Killer T Cells: Therapeutic Strategies for Cancer and the Tumor Microenvironment. Curr Pharm Biotechnol 2024; 25:2001-2011. [PMID: 38310449 DOI: 10.2174/0113892010265228231116073012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has emerged as a revolutionary approach for cancer treatment, especially for hematologic cancers. However, CAR-T therapy has some limitations, including cytokine release syndrome (CRS), immune cellassociated neurologic syndrome (ICANS), and difficulty in targeting solid tumors and delivering allogeneic cell therapy due to graft-versus-host disease (GvHD). Therefore, it is important to explore other cell sources for CAR engineering. Invariant natural killer T (iNKT) cells are a potential target, as they possess powerful antitumor ability and do not recognize mismatched major histocompatibility complexes (MHCs) and protein antigens, thus avoiding the risk of GvHD. CAR-engineered iNKT (CAR-iNKT) cell therapy offers a promising new approach to cancer immunotherapy by overcoming the drawbacks of CAR-T cell therapy while retaining potent antitumor capabilities. This review summarizes the current CAR-iNKT cell products, their functions and phenotypes, and their potential for off-the-shelf cancer immunotherapy.
Collapse
Affiliation(s)
- Yiqing Wang
- Department of Chemistry, Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|